Continuous Galerkin methods for solving electromagnetic eigenvalue problems

Annalisa Buffa, Patrick Ciarlet, Erell Jamelot Patrick.Ciarlet@ensta.fr
POEMS, UMR 2706 CNRS-ENSTA-INRIA, Paris, France

Time-harmonic Maxwell equations

- In a bounded domain Ω.

Find $(\mathcal{E}, \mathcal{B}, \omega)$ such that

$$
\left\{\begin{array}{l}
\imath \omega \mathcal{E}-c^{2} \operatorname{curl} \mathcal{B}=0 \text { in } \Omega ; \\
\imath \omega \mathcal{B}+\operatorname{curl} \mathcal{E}=0 \text { in } \Omega ; \\
\operatorname{div} \mathcal{E}=0 \text { in } \Omega ; \\
\operatorname{div} \mathcal{B}=0 \text { in } \Omega ; \\
\mathcal{E} \times \mathbf{n}=0 \text { on } \partial \Omega ; \\
\mathcal{B} \cdot \mathbf{n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

($\partial \Omega$ is the boundary, \mathbf{n} is the unit outward normal to $\partial \Omega$.)

- Goal: compute the EM eigenmodes in a resonator cavity, bounded by a perfect conductor, either polyhedral (3D) or polygonal (2D).

Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

- Equivalent system: Find (\mathcal{E}, ω) such that

$$
(P E)\left\{\begin{array}{l}
c^{2} \operatorname{curl} \operatorname{curl} \mathcal{E}=\omega^{2} \mathcal{E} \text { in } \Omega ; \\
\operatorname{div} \mathcal{E}=0 \text { in } \Omega \\
\mathcal{E} \times \mathbf{n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

- Which functional space to measure the electric field?

First choice:

$$
\mathcal{H}_{0}(\operatorname{curl}, \Omega):=\left\{\mathcal{F} \in L^{2}(\Omega)^{3} \mid \operatorname{curl} \mathcal{F} \in L^{2}(\Omega)^{3}, \mathcal{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\}
$$

cf. [Kikuchi'87/'89], [Demkowicz et al'9x], [Boffi et al'9x/'0x]...

Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

- Equivalent system: Find (\mathcal{E}, ω) such that

$$
(P E)\left\{\begin{array}{l}
c^{2} \operatorname{curl} \operatorname{curl} \mathcal{E}=\omega^{2} \mathcal{E} \text { in } \Omega ; \\
\operatorname{div} \mathcal{E}=0 \text { in } \Omega ; \\
\mathcal{E} \times \mathbf{n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

- Which functional space to measure the electric field?

Second choice:

$$
\mathcal{X}:=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mathcal{F} \in L^{2}(\Omega)\right\}
$$

Ok in a convex domain Ω.
cf. [Assous-Degond-Heintzé-Raviart-Segré'93].
OK in a 2D or 2D1/2 non-convex domain Ω (Singular Complement Method). cf. [Assous-Jr et al'98/'00/'03], [Bonnet-Hazard-Lohrengel'99/'02]...

Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

- Equivalent system: Find (\mathcal{E}, ω) such that

$$
(P E)\left\{\begin{array}{l}
c^{2} \mathbf{c u r l} \operatorname{curl} \mathcal{E}=\omega^{2} \mathcal{E} \text { in } \Omega \\
\operatorname{div} \mathcal{E}=0 \text { in } \Omega \\
\mathcal{E} \times \mathbf{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

- Which functional space to measure the electric field?

