Continuous Galerkin methods for solving Maxwell equations in 3D

Patrick Ciarlet, Erell Jamelot

Patrick.Ciarlet@ensta.fr

POEMS, UMR 2706 CNRS-ENSTA-INRIA

Zürich (Jan. 06) – p. 1/23

Time-dependent Maxwell equations

In vacuum, over the time interval]0, T[, T > 0.Find $(\mathcal{E}(t), \mathcal{H}(t)) \in \mathbf{L}^2(\cdot) \times \mathbf{L}^2(\cdot)$ such that

 $\begin{cases} \varepsilon_0 \partial_t \mathcal{E} - \operatorname{curl} \mathcal{H} = -\mathcal{J} ;\\ \mu_0 \partial_t \mathcal{H} + \operatorname{curl} \mathcal{E} = 0 ;\\ \operatorname{div} (\varepsilon_0 \mathcal{E}) = \rho ;\\ \operatorname{div} (\mu_0 \mathcal{H}) = 0 ;\\ \mathcal{E}(0) = \mathcal{E}_0 , \ \mathcal{H}(0) = \mathcal{H}_0 . \end{cases}$

$$\left(\begin{array}{l} \partial_t \mathcal{J} \in L^2(0,T;\mathbf{L}^2(\cdot)), \, \rho \in \mathcal{C}^0(0,T;L^2(\cdot)) \, ; \, \partial_t \rho + \operatorname{div} \mathcal{J} = 0. \\ \mathcal{E}_0 \in \mathbf{H}(\mathbf{curl},\cdot), \, \operatorname{div} \mathcal{E}_0 = \frac{1}{\varepsilon_0} \rho(0) \, ; \, \mathcal{H}_0 \in \mathbf{H}(\mathbf{curl},\cdot), \, \operatorname{div} \mathcal{H}_0 = 0. \end{array} \right)$$

Goal: compute the EM field around a perfect conducting body \mathcal{O} , with Lipschitz polyhedral boundary.

Time-dependent Maxwell equations (2)

But... Consider a *bounded* computational domain Ω , with Lipschitz polyhedral boundary.

Its boundary $\partial \Omega$ is split as $\partial \Omega = \overline{\Gamma}_C \cup \overline{\Gamma}_A$, with $\overline{\Gamma}_C = \partial \mathcal{O} \cap \partial \Omega$.

A Silver-Müller boundary condition is imposed on the artificial boundary Γ_A : incoming plane waves ($\mathbf{e}^* \neq 0$), or 1st order absorbing condition ($\mathbf{e}^* = 0$).

Boundary conditions

$$\begin{cases} \mathcal{E} \times \mathbf{n} = 0 \text{ on } \Gamma_C ;\\ (\mathcal{E} - \sqrt{\frac{\mu_0}{\varepsilon_0}} \mathcal{H} \times \mathbf{n}) \times \mathbf{n} = \vec{\mathbf{e}}^* \times \mathbf{n} \text{ on } \Gamma_A. \end{cases}$$
$$\partial_t \vec{\mathbf{e}}^* \in L^2(0, T; \mathbf{L}^2(\Gamma_A)). \end{cases}$$

Consequences: some "additional" boundary conditions

$$\begin{aligned} \mathcal{H} \cdot \mathbf{n} &= \mathcal{H}_0 \cdot \mathbf{n} \; ; \; (\mathbf{curl} \, \mathcal{H}) \times \mathbf{n} = \mathcal{J} \times \mathbf{n} \; \text{on} \; \Gamma_C. \\ (\mathbf{curl} \, \mathcal{E}) \times \mathbf{n} &= \frac{1}{c} \partial_t \mathbf{e}_T^{\star} - \frac{1}{c} \partial_t \mathcal{E}_T \\ (\mathbf{curl} \, \mathcal{H}) \times \mathbf{n} &= \mathcal{J} \times \mathbf{n} + \varepsilon_0 \partial_t (\mathbf{e}^{\star} \times \mathbf{n}) - \frac{1}{c} \partial_t \mathcal{H}_T \end{aligned} \right\} \; \text{on} \; \Gamma_A.$$

Time-dependent Maxwell equations (3)

2nd order in time, electric field \mathcal{E} ...

