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Time-harmonic Maxwell equations

In a bounded domain Ω.
Find (E,B, ω) such that
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:

ıωE − c2curlB = 0 in Ω ;

ıωB + curl E = 0 in Ω ;

div E = 0 in Ω ;

divB = 0 in Ω ;

E × n = 0 on ∂Ω ;

B · n = 0 on ∂Ω.

„

∂Ω is the boundary, n is the unit outward normal to ∂Ω.
«

Goal: compute the EM eigenmodes in a resonator cavity, bounded by a perfect
conductor, either polyhedral (3D) or polygonal (2D).
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Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

Equivalent system: Find (E, ω) such that

(PE)
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:

c2curl curl E = ω2E in Ω ;

div E = 0 in Ω ;

E × n = 0 on ∂Ω.

Which functional space to measure the electric field?

First choice:
H0(curl , Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3, F × n|∂Ω = 0} .

cf. [Kikuchi’87/’89], [Demkowicz et al’9x], [Boffi et al’9x/’0x]...
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:

c2curl curl E = ω2E in Ω ;

div E = 0 in Ω ;

E × n = 0 on ∂Ω.

Which functional space to measure the electric field?

Second choice:
X := {F ∈ H0(curl , Ω) |divF ∈ L2(Ω)} .

Ok in a convex domain Ω.
cf. [Assous-Degond-Heintzé-Raviart-Segré’93].
OK in a 2D or 2D1/2 non-convex domain Ω (Singular Complement Method).
cf. [Assous-Jr et al’98/’00/’03], [Bonnet-Hazard-Lohrengel’99/’02]...
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Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

Equivalent system: Find (E, ω) such that
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:

c2curl curl E = ω2E in Ω ;

div E = 0 in Ω ;

E × n = 0 on ∂Ω.

Which functional space to measure the electric field?

Third choice:
Xγ := {F ∈ H0(curl , Ω) |divF ∈ L2

γ(Ω)} .
„

L2
γ(Ω) := {v ∈ L2

loc
(Ω) |wγ v ∈ L2(Ω)} , ||v||0,γ := ||wγ v||0.

The weight wγ is a function of the distance r to the reentrant edges:
wγ(r) = (r/rmax)γ ,

with a suitable γ ∈]γmin, 1[, 0 < γmin < 1

2
, cf. [Costabel-Dauge’02].

«

Scalar product: (u, v)Xγ
:= (curlu, curl v)0 + (div u,div v)0,γ .
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Time-harmonic Maxwell equations (2)

One of the two fields can be eliminated...

Equivalent system: Find (E, ω) such that
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:

c2curl curl E = ω2E in Ω ;

div E = 0 in Ω ;

E × n = 0 on ∂Ω.

Which functional space to measure the electric field?

Third choice:
Xγ := {F ∈ H0(curl , Ω) |divF ∈ L2

γ(Ω)} .
„

L2
γ(Ω) := {v ∈ L2

loc
(Ω) |wγ v ∈ L2(Ω)} , ||v||0,γ := ||wγ v||0.

The weight wγ is a function of the distance r to the reentrant edges:
wγ(r) = (r/rmax)γ ,

with a suitable γ ∈]γmin, 1[, 0 < γmin < 1

2
, cf. [Costabel-Dauge’02].

«

Our choice from now on...
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Variational Formulations

Set λ = ω2/c2 and Kγ := {F ∈ Xγ |divF = 0}.
An equivalent variational formulation of (PE) is
Find (E, λ) ∈ Kγ × R

+ such that

(curl E, curlF)0 = λ(E,F)0, ∀F ∈ Kγ .

How can one take into account the divergence-free constraint?

Costabel and Dauge’s choice [Costabel-Dauge’02]: parameterized eigenproblem

Find (Es, λs) ∈ Xγ × R
+ such that

(curl Es, curlF)0 + s (div Es, divF)0,γ = λs(Es,F)0 ∀F ∈ Xγ ,

(s > 0 is a parameter.)
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Variational Formulations

Set λ = ω2/c2 and Kγ := {F ∈ Xγ |divF = 0}.
An equivalent variational formulation of (PE) is
Find (E, λ) ∈ Kγ × R

+ such that

(curl E, curlF)0 = λ(E,F)0, ∀F ∈ Kγ .

How can one take into account the divergence-free constraint?

Our choice [Jr’05], cf. MAFELAP’03: mixed eigenproblem

Find (E, p, λ) ∈ Xγ × L2
γ(Ω) × R

+ such that
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(E,F)Xγ
+ (p, divF)0,γ = λ(E,F)0 ∀F ∈ Xγ

(q, div E)0,γ = 0, ∀q ∈ L2
γ(Ω).
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Abstract theory

A few spaces, forms, etc.