Third choice:

$$
\mathcal{X}_{\gamma}:=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mathcal{F} \in L_{\gamma}^{2}(\Omega)\right\} .
$$

$\left(L_{\gamma}^{2}(\Omega):=\left\{v \in L_{\text {loc }}^{2}(\Omega) \mid w_{\gamma} v \in L^{2}(\Omega)\right\},\|v\|_{0, \gamma}:=\left\|w_{\gamma} v\right\|_{0}\right.$.
The weight w_{γ} is a function of the distance r to the reentrant edges:

$$
w_{\gamma}(r)=\left(r / r_{\max }\right)^{\gamma}
$$

with a suitable $\gamma \in] \gamma_{\text {min }}, 1\left[, 0<\gamma_{\text {min }}<\frac{1}{2}\right.$, cf. [Costabel-Dauge'02].)
Scalar product: $(u, v)_{\mathcal{X}_{\gamma}}:=(\operatorname{curl} u, \operatorname{curl} v)_{0}+(\operatorname{div} u, \operatorname{div} v)_{0, \gamma}$.

Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

- Equivalent system: Find (\mathcal{E}, ω) such that

$$
(P E)\left\{\begin{array}{l}
c^{2} \operatorname{curl} \operatorname{curl} \mathcal{E}=\omega^{2} \mathcal{E} \text { in } \Omega \\
\operatorname{div} \mathcal{E}=0 \text { in } \Omega \\
\mathcal{E} \times \mathbf{n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

- Which functional space to measure the electric field?

Third choice:

$$
\mathcal{X}_{\gamma}:=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mathcal{F} \in L_{\gamma}^{2}(\Omega)\right\} .
$$

$\left(L_{\gamma}^{2}(\Omega):=\left\{v \in L_{\mathrm{loc}}^{2}(\Omega) \mid w_{\gamma} v \in L^{2}(\Omega)\right\},\|v\|_{0, \gamma}:=\left\|w_{\gamma} v\right\|_{0}\right.$.
The weight w_{γ} is a function of the distance r to the reentrant edges:

$$
w_{\gamma}(r)=\left(r / r_{\max }\right)^{\gamma}
$$

with a suitable $\gamma \in] \gamma_{\text {min }}, 1\left[, 0<\gamma_{\text {min }}<\frac{1}{2}\right.$, cf. [Costabel-Dauge'02].)
Our choice from now on...

Variational Formulations

- Set $\lambda=\omega^{2} / c^{2}$ and $\mathcal{K}_{\gamma}:=\left\{\mathcal{F} \in \mathcal{X}_{\gamma} \mid \operatorname{div} \mathcal{F}=0\right\}$.

An equivalent variational formulation of (PE) is
Find $(\mathcal{E}, \lambda) \in \mathcal{K}_{\gamma} \times \mathbb{R}^{+}$such that

$$
(\operatorname{curl} \mathcal{E}, \operatorname{curl} \mathcal{F})_{0}=\lambda(\mathcal{E}, \mathcal{F})_{0}, \forall \mathcal{F} \in \mathcal{K}_{\gamma}
$$

- How can one take into account the divergence-free constraint?

Costabel and Dauge's choice [Costabel-Dauge'02]: parameterized eigenproblem Find $\left(\mathcal{E}_{s}, \lambda_{s}\right) \in \mathcal{X}_{\gamma} \times \mathbb{R}^{+}$such that

$$
\left(\operatorname{curl} \mathcal{E}_{s}, \operatorname{curl} \mathcal{F}\right)_{0}+s\left(\operatorname{div} \mathcal{E}_{s}, \operatorname{div} \mathcal{F}\right)_{0, \gamma}=\lambda_{s}\left(\mathcal{E}_{s}, \mathcal{F}\right)_{0} \forall \mathcal{F} \in \mathcal{X}_{\gamma},
$$

($s>0$ is a parameter.)

Variational Formulations

- Set $\lambda=\omega^{2} / c^{2}$ and $\mathcal{K}_{\gamma}:=\left\{\mathcal{F} \in \mathcal{X}_{\gamma} \mid \operatorname{div} \mathcal{F}=0\right\}$.

An equivalent variational formulation of (PE) is
Find $(\mathcal{E}, \lambda) \in \mathcal{K}_{\gamma} \times \mathbb{R}^{+}$such that

$$
(\operatorname{curl} \mathcal{E}, \operatorname{curl} \mathcal{F})_{0}=\lambda(\mathcal{E}, \mathcal{F})_{0}, \forall \mathcal{F} \in \mathcal{K}_{\gamma}
$$

- How can one take into account the divergence-free constraint?