Equation

$$\left(\begin{array}{c} \partial_{tt}^{2} \mathcal{E} + c^{2} \operatorname{\mathbf{curl}} \operatorname{\mathbf{curl}} \mathcal{E} = -\frac{1}{\varepsilon_{0}} \partial_{t} \mathcal{J} \; ; \; \partial_{t} \mathcal{E}(0) = \mathcal{E}_{1} \\ \left(\mathcal{E}_{1} := \frac{1}{\varepsilon_{0}} \left(\operatorname{\mathbf{curl}} \mathcal{H}_{0} - \mathcal{J}(0) \right) \right) \end{array} \right)$$

Functional space (see for instance [Ben Belgacem-Bernardi'99])

$$\mathcal{T}_E := \{ \mathbf{v} \in \mathbf{H}(\mathbf{curl}\,, \Omega) \; : \; \mathbf{v} \times \mathbf{n}_{|\partial\Omega} \in \mathbf{L}^2_t(\partial\Omega), \; \mathbf{v} \times \mathbf{n}_{|\Gamma_C} = 0 \}.$$

Variational Formulation Find $\mathcal{E}(t) \in \mathcal{T}_E$ such that

(1)
$$\begin{cases} <\partial_{tt}^{2}\mathcal{E}, \mathbf{v} > + c^{2}(\operatorname{\mathbf{curl}}\mathcal{E}, \operatorname{\mathbf{curl}}\mathbf{v})_{0} + c\frac{d}{dt}(\mathcal{E}_{T}, \mathbf{v}_{T})_{0,\Gamma_{A}} \\ = -\frac{1}{\varepsilon_{0}}(\partial_{t}\mathcal{J}, \mathbf{v})_{0} + c\frac{d}{dt}(\vec{\mathbf{e}}_{T}^{\star}, \mathbf{v}_{T})_{0,\Gamma_{A}}, \ \forall \mathbf{v} \in \mathcal{T}_{E}. \end{cases}$$

"Electrostatic" model

(see [Jr'05] for proofs.)

Set of static equations

 $\begin{cases} \text{Find } \mathcal{E} \in \mathbf{L}^2(\Omega) \text{ such that} \\ \mathbf{curl } \mathcal{E} = \mathbf{f}, \text{ div } \mathcal{E} = g \text{ in } \Omega ; \ \mathcal{E} \times \mathbf{n}_{|\partial\Omega} = 0. \end{cases}$

$$\left(\mathbf{f} \in \mathbf{L}^2(\Omega), g \in L^2(\Omega) : \operatorname{div} \mathbf{f} = 0 \text{ and } \mathbf{f} \cdot \mathbf{n}_{|\partial\Omega} = 0. \right)$$

Hypothesis: the semi-norm associated to

 $(\cdot, \cdot)_{X^0}$: $(\mathbf{u}, \mathbf{v}) \mapsto (\mathbf{curl}\,\mathbf{u}, \mathbf{curl}\,\mathbf{v})_0 + (\operatorname{div}\mathbf{u}, \operatorname{div}\mathbf{v})_0$

is a norm on \mathcal{X}_E^0 , which is *equivalent* to the full norm. From [Weber'80], [Fernandes-Gilardi'97], [Amrouche-Bernardi-Dauge-Girault'98]: Assume for instance that $\partial\Omega$ is connected.

''Electrostatic'' model (2)

Define the variational problem (P^0) in \mathcal{X}^0_E

 $\begin{cases} \text{ Find } \mathcal{E} \in \mathcal{X}_E^0 \text{ such that} \\ (\mathcal{E}, \mathbf{v})_{X^0} = (\mathbf{f}, \mathbf{curl v})_0 + (g, \operatorname{div} \mathbf{v})_0, \quad \forall \mathbf{v} \in \mathcal{X}_E^0. \end{cases} \end{cases}$

Theorem: $\exists ! \mathcal{E} \in \mathcal{X}_E^0$ solution to problem (P^0) . In addition, \mathcal{E} is the only solution to the electrostatic model.

P Hypothesis: the subspace of regular fields $\mathcal{X}_{E,R}^0 := \mathbf{H}^1(\Omega) \cap \mathcal{X}_E^0$ is dense in \mathcal{X}_E^0 . From [Grisvard'85] + [Birman-Solomyak'87]: ok if Ω is convex.

Conclusion: numerical approximation with the Continuous P_k Lagrange FE is possible.

