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Time-dependent Maxwell equations

In a bounded Lipschitz polyhedron

�

. The time interval is

���� � �

, with

� � �
.

Maxwell’s equations in the vacuum

�
	�	�	�	�	
	�	�	
	�	��
	�	�	�	
	�	�	
	�	�	��

Find

�� ��� �� � ��� � � � � � � � � � � � � � �
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5� � 6 � � � � �) � � � � � �

, 0 � 7 1 � � � �) 6 � � � � �

;

5 0
5� , - .*/ ( $ � .

� 1 � 8 �� !" #� � �

,

-.*/ � 1 $
9

: 1 0 � � �

;

� 1 � 8 �� !" #� � �

,

- .*/ � 1 $ � .

;
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Time-dependent Maxwell equations (2)

The boundary is split as

5 � $ ��� � � �� � .
The enclosing material around

� � is a perfect conductor.
A Silver-Müller boundary condition is imposed on

� � : 1st order absorbing condition
( � � $ � ), or incoming/outgoing EM wave ( � � � $ � ).

Boundary conditions�
�
�

� � 	 $ � on

� � )

�� � � � � 	 � � 	 $ � � � 	 on
� �2

4 5 � �
5� � 6 � � � � �) � � � � �

� �

.

;

Consequences: some "Additional" Boundary conditions
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Static problems
Electrostatic-like equations

�
	
	��
	
	��

Find

� � � � � � �

such that

� !" # � $ �� -.*/ � $ � in

�)

� � 	� � � $ � � � 	2

4
� � 8 � - .*/ 1� � �

, � � 6 � � � �

, � � � 8 % � � � 5 � �

:

�

 	� � � $ - .*/ �

� � � � 	 � .

;

NB.

� $ � and � � $ � for the electrostatic equations.

Magnetostatic-like equations

�	
	��
	
	��

Find
� � � � � � �

such that

� !" # � $ �� -.*/ � $ � in

�)

�

 	� � � $ �2

4
� � 8 � - .*/ 1� � �

, � � 6 � � � �

,

� � 6 � � 5 � �

:

�

� � � $ � �

� � �

.

;

NB. � $ � and

� $ � for the magnetostatic equations.
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Essential boundary conditions

Remark:
-

�� � � 8 % � � �

such that

� � � 	� � � $ � � � 	.

-

� � � � % � � �

such that

� � $ � � � �

in

�

,

5 �
5�� � � �

$ �

.

Consequently, it is possible to solve both static problems with homogeneous boundary
conditions, ie. � � $ � and

� $ � .

Define �
�
�

� 1	� 
 $ 8 1 �� !" #� � ��� 8 � - .*/ � � � )

� 1	
 
 $ 8 �� !" #� � �� 8 1 � -.*/ � � �2

Hypothesis: the norm associated to

�

 � 
 ��� ' 
 � !� � ��� � �� !" # !� � !" # � � 1 , � -.*/ !� -.*/ � � 1

is a norm on

� 1�� and

� 1�
 , which is equivalent to the full norm.
From [Weber’80], [Fernandes-Gilardi’97], [Amrouche-Bernardi-Dauge-Girault’98]:
Assume for instance that

�

is simply connected, and that

5 �

is connected.
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Essential boundary conditions (2)

Define the variational problem

�� 1 �

in

� 1	�

��
�

Find

� � � 1� such that

�� � � � � ' $ � �� � !" # � � 1 , �
�� - .*/ � � 1� � � � � 1��2

Theorem:� � � � � 1	� solution to problem

� � 1 �

.
In addition,

�

is the only solution to the electrostatic problem.
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Essential boundary conditions (2 proof)

Define the variational problem

�� 1 �

in

� 1	�

��
�

Find

� � � 1� such that

�� � � � � ' $ � �� � !" # � � 1 , �
�� - .*/ � � 1� � � � � 1��2

Theorem:� � � � � 1	� solution to problem

� � 1 �

.
In addition,

�

is the only solution to the electrostatic problem.

Proof:

(i) Existence and uniqueness of the solution to problem

�� 1 �

is ok.

(ii)

� �
� � 6 � � � �

:

� � � � � %1 � � �
such that

� � $ �
�

.
As � $ � � � � 1�� , there holds

� -.*/ � � �
� � 1 $ �

�� �
� � 1 , � �
�

.

-.*/ � $ � follows.

(iii)

� � 8 1 � - .*/ 1� � �

: according to Thm 3.6 p. 48 of [Girault-Raviart’86],� ��� � � 1	� such that
-.*/ � $ � , and � !" # � $ �

.