V and Q two Hilbert spaces ;

a a bilinear, continuous, symmetric, positive, semidefinite form on V × V ;

b a bilinear, continuous form on V × Q ;

f an element of V ′.

L a third Hilbert space: V ⊂ L, V dense in L, and L′ ≡ L (the ’pivot’ space).
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f an element of V ′.

L a third Hilbert space: V ⊂ L, V dense in L, and L′ ≡ L (the ’pivot’ space).
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(MP )
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a(u, v) + b(v, p) = 〈f, v〉, ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q.

Consider the operator T : V ′ → V , with u = Tf .
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(MP )
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:

a(u, v) + b(v, p) = 〈f, v〉, ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q.

Consider the operator T : V ′ → V , with u = Tf .
„

Its restriction from L to V is still denoted by T.
«

The eigenproblem to be solved reads
Find (u, λ) ∈ V × R such that

λTu = u.
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Abstract theory (2)

Discretization...

Vh ⊂ V ;

Qh ⊂ Q ;

The discrete kernel Kh := {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh} ;

The discretized eigenproblem reads
Find (uh, λh) ∈ Vh × R such that

λhThuh = uh.
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Abstract theory (2)

Discretization...

Vh ⊂ V ;

Qh ⊂ Q ;

The discrete kernel Kh := {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh} ;

The discretized eigenproblem reads
Find (uh, λh) ∈ Vh × R such that

λhThuh = uh.

For T compact and self-adjoint, uniform convergence of Th to T in L(L, V ) implies
convergence of eigenvectors and eigenvalues...
„

The convergence rate is governed by r0(h) := |||T − Th|||.
«
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Discretization...

Vh ⊂ V ;

Qh ⊂ Q ;

The discrete kernel Kh := {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh} ;

The discretized eigenproblem reads
Find (uh, λh) ∈ Vh × R such that

λhThuh = uh.

Four requirements [Boffi-Brezzi-Gastaldi’97]:

T compact and self-adjoint ;

a is coercive on the discrete kernel Kh ;

The Weak Approximability of
Q0 := {q ∈ Q : ∃v ∈ V s.t. (v, q) solution to (MP) for some f ∈ L}.

The Strong Approximability of
V0 := {v ∈ V : ∃q ∈ Q s.t. (v, q) solution to (MP) for some f ∈ L}.
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Abstract theory (3)

[Boffi-Brezzi-Gastaldi’97] continued...

The Weak Approximability of Q0:
∃r1 : R

+ → R
+, such that limh→0+ r1(h) = 0 and

sup
vh∈Kh

b(vh, q0)

‖vh‖V

≤ r1(h)‖q0‖Q0
, ∀q0 ∈ Q0.
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[Boffi-Brezzi-Gastaldi’97] continued...

The Weak Approximability of Q0:
∃r1 : R

+ → R
+, such that limh→0+ r1(h) = 0 and

sup
vh∈Kh

b(vh, q0)

‖vh‖V

≤ r1(h)‖q0‖Q0
, ∀q0 ∈ Q0.

The Strong Approximability of V0:
∃r2 : R

+ → R
+, such that limh→0+ r2(h) = 0 and

∀v0 ∈ V0, ∃vI ∈ Kh s.t. ‖v0 − vI‖V ≤ r2(h)‖v0‖V0
.
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Abstract theory (3)

[Boffi-Brezzi-Gastaldi’97] continued...

The Weak Approximability of Q0:
∃r1 : R

+ → R
+, such that limh→0+ r1(h) = 0 and

sup
vh∈Kh

b(vh, q0)

‖vh‖V

≤ r1(h)‖q0‖Q0
, ∀q0 ∈ Q0.

The Strong Approximability of V0:
∃r2 : R

+ → R
+, such that limh→0+ r2(h) = 0 and

∀v0 ∈ V0, ∃vI ∈ Kh s.t. ‖v0 − vI‖V ≤ r2(h)‖v0‖V0
.

Theorem: provided the four requirements hold, one has

r0(h) ≤ C (r1(h) + r2(h)).
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Discretization and convergence results

In our case...

V = Xγ ; Q = L2
γ(Ω) ; L = L2(Ω)3 ;

a(u, v) = (u, v)Xγ
; b(v, q) = (div v, q)0,γ ;
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Discretization and convergence results

In our case...

V = Xγ ; Q = L2
γ(Ω) ; L = L2(Ω)3 ;

a(u, v) = (u, v)Xγ
; b(v, q) = (div v, q)0,γ ;

T is compact and self-adjoint (standard Maxwell operator theory [Weber’80]) ;

a is coercive by definition ;

Use the classical Taylor-Hood P2 − P1 Finite Element on tetrahedral meshes...