- With respect to (1), (P^0) is an Augmented Variational Formulation (AVF).
- Similar AVF and results for \mathcal{H} in $\mathcal{X}_{H}^{\mathbf{0}} := \mathbf{H}(\mathbf{curl}, \Omega) \cap \mathbf{H}_{\mathbf{0}}(\operatorname{div}, \Omega)$ (with $(\cdot, \cdot)_{X^{0}}$)...

"Electrostatic" model (2 proof)

Define the variational problem (P^0) in \mathcal{X}^0_E

 $\begin{cases} \text{ Find } \mathcal{E} \in \mathcal{X}_E^0 \text{ such that} \\ (\mathcal{E}, \mathbf{v})_{X^0} = (\mathbf{f}, \mathbf{curl v})_0 + (g, \operatorname{div} \mathbf{v})_0, \quad \forall \mathbf{v} \in \mathcal{X}_E^0. \end{cases} \end{cases}$

Theorem: $\exists ! \mathcal{E} \in \mathcal{X}_E^0$ solution to problem (P^0) .
In addition, \mathcal{E} is the only solution to the electrostatic model.
Proof:

- (i) Existence and uniqueness of the solution to problem (P^0) is straightforward.
- (ii) $\forall g' \in L^2(\Omega)$: $\exists ! \phi \in H^1_0(\Omega)$ such that $\Delta \phi = g'$. As $\mathbf{v} = \nabla \phi \in \mathcal{X}^0_E$, there holds $(\operatorname{div} \mathcal{E}, g')_0 = (g, g')_0$, $\forall g'$. $\operatorname{div} \mathcal{E} = g$ follows.
- (iii) $\mathbf{f} \in \mathbf{H}_0(\operatorname{div}^0, \Omega)$: according to Thm 3.6 p. 48 of [Girault-Raviart'86], $\exists ! \mathbf{w} \in \mathcal{X}_E^0$ such that $\operatorname{div} \mathbf{w} = 0$, and $\operatorname{curl} \mathbf{w} = \mathbf{f}$. $\mathbf{v} = \mathcal{E} - \mathbf{w} \in \mathcal{X}_E^0$ yields $\|\operatorname{curl} (\mathcal{E} - \mathbf{w})\|_0^2 = 0$, so $\operatorname{curl} \mathcal{E} = \mathbf{f}$.
- (iv) Now, if the electrostatic problem admits two solutions, it is clear that the difference satisfies (P^0) with homogeneous r.h.s., so it is zero; uniqueness follows.

''Electrostatic'' model (3)

- Solution What happens when the domain Ω is not convex? $\mathcal{X}^0_{E,R}$ is not dense in $\mathcal{X}^0_{E,...}$
- Remedy: solve the electrostatic problem in a weighted Sobolev space...
- Introduce:
 - The set *E* of reentrant edges of $\partial \Omega$, and the distance $d_0(\mathbf{x}) = d(\mathbf{x}, E)$.
 - The sets ($\gamma \in [0,1]$)

$$\begin{aligned} L^2_{\boldsymbol{\gamma}}(\Omega) &:= \{g : g \in L^2_{loc}(\Omega), \ d_0{}^{\boldsymbol{\gamma}} g \in L^2(\Omega) \}, \text{ with norm } \|g\|_{0,\boldsymbol{\gamma}} = \|d_0{}^{\boldsymbol{\gamma}} g\|_0 ; \\ \mathcal{X}^0_{E,\boldsymbol{\gamma}} &:= \{\mathbf{v} : \mathbf{v} \in \mathbf{H}_0(\mathbf{curl},\Omega), \ \mathrm{div}\, \mathbf{v} \in L^2_{\boldsymbol{\gamma}}(\Omega) \}. \end{aligned}$$

Theorem [Costabel-Dauge'02]: ∃γ₀ ∈]0, 1/2[, such that
(i) ∀γ ∈]γ₀, 1], the subspace of regular fields H¹(Ω) ∩ X⁰_{E,γ} is *dense* in X⁰_{E,γ}.
(ii) ∀γ ∈]γ₀, 1[, the semi-norm associated to

$$(\cdot,\cdot)_{X^0_{\gamma}} : (\mathbf{u},\mathbf{v}) \mapsto (\mathbf{curl}\,\mathbf{u},\mathbf{curl}\,\mathbf{v})_0 + (\operatorname{div}\mathbf{u},\operatorname{div}\mathbf{v})_{0,\gamma}$$

is a norm in $\mathcal{X}^0_{E,\gamma}$, which is *equivalent* to the full norm.