Our choice [Jr'05], cf. MAFELAP'03: mixed eigenproblem
Find $(\mathcal{E}, p, \lambda) \in \mathcal{X}_{\gamma} \times L_{\gamma}^{2}(\Omega) \times \mathbb{R}^{+}$such that

$$
\left\{\begin{array}{l}
(\mathcal{E}, \mathcal{F})_{\mathcal{X}_{\gamma}}+(p, \operatorname{div} \mathcal{F})_{0, \gamma}=\lambda(\mathcal{E}, \mathcal{F})_{0} \forall \mathcal{F} \in \mathcal{X}_{\gamma} \\
(q, \operatorname{div} \mathcal{E})_{0, \gamma}=0, \forall q \in L_{\gamma}^{2}(\Omega)
\end{array}\right.
$$

Abstract theory

- A few spaces, forms, etc.
e V and Q two Hilbert spaces;
- a a bilinear, continuous, symmetric, positive, semidefinite form on $V \times V$;

2 b a bilinear, continuous form on $V \times Q$;

- f an element of V^{\prime}.
- L a third Hilbert space: $V \subset L, V$ dense in L, and $L^{\prime} \equiv L$ (the 'pivot' space).

Abstract theory

- A few spaces, forms, etc.
- V and Q two Hilbert spaces;
- a a bilinear, continuous, symmetric, positive, semidefinite form on $V \times V$;

2 b a bilinear, continuous form on $V \times Q$;
e f an element of V^{\prime}.

- L a third Hilbert space: $V \subset L, V$ dense in L, and $L^{\prime} \equiv L$ (the 'pivot' space).
- Introduce the mixed problem

$$
(M P)\left\{\begin{array}{l}
a(u, v)+b(v, p)=\langle f, v\rangle, \forall v \in V \\
b(u, q)=0, \forall q \in Q
\end{array}\right.
$$

Consider the operator $\mathrm{T}: V^{\prime} \rightarrow V$, with $u=\mathrm{T} f$.

Abstract theory

- A few spaces, forms, etc.
e V and Q two Hilbert spaces;
- a a bilinear, continuous, symmetric, positive, semidefinite form on $V \times V$;

2 b a bilinear, continuous form on $V \times Q$;

- f an element of V^{\prime}.
- L a third Hilbert space: $V \subset L, V$ dense in L, and $L^{\prime} \equiv L$ (the 'pivot' space).
- Introduce the mixed problem

$$
(M P)\left\{\begin{array}{l}
a(u, v)+b(v, p)=\langle f, v\rangle, \forall v \in V \\
b(u, q)=0, \forall q \in Q
\end{array}\right.
$$

Consider the operator $\mathrm{T}: V^{\prime} \rightarrow V$, with $u=\mathrm{T} f$. (Its restriction from L to V is still denoted by T .)

- The eigenproblem to be solved reads

Find $(u, \lambda) \in V \times \mathbb{R}$ such that

$$
\lambda \mathrm{T} u=u .
$$

Abstract theory (2)

- Discretization...
- $\quad V_{h} \subset V$;
- $Q_{h} \subset Q$;
- The discrete kernel $\mathbb{K}_{h}:=\left\{v_{h} \in V_{h}: b\left(v_{h}, q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$;
- The discretized eigenproblem reads

Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \mathbb{R}$ such that

$$
\lambda_{h} \mathrm{~T}_{h} u_{h}=u_{h} .
$$

Abstract theory (2)

- Discretization...
e $V_{h} \subset V$;
- $Q_{h} \subset Q$;
- The discrete kernel $\mathbb{K}_{h}:=\left\{v_{h} \in V_{h}: b\left(v_{h}, q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$;
- The discretized eigenproblem reads

Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \mathbb{R}$ such that

$$
\lambda_{h} \mathrm{~T}_{h} u_{h}=u_{h} .
$$

- For T compact and self-adjoint, uniform convergence of T_{h} to T in $\mathcal{L}(L, V)$ implies convergence of eigenvectors and eigenvalues...
(The convergence rate is governed by $r_{0}(h):=\left\|\mid \mathbf{T}-\mathbf{T}_{h}\right\| \|$.)

