The Singular Complement Method (Part II)

How to improve the convergence rate?

Patrick Ciarlet

ciarlet@ensta.fr

ENSTA, Paris, France

The Singular Complement Method (Part II) - p.1/4

I. Introduction

Consider a non-smooth and non-convex domain ω :

- polygon (2d)
- polyhedron (3d).

Aims of the Singular Complement Method:

Solution Enable convergence of the P_1 Lagrange FEM.

(static or time-dependent Maxwell equations, fluid problems, etc.)

Improve the convergence rate of the P_1 Lagrange FEM.

(Poisson-like problems, wave equation, etc.)

How to improve the convergence rate

A number of techniques have been developed...

Mesh refinement

(Raugel'78; Apel-Nicaise'99, etc.)

- The Singular Function Method (Strang-Fix'73, etc.)
- The Dual Singular Function Method (Dobrowolski'80; Amara-Moussaoui'90; Grisvard'92, etc.)
- Other techniques

(Brenner'99 ...)

(Potential) Drawbacks & Advantages

Mesh refinement

mesh *generation*; troublesome for *time-dependent* problems; works in 3d for Poisson-like problems.

- The Singular Function Method does not converge in practice.
- The Dual Singular Function Method converges slowly in practice.

II. The framework

The problem and its discretization

- Consider a 2d polygon ω .
- Aim: solve numerically

Given $f \in L^2(\omega)$

Find $u \in H_0^1(\omega)$ such that $-\Delta u = f$ in ω .

D Tools: the P_1 Lagrange FEM.

 \mathcal{T}_h a regular triangulation.

$$V_h^0 = \{ v_h \in \mathcal{C}^0(\omega) : v_h |_T \in P_1(T), \ \forall T \in \mathcal{T}_h, \ v_h |_{\partial \omega} = 0 \}.$$

Find
$$x_h \in V_h^0$$
 such that $\int_{\omega} \nabla x_h \cdot \nabla v_h \, d\omega = \int_{\omega} f \, v_h \, d\omega, \, \forall v_h \in V_h^0$,

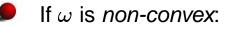
or

$$\mathbb{K}\underline{x} = \underline{f}.$$

Convergence results

If ω is convex:

 $\exists C > 0 \text{ such that } \|u - x_h\|_1 \leq C h.$



 $\forall \varepsilon > 0, \exists C_{\varepsilon} > 0 \text{ such that } \|u - x_h\|_1 \leq C_{\varepsilon} \frac{h^{\alpha - \varepsilon}}{\epsilon}$

(α is geometry dependent; $\alpha \in]\frac{1}{2}, 1[$).

How to bring the convergence rate back to h in all cases?

A few words about the (D)SFM

Start from the FE space V_h^0

Add singular test-functions

 $\eta(r_k) r_k{}^{\alpha_k} \sin(\alpha_k \theta_k)$

(one for each reentrant corner, with $\alpha_k = \pi/\Theta_k \in]\frac{1}{2}, 1[.)$

Approximate u by

$$x'_h + \sum_k \lambda_k \eta(r_k) r_k^{\alpha_k} \sin(\alpha_k \theta_k).$$

Compute the coefficients $(\lambda_k)_k$: directly (SFM); *via* a scalar product $\lambda_k = \int_{\omega} f g_s^k d\omega$ (DSFM).

Problem: the truncation function η .

The SCM: elements of theory

🥒 Idea...

Trade the truncation function for a non-zero boundary condition, while keeping the dual approach.

Use an orthogonal decomposition of the space $L^2(\omega)$:

$$L^{2}(\omega) = \Delta(H^{2}(\omega) \cap H^{1}_{0}(\omega)) \stackrel{\downarrow}{\oplus} N, \text{ with}$$
$$N = \{p \in L^{2}(\omega) : \Delta p = 0, \ p_{|\gamma_{k}} = 0 \text{ in } (H^{1/2}_{00}(\gamma_{k}))', \ 1 \le k \le n_{e}\};$$

map it back (via Δ^{-1}) to the space of solutions.

NB. $\dim(N)$ = number of reentrant corners (*one* from now on...)

III. Algorithms & Numerical Analysis

Algorithms (1)

- How to isolate the singular part (in general)?
- (1) Find a basis of N: p_s .
- (2) Find $\phi_s \in H^1_0(\omega)$ such that $-\Delta \phi_s = p_s$.

How to compute the solution of the problem with right-hand side f? Write u = ũ + c φ_s, with ũ ∈ H²(ω) ∩ H₀¹(ω).
(3) Compute c = ∫_ω fp_s dω / ||p_s||₀².
(4) Find ũ ∈ H₀¹(ω) such that -Δũ = f - c p_s.

Algorithms (2)

(1) How to compute p_s ?

- $p_s = \tilde{p} + p_P$, with regular part $\tilde{p} \in H^1(\omega)$ $(\Delta \tilde{p} = 0, \tilde{p}_{|\gamma_c} = 0);$ principal part $p_P = r^{-\alpha} \sin(\alpha \theta).$
- (2) How to compute ϕ_s ?
 - $$\begin{split} \phi_s &= \tilde{\phi} + \beta \, \phi_P, \text{ with} \\ & \text{regular part} \quad \tilde{\phi} \in H^2(\omega) \qquad (-\Delta \tilde{\phi} = p_s, \, \tilde{\phi}_{|\gamma_c} = 0); \\ & \beta \in \mathbb{R}; \\ & \text{principal part} \quad \phi_P = r^\alpha \sin(\alpha \theta). \end{split}$$

Algorithms (3)

J To get an explicit expression of β ...

$$\begin{aligned} ||p_s||_0^2 &= -\int_{\omega} \Delta \phi_s \, p_s \, d\omega \\ \left(\begin{array}{ccc} \phi_s &= & (\tilde{\phi} + \beta(1 - \eta)\phi_P) + \beta\eta\phi_P \\ & \in H^2(\omega) \cap H_0^1(\omega) \end{array} \right) \\ &= & -\beta \int_{\omega} \Delta(\eta\phi_P) \, p_s \, d\omega \\ &= & -\beta \left\{ \int_{\omega} \Delta(\eta\phi_P) \, \tilde{p} \, d\omega + \int_{\omega} \Delta(\eta\phi_P) \, p_P \, d\omega \right\} \\ &= & -\beta \left\{ \begin{array}{ccc} 0 & - & \pi \end{array} \right\} \end{aligned}$$

... Therefore
$$\beta = \frac{1}{\pi} ||p_s||_0^2$$
.

