Continuous Galerkin methods for solving Maxwell equations in 3D

Patrick Ciarlet, Erell Jamelot Patrick.Ciarlet@ensta.fr

POEMS, UMR 2706 CNRS-ENSTA-INRIA

Time-dependent Maxwell equations

- In vacuum, over the time interval $] 0, T[, T>0$.

Find $(\mathcal{E}(t), \mathcal{H}(t)) \in \mathbf{L}^{2}(\cdot) \times \mathbf{L}^{2}(\cdot)$ such that

$$
\left\{\begin{array}{l}
\varepsilon_{0} \partial_{t} \mathcal{E}-\operatorname{curl} \mathcal{H}=-\mathcal{J} \\
\mu_{0} \partial_{t} \mathcal{H}+\operatorname{curl} \mathcal{E}=0 \\
\operatorname{div}\left(\varepsilon_{0} \mathcal{E}\right)=\rho \\
\operatorname{div}\left(\mu_{0} \mathcal{H}\right)=0 \\
\mathcal{E}(0)=\mathcal{E}_{0}, \mathcal{H}(0)=\mathcal{H}_{0}
\end{array}\right.
$$

$$
\begin{aligned}
& \left(\partial_{t} \mathcal{J} \in L^{2}\left(0, T ; \mathbf{L}^{2}(\cdot)\right), \rho \in \mathcal{C}^{0}\left(0, T ; L^{2}(\cdot)\right) ; \partial_{t} \rho+\operatorname{div} \mathcal{J}=0\right. \\
& \left.\quad \mathcal{E}_{0} \in \mathbf{H}(\mathbf{c u r l}, \cdot), \operatorname{div} \mathcal{E}_{0}=\frac{1}{\varepsilon_{0}} \rho(0) ; \mathcal{H}_{0} \in \mathbf{H}(\mathbf{c u r l}, \cdot), \operatorname{div} \mathcal{H}_{0}=0 .\right)
\end{aligned}
$$

- Goal: compute the EM field around a perfect conducting body \mathcal{O}, with Lipschitz polyhedral boundary.

Time-dependent Maxwell equations (2)

But... Consider a bounded computational domain Ω, with Lipschitz polyhedral boundary.
Its boundary $\partial \Omega$ is split as $\partial \Omega=\bar{\Gamma}_{C} \cup \bar{\Gamma}_{A}$, with $\bar{\Gamma}_{C}=\partial \mathcal{O} \cap \partial \Omega$.
A Silver-Müller boundary condition is imposed on the artificial boundary Γ_{A} : incoming plane waves ($\mathbf{e}^{\star} \neq 0$), or 1 st order absorbing condition ($\mathbf{e}^{\star}=0$).

- Boundary conditions

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathcal{E} \times \mathbf{n}=0 \text { on } \Gamma_{C} ; \\
\left(\mathcal{E}-\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \mathcal{H} \times \mathbf{n}\right) \times \mathbf{n}=\overrightarrow{\mathbf{e}}^{\star} \times \mathbf{n} \text { on } \Gamma_{A} .
\end{array}\right. \\
& \left(\partial_{t} \overrightarrow{\mathbf{e}}^{\star} \in L^{2}\left(0, T ; \mathbf{L}^{2}\left(\Gamma_{A}\right)\right) .\right.
\end{aligned}
$$

- Consequences: some "additional" boundary conditions

$$
\left.\begin{array}{l}
\mathcal{H} \cdot \mathbf{n}=\mathcal{H}_{0} \cdot \mathbf{n} ;(\operatorname{curl} \mathcal{H}) \times \mathbf{n}=\mathcal{J} \times \mathbf{n} \text { on } \Gamma_{C} \\
\quad(\mathbf{c u r l} \mathcal{E}) \times \mathbf{n}=\frac{1}{c} \partial_{t} \mathbf{e}_{T}^{\star}-\frac{1}{c} \partial_{t} \mathcal{E}_{T} \\
\quad(\mathbf{c u r l} \mathcal{H}) \times \mathbf{n}=\mathcal{J} \times \mathbf{n}+\varepsilon_{0} \partial_{t}\left(\mathbf{e}^{\star} \times \mathbf{n}\right)-\frac{1}{c} \partial_{t} \mathcal{H}_{T}
\end{array}\right\} \text { on } \Gamma_{A} .
$$

