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I. Introduction
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Basics

Consider a non-smooth and non-convex domain �:

polygon (2d)

polyhedron (3d).

Aims of the Singular Complement Method:

Enable convergence of the

��� Lagrange FEM.

(static or time-dependent Maxwell equations, fluid problems, etc.)

Improve the convergence rate of the
� � Lagrange FEM.

(Poisson-like problems, wave equation, etc.)
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How to improve the convergence rate

A number of techniques have been developed...

Mesh refinement

(Raugel’78 ; Apel-Nicaise’99, etc.)

The Singular Function Method

(Strang-Fix’73, etc.)

The Dual Singular Function Method

(Dobrowolski’80 ; Amara-Moussaoui’90 ; Grisvard’92, etc.)

Other techniques

(Brenner’99 ...)

The Singular Complement Method (Part II) – p.4/45



(Potential) Drawbacks & Advantages

Mesh refinement

mesh generation ; troublesome for time-dependent problems ;

works in 3d for Poisson-like problems.

The Singular Function Method

does not converge in practice.

The Dual Singular Function Method

converges slowly in practice.
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II. The framework
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The problem and its discretization

Consider a 2d polygon �.

Aim: solve numerically

Given

� � � �� � �

Find � � � �	� � � � such that 
 � � � �

in �.

Tools: the

�� Lagrange FEM.

�� a regular triangulation.

� �� � ��� � � � � � � ��� � � ��� � ��
� � ��� � � � �� � � �� � ! � " #

.

Find $ � � � �� such that %
& $ �' &� � ( � �

%
� � � ( �� �� � � � �� �

or

) $ � �*
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Convergence results

If � is convex:

� � � "

such that

� � 
 $ � �
� � ��

.

If � is non-convex:

��� � "

,

� �	� � "

such that

� � 
 $ � �
� � �� � 
� �

( � is geometry dependent; � �  � � � � �
).

How to bring the convergence rate back to

�

in all cases?
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A few words about the (D)SFM

Start from the FE space

� ��

Add singular test-functions

�� �� � � � 
� � ��� � � � �� �

(one for each reentrant corner, with � � � 	 
 � � �  � � � � �

.)

Approximate � by

$ � � 
�

� � �� � � � �� 
� � ��� � � � �� � *

Compute the coefficients

� � � � � :

directly (SFM);

via a scalar product

� � �
%

�� ��� ( � (DSFM).

Problem: the truncation function �.
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The SCM: elements of theory

Idea...

Trade the truncation function for a non-zero boundary condition,

while keeping the dual approach.

How?

Use an orthogonal decomposition of the space
� �� � � :

� � � � � � �� � � � � � � � �� � � � �
��� �� with

� � ��� � � � � � �� �� � "� � ��� � � "

in

� � � 	 �
� � � 
� � � �� � � � �� � #��

map it back (via

�� �

) to the space of solutions.

NB. dim(

�

)= number of reentrant corners (one from now on...)
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III. Algorithms & Numerical
Analysis
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Algorithms (1)

How to isolate the singular part (in general)?

(1) Find a basis of

�

: � � .

(2) Find

� � � � �� � � � such that 
 � � � � � � .

How to compute the solution of the problem with right-hand side

�

?

Write � � � �  � � � , with

� � � � � � � � � � �� � � � .

(3) Compute � � %
�� � ( �

� � � � �� .

(4) Find

� � � � �� � � � such that 
 � � � � � 
 � � � .
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Algorithms (2)

(1) How to compute � � ?

� � � ��  � � , with

regular part

�� � � � � � � (

� �� � "

,

�� � � �

� "

);

principal part � � � �� 
 � ��� � � � � .

(2) How to compute

� � ?

� � � � �  � �
� , with

regular part

� � � � �� � � ( 
 � � � � � � ,

� �� � �

� "

);

� � �

;

principal part

�
� � � 
 � ��� � � � � .
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Algorithms (3)

To get an explicit expression of

�

...

� � � � �� � 

%

� � � � � ( �

�

� � � � � �  �� � 
 � � �
�

�  � � �
�

� � � � � � � � �� � � �
�

� 
 �

%
�� � �

�
� � � ( �

� 
 �

�

%
�� � �

�
� �� ( � 

%
�� � �

�
� � �
( �

�

� 
 � � " 
 	 #

... Therefore

� �
�

	
� � � � �� .
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Algorithms (4)

Another approach...

� � � �  � � �

� � �  �

� �  � � �
�

� � � �  � �
� � with

� � � � � � � � � *

(3b) Compute

� �
�

	 %
�� � ( �.

(4b) Find

� � � � � � � � � such that 
 � � � � � �

and
� � ��� ! � 
 � �

�� � ! .

NB. This corresponds to the method described by Moussaoui’84...
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Numerical Analysis (1)

Numerical approximation of the dual singular function � � .