Algorithms (4)

Another approach...

$$u = \tilde{u} + c \phi_s$$

= $\tilde{u} + c \tilde{\phi} + c\beta \phi_P$
= $\tilde{u}' + \lambda \phi_P$, with $\tilde{u}' \in H^2(\omega)$.

(3b) Compute
$$\lambda = \frac{1}{\pi} \int_{\omega} f p_s \, d\omega$$
.
(4b) Find $\tilde{u}' \in H^1(\omega)$ such that $-\Delta \tilde{u}' = f$ and $\tilde{u}'_{|\partial \omega} = -\lambda \phi_P|_{\partial \omega}$.

NB. This corresponds to the method described by Moussaoui'84...

Numerical Analysis (1)

Solution Numerical approximation of the dual singular function p_s .

(1) $p_s^h = \tilde{p}_h + p_P$, with $\tilde{p}_h = p_h^* - q_h$ defined by

$$\begin{split} q_h &= Q_h(p_P), \text{ and } Q_h(g) = \sum_{M_i \in \partial \omega} g(M_i)\phi_i; \\ p_h^* &\in V_h^0 \text{ such that } \int_{\omega} \nabla p_h^* \cdot \nabla v_h \, d\omega = \int_{\omega} \nabla q_h \cdot \nabla v_h \, d\omega, \; \forall v_h \in V_h^0 \\ \left(\text{or, in matrix form, } \mathbb{K}\underline{p}^* = \underline{q}. \right) \end{split}$$

Convergence results...

(1) $\forall \varepsilon > 0, \exists C_{\varepsilon} > 0 \text{ such that } \|p_s - p_s^h\|_0 \le C_{\varepsilon} h^{2\alpha - \varepsilon}.$

Numerical Analysis (2)

Numerical approximation of the singular function
$$\phi_s$$
.
 $\phi_s^h = \tilde{\phi}_h + \beta_h \phi_P$, with β_h and $\tilde{\phi}_h = \phi_h^* - q'_h$ defined by
 $\beta_h = \frac{1}{\pi} ||p_s^h||_0^2$,
 $q'_h = Q_h(\phi_P)$ and
 $\phi_h^* \in V_h^0$ such that $\int_{\omega} \nabla \phi_h^* \cdot \nabla v_h \, d\omega = \int_{\omega} p_s^h v_h \, d\omega$
 $+\beta_h \int_{\omega} \nabla q'_h \cdot \nabla v_h \, d\omega, \, \forall v_h \in V_h^0$
(or, in matrix form, $\begin{pmatrix} \mathbb{K} & -\underline{q'} \\ 0 & \pi \end{pmatrix} \begin{pmatrix} \underline{\phi}^* \\ \beta_h \end{pmatrix} = \begin{pmatrix} \underline{l} \\ p \end{pmatrix}$.)

Convergence results...

(2)

(2)
$$\forall \varepsilon > 0, \exists C_{\varepsilon} > 0$$
 such that $|\beta - \beta_h| \le C_{\varepsilon} h^{2\alpha - \varepsilon}$
(2) $\exists C > 0$ such that $\|\phi_s - \phi_s^h\|_1 \le C h$.

Numerical Analysis (3)

Numerical approximation of the solution u.

Write $u_h = \tilde{u}_h + c_h \phi_s^h$, with

(3)
$$c_h = \frac{\int_{\omega} f p_s^h d\omega}{\|p_s^h\|_0^2};$$

(4) \tilde{u}_h is directly computable...

$$\tilde{u}_{h} \in V_{h}^{0} \text{ such that } \int_{\omega} \nabla \tilde{u}_{h} \cdot \nabla v_{h} \, d\omega = \int_{\omega} f v_{h} \, d\omega - c_{h} \int_{\omega} p_{s}^{h} v_{h} \, d\omega, \, \forall v_{h} \in V_{h}^{0}$$
$$\left(\begin{array}{c} \text{or, in matrix form,} \\ 0 & p \end{array} \right) \left(\begin{array}{c} \underline{\tilde{u}} \\ c_{h} \end{array} \right) = \left(\begin{array}{c} \underline{f}_{0} \\ f \end{array} \right) . \right)$$

Convergence results...

- (3) $\forall \varepsilon > 0, \exists C_{\varepsilon} > 0$ such that $|c c_h| \leq C_{\varepsilon} h^{2\alpha \varepsilon}$
- (4) $\exists C > 0$ such that $\|\tilde{u} \tilde{u}_h\|_1 \leq C h$.

Numerical Analysis (4)

Overall convergence rate and computational cost...

- Total cost three linear systems solves...
 Step (1) requires solving one linear system of order N_i × N_i.
 Step (2) requires solving one linear system of order (N_i + 1) × (N_i + 1).
 Step (4) requires solving one linear system of order (N_i + 1) × (N_i + 1).

Numerical Analysis (5)

Another approach... $u_{h} = \tilde{u}'_{h} + \lambda_{h} \phi_{P}.$ (3b) $\lambda_{h} = \frac{1}{\pi} \int_{\omega} fp^{h}_{s} d\omega;$ (4b) $\tilde{u}'_{h} = u^{*}_{h} - \lambda_{h} q'_{h}, \text{ where } u^{*}_{h} = \tilde{u}_{h} + c_{h} \phi^{*}_{h}...$ In matrix form,

$$\begin{pmatrix} \mathbb{K} & -\underline{q}' \\ 0 & \pi \end{pmatrix} \begin{pmatrix} \underline{u}^* \\ \lambda_h \end{pmatrix} = \begin{pmatrix} \underline{f}_0 \\ f \end{pmatrix}.$$

- - Total cost two linear systems solves...

Step (1) requires solving one linear system of order $N_i \times N_i$.