Time-dependent Maxwell equations (3)

2nd order in time, electric field $\mathcal{E} \ldots$

- Equation

$$
\left\{\begin{array}{l}
\partial_{t t}^{2} \mathcal{E}+c^{2} \operatorname{curl} \operatorname{curl} \mathcal{E}=-\frac{1}{\varepsilon_{0}} \partial_{t} \mathcal{J} ; \partial_{t} \mathcal{E}(0)=\mathcal{E}_{1} \\
\left(\mathcal{E}_{1}:=\frac{1}{\varepsilon_{0}}\left(\operatorname{curl} \mathcal{H}_{0}-\mathcal{J}(0)\right)\right)
\end{array}\right.
$$

- Functional space (see for instance [Ben Belgacem-Bernardi'99])

$$
\mathcal{T}_{E}:=\left\{\mathbf{v} \in \mathbf{H}(\mathbf{c u r l}, \Omega): \mathbf{v} \times \mathbf{n}_{\mid \partial \Omega} \in \mathbf{L}_{t}^{2}(\partial \Omega), \mathbf{v} \times \mathbf{n}_{\mid \Gamma_{C}}=0\right\}
$$

- Variational Formulation

Find $\mathcal{E}(t) \in \mathcal{T}_{E}$ such that

$$
\left\{\begin{align*}
&\left\langle\partial_{t t}^{2} \mathcal{E}, \mathbf{v}>+c^{2}(\mathbf{c u r l} \mathcal{E}, \operatorname{curl} \mathbf{v})_{0}+c \frac{d}{d t}\left(\mathcal{E}_{T}, \mathbf{v}_{T}\right)_{0, \Gamma_{A}}\right. \tag{1}\\
&=-\frac{1}{\varepsilon_{0}}\left(\partial_{t} \mathcal{J}, \mathbf{v}\right)_{0}+c \frac{d}{d t}\left(\overrightarrow{\mathbf{e}}_{T}^{\star}, \mathbf{v}_{T}\right)_{0, \Gamma_{A}}, \forall \mathbf{v} \in \mathcal{I}_{E}
\end{align*}\right.
$$

"Electrostatic" model

(see [Jr'05] for proofs.)

- Set of static equations

$$
\begin{aligned}
& \qquad\left\{\begin{array}{r}
\text { Find } \mathcal{E} \in \mathbf{L}^{2}(\Omega) \text { such that } \\
\operatorname{curl} \mathcal{E}=\mathbf{f}, \operatorname{div} \mathcal{E}=g \text { in } \Omega ; \mathcal{E} \times \mathbf{n}_{\mid \partial \Omega}=0 .
\end{array}\right. \\
& \left(\mathbf{f} \in \mathbf{L}^{2}(\Omega), g \in L^{2}(\Omega): \operatorname{div} \mathbf{f}=0 \text { and } \mathbf{f} \cdot \mathbf{n}_{\mid \partial \Omega}=0 .\right) \\
& \text { Define } \mathcal{X}_{E}^{0}:=\mathbf{H}_{0}(\operatorname{curl}, \Omega) \cap \mathbf{H}(\operatorname{div}, \Omega) .
\end{aligned}
$$

$$
(\cdot, \cdot)_{X^{0}}:(\mathbf{u}, \mathbf{v}) \mapsto(\text { curl } \mathbf{u}, \mathbf{c u r l} \mathbf{v})_{0}+(\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{v})_{0}
$$

is a norm on \mathcal{X}_{E}^{0}, which is equivalent to the full norm.
From [Weber'80], [Fernandes-Gilardi'97], [Amrouche-Bernardi-Dauge-Girault'98]:
Assume for instance that $\partial \Omega$ is connected.