� $ � � � � � 1�� yields

�� !" # �� � � � � 1 $ � , so � !" # � $ �

.

(iv) Now, if the electrostatic problem has two solutions, it is clear that the difference
satisfies

�� 1 �
with homogeneous r.h.s, so it is zero; uniqueness follows.
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Natural boundary conditions

Define

�
�
�

� � 
 $ � � � 8 �� !" #� � ��� 8 � -.*/ � � � 
 � � 	� � �

� � �� � 5 � � �)

� 
 
 $ � � � 8 �� !" #� � ��� 8 � - .*/ � � � 
 �
 	� � �

� 6 � � 5 � � �2

NB. Following [Costabel’90], one finds that

� � $ � 
 .
Hypothesis: the norm associated to

�

 � 
 �� �


 � !� � � � � �� !" # !� � !" # � � 1 , � -.*/ !� -.*/ � � 1 , � ! � 	� � � 	 � 1�
�

� �

is a norm on

� � , which is equivalent to the full norm.
From [Fernandes-Gilardi’97]:
Assume for instance that

�

is simply connected, and that

5 �

is connected.
NB. For the magnetostatic problem set in

� 
 , replace the scalar product by

�

 � 


�� �


 � !� � � � � �� !" # !� � !" # � � 1 , � - .*/ !� -.*/ � � 1 , � !
 	� �
 	 � 1�
�

� �2
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Natural boundary conditions (2)

Define the variational problem

�� �

in

� �

�
�
�

Find

� � � � such that

�� � � �� �

$ � �� � !" # � � 1 , �
�� -.*/ � � 1� � � � � �2

Theorem:� � � � � � solution to problem

� � �

.
In addition,

�

is the only solution to the electrostatic problem.
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Natural boundary conditions (2 proof)

Define the variational problem

�� �

in

� �

�
�
�

Find

� � � � such that

�� � � �� �

$ � �� � !" # � � 1 , �
�� -.*/ � � 1� � � � � �2

Theorem:� � � � � � solution to problem

� � �

.
In addition,

�

is the only solution to the electrostatic problem.

Proof:

(i) Existence and uniqueness of the solution to problem

�� �

is ok.

(ii) same as problem

�� 1 �

.

(iii)

� � 8 1 � - .*/ 1� � �

: according to Thm 3.6 p. 48 of [Girault-Raviart’86],� ��� � � 1� such that
-.*/ � $ � , and � !" # � $ �

.

� $ � � � � � � yields

�� !" # �� � � � � � 1 , � � � 	 � � 1�
�

� � $ � ,
so� !" # � $ �

and
� � 	� � � $ � .

(iv) same as problem

�� 1 �

.
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Numerical experiments

With E. Jamelot.

Discretization of problems

�� 1 �

and

�� �

:� % Lagrange finite element, conforming in

� 1

or

�

.

2D experiments.

Comparison between

a method based on scalar potentials (discretized by the

� % Lagrange FE);

two discretizations of problem

�� 1 �

;

one discretization of problem

�� �
.

Case of a smooth solution in an L-shaped domain.

Case of a singular solution in an L-shaped domain.
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First conclusions

As

� 1	� � 8 % � � �

is not dense in

� 1	� , when

�

is not convex, a discretization of problem�� 1 �

with the conforming

� % Lagrange FE requires a Singular Complement.

Ok in 2D cartesian geometries (with F. Assous, E. Garcia, J. Segré, E.
Sonnendrücker; see also [Hazard-Lohrengel’02]).

Ok in 2D axisymmetric geometries (with F. Assous, S. Labrunie, J. Segré).

Under way in 21/2D prismatic geometries (with S. Kaddouri, J. Zou).

Under way in 21/2D axisymmetric geometries (with S. Labrunie).