Step (4b) requires solving one linear system of order $(N_i + 1) \times (N_i + 1)$.

IV. Numerical Experiments

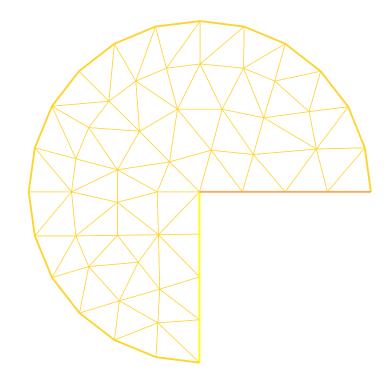
With Jiwen He (University of Houston)

1. Cheese Case

$$\omega_{\alpha} = \{ (r, \theta) : r \in]0, 1[, \theta \in]0, \Theta_{\alpha}[\}$$

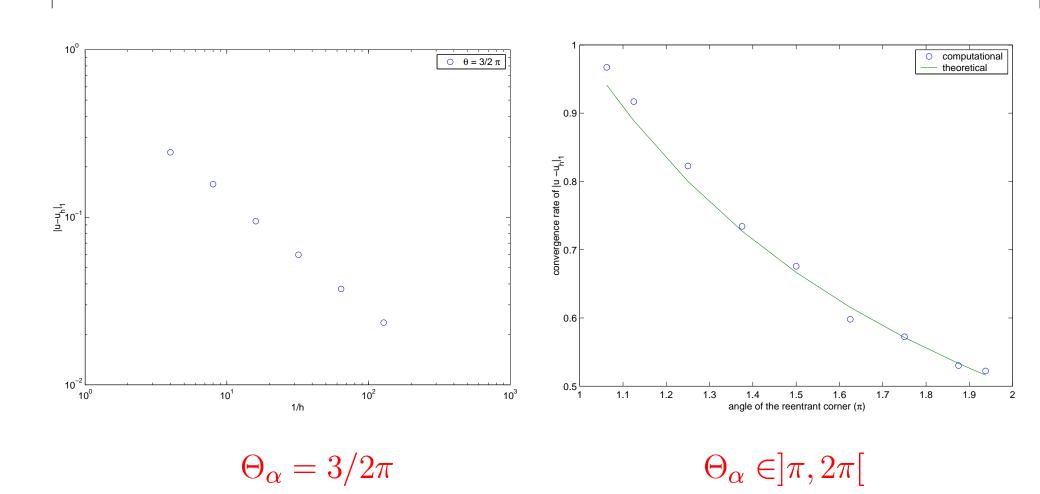
Exact solution $u = r^{\alpha} \sin(\alpha \theta)$ in ω_{α}

 α vary in] $\frac{1}{2}$, 1[

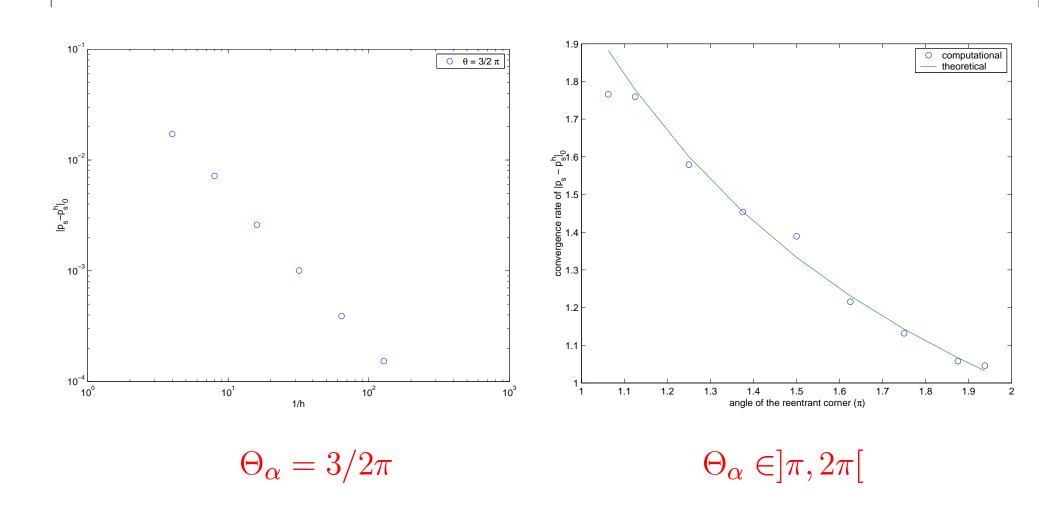


$$lpha = rac{2}{3} \left(\Theta_{lpha} = rac{3}{2} \pi
ight)$$

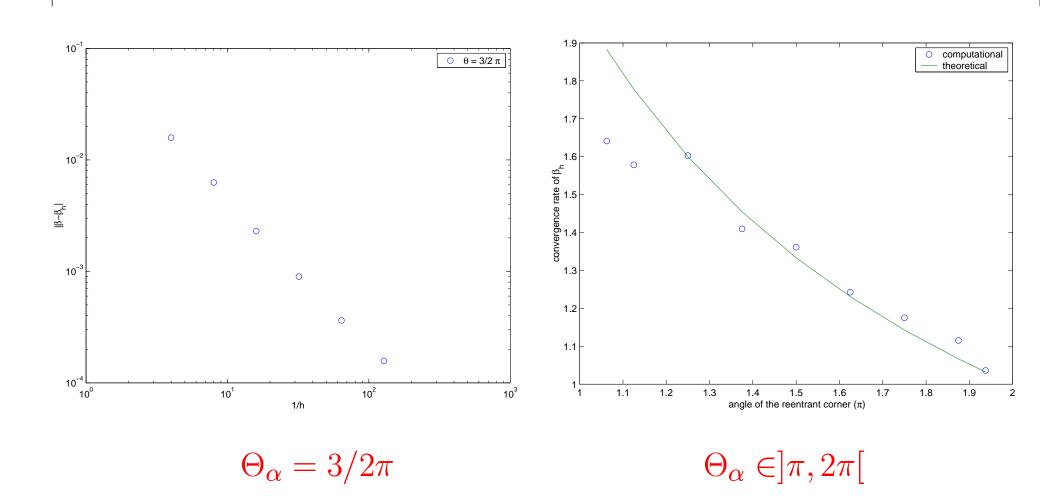
 $||u - x_h||_1 < C_{\epsilon} h^{\alpha - \epsilon}$ (no SCM)