'Electrostatic" model (2)

- Define the variational problem $\left(P^{0}\right)$ in \mathcal{X}_{E}^{0}

$$
\left\{\begin{array}{l}
\text { Find } \mathcal{E} \in \mathcal{X}_{E}^{0} \text { such that } \\
(\mathcal{E}, \mathbf{v})_{X^{0}}=(\mathbf{f}, \operatorname{curl} \mathbf{v})_{0}+(g, \operatorname{div} \mathbf{v})_{0}, \quad \forall \mathbf{v} \in \mathcal{X}_{E}^{0}
\end{array}\right.
$$

- Theorem: $\exists!\mathcal{E} \in \mathcal{X}_{E}^{0}$ solution to problem $\left(P^{0}\right)$. In addition, \mathcal{E} is the only solution to the electrostatic model.
- Hypothesis: the subspace of regular fields $\mathcal{X}_{E, R}^{0}:=\mathbf{H}^{1}(\Omega) \cap \mathcal{X}_{E}^{0}$ is dense in \mathcal{X}_{E}^{0}. From [Grisvard'85] + [Birman-Solomyak'87]: ok if Ω is convex.
- Conclusion: numerical approximation with the Continuous P_{k} Lagrange FE is possible.
- With respect to (1), $\left(P^{0}\right)$ is an Augmented Variational Formulation (AVF).
- Similar AVF and results for \mathcal{H} in $\mathcal{X}_{H}^{0}:=\mathbf{H}(\mathbf{c u r l}, \Omega) \cap \mathbf{H}_{0}(\operatorname{div}, \Omega)\left(\right.$ with $\left.(\cdot, \cdot)_{X^{0}}\right) \ldots$

"Electrostatic" model (2 proof)

- Define the variational problem $\left(P^{0}\right)$ in \mathcal{X}_{E}^{0}

$$
\left\{\begin{array}{l}
\text { Find } \mathcal{E} \in \mathcal{X}_{E}^{0} \text { such that } \\
(\mathcal{E}, \mathbf{v})_{X^{0}}=(\mathbf{f}, \operatorname{curl} \mathbf{v})_{0}+(g, \operatorname{div} \mathbf{v})_{0}, \quad \forall \mathbf{v} \in \mathcal{X}_{E}^{0}
\end{array}\right.
$$

- Theorem: $\exists!\mathcal{E} \in \mathcal{X}_{E}^{0}$ solution to problem $\left(P^{0}\right)$. In addition, \mathcal{E} is the only solution to the electrostatic model.
Proof:
(i) Existence and uniqueness of the solution to problem $\left(P^{0}\right)$ is straightforward.
(ii) $\forall g^{\prime} \in L^{2}(\Omega): \exists!\phi \in H_{0}^{1}(\Omega)$ such that $\Delta \phi=g^{\prime}$.

As $\mathbf{v}=\nabla \phi \in \mathcal{X}_{E}^{0}$, there holds $\left(\operatorname{div} \mathcal{E}, g^{\prime}\right)_{0}=\left(g, g^{\prime}\right)_{0}, \forall g^{\prime} . \operatorname{div} \mathcal{E}=g$ follows.
(iii) $\mathbf{f} \in \mathbf{H}_{0}$ (div ${ }^{0}, \Omega$): according to Thm 3.6 p. 48 of [Girault-Raviart'86],
$\exists!\mathbf{w} \in \mathcal{X}_{E}^{0}$ such that $\operatorname{div} \mathbf{w}=0$, and $\operatorname{curl} \mathbf{w}=\mathbf{f}$.
$\mathbf{v}=\mathcal{E}-\mathbf{w} \in \mathcal{X}_{E}^{0}$ yields $\|\operatorname{curl}(\mathcal{E}-\mathbf{w})\|_{0}^{2}=0$, so $\operatorname{curl} \mathcal{E}=\mathbf{f}$.
(iv) Now, if the electrostatic problem admits two solutions, it is clear that the difference satisfies $\left(P^{0}\right)$ with homogeneous r.h.s., so it is zero; uniqueness follows.