(1) � �
� � �� �  � � , with

�� � � � �� 
 � � defined by

� � � � � � � �
��� and

� � � � � �
��� � � %

� � �
	 � � 	 �

� �� � � �� such that %
&� ��' &� � ( � �

%
& � � ' &� � ( �� �� � � � ��

�

or, in matrix form,

)� � � �*
�

Convergence results...

(1)

��� � "

,

� �� � "

such that

� � � 
 � �
�

� � � �� � � 
� �

.
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Numerical Analysis (2)

Numerical approximation of the singular function

� � .

(2)

� �
� � � � �  � � �

� , with

� � and

� � � � � �� 
 � � � defined by

� � �
�

	
� � �
�

� �� �

� � � � � � � �
�

�

and

� �� � � �� such that %
& � �� ' &� � ( � �

%
� �
� � � ( �

 � �
%

& � � � ' &� � ( �� �� � � � ��

�
�or, in matrix form,

�
�

) 
 � �

" 	

�
�

�
�

� �
� �

�
� �

�
�

�
�

�
� *

�
�

Convergence results...

(2)

��� � "

,

� �	� � "
such that

� � 
 � � � � �	� � � 
� �

(2)

� � � "

such that
� � � 
 � �
�

�
� � � �

.
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Numerical Analysis (3)

Numerical approximation of the solution �.

Write � � � � � �  � � � �
� , with

(3) � � � %
�� �
�

( �

� � �
�

� �� ;

(4)

� � � is directly computable...

� � � � � �� such that %
& � � �' &� � ( � �

%
�� � ( � 
 � �

%
� �
� � � ( �� �� � � � ��

�
�or, in matrix form,

�
�

) �

" �
�

�

�
�

� �
� �

�
� �

�
�

� �
�

�
� *

�
�

Convergence results...

(3)

��� � "

,

� �� � "

such that

�
� 
 � � � � �� � � 
� �

(4)

� � � "

such that
� � � 
 � � � �
� � ��

.
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Numerical Analysis (4)

Overall convergence rate and computational cost...

Convergence rate

� � � "

such that

� � 
 � � �
� � ��

.

Total cost three linear systems solves...

Step (1) requires solving one linear system of order

� 	 � �	 .
Step (2) requires solving one linear system of order

� � 	  � � � � �	  � �

.

Step (4) requires solving one linear system of order

� � 	  � � � � �	  � �

.
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Numerical Analysis (5)

Another approach...

� � � � � � �  � � �
� .

(3b)

� � �
�

	 %
�� �
�

( �;

(4b)

� � � � � � �� 
 � � � � � , where � �� � � � �  � � � �� ...

In matrix form,

�
�

) 
 � �

" 	

�
�

�
�

� �
� �

�
� �

�
�

� �
�

�
� *

Convergence rate

� � � "

such that
� � 
 � � �
� � ��

.

Total cost two linear systems solves...

Step (1) requires solving one linear system of order

� 	 � �	 .
Step (4b) requires solving one linear system of order

� � 	  � � � � �	  � �

.
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IV. Numerical Experiments

With Jiwen He (University of Houston)
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1. Cheese Case

��� � �� ���
	 
 � � � � �
� �

�
	 �  � �
� �
��

Exact solution � � � � � ��� � � 	 

in � �

� vary in
 �

� �
� � � � �
� (

� � � �
� �)
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� � � ��� ��
� � 	


� � 	 (no SCM)
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�
��� � 	

 � � � 	

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

1/h

|p
s−

p sh | 0

θ = 3/2 π

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

angle of the reentrant corner (π)
co

nv
er

ge
nc

e 
ra

te
 o

f |
p s −

 p
sh | 0

computational
theoretical

� � �  �� � � � �  � �
� � �

The Singular Complement Method (Part II) – p.24/45



�

� � � � 	

 � � � 	

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

1/h

|β
−

β h|

θ = 3/2 π

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

angle of the reentrant corner (π)
co

nv
er

ge
nc

e 
ra

te
 o

f β
h

computational
theoretical

� � �  �� � � � �  � �
� � �

The Singular Complement Method (Part II) – p.25/45



�
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�

�
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� � � �� �
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(

�

approach)
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 � 
 (Differences...)

�� � � � ��

The Singular Complement Method (Part II) – p.31/45



2. L-shaped domain (analytical solution)

Exact solution

� � �
�

� � ��� � �
�

	 


in �
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2. L-shaped domain (general)

Unknown solution

� � � � �

in �

��� � % � �
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3. T-shaped domain (general)

Unknown solution
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V. Conclusion
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Extensions & Perspectives

(Algorithmic) applications to the vector problems.

Neumann problem.

Heterogeneous b.c.

Several corners.

Problems with jumps in the coefficients.

Wave equation.

3d domains with conical points.

3d prismatic or axisymmetric domains (work in progress).
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