Abstract theory (2)

- Discretization...
e $V_{h} \subset V$;
- $Q_{h} \subset Q$;
- The discrete kernel $\mathbb{K}_{h}:=\left\{v_{h} \in V_{h}: b\left(v_{h}, q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$;
- The discretized eigenproblem reads

Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \mathbb{R}$ such that

$$
\lambda_{h} \mathbf{T}_{h} u_{h}=u_{h} .
$$

- Four requirements [Boffi-Brezzi-Gastaldi'97]:
- T compact and self-adjoint;

Abstract theory (2)

- Discretization...
e $V_{h} \subset V$;
- $Q_{h} \subset Q$;
- The discrete kernel $\mathbb{K}_{h}:=\left\{v_{h} \in V_{h}: b\left(v_{h}, q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$;
- The discretized eigenproblem reads

Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \mathbb{R}$ such that

$$
\lambda_{h} \mathbf{T}_{h} u_{h}=u_{h} .
$$

- Four requirements [Boffi-Brezzi-Gastaldi'97]:
- T compact and self-adjoint;
- a is coercive on the discrete kernel \mathbb{K}_{h};

Abstract theory (2)

- Discretization...
e $V_{h} \subset V$;
- $Q_{h} \subset Q$;
- The discrete kernel $\mathbb{K}_{h}:=\left\{v_{h} \in V_{h}: b\left(v_{h}, q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$;
- The discretized eigenproblem reads

Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \mathbb{R}$ such that

$$
\lambda_{h} \mathbf{T}_{h} u_{h}=u_{h} .
$$

- Four requirements [Boffi-Brezzi-Gastaldi'97]:
- T compact and self-adjoint;
- a is coercive on the discrete kernel \mathbb{K}_{h};
- The Weak Approximability of

$$
Q_{0}:=\{q \in Q: \exists v \in V \text { s.t. }(v, q) \text { solution to (MP) for some } f \in L\} .
$$

Abstract theory (2)

- Discretization...
e $V_{h} \subset V$;
- $Q_{h} \subset Q$;
- The discrete kernel $\mathbb{K}_{h}:=\left\{v_{h} \in V_{h}: b\left(v_{h}, q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$;
- The discretized eigenproblem reads

Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \mathbb{R}$ such that

$$
\lambda_{h} \mathbf{T}_{h} u_{h}=u_{h}
$$

- Four requirements [Boffi-Brezzi-Gastaldi'97]:
- T compact and self-adjoint;
- a is coercive on the discrete kernel \mathbb{K}_{h};
- The Weak Approximability of

$$
Q_{0}:=\{q \in Q: \exists v \in V \text { s.t. }(v, q) \text { solution to (MP) for some } f \in L\} .
$$

- The Strong Approximability of

$$
V_{0}:=\{v \in V: \exists q \in Q \text { s.t. }(v, q) \text { solution to (MP) for some } f \in L\} .
$$

Abstract theory (3)

[Boffi-Brezzi-Gastaldi'97] continued...

- The Weak Approximability of Q_{0} :
$\exists r_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $\lim _{h \rightarrow 0^{+}} r_{1}(h)=0$ and

$$
\sup _{v_{h} \in \mathbb{K}_{h}} \frac{b\left(v_{h}, q_{0}\right)}{\left\|v_{h}\right\|_{V}} \leq r_{1}(h)\left\|q_{0}\right\|_{Q_{0}}, \forall q_{0} \in Q_{0} .
$$

Abstract theory (3)

[Boffi-Brezzi-Gastaldi'97] continued...