Weight Regularization Method

Define the AVF (\underline{P}^0) in $\mathcal{X}^0_{E,\gamma}$

 $\begin{cases} \text{ Find } \mathcal{E} \in \mathcal{X}_{E,\gamma}^0 \text{ such that} \\ (\mathcal{E}, \mathbf{v})_{X_{\gamma}^0} = (\mathbf{f}, \mathbf{curl v})_0 + (g, \operatorname{div} \mathbf{v})_{0,\gamma}, \quad \forall \mathbf{v} \in \mathcal{X}_{E,\gamma}^0. \end{cases}$

Theorem: $\exists ! \mathcal{E} \in \mathcal{X}_{E,\gamma}^0$ solution to (\underline{P}^0) . It is the only solution to the electrostatic model.

Numerical approximation with the Continuous P_k Lagrange FE is possible:

- convergence results: $\|\mathcal{E} \mathcal{E}_h\|_{X^0_{\gamma}} \leq C_{\mathbf{f},g} C_{\varepsilon} h^{\gamma \gamma_0 \varepsilon}, \forall \varepsilon > 0$ (for $k \geq 2$, cf. [Costabel-Dauge'02]);
- comparisons and numerical experiments in 2D: cf. [Jamelot'05].
- According to M. Costabel and M. Dauge (private communication): Similar results are also valid for finding \mathcal{H} in $\mathcal{X}^0_{H,\gamma}$...

AVF for the time-dependent equations

Without a Silver-Müller boundary condition ($\Gamma_A = \emptyset$): Find $\mathcal{E}(t) \in \mathcal{X}^0_{E,\gamma}$ such that

(2)
$$\langle \partial_{tt}^2 \mathcal{E}, \mathbf{v} \rangle + c^2 (\mathcal{E}, \mathbf{v})_{X^0_{\gamma}} = -\frac{1}{\varepsilon_0} (\partial_t \mathcal{J}, \mathbf{v})_0 + \frac{c^2}{\varepsilon_0} (\rho, \operatorname{div} \mathbf{v})_{0,\gamma}, \ \forall \mathbf{v} \in \mathcal{X}^0_{E,\gamma}.$$

$$\left(\partial_{tt}^2 \mathcal{J} \in L^2(0,T;\mathbf{L}^2(\Omega)), \, \partial_t \rho \in \mathcal{C}^0(0,T;L^2_{\gamma}(\Omega)).\right)$$

- Solution With a Silver-Müller boundary condition ($\Gamma_A \neq \emptyset$):
 - $\textbf{ seplace } \mathcal{X}^0_{E,\gamma} \text{ by } \mathcal{X}^A_{E,\gamma} := \{ \mathbf{v} \in \mathcal{T}_E : \operatorname{div} \mathbf{v} \in L^2_{\gamma}(\Omega) \};$
 - add the boundary terms of (1) in (2)... Find $\mathcal{E}(t) \in \mathcal{X}^{A}_{E,\gamma}$ such that

$$(3) \begin{cases} <\partial_{tt}^{2} \mathcal{E}, \mathbf{v} > + c^{2}(\mathcal{E}, \mathbf{v})_{X_{\gamma}^{0}} + c\frac{d}{dt}(\mathcal{E}_{T}, \mathbf{v}_{T})_{0, \Gamma_{A}} \\ = -\frac{1}{\varepsilon_{0}}(\partial_{t} \mathcal{J}, \mathbf{v})_{0} + \frac{c^{2}}{\varepsilon_{0}}(\rho, \operatorname{div} \mathbf{v})_{0, \gamma} + c\frac{d}{dt}(\vec{\mathbf{e}}_{T}^{\star}, \mathbf{v}_{T})_{0, \Gamma_{A}}, \ \forall \mathbf{v} \in \mathcal{X}_{E, \gamma}^{A}. \end{cases}$$

Mixed AVF for the time-dependent equations

Coupling with the Vlasov equation (Particle methods):

- At the discrete level: $\partial_{\tau} \rho_h + \operatorname{div}_h \mathcal{J}_h \neq 0$.
- Need of a Lagrange multiplier on $\operatorname{div} \mathcal{E}$.