Cf. [Ciarlet-Hazard-Lohrengel’98], [Costabel-Dauge’98]:

8 % � � � $ � � � 8 % � � �

is
dense in

� � , so the discretization converges to the exact solution. Nevertheless, the
convergence is poor on the boundary, when the domain is not convex.
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Continuous vs. discrete formulations

1st order Maxwell’s equations + IC + Charge conservation equation

5�
5� � � �� !" # � $ �

9
: 1

( $ �

5
5� -.*/ � � �� $

9
: 1

5 0
5� $ � - .*/ � $

9
: 1 0� thanks to the IC2

2nd order Maxwell’s equations + IC + Charge conservation equation

�
	�	��
	�	��

5 � �
5� � , � �� !" #� !" # � $ �

9
: 1

5 (
5� )

5�
5�

� � � $ � %

4� % 
 $ � �� !" # � 1 �
9

: 1
( � � � ) -.*/ � % � � � $

5 0
5�

� � � ; 2

$ �

5 �
5� � -.*/ � � �� $

9
: 1

5 � 0
5� � $ � -.*/ � $

9
: 1 0� thanks to the two IC2
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Continuous vs. discrete formulations (2)

2nd order Maxwell’s equations: variational formulation

� �
�� � �� � � � 1 , � � �� !" # � � � !" # � � 1 $ �

9
: 1

�
�� � (� � � 1� � � � 8 1 �� !" #� � �2

Scalar potentials: � � � %1 � � �

, � $ �
� � 8 1 �� !" #� � �

� �
�� � � - .*/ � � �

� 1 $ �
9

: 1
�

��
� - .*/ (� �
� 1 $

9
: 1

� �
�� � � 0� �

� 1� �
� � � %1 � � �2

Edge FE (1st Nédélec’s family) +

� % Lagrange FE for the scalar potentials

�
� �

�� � ��
�� �

� �
� 1 $

9
: 1

� �
�� � � 0� � �

� 1� �
� �2

The divergence constraint is weakly enforced.

� % Lagrange finite element, conforming in

� 1

or

�

: no such discrete scheme.

Augmented VF for Maxwell’s eqs – p.14/22



1st augmented Variational Formulations
Define the variational problem

� � 1 �

in

� 1�� � 6 � � � �

�
	�	��
	�	��

Find

� � � � � � � 1	� � 6 � � � �

such that

�� � � �� ' , � �� -.*/ � � 1 $ � �� � !" # � � 1 , �
�� -.*/ � � 1� � � � � 1	�

� -.*/ � � �
� 1 $ �

�� �
� 1� �

� � 6 � � � �

2

Theorem:� � �� � � � � � 1	� � 6 � � � �

solution to problem

� � 1 �
.

In addition, � $ � and

�

is the only solution to the electrostatic problem.

Define the variational problem

� � �

in

� � � 6 � � � �

�
	
	��
	�	��

Find

�� � � � � � � � 6 � � � �
such that

� � � � �� �

, � �� -.*/ � � 1 $ � �� � !" # � � 1 , �
�� - .*/ � � 1� � � � � �

� -.*/ � � �
� 1 $ �

�� �
� 1� �

� � 6 � � � �

2

Theorem:� � �� � � � � � � � 6 � � � �
solution to problem

� � �

.
In addition, � $ � and

�
is the only solution to the electrostatic problem.
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1st augmented Variational Formulation (proof)

Theorem:� � �� � � � � � 1� � 6 � � � �

solution to problem

� � 1 �

.
In addition, � $ � and

�

is the only solution to the electrostatic problem.

Proof:

(i) Existence and uniqueness of the solution to problem
�� �

stem from the
Babuska-Brezzi theory (cf. for instance [Girault-Raviart’86]).

The inf-sup condition is proved as follows:�
� � 6 � � � �

,

� � � � � %1 � � �

such that

� � $ �.

As � $ � � � � 1	� with

� � � � ' $ �
�

� 1 , there holds

� -.*/ �� �
� 1

� � � � ' $ �
�

� 1 , so the

inf-sup condition follows with a unit constant.

(ii) Take

�

as the solution to: find
� � � %1 � � �

such that

� � $ �.

� $ � � � � 1	� yields

� -.*/ � � � � 1 , � � � � 1 $ �
�� � � 1 , so � $ � .

(iii) To conclude, it is enough to note that problem

� � 1 �

reduces to problem

�� 1 �

...

NB. The same proof works for problem

� � �

.
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Discretization & Numerical experiments

Discretization of problem

� � 1 �

, cf. [Assous-Degond-Heintzé-Raviart-Segré’93]:� � � �
� � � � % Taylor-Hood finite element.

The proof of the uniform discrete inf-sup condition can be found in [Ciarlet-Girault’02].

2D experiments, with F. Assous, E. Garcia, S. Labrunie, J. Segré:

2D cartesian Vlasov-Maxwell system ;

2D axisymmetric Maxwell equations...

NB. The same discretization scheme works for problem

� � �

.