'Electrostatic" model (3)

- What happens when the domain Ω is not convex? $\mathcal{X}_{E, R}^{0}$ is not dense in $\mathcal{X}_{E}^{0} \ldots$
- Remedy: solve the electrostatic problem in a weighted Sobolev space...
- Introduce:
- The set E of reentrant edges of $\partial \Omega$, and the distance $d_{0}(\mathbf{x})=d(\mathbf{x}, E)$.
- The sets $(\gamma \in[0,1])$

$$
\begin{aligned}
L_{\gamma}^{2}(\Omega) & :=\left\{g: g \in L_{l o c}^{2}(\Omega), d_{0}^{\gamma} g \in L^{2}(\Omega)\right\}, \text { with norm }\|g\|_{0, \gamma}=\left\|d_{0}^{\gamma} g\right\|_{0} ; \\
\mathcal{X}_{E, \gamma}^{0} & :=\left\{\mathbf{v}: \mathbf{v} \in \mathbf{H}_{0}(\mathbf{c u r l}, \Omega), \operatorname{div} \mathbf{v} \in L_{\gamma}^{2}(\Omega)\right\} .
\end{aligned}
$$

- Theorem [Costabel-Dauge'02]: $\left.\exists \gamma_{0} \in\right] 0,1 / 2[$, such that
(i) $\left.\forall \gamma \in] \gamma_{0}, 1\right]$, the subspace of regular fields $\mathbf{H}^{1}(\Omega) \cap \mathcal{X}_{E, \gamma}^{0}$ is dense in $\mathcal{X}_{E, \gamma}^{0}$.
(ii) $\forall \gamma \in] \gamma_{0}, 1[$, the semi-norm associated to

$$
(\cdot, \cdot)_{X_{\gamma}^{0}}:(\mathbf{u}, \mathbf{v}) \mapsto(\mathbf{c u r l} \mathbf{u}, \mathbf{c u r l} \mathbf{v})_{0}+(\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{v})_{0, \gamma}
$$

is a norm in $\mathcal{X}_{E, \gamma}^{0}$, which is equivalent to the full norm.

Weight Regularization Method

- Define the $\operatorname{AVF}\left(\underline{P}^{0}\right)$ in $\mathcal{X}_{E, \gamma}^{0}$

$$
\left\{\begin{array}{l}
\text { Find } \mathcal{E} \in \mathcal{X}_{E, \gamma}^{0} \text { such that } \\
(\mathcal{E}, \mathbf{v})_{X_{\gamma}^{0}}=(\mathbf{f}, \operatorname{curl} \mathbf{v})_{0}+(g, \operatorname{div} \mathbf{v})_{0, \gamma}, \quad \forall \mathbf{v} \in \mathcal{X}_{E, \gamma}^{0}
\end{array}\right.
$$

Theorem: $\exists!\mathcal{E} \in \mathcal{X}_{E, \gamma}^{0}$ solution to $\left(\underline{P}^{0}\right)$. It is the only solution to the electrostatic model.

- Numerical approximation with the Continuous P_{k} Lagrange FE is possible:
- convergence results: $\left\|\mathcal{E}-\mathcal{E}_{h}\right\|_{X_{\gamma}^{0}} \leq C_{\mathbf{f}, g} C_{\varepsilon} h^{\gamma-\gamma_{0}-\varepsilon}, \forall \varepsilon>0$ (for $k \geq 2$, cf. [Costabel-Dauge'02]);
- comparisons and numerical experiments in 2D: cf. [Jamelot'05].
- According to M. Costabel and M. Dauge (private communication): Similar results are also valid for finding \mathcal{H} in $\mathcal{X}_{H, \gamma}^{0} \ldots$

AVF for the time-dependent equations

- Without a Silver-Müller boundary condition $\left(\Gamma_{A}=\emptyset\right)$:

Find $\mathcal{E}(t) \in \mathcal{X}_{E, \gamma}^{0}$ such that
(2) $\left\langle\partial_{t t}^{2} \mathcal{E}, \mathbf{v}\right\rangle+c^{2}(\mathcal{E}, \mathbf{v})_{X_{\gamma}^{0}}=-\frac{1}{\varepsilon_{0}}\left(\partial_{t} \mathcal{J}, \mathbf{v}\right)_{0}+\frac{c^{2}}{\varepsilon_{0}}(\rho, \operatorname{div} \mathbf{v})_{0, \gamma}, \forall \mathbf{v} \in \mathcal{X}_{E, \gamma}^{0}$.
$\left(\partial_{t t}^{2} \mathcal{J} \in L^{2}\left(0, T ; \mathbf{L}^{2}(\Omega)\right), \partial_{t} \rho \in \mathcal{C}^{0}\left(0, T ; L_{\gamma}^{2}(\Omega)\right).\right)$