- The Weak Approximability of Q_{0} :
$\exists r_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $\lim _{h \rightarrow 0^{+}} r_{1}(h)=0$ and

$$
\sup _{v_{h} \in \mathbb{K}_{h}} \frac{b\left(v_{h}, q_{0}\right)}{\left\|v_{h}\right\|_{V}} \leq r_{1}(h)\left\|q_{0}\right\|_{Q_{0}}, \forall q_{0} \in Q_{0} .
$$

- The Strong Approximability of V_{0} :
$\exists r_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $\lim _{h \rightarrow 0^{+}} r_{2}(h)=0$ and

$$
\forall v_{0} \in V_{0}, \exists v^{I} \in \mathbb{K}_{h} \text { s.t. }\left\|v_{0}-v^{I}\right\|_{V} \leq r_{2}(h)\left\|v_{0}\right\|_{V_{0}}
$$

Abstract theory (3)

[Boffi-Brezzi-Gastaldi'97] continued...

- The Weak Approximability of Q_{0} :
$\exists r_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $\lim _{h \rightarrow 0^{+}} r_{1}(h)=0$ and

$$
\sup _{v_{h} \in \mathbb{K}_{h}} \frac{b\left(v_{h}, q_{0}\right)}{\left\|v_{h}\right\|_{V}} \leq r_{1}(h)\left\|q_{0}\right\|_{Q_{0}}, \forall q_{0} \in Q_{0} .
$$

- The Strong Approximability of V_{0} :
$\exists r_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $\lim _{h \rightarrow 0^{+}} r_{2}(h)=0$ and

$$
\forall v_{0} \in V_{0}, \exists v^{I} \in \mathbb{K}_{h} \text { s.t. }\left\|v_{0}-v^{I}\right\|_{V} \leq r_{2}(h)\left\|v_{0}\right\|_{V_{0}}
$$

- Theorem: provided the four requirements hold, one has

$$
r_{0}(h) \leq C\left(r_{1}(h)+r_{2}(h)\right) .
$$

Discretization and convergence results

In our case...

$$
\begin{aligned}
& V=\mathcal{X}_{\gamma} ; Q=L_{\gamma}^{2}(\Omega) ; L=L^{2}(\Omega)^{3} \\
& a(u, v)=(u, v)_{\mathcal{X}_{\gamma}} ; b(v, q)=(\operatorname{div} v, q)_{0, \gamma} ;
\end{aligned}
$$

Discretization and convergence results

In our case...

$$
\begin{aligned}
& V=\mathcal{X}_{\gamma} ; Q=L_{\gamma}^{2}(\Omega) ; L=L^{2}(\Omega)^{3} \\
& a(u, v)=(u, v)_{\mathcal{X}_{\gamma}} ; b(v, q)=(\operatorname{div} v, q)_{0, \gamma} ;
\end{aligned}
$$

- T is compact and self-adjoint (standard Maxwell operator theory [Weber'80]);
- a is coercive by definition ;

Discretization and convergence results

In our case...

$$
\begin{aligned}
& V=\mathcal{X}_{\gamma} ; Q=L_{\gamma}^{2}(\Omega) ; L=L^{2}(\Omega)^{3} \\
& a(u, v)=(u, v)_{\mathcal{X}_{\gamma}} ; b(v, q)=(\operatorname{div} v, q)_{0, \gamma} ;
\end{aligned}
$$

- T is compact and self-adjoint (standard Maxwell operator theory [Weber'80]);
- a is coercive by definition ;

Use the classical Taylor-Hood $P_{2}-P_{1}$ Finite Element on tetrahedral meshes...

Discretization and convergence results

In our case...

$$
\begin{aligned}
& V=\mathcal{X}_{\gamma} ; Q=L_{\gamma}^{2}(\Omega) ; L=L^{2}(\Omega)^{3} \\
& a(u, v)=(u, v)_{\mathcal{X}_{\gamma}} ; b(v, q)=(\operatorname{div} v, q)_{0, \gamma} ;
\end{aligned}
$$

- T is compact and self-adjoint (standard Maxwell operator theory [Weber'80]);
- a is coercive by definition ;

Use the classical Taylor-Hood $P_{2}-P_{1}$ Finite Element on tetrahedral meshes...