The mixed AVF (case
$$\Gamma_A = \emptyset$$
):
Find $(\mathcal{E}(t), p(t)) \in \mathcal{X}^0_{E,\gamma} \times L^2_{\gamma}$ such that

(4)
$$\begin{cases} <\partial_{tt}^{2}\mathcal{E}, \mathbf{v} > + c^{2}(\mathcal{E}, \mathbf{v})_{X_{\gamma}^{0}} + (p, \operatorname{div} \mathbf{v})_{0,\gamma} \\ = -\frac{1}{\varepsilon_{0}}(\partial_{t}\mathcal{J}, \mathbf{v})_{0} + \frac{c^{2}}{\varepsilon_{0}}(\rho, \operatorname{div} \mathbf{v})_{0,\gamma}, \ \forall \mathbf{v} \in \mathcal{X}_{E,\gamma}^{0}; \\ (\operatorname{div}\mathcal{E}, q)_{0,\gamma} = \frac{1}{\varepsilon_{0}}(\rho, q)_{0,\gamma}, \ \forall q \in L_{\gamma}^{2}. \end{cases}$$

$$\left(\partial_{tt}^2 \mathcal{J} \in L^2(0,T;\mathbf{L}^2(\Omega)), \partial_{tt}^2 \rho \in L^2(0,T;L^2_{\gamma}(\Omega)).\right)$$

The mixed AVF (case $\Gamma_A \neq \emptyset$): replace $\mathcal{X}^0_{E,\gamma}$ by $\mathcal{X}^A_{E,\gamma}$ and add the boundary terms of (1) in (4)...

Discretization

In time: leap-frog scheme

$$\partial_{tt}^2 u(t_n) \equiv \frac{u(t_{n+1}) - 2u(t_n) + u(t_{n-1})}{(\Delta t)^2}.$$

In space, a continuous Galerkin Method:

- P_k Lagrange FE, or $P_{k+1} P_k$ Taylor-Hood FE;
- $P_2 iso P_1$ Taylor-Hood FE is possible ([Assous et al'93] in the convex case).

Overall, an explicit discretization scheme:

$$\begin{pmatrix} \left(\mathbb{M}_{\Omega} + \frac{c\Delta t}{2}\mathbb{M}_{A,\parallel}\right)\vec{\mathsf{E}}^{n+1} + (\Delta t)^{2}\mathbb{C}^{T}\vec{\mathsf{p}}^{n+1} = \vec{\mathsf{f}}^{n+1/2} \\ \mathbb{C}\vec{\mathsf{E}}^{n+1} = \vec{\mathsf{g}}^{n+1}. \end{cases}$$

Under a CFL: $c \Delta t \leq C_k \min_l h_l$.

Mass lumping is possible [Cohen'02]: \widetilde{P}_1 or \widetilde{P}_2 FE \rightsquigarrow fully explicit scheme.

Discretization (2)

Is the Lagrange multiplier (MAVF) mandatory?

- Not really, except for Vlasov-Maxwell?! (cf. [Garcia'02])
- Computed once every 10 (or more) time-steps...
- Use the Preconditioned CG method to compute \vec{p}^{n+1} (cf. [Jamelot'05].)

convergence result for the implicit scheme (see [Jr-Labrunie'06]):

$$\begin{aligned} \max_{n} \left(||\partial_{t} \mathcal{E}(t_{n}) - \partial_{\tau} \mathcal{E}_{h}^{n}||_{0}^{2} + ||\mathcal{E}(t_{n}) - \mathcal{E}_{h}^{n}||_{X_{\gamma}^{0}}^{2} \right) \\ &\leq C_{\varepsilon} \left((\Delta t)^{2} + h^{2(\gamma - \gamma_{0} - \varepsilon)} + (\Delta t)^{2} h^{2(\gamma - \gamma_{0} - 1 - \varepsilon)} \right), \ \forall \varepsilon > 0. \end{aligned}$$

Numerical examples

Computation of the electromagnetic field in a closed convex cavity (cf. [Heintzé'92]):

- no source terms $((\mathcal{J}, \rho) = (0, 0));$
- no artificial boundary ($\Gamma_A = \emptyset$);
- P_1 , \tilde{P}_1 or P_2 FE on 25K tetrahedra.