- With a Silver-Müller boundary condition $\left(\Gamma_{A} \neq \emptyset\right)$:
- replace $\mathcal{X}_{E, \gamma}^{0}$ by $\mathcal{X}_{E, \gamma}^{A}:=\left\{\mathbf{v} \in \mathcal{T}_{E}: \operatorname{div} \mathbf{v} \in L_{\gamma}^{2}(\Omega)\right\}$;
- add the boundary terms of (1) in (2)...

Find $\mathcal{E}(t) \in \mathcal{X}_{E, \gamma}^{A}$ such that

$$
\text { (3) }\left\{\begin{array}{l}
<\partial_{t t}^{2} \mathcal{E}, \mathbf{v}>+c^{2}(\mathcal{E}, \mathbf{v})_{X_{\gamma}^{0}}+c \frac{d}{d t}\left(\mathcal{E}_{T}, \mathbf{v}_{T}\right)_{0, \Gamma_{A}} \\
\quad=-\frac{1}{\varepsilon_{0}}\left(\partial_{t} \mathcal{J}, \mathbf{v}\right)_{0}+\frac{c^{2}}{\varepsilon_{0}}(\rho, \operatorname{div} \mathbf{v})_{0, \gamma}+c \frac{d}{d t}\left(\overrightarrow{\mathbf{e}}_{T}^{\star}, \mathbf{v}_{T}\right)_{0, \Gamma_{A}}, \forall \mathbf{v} \in \mathcal{X}_{E, \gamma}^{A} .
\end{array}\right.
$$

Mixed AVF for the time-dependent equations

- Coupling with the Vlasov equation (Particle methods):
- At the discrete level: $\partial_{\tau} \rho_{h}+\operatorname{div}_{h} \mathcal{J}_{h} \neq 0$.
- Need of a Lagrange multiplier on $\operatorname{div} \mathcal{E}$.
- The mixed AVF (case $\Gamma_{A}=\emptyset$):

Find $(\mathcal{E}(t), p(t)) \in \mathcal{X}_{E, \gamma}^{0} \times L_{\gamma}^{2}$ such that
(4) $\left\{\begin{aligned}\left\langle\partial_{t t}^{2} \mathcal{E}, \mathbf{v}>+\right. & c^{2}(\mathcal{E}, \mathbf{v})_{X_{\gamma}^{0}}+(p, \operatorname{div} \mathbf{v})_{0, \gamma} \\ & =-\frac{1}{\varepsilon_{0}}\left(\partial_{t} \mathcal{J}, \mathbf{v}\right)_{0}+\frac{c^{2}}{\varepsilon_{0}}(\rho, \operatorname{div} \mathbf{v})_{0, \gamma}, \forall \mathbf{v} \in \mathcal{X}_{E, \gamma}^{0} ; \\ (\operatorname{div} \mathcal{E}, q)_{0, \gamma}= & \frac{1}{\varepsilon_{0}}(\rho, q)_{0, \gamma}, \forall q \in L_{\gamma}^{2} .\end{aligned}\right.$
$\left(\partial_{t t}^{2} \mathcal{J} \in L^{2}\left(0, T ; \mathbf{L}^{2}(\Omega)\right), \partial_{t t}^{2} \rho \in L^{2}\left(0, T ; L_{\gamma}^{2}(\Omega)\right).\right)$

- The mixed AVF (case $\Gamma_{A} \neq \emptyset$): replace $\mathcal{X}_{E, \gamma}^{0}$ by $\mathcal{X}_{E, \gamma}^{A}$ and add the boundary terms of (1) in (4)...