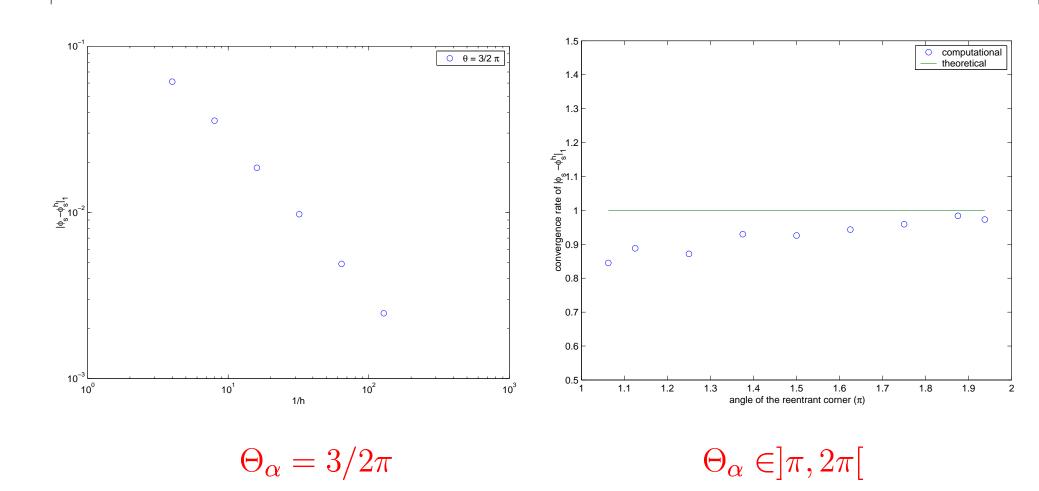
$$||p_s - p_s^h||_0 < C_\epsilon h^{2\alpha - \epsilon}$$



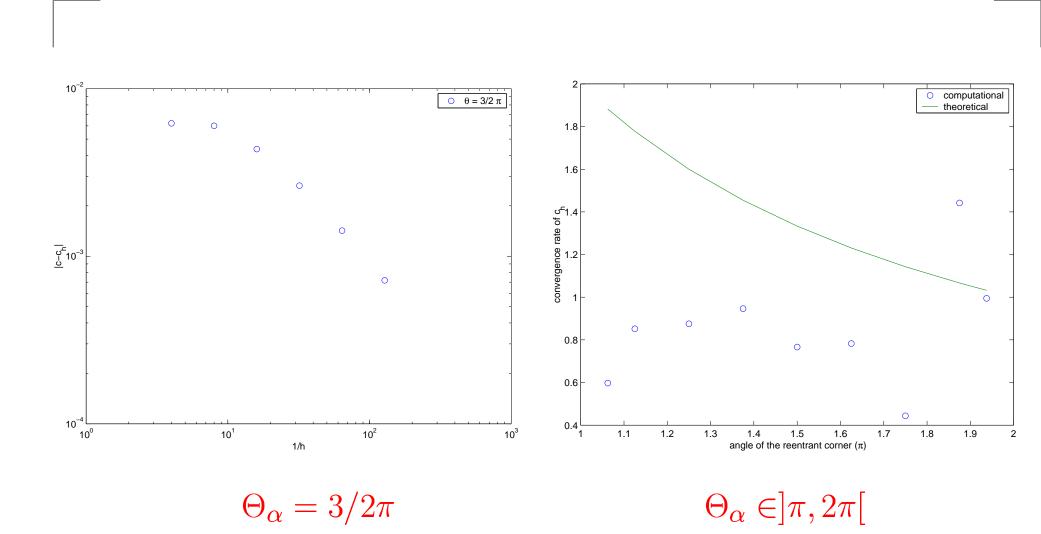
 $|\beta - \beta_h| < C_{\epsilon} h^{2\alpha - \epsilon}$