- The Weak Approximability of Q_{0} can be achieved, with

$$
r_{2}(h):=C h^{1-\gamma} .
$$

Discretization and convergence results

In our case...

$$
\begin{aligned}
& V=\mathcal{X}_{\gamma} ; Q=L_{\gamma}^{2}(\Omega) ; L=L^{2}(\Omega)^{3} ; \\
& a(u, v)=(u, v)_{\mathcal{X}_{\gamma}} ; b(v, q)=(\operatorname{div} v, q)_{0, \gamma} ;
\end{aligned}
$$

- T is compact and self-adjoint (standard Maxwell operator theory [Weber'80]);
- a is coercive by definition ;

Use the classical Taylor-Hood $P_{2}-P_{1}$ Finite Element on tetrahedral meshes...

- The Weak Approximability of Q_{0} can be achieved, with

$$
r_{2}(h):=C h^{1-\gamma} .
$$

- The Strong Approximability of V_{0} stems from [Costabel-Dauge'02],

$$
r_{1}(h):=C_{\varepsilon} h^{\gamma-\gamma_{m i n}-\varepsilon} .
$$

Discretization and convergence results

In our case...

$$
\begin{aligned}
& V=\mathcal{X}_{\gamma} ; Q=L_{\gamma}^{2}(\Omega) ; L=L^{2}(\Omega)^{3} \\
& a(u, v)=(u, v)_{\mathcal{X}_{\gamma}} ; b(v, q)=(\operatorname{div} v, q)_{0, \gamma} ;
\end{aligned}
$$

- T is compact and self-adjoint (standard Maxwell operator theory [Weber'80]);
- a is coercive by definition ;

Use the classical Taylor-Hood $P_{2}-P_{1}$ Finite Element on tetrahedral meshes...

- The Weak Approximability of Q_{0} can be achieved, with

$$
r_{2}(h):=C h^{1-\gamma} .
$$

- The Strong Approximability of V_{0} stems from [Costabel-Dauge'02],

$$
r_{1}(h):=C_{\varepsilon} h^{\gamma-\gamma_{m i n}-\varepsilon} .
$$

Error estimates can be improved with the use of graded meshes.

Numerical experiments

On a 'practical' example, taken from Monique Dauge's benchmark.

- 2D, L-shaped, domain, straight sides, corners in (0,0), (1,0), (1,1), (-1,1), (-1,-1), (0,-1).
- First five eigenvalues (with repetition), up to four digits:
- $\lambda_{1}=1.476$, eigenmode has the strong unbounded singularity;
- $\lambda_{2}=3.534$;
- $\lambda_{3}=9.870$;
- $\lambda_{4}=9.870$;
- $\lambda_{5}=11.39$.
- The weight is implemented with $\gamma=0.95$.
- Experiments:
- on uniform meshes;
- on graded meshes;
- without any weight on the divergence of the electric field.

Uniform meshes

- Three meshes with
- 738, 2952 and 11808 triangles;
e 410, 1557 and 6065 vertices;
- Results:

mesh	$\lambda_{1, h}$	$\lambda_{2, h}$	$\lambda_{3, h}$	$\lambda_{4, h}$	$\lambda_{5, h}$
uniform 1	2.162	3.536	9.871	9.871	11.39
uniform 2	2.092	3.535	9.870	9.870	11.39
uniform3	1.963	3.534	9.870	9.870	11.39

Graded meshes

- Three meshes (courtesy of Beate Jung) with
- 648, 2664 and 10728 triangles;
- 362,1410 and 5522 vertices ;
- Results:

mesh	$\lambda_{1, h}$	$\lambda_{2, h}$	$\lambda_{3, h}$	$\lambda_{4, h}$	$\lambda_{5, h}$
graded 1	1.742	3.534	9.872	9.872	11.39
graded 2	1.484	3.534	9.764	9.870	11.39
graded 3	1.478	3.534	9.801	9.870	11.39