Conclusion: the same as for the direct approaches (without Lagrange multiplier).
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A difficulty

In

� 
 , a convergence problem was encountered for the 2D time-harmonic Maxwell
equations (cf. [Costabel-Dauge-Martin’99]):
with

� �� � � � � replaced by the sum of

� �� � � � ' and a penalized term on the
boundary, i.e. � �� � �� ' , �

� �

 	� �
 	 � 1�
�

� �� � varying�

the numerical method failed to capture the (first) singular eigenvector...
To avoid this problem, M. Costabel and M. Dauge advocate the use of weighted
regularization techniques.

In what follows, we investigate the introduction of a 2nd Lagrange multiplier, with
values on the boundary.
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2nd augmented Variational Formulation in

Define the variational problem

� � 
 �

in

� 
 � 6 � 1 � � � � 6 � � 5 � �

�
	�	�	
	�	�	
	��
	
	�	�	�	
	�	��

Find

� �� �� � 
 � � � 
 � 6 � 1 � � � � 6 � � 5 � �

such that

� �� � �� �

, � �� - .*/ � � 1 , � � 
� �
 	 � 1�
�

� � $

� �� � !" # � � 1 , �
�� - .*/ � � 1 , � �� �
 	 � 1
�

� �� � � � � 


� - .*/ �� �
� 1 $ �

�� �
� 1� �

� � 6 � 1 � � �

� ��

 	� � � 1 $ � �� � � 1
�

� �� � � � 6 � � 5 � �

2

Theorem:� � � �� �� � 
 � � � 
 � 6 � 1 � � � � 6 � � 5 � �
solution to problem

� � 
 �

.
In addition, � $ � ,

� 
 $ � and
�

is the only solution to the magnetostatic problem.

NB. Problem

� � 
 �

satisfies the inf-sup condition.
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2nd augmented Variational Formulation in

Define the variational problem

� � � �

in

� � � 6 � � � � � � �� � 5 � �

�
	
	�	�	�	
	�	��
	�	�	
	�	�	�	
�

Find

�� � �� �� � � � � � � 6 � � � � � � �� � 5 � �

such that

�� � � �� �

, � �� -.*/ � � 1 , � �� �� � � � 1�
�

� � $

� �� � !" # � � 1 , �
�� - .*/ � � 1 , � � ��� � � � 1�
�

� �� � � � � �

� - .*/ � � �
� 1 $ �

�� �
� 1� �

� � 6 � � � �

�� �� �� � 1 $ � � ���� �� � 1�
�

� �� � �� � � �� � 5 � �

2

Proposition:
The tangential trace space

� � � �
� is dense in

� �� � 5 � �

.

Theorem:� � �� � �� �� � � � � � � 6 � � � � � � �� � 5 � �

solution to problem

� � � �

.
In addition, � $ � ,

�� � $ � and
�

is the only solution to the electrostatic problem.

NB. Problem

� � � �

does not satisfies the inf-sup condition.
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Discretization

In [Assous-Degond-Heintzé-Raviart-Segré’93], it turns out that such an approach has
been used, in a formal way...

The

� � � �
� � � � % Taylor-Hood FE is used to discretize the pairs

�� � � �� � �� � � .
Unfortunately, the constraint on the boundary, ie.

� � � 6 � � 5 � �

or

� �� � � �� � 5 � �

is removed in such a way that the discretized EM field must verify

��
�� �
�

� � � 1	� � � 1	
2

In a non-convex domain,

� 1� � 8 % � � �
is not dense in

� 1� (and the same with
index 
 ). This leads to the failure of the resulting numerical scheme for both
fields, since the singularities of the EM field can not be approximated.

So work is under way to find good candidates to discretize the third unknown:

either to get a relevant discretized saddle-point VF with three unknowns ;

or to remove the constraint on the boundary and, at the same time, still enable the
numerical approximation of the singular electromagnetic fields.
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Conclusion & Perspectives

Treating the boundary condition as essential (in

� 1

, with a Singular Complement):

Ok in 2D (cartesian/axisymmetric) domains for (Vlasov-)Maxwell systems.

Under way in 21/2D (prismatic/axisymmetric) domains (the Laplace pb is solved).

In 3D, an idea would be to decouple corner singularities from edge singularities,
and then use 21/2D techniques...

NB. Alternatives, without Singular Complement, can also be considered...

Treating the boundary condition as natural (in

�
):

The direct approach is ok (poor approximation of the boundary values).

The approach with a single Lagrange multiplier (on the divergence) is ok (idem).

The approach with two Lagrange multipliers is ok for the continuous problem;
possible discretizations are investigated..
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