 $\|\phi_s - \phi_s^h\|_1 < Ch$

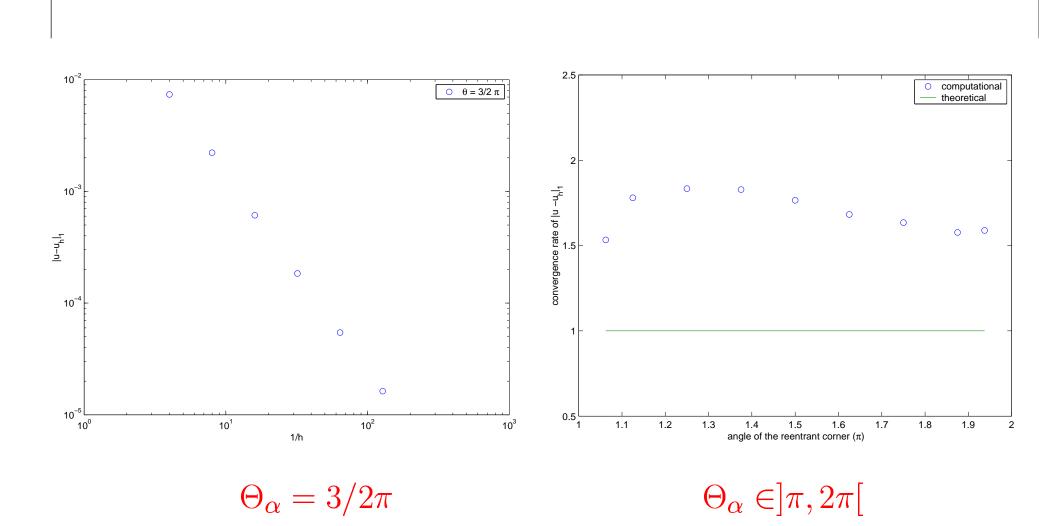


 $|c - c_h| < C_{\epsilon} h^{2\alpha - \epsilon}$

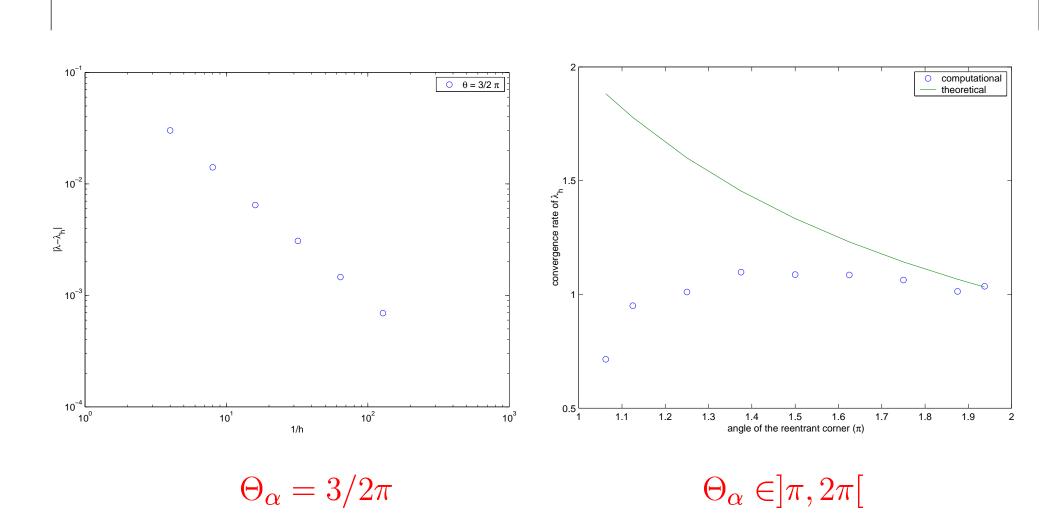


The Singular Complement Method (Part II) - p.27/45

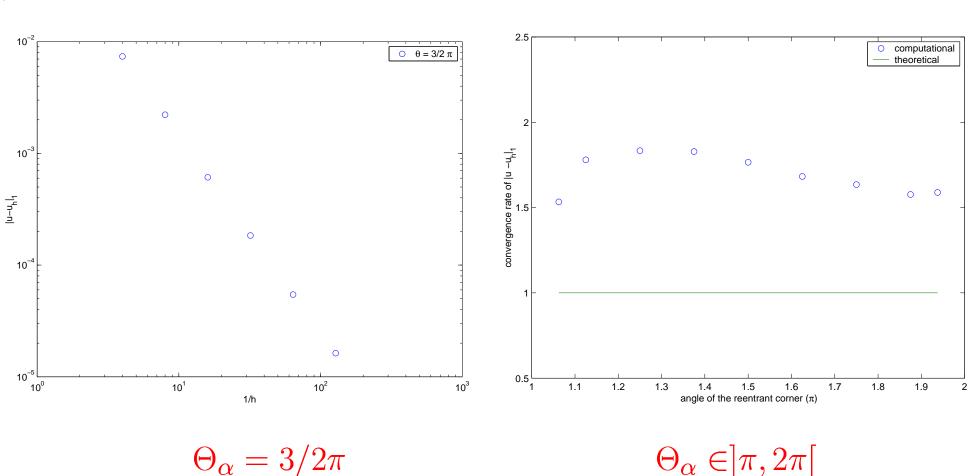
 $\|u - u_h\|_1 < Ch$



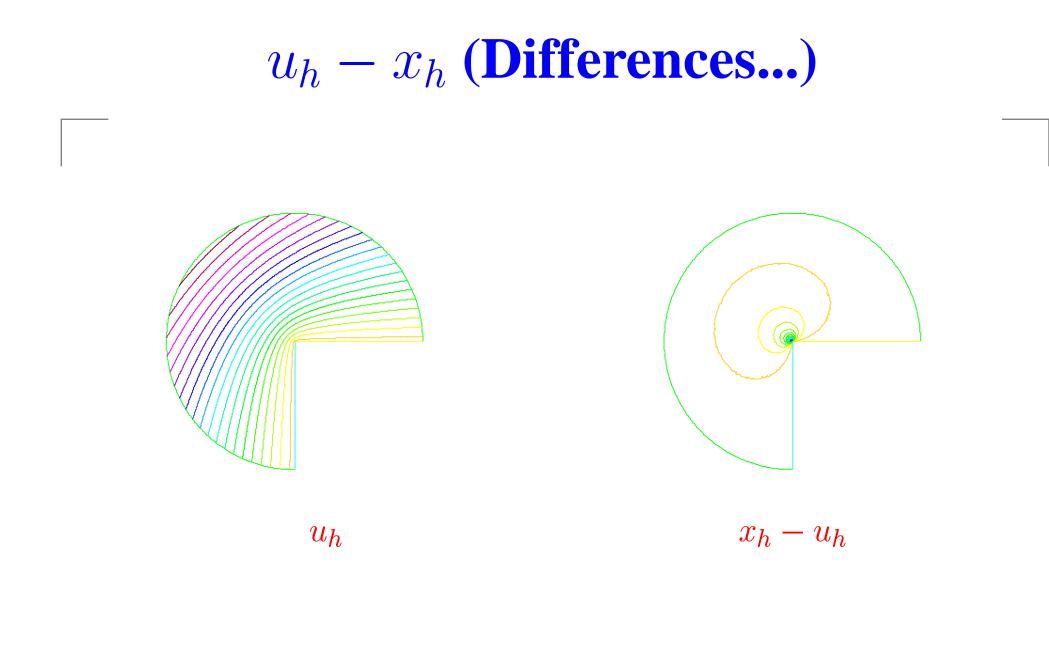
 $|\lambda - \lambda_h| < C_{\epsilon} h^{2\alpha - \epsilon}$



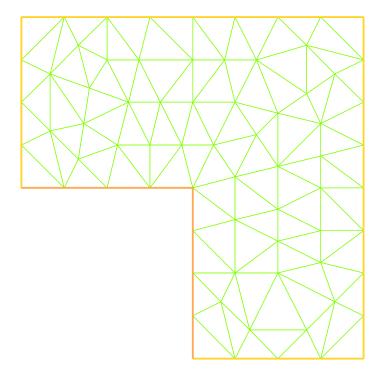
 $||u - u_h||_1 < Ch (\lambda \text{ approach})$



