Solving Maxwell's equations with the Weighted Regularization Method and a Lagrange multiplier

Patrick Ciarlet

Patrick.Ciarlet@ensta.fr

POEMS, UMR 2706 CNRS-ENSTA-INRIA

Eigenmodes (Spring '08) - p. 1/18

Time-dependent Maxwell equations

In vacuum, over the time interval]0, T[, T > 0.

Goal: compute the EM field in a domain Ω (with Lipschitz polyhedral boundary) encased in a perfect conductor.

Find $(\mathcal{E}(t), \mathcal{H}(t))$ such that

$$\begin{aligned} \varepsilon_0 \partial_t \mathcal{E} - \mathbf{curl} \, \mathcal{H} &= -\mathcal{J} & \text{in } \Omega, \ 0 < t < T ; \\ \mu_0 \partial_t \mathcal{H} + \mathbf{curl} \, \mathcal{E} &= 0 & \text{in } \Omega, \ 0 < t < T ; \\ \operatorname{div} (\varepsilon_0 \mathcal{E}) &= \rho & \text{in } \Omega, \ 0 < t < T ; \\ \operatorname{div} (\mu_0 \mathcal{H}) &= 0 & \text{in } \Omega, \ 0 < t < T ; \\ \mathcal{E} \times \mathbf{n} &= 0 & \text{on } \partial\Omega, \ 0 < t < T ; \\ \mathcal{E} (0) &= \mathcal{E}_0 , \ \mathcal{H}(0) &= \mathcal{H}_0 & \text{in } \Omega. \end{aligned}$$

Charge conservation equation: $\partial_t \rho + \operatorname{div} \mathcal{J} = 0$. Initial conditions: $\operatorname{div} \mathcal{E}_0 = \frac{1}{\varepsilon_0} \rho(0)$; $\operatorname{div} \mathcal{H}_0 = 0$. **n** is the unit outward normal to $\partial\Omega$.

Related systems of equations

Second order (in time) wave equations...

In the electric field \mathcal{E}

Equivalent system : Find $\mathcal{E}(t)$ such that

$$\begin{cases} \partial_{tt}^{2} \mathcal{E} + c^{2} \operatorname{\mathbf{curl}} \operatorname{\mathbf{curl}} \mathcal{E} = -\frac{1}{\varepsilon_{0}} \partial_{t} \mathcal{J} & \text{in } \Omega, \ 0 < t < T ;\\ \operatorname{div} (\varepsilon_{0} \mathcal{E}) = \rho & \text{in } \Omega, \ 0 < t < T ;\\ \mathcal{E} \times \mathbf{n} = 0 & \text{on } \partial\Omega, \ 0 < t < T ;\\ \mathcal{E} (0) = \mathcal{E}_{0} , \ \partial_{t} \mathcal{E} (0) = \mathcal{E}_{1} & \text{in } \Omega. \end{cases}$$

$$\left(\mathcal{E}_1 := \frac{1}{\varepsilon_0} \left(\operatorname{\mathbf{curl}} \mathcal{H}_0 - \mathcal{J}(0) \right). \right)$$

Or ...

Related systems of equations

Eigenmode computations in a resonator cavity...

- Assume the time-dependence writes $\exp(-i\omega t)$. $\left(\omega > 0 \text{ is the pulsation.}\right)$
- $In the electric field \mathcal{E}$

Equivalent system: Find (\mathcal{E}, ω) such that

$$\begin{cases} c^2 \operatorname{\mathbf{curl}} \operatorname{\mathbf{curl}} \mathcal{E} = \omega^2 \mathcal{E} & \text{ in } \Omega ;\\ \operatorname{div} \mathcal{E} = 0 & \text{ in } \Omega ;\\ \mathcal{E} \times \mathbf{n} = 0 & \text{ on } \partial \Omega \end{cases}$$

Or ...

Related systems of equations

(Magnetic) quasi-static computations...

Solution Assume that the electric displacement current $\varepsilon_0 \partial_t \mathcal{E}$ is negligible.

 $In the electric field \mathcal{E}$

Find ${\ensuremath{\mathcal E}}$ such that

$$\begin{aligned} \mathbf{curl}\,\mathcal{E} &= -\mu_0 \partial_t \mathcal{H} & \text{ in } \Omega, \ 0 < t < T ; \\ \operatorname{div}\,(\varepsilon_0 \mathcal{E}) &= \rho & \text{ in } \Omega, \ 0 < t < T ; \\ \mathcal{E} \times \mathbf{n} &= 0 & \text{ on } \partial\Omega, \ 0 < t < T. \end{aligned}$$

Which *functional space* to measure the electric field?