The Weak Approximability of Q0 can be achieved, with
r2(h) := C h1−γ .

The Strong Approximability of V0 stems from [Costabel-Dauge’02],
r1(h) := Cε hγ−γmin−ε.

Error estimates can be improved with the use of graded meshes.
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Numerical experiments

On a ’practical’ example, taken from Monique Dauge’s benchmark.

2D, L-shaped, domain, straight sides, corners in (0,0), (1,0), (1,1), (-1,1), (-1,-1), (0,-1).

First five eigenvalues (with repetition), up to four digits:

λ1 = 1.476, eigenmode has the strong unbounded singularity ;

λ2 = 3.534 ;

λ3 = 9.870 ;

λ4 = 9.870 ;

λ5 = 11.39.

The weight is implemented with γ = 0.95.

Experiments:

on uniform meshes ;

on graded meshes ;

without any weight on the divergence of the electric field.
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Uniform meshes
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0.2

0.4

0.6

0.8

1

Three meshes with

738, 2952 and 11808 triangles ;

410, 1557 and 6065 vertices ;

Results:

mesh λ1,h λ2,h λ3,h λ4,h λ5,h

uniform1 2.162 3.536 9.871 9.871 11.39

uniform2 2.092 3.535 9.870 9.870 11.39

uniform3 1.963 3.534 9.870 9.870 11.39
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Graded meshes
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0.8

1

Three meshes (courtesy of Beate Jung) with

648, 2664 and 10728 triangles ;

362, 1410 and 5522 vertices ;

Results:

mesh λ1,h λ2,h λ3,h λ4,h λ5,h

graded1 1.742 3.534 9.872 9.872 11.39

graded2 1.484 3.534 9.764 9.870 11.39

graded3 1.478 3.534 9.801 9.870 11.39
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No weight

No weight (γ = 0):
the electric field is measured with the usual L2-norm for its divergence.

No Singular Complement.

Same three graded meshes...

Results:

mesh λ1,h λ2,h λ3,h λ4,h λ5,h

graded1 3.553 6.073 9.872 9.872 11.40

graded2 3.535 6.068 9.870 9.870 11.39

graded3 3.534 6.071 9.870 9.870 11.39

MAFELAP’06 (Jun. 06) – p. 12/13



No weight

No weight (γ = 0):
the electric field is measured with the usual L2-norm for its divergence.

No Singular Complement.

Same three graded meshes...

Results:

mesh λ1,h λ2,h λ3,h λ4,h λ5,h

graded1 3.553 6.073 9.872 9.872 11.40

graded2 3.535 6.068 9.870 9.870 11.39

graded3 3.534 6.071 9.870 9.870 11.39

Only the ’smooth’ eigenmodes are captured numerically, as expected!
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No weight

No weight (γ = 0):
the electric field is measured with the usual L2-norm for its divergence.

No Singular Complement.

Same three graded meshes...

Results:

mesh λ1,h λ2,h λ3,h λ4,h λ5,h

graded1 3.553 6.073 9.872 9.872 11.40

graded2 3.535 6.068 9.870 9.870 11.39

graded3 3.534 6.071 9.870 9.870 11.39

Only the ’smooth’ eigenmodes are captured numerically, as expected!

One solves the mixed eigenproblem in X∩H1(Ω)3 × L2(Ω).
„

New eigenmodes appear...
«
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Conclusion/Perspectives

One can compute numerically EM eigenmodes:

eigenproblem expressed as a mixed Variational Formulation ,

discretized with continuous Galerkin methods.

The mixed form is much simpler to solve numerically than the parameterized form.
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Eigenproblems set in 3D geometries (ongoing project with Grace Hechme):

Extruded L-shaped domain ;

Fichera corner ;

More realistic geometries...
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Conclusion/Perspectives

One can compute numerically EM eigenmodes:

eigenproblem expressed as a mixed Variational Formulation ,

discretized with continuous Galerkin methods.

The mixed form is much simpler to solve numerically than the parameterized form.

In 2D or 2D1/2 cartesian or axisymmetric geometries, use of SCM-like methods is ok.

Eigenproblems set in 3D geometries (ongoing project with Grace Hechme):

Extruded L-shaped domain ;

Fichera corner ;

More realistic geometries...

Other uses of the mixed VF and continuous Galerkin methods:

Time-dependent Maxwell equations ([Jamelot’05], [Jr-Jamelot’06]);

Vlasov-Maxwell system of equations.
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