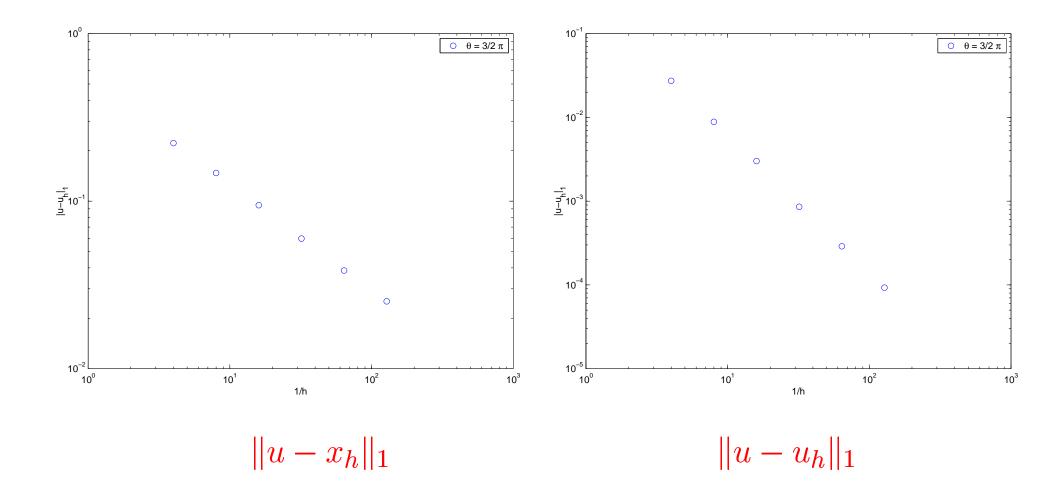
 $\Theta_{\alpha} = 3/2\pi$



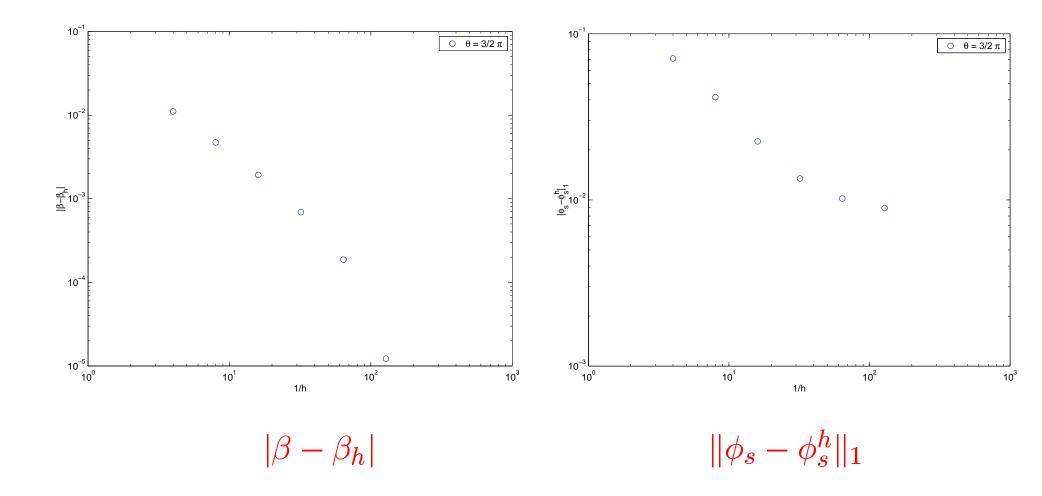
2. L-shaped domain (analytical solution)



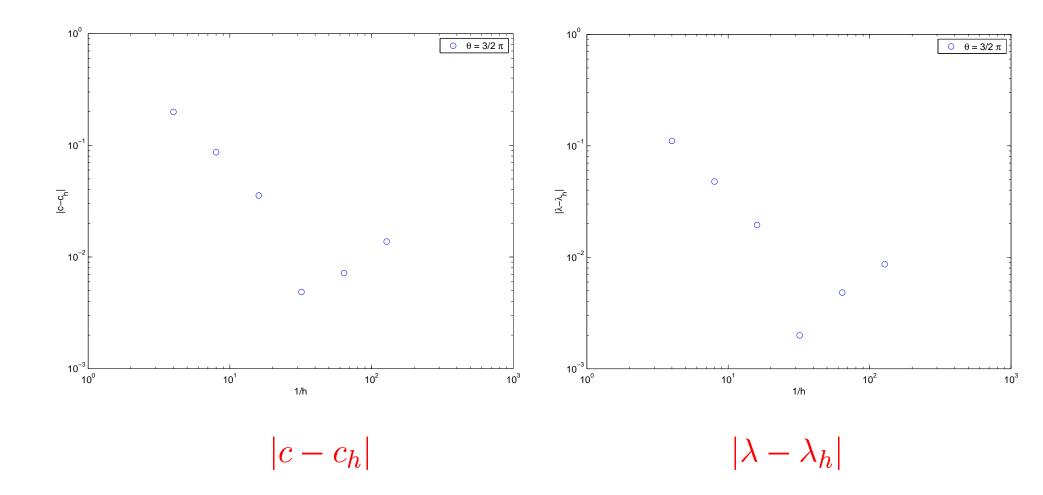
Exact solution $u = r^{\frac{2}{3}} \sin(\frac{2}{3}\theta)$ in ω