First choice:

 $\mathcal{H}_0(\operatorname{\mathbf{curl}},\Omega) := \{ \mathcal{F} \in L^2(\Omega)^3 \, | \, \operatorname{\mathbf{curl}} \mathcal{F} \in L^2(\Omega)^3, \, \mathcal{F} \times \mathbf{n}_{|\partial\Omega} = 0 \} \, .$ (cf. [Kikuchi'87/'89], [Demkowicz et al'9x], [Boffi et al'9x/'0x], ...)

Which *functional space* to measure the electric field?

First choice:

 $\mathcal{H}_0(\operatorname{\mathbf{curl}},\Omega) := \{ \mathcal{F} \in L^2(\Omega)^3 \, | \, \operatorname{\mathbf{curl}} \mathcal{F} \in L^2(\Omega)^3, \ \mathcal{F} \times \mathbf{n}_{|\partial\Omega} = 0 \} \, .$ (cf. [Kikuchi'87/'89], [Demkowicz et al'9x], [Boffi et al'9x/'0x], ...)

Scalar product: $(u, v)_{\mathcal{H}(\operatorname{curl}, \Omega)} := (u, v)_0 + (\operatorname{curl} u, \operatorname{curl} v)_0.$

Which functional space to measure the electric field?

Second choice:

 $\mathcal{X}_0 := \{ \mathcal{F} \in \mathcal{H}_0(\mathbf{curl}, \Omega) \, | \, \mathrm{div} \, \mathcal{F} \in L^2(\Omega) \} \, .$

OK in a convex domain Ω

(cf. [Assous-Degond-Heintzé-Raviart-Segré'93].)

OK in a 2D or 2D1/2 non-convex domain Ω (Singular Complement Method)

(cf. [Assous-Jr et al'98/'00/'03], [Bonnet-Hazard-Lohrengel'99/'02].)

Which functional space to measure the electric field?

Second choice:

 $\mathcal{X}_0 := \{ \mathcal{F} \in \mathcal{H}_0(\mathbf{curl}, \Omega) \, | \, \mathrm{div} \, \mathcal{F} \in L^2(\Omega) \} \, .$

OK in a convex domain Ω

(cf. [Assous-Degond-Heintzé-Raviart-Segré'93].)

OK in a 2D or 2D1/2 non-convex domain Ω (Singular Complement Method) (cf. [Assous-Jr et al'98/'00/'03], [Bonnet-Hazard-Lohrengel'99/'02].)

Scalar product: $(u, v)_{\mathcal{X}_0} := (\operatorname{curl} u, \operatorname{curl} v)_0 + (\operatorname{div} u, \operatorname{div} v)_0.$

Which functional space to measure the electric field?

Third choice:

$$\begin{split} \mathcal{X}_{\gamma} &:= \{\mathcal{F} \in \mathcal{H}_{0}(\mathbf{curl}\,,\Omega) \,|\, \mathrm{div}\, \mathcal{F} \in L^{2}_{\gamma}(\Omega)\}\,.\\ \left(\begin{array}{l} L^{2}_{\gamma}(\Omega) &:= \{v \in L^{2}_{\mathrm{loc}}(\Omega) \,|\, w_{\gamma}\, v \in L^{2}(\Omega)\}, \,\, ||v||_{0,\gamma} := ||w_{\gamma}\, v||_{0}. \end{split} \right.\\ \text{The weight } w_{\gamma} \text{ is a function of the distance } r \text{ to the reentrant edges (called } E\text{):}\\ w_{\gamma}(r) \approx r^{\gamma} \text{ for small } r, \end{split}$$

with a suitable $\gamma \in]\gamma_{min}, 1[$, $0 < \gamma_{min} < \frac{1}{2}$, cf. [Costabel-Dauge'02/'03].

Which *functional space* to measure the electric field?

Third choice:

$$\begin{split} \mathcal{X}_{\gamma} &:= \{\mathcal{F} \in \mathcal{H}_{0}(\mathbf{curl}\,,\Omega) \,|\, \mathrm{div}\, \mathcal{F} \in L^{2}_{\gamma}(\Omega)\}\,.\\ \left(\begin{array}{l} L^{2}_{\gamma}(\Omega) &:= \{v \in L^{2}_{\mathrm{loc}}(\Omega) \,|\, w_{\gamma}\, v \in L^{2}(\Omega)\}, \,\, ||v||_{0,\gamma} := ||w_{\gamma}\, v||_{0}.\\ \text{The weight } w_{\gamma} \text{ is a function of the distance } r \text{ to the reentrant edges (called } E):\\ w_{\gamma}(r) \approx r^{\gamma} \text{ for small } r,\\ \text{with a suitable } \gamma \in]\gamma_{min}, 1[, 0 < \gamma_{min} < \frac{1}{2}, \text{ cf. [Costabel-Dauge'02/'03].} \end{array}\right) \end{split}$$

Scalar product: $(u, v)_{\mathcal{X}_{\gamma}} := (\operatorname{curl} u, \operatorname{curl} v)_0 + (\operatorname{div} u, \operatorname{div} v)_{0,\gamma}.$

Which functional space to measure the electric field?