No weight

- No weight $(\gamma=0)$:
the electric field is measured with the usual L^{2}-norm for its divergence.
- No Singular Complement.
- Same three graded meshes...
- Results:

mesh	$\lambda_{1, h}$	$\lambda_{2, h}$	$\lambda_{3, h}$	$\lambda_{4, h}$	$\lambda_{5, h}$
graded 1	3.553	6.073	9.872	9.872	11.40
graded 2	3.535	6.068	9.870	9.870	11.39
graded 3	3.534	6.071	9.870	9.870	11.39

No weight

- No weight $(\gamma=0)$:
the electric field is measured with the usual L^{2}-norm for its divergence.
- No Singular Complement.
- Same three graded meshes...
- Results:

mesh	$\lambda_{1, h}$	$\lambda_{2, h}$	$\lambda_{3, h}$	$\lambda_{4, h}$	$\lambda_{5, h}$
graded 1	3.553	6.073	9.872	9.872	11.40
graded 2	3.535	6.068	9.870	9.870	11.39
graded 3	3.534	6.071	9.870	9.870	11.39

- Only the 'smooth' eigenmodes are captured numerically, as expected!

No weight

- No weight $(\gamma=0)$:
the electric field is measured with the usual L^{2}-norm for its divergence.
- No Singular Complement.
- Same three graded meshes...
- Results:

mesh	$\lambda_{1, h}$	$\lambda_{2, h}$	$\lambda_{3, h}$	$\lambda_{4, h}$	$\lambda_{5, h}$
graded 1	3.553	6.073	9.872	9.872	11.40
graded 2	3.535	6.068	9.870	9.870	11.39
graded 3	3.534	6.071	9.870	9.870	11.39

- Only the 'smooth' eigenmodes are captured numerically, as expected!
- One solves the mixed eigenproblem in $\mathcal{X} \cap H^{1}(\Omega)^{3} \times L^{2}(\Omega)$.
(New eigenmodes appear...)

Conclusion/Perspectives

- One can compute numerically EM eigenmodes:
- eigenproblem expressed as a mixed Variational Formulation,
- discretized with continuous Galerkin methods.
- The mixed form is much simpler to solve numerically than the parameterized form.

Conclusion/Perspectives

- One can compute numerically EM eigenmodes:
- eigenproblem expressed as a mixed Variational Formulation,
- discretized with continuous Galerkin methods.
- The mixed form is much simpler to solve numerically than the parameterized form.
- In 2D or 2D1/2 cartesian or axisymmetric geometries, use of SCM-like methods is ok.

Conclusion/Perspectives

- One can compute numerically EM eigenmodes:
- eigenproblem expressed as a mixed Variational Formulation,
- discretized with continuous Galerkin methods.
- The mixed form is much simpler to solve numerically than the parameterized form.
- In 2D or 2D1/2 cartesian or axisymmetric geometries, use of SCM-like methods is ok.
- Eigenproblems set in 3D geometries (ongoing project with Grace Hechme):
- Extruded L-shaped domain ;
- Fichera corner;
- More realistic geometries...

Conclusion/Perspectives

- One can compute numerically EM eigenmodes:
- eigenproblem expressed as a mixed Variational Formulation,
- discretized with continuous Galerkin methods.
- The mixed form is much simpler to solve numerically than the parameterized form.
- In 2D or 2D1/2 cartesian or axisymmetric geometries, use of SCM-like methods is ok.
- Eigenproblems set in 3D geometries (ongoing project with Grace Hechme):
- Extruded L-shaped domain;
- Fichera corner;
- More realistic geometries...
- Other uses of the mixed VF and continuous Galerkin methods:
- Time-dependent Maxwell equations ([Jamelot'05], [Jr-Jamelot'06]);
- Vlasov-Maxwell system of equations.