The Singular Complement Method (Part II) - p.33/45

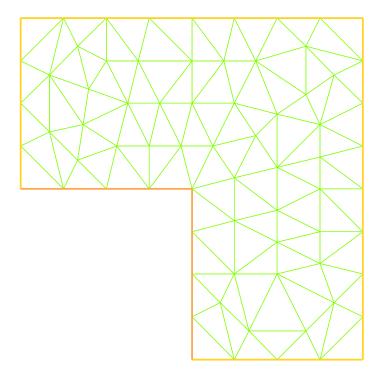


The Singular Complement Method (Part II) - p.34/4



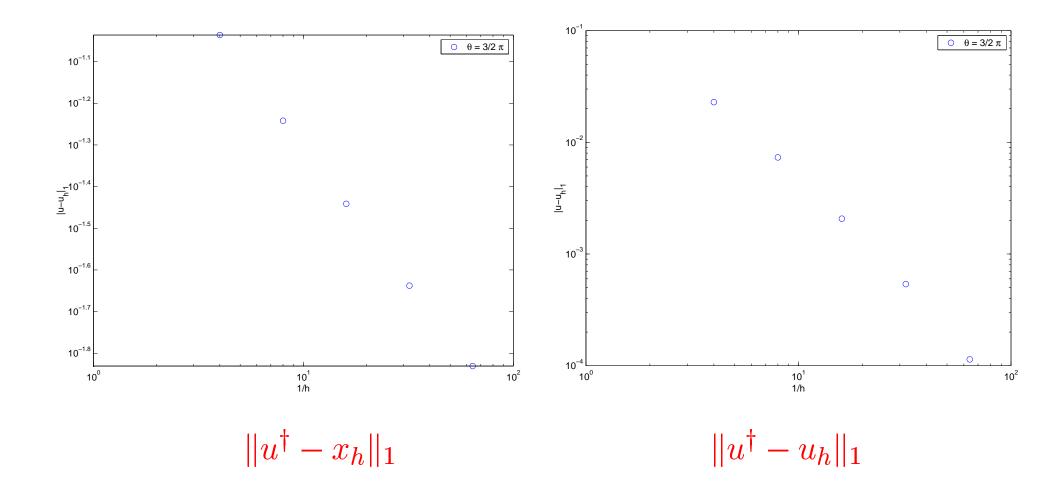
The Singular Complement Method (Part II) - p.35/4

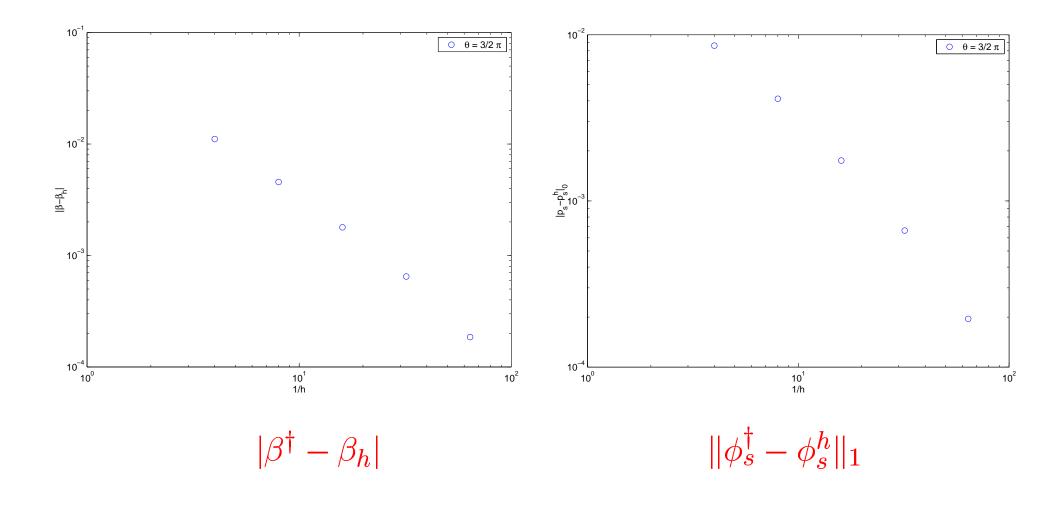
2. L-shaped domain (general)