Discretization

- In time: leap-frog scheme

$$
\partial_{t t}^{2} u\left(t_{n}\right) \equiv \frac{u\left(t_{n+1}\right)-2 u\left(t_{n}\right)+u\left(t_{n-1}\right)}{(\Delta t)^{2}}
$$

- In space, a continuous Galerkin Method:
- P_{k} Lagrange FE, or $P_{k+1}-P_{k}$ Taylor-Hood FE ;
- $P_{2}-i s o-P_{1}$ Taylor-Hood FE is possible ([Assous et al' 93$]$ in the convex case).
- Overall, an explicit discretization scheme:

$$
\left\{\begin{array}{r}
\left(\mathbb{M}_{\Omega}+\frac{c \Delta t}{2} \mathbb{M}_{A, \|}\right) \overrightarrow{\mathrm{E}}^{n+1}+(\Delta t)^{2} \mathbb{C}^{T} \overrightarrow{\mathrm{p}}^{n+1}=\overrightarrow{\mathrm{f}}^{n+1 / 2} \\
\mathbb{C}^{n+1}=\overrightarrow{\mathrm{g}}^{n+1}
\end{array}\right.
$$

Under a CFL: $c \Delta t \leq C_{k} \min _{l} h_{l}$.

- Mass lumping is possible [Cohen'02]: \widetilde{P}_{1} or \widetilde{P}_{2} FE \rightsquigarrow fully explicit scheme.

Discretization (2)

- Is the Lagrange multiplier (MAVF) mandatory?
- Not really, except for Vlasov-Maxwell?! (cf. [Garcia'02])
- Computed once every 10 (or more) time-steps...
- Use the Preconditioned CG method to compute $\overrightarrow{\mathrm{p}}^{n+1}$ (cf. [Jamelot'05].)
- convergence result for the implicit scheme (see [Jr-Labrunie'06]):

$$
\begin{aligned}
\max _{n} & \left(\left\|\partial_{t} \mathcal{E}\left(t_{n}\right)-\partial_{\tau} \mathcal{E}_{h}^{n}\right\|_{0}^{2}+\left\|\mathcal{E}\left(t_{n}\right)-\mathcal{E}_{h}^{n}\right\|_{X_{\gamma}^{0}}^{2}\right) \\
& \leq C_{\varepsilon}\left((\Delta t)^{2}+h^{2\left(\gamma-\gamma_{0}-\varepsilon\right)}+(\Delta t)^{2} h^{2\left(\gamma-\gamma_{0}-1-\varepsilon\right)}\right), \forall \varepsilon>0 .
\end{aligned}
$$

Numerical examples

- Computation of the electromagnetic field in a closed convex cavity (cf. [Heintzé'92]):
- no source terms $((\mathcal{J}, \rho)=(0,0))$;
- no artificial boundary $\left(\Gamma_{A}=\emptyset\right)$;
- P_{1}, \widetilde{P}_{1} or $P_{2} \mathrm{FE}$ on 25 K tetrahedra.
- Computation of the electromagnetic field around a non-convex body:
- generated by a current $(\mathcal{J} \neq 0, \rho \neq 0)$;
- absorbing boundary condition on Γ_{A};
- P_{1} or \widetilde{P}_{1} FE on 684 K tetrahedra.

Computation of the EM field in a cavity

- Solving Maxwell equations in a unit cube (no source terms, non-zero I. C.): Find $\mathcal{E}(t) \in \mathcal{X}_{\mathcal{E}}^{0}$ and $\mathcal{H}(t) \in \mathcal{X}_{\mathcal{H}}^{0}$ such that

$$
\begin{aligned}
\left\langle\partial_{t t}^{2} \mathcal{E}, \mathbf{v}\right\rangle+c^{2}(\mathcal{E}, \mathbf{v})_{X^{0}} & =0, \forall \mathbf{v} \in \mathcal{X}_{\mathcal{E}}^{0} \\
\left.<\partial_{t t}^{2} \mathcal{H}, \mathbf{v}\right\rangle+c^{2}(\mathcal{H}, \mathbf{v})_{X^{0}} & =0, \forall \mathbf{v} \in \mathcal{X}_{\mathcal{H}}^{0}
\end{aligned}
$$