Computation of the electromagnetic field around a non-convex body:

- **9** generated by a current ($\mathcal{J} \neq 0$, $\rho \neq 0$);
- absorbing boundary condition on Γ_A ;
- P_1 or \widetilde{P}_1 FE on 684K tetrahedra.

Computation of the EM field in a cavity

Solving Maxwell equations in a unit cube (no source terms, non-zero I. C.): Find $\mathcal{E}(t) \in \mathcal{X}_{\mathcal{E}}^0$ and $\mathcal{H}(t) \in \mathcal{X}_{\mathcal{H}}^0$ such that

$$\langle \partial_{tt}^2 \mathcal{E}, \mathbf{v} \rangle + c^2 (\mathcal{E}, \mathbf{v})_{X^0} = 0, \ \forall \mathbf{v} \in \mathcal{X}_{\mathcal{E}}^0 \\ \langle \partial_{tt}^2 \mathcal{H}, \mathbf{v} \rangle + c^2 (\mathcal{H}, \mathbf{v})_{X^0} = 0, \ \forall \mathbf{v} \in \mathcal{X}_{\mathcal{H}}^0.$$

Exact solution:

$$\mathcal{E}(t) = \cos(\omega t) \begin{pmatrix} \cos(\pi x) \sin(\pi y) \sin(-2\pi z) \\ \sin(\pi x) \cos(\pi y) \sin(-2\pi z) \\ \sin(\pi x) \sin(\pi y) \cos(-2\pi z) \end{pmatrix},$$

$$\mathcal{H}(t) = \frac{3\pi}{\mu_0 \omega} \sin(\omega t) \begin{pmatrix} -\sin(\pi x) \cos(\pi y) \cos(-2\pi z) \\ \cos(\pi x) \sin(\pi y) \cos(-2\pi z) \\ 0 \end{pmatrix}$$

 $c \approx 3.0 \times 10^8 \,\mathrm{m.s^{-1}}, \, \mu_0 = 4\pi \times 10^{-7} \,\mathrm{H.m^{-1}}, \, \omega \approx 2.3 \times 10^9 \,\mathrm{Hz}.$

10 discretization nodes per wave length \rightarrow 25K tetrahedra.

 P_1 , $\widetilde{P_1}$ and P_2 FE

 \mathcal{E}_y relative amplitude at point (0.19, 0.12, 0.12).

Some results without Lagrange multiplier, \tilde{P}_1 FE

• $c \approx 3.0 \, 10^8 \, \mathrm{m.s^{-1}}, \, \omega \approx 2.5 \, 10^9 \, \mathrm{Hz}.$ • $\mathcal{J} = 10^{-5} \, \omega \, \sin\left(\frac{\pi \, z}{L}\right) \, \cos(\omega \, t) \mathbf{e}_3, \, \rho = 10^{-5} \, \frac{\pi}{L} \, \cos\left(\frac{\pi \, z}{L}\right) \, \sin(\omega \, t) \, ; \, \mathcal{E}_0 = \mathcal{H}_0 = 0.$ • No incoming wave: $\mathbf{e}^* = 0.$

684K tetrahedra.

$\mathcal{E}_{h,x}$ in plane z = 2.5: space evolution

$\mathcal{E}_{h,x}$ in plane z = 2.5: zooming in...

$\mathcal{E}_{h,y}$ in plane z = 2.5: space evolution

$\mathcal{E}_{h,z}$ in plane z = 2.5: space evolution

$\mathcal{E}_{h,x}$: time evolution

 $M_1 = (1, 1, 2), M_2 = (1, 5, 2), M_3 = (5.5, 2.5, 2), M_4 = (8, 5.5, 2).$

Conclusion/Perspectives

- One can solve numerically Maxwell equations with continuous Galerkin methods! (cf. http://www.ensta.fr/~jamelot/)
- The numerical implementation is not very costly, and one can use mass lumping...
- To achieve better precision:
 - Increase $_k$, the order of the FE;
 - use PMLs to close the domain.
- The Mixed AVF can be useful to solve:
 - Ithe coupled Vlasov-Maxwell system of equations (ongoing project with F. Assous);
 - eigenvalue problems [Buffa-Jr-Jamelot'06].

Alternate methods:

- 2D, 3D: the Natural Boundary Condition Method ([Jr'05], [Jamelot'05]).
- 2D, 2D1/2: the Singular Complement Method ([Garcia'02], [Labrunie et al'0...], [Jamelot'05]).