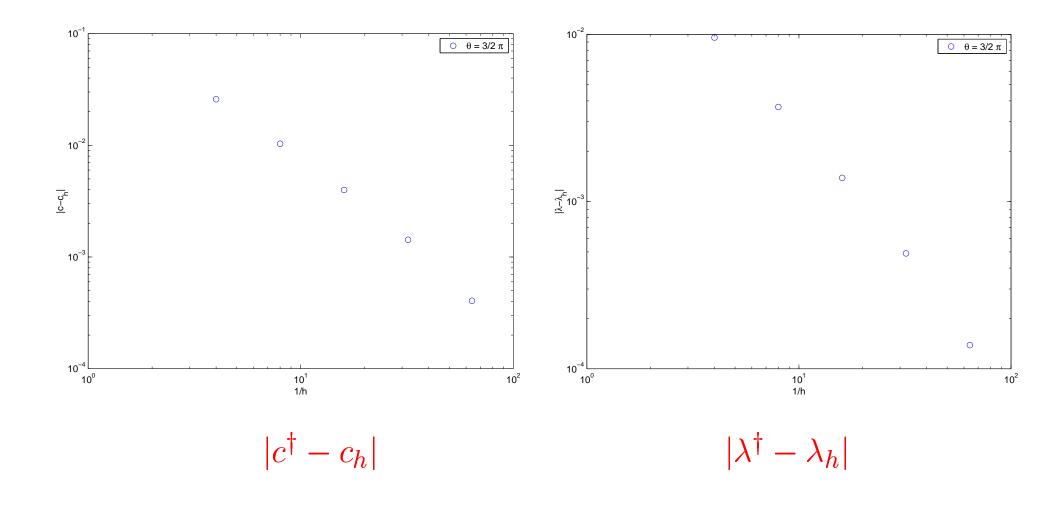


Unknown solution

$$-\Delta u = 1 \text{ in } \omega$$
$$u_{|_{\partial \omega}} = 0$$

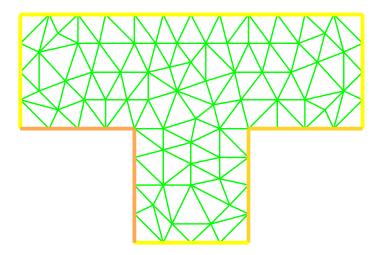






The Singular Complement Method (Part II) - p.39/4

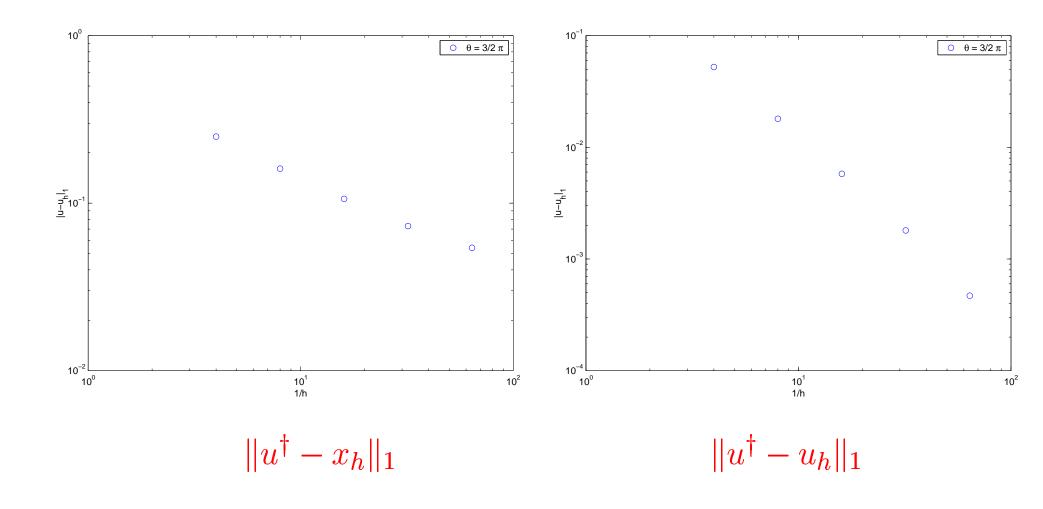
3. T-shaped domain (general)



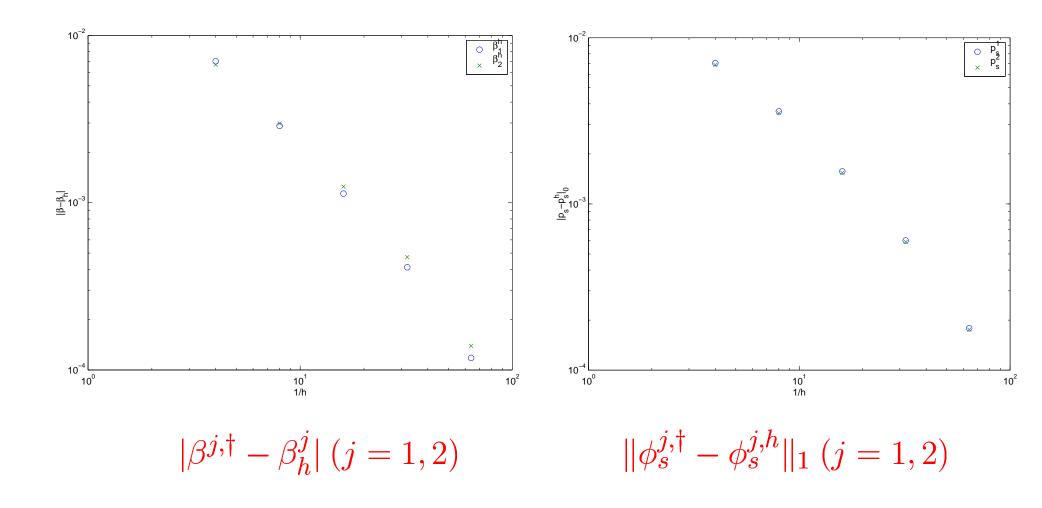
Unknown solution

$$\begin{aligned} -\Delta u &= 1 \text{ in } \omega \\ u_{\mid_{\partial \omega}} &= 0 \end{aligned}$$

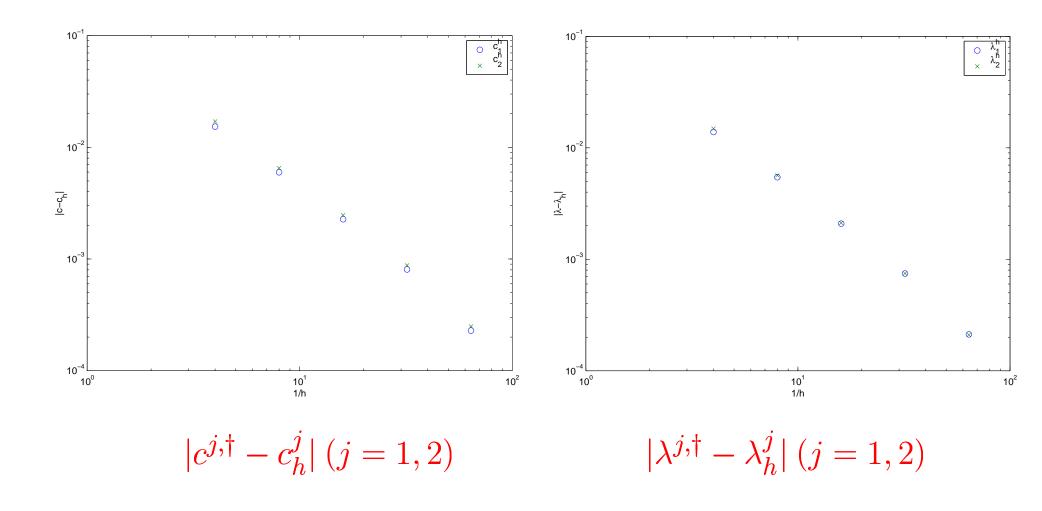
$$\alpha_1 = \alpha_2 = \frac{2}{3}$$



The Singular Complement Method (Part II) - p.41/4



The Singular Complement Method (Part II) - p.42/4



The Singular Complement Method (Part II) - p.43/4

V. Conclusion

Extensions & Perspectives

(Algorithmic) applications to the vector problems.

- Neumann problem.
- Heterogeneous b.c.
- Several corners.
- Problems with jumps in the coefficients.
- Wave equation.
- 3d domains with conical points.
- 3d prismatic or axisymmetric domains (work in progress).