- Exact solution:

$$
\begin{aligned}
& \text { Exact solution: } \\
& \qquad \mathcal{E}(t)=\cos (\omega t)\left(\begin{array}{c}
\cos (\pi x) \sin (\pi y) \sin (-2 \pi z) \\
\sin (\pi x) \cos (\pi y) \sin (-2 \pi z) \\
\sin (\pi x) \sin (\pi y) \cos (-2 \pi z)
\end{array}\right), \\
& \mathcal{H}(t)=\frac{3 \pi}{\mu_{0} \omega} \sin (\omega t)\left(\begin{array}{c}
-\sin (\pi x) \cos (\pi y) \cos (-2 \pi z) \\
\cos (\pi x) \sin (\pi y) \cos (-2 \pi z) \\
0
\end{array}\right) . \\
& \qquad c \approx 3.0 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \cdot \mathrm{~m}^{-1}, \omega \approx 2.3 \times 10^{9} \mathrm{~Hz}
\end{aligned}
$$

- 10 discretization nodes per wave length $\rightsquigarrow 25 \mathrm{~K}$ tetrahedra.

P_{1}, P_{1} and $P_{2} \mathbf{F E}$

- \mathcal{E}_{y} relative amplitude at point ($0.19,0.12,0.12$).

Some results without Lagrange multiplier, \widetilde{P}_{1} FE

- $c \approx 3.010^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}, \omega \approx 2.510^{9} \mathrm{~Hz}$.
- $\mathcal{J}=10^{-5} \omega \sin \left(\frac{\pi z}{L}\right) \cos (\omega t) \mathbf{e}_{3}, \rho=10^{-5} \frac{\pi}{L} \cos \left(\frac{\pi z}{L}\right) \sin (\omega t) ; \mathcal{E}_{0}=\mathcal{H}_{0}=0$.
- No incoming wave: $\mathrm{e}^{\star}=0$.
- 684 K tetrahedra.

$\mathcal{E}_{h, x}$ in plane $z=2.5$: space evolution

? $T_{1}=1 \mathrm{~ns}, T_{2}=8 \mathrm{~ns}, T_{3}=15 \mathrm{~ns}, T_{4}=20 \mathrm{~ns}$.

$\mathcal{E}_{h, x}$ in plane $z=2.5$: zooming in...

- $T_{1}=1 \mathrm{~ns}, T_{2}=8 \mathrm{~ns}, T_{3}=15 \mathrm{~ns}, T_{4}=20 \mathrm{~ns}$.

$\mathcal{E}_{h, y}$ in plane $z=2.5$: space evolution

? $T_{1}=1 \mathrm{~ns}, T_{2}=8 \mathrm{~ns}, T_{3}=15 \mathrm{~ns}, T_{4}=20 \mathrm{~ns}$.

$\mathcal{E}_{h, z}$ in plane $z=2.5$: space evolution

? $T_{1}=1 \mathrm{~ns}, T_{2}=8 \mathrm{~ns}, T_{3}=15 \mathrm{~ns}, T_{4}=20 \mathrm{~ns}$.

$\mathcal{E}_{h, x}:$ time evolution

- $M_{1}=(1,1,2), M_{2}=(1,5,2), M_{3}=(5.5,2.5,2), M_{4}=(8,5.5,2)$.

Conclusion/Perspectives

- One can solve numerically Maxwell equations with continuous Galerkin methods! (cf. http://www.ensta.fr//jamelot/)
- The numerical implementation is not very costly, and one can use mass lumping...
- To achieve better precision:
- increase ${ }_{k}$, the order of the FE ;
- use PMLs to close the domain.
- The Mixed AVF can be useful to solve:
- the coupled Vlasov-Maxwell system of equations (ongoing project with F. Assous);
- eigenvalue problems [Buffa-Jr-Jamelot'06].
- Alternate methods:
- 2D, 3D: the Natural Boundary Condition Method ([Jr'05], [Jamelot'05]).
- 2D, 2D1/2: the Singular Complement Method ([Garcia'02], [Labrunie et al'0...], [Jamelot’05]).