Third choice:

$$\begin{split} \mathcal{X}_{\gamma} &:= \{\mathcal{F} \in \mathcal{H}_{0}(\mathbf{curl}\,,\Omega) \,|\, \mathrm{div}\, \mathcal{F} \in L^{2}_{\gamma}(\Omega)\}\,.\\ \left(\begin{array}{l} L^{2}_{\gamma}(\Omega) &:= \{v \in L^{2}_{\mathrm{loc}}(\Omega) \,|\, w_{\gamma}\, v \in L^{2}(\Omega)\}, \,\, ||v||_{0,\gamma} := ||w_{\gamma}\, v||_{0}.\\ \text{The weight } w_{\gamma} \text{ is a function of the distance } r \text{ to the reentrant edges (called } E):\\ w_{\gamma}(r) \approx r^{\gamma} \text{ for small } r,\\ \text{with a suitable } \gamma \in]\gamma_{min}, 1[, 0 < \gamma_{min} < \frac{1}{2}, \text{ cf. [Costabel-Dauge'02/'03].} \end{array}\right) \end{split}$$

Scalar product: $(u, v)_{\mathcal{X}_{\gamma}} := (\operatorname{curl} u, \operatorname{curl} v)_0 + (\operatorname{div} u, \operatorname{div} v)_{0,\gamma}.$

This is the so-called Weighted Regularization Method: our choice from now on...

The constraint on the divergence

Solution What happens if one wants to take into account the *constraint* on the divergence of the electric field *explicitly*? $\left(\operatorname{div}(\varepsilon_0 \mathcal{E}) = \rho \text{ or } \operatorname{div} \mathcal{E} = 0.\right)$

The constraint on the divergence

What happens if one wants to take into account the *constraint* on the divergence of the electric field *explicitly*? (div ($\varepsilon_0 \mathcal{E}$) = ρ or div $\mathcal{E} = 0$.)

Motivations:

- Improve the quality of the divergence of the discrete fields.
 (For instance, for the computed eigenmodes.)
- Resolve numerical problems related to the discrete charge conservation equation.
 (Solve the Vlasov-Maxwell system to compute the motion of charged particles.)

The constraint on the divergence

What happens if one wants to take into account the *constraint* on the divergence of the electric field *explicitly*? $\left(\operatorname{div}(\varepsilon_0 \mathcal{E}) = \rho \text{ or } \operatorname{div} \mathcal{E} = 0.\right)$

Motivations:

- Improve the quality of the divergence of the discrete fields.
 (For instance, for the computed eigenmodes.)
 - Resolve numerical problems related to the discrete charge conservation equation.
 (Solve the Vlasov-Maxwell system to compute the motion of charged particles.)

Solution:

Introduce a *Lagrange multiplier*.

The *eigenproblem* to be solved writes equivalently $(\lambda = \omega^2/c^2)$ Find $(\mathcal{E}, \lambda) \in \mathcal{K}_{\gamma} \times \mathbb{R}^+$ such that

$$(\operatorname{\mathbf{curl}}\mathcal{E},\operatorname{\mathbf{curl}}\mathcal{F})_0 = \lambda(\mathcal{E},\mathcal{F})_0, \ \forall \mathcal{F} \in \mathcal{K}_{\gamma},$$

with $\mathcal{K}_{\gamma} := \{ \mathcal{F} \in \mathcal{X}_{\gamma} \mid \operatorname{div} \mathcal{F} = 0 \}$.

Find $(\mathcal{E}, \lambda) \in \mathcal{K}_{\gamma} \times \mathbb{R}^+$ such that

$$(\mathcal{E},\mathcal{F})_{\mathcal{X}_{\gamma}} = \lambda(\mathcal{E},\mathcal{F})_0, \ \forall \mathcal{F} \in \mathcal{K}_{\gamma},$$

with $\mathcal{K}_{\gamma} := \{ \mathcal{F} \in \mathcal{X}_{\gamma} \mid \operatorname{div} \mathcal{F} = 0 \}$.

• The *mixed eigenproblem* to be solved writes Find $(\mathcal{E}, p, \lambda) \in \mathcal{X}_{\gamma} \times L^{2}_{-\gamma}(\Omega) \times \mathbb{R}^{+}$ such that

$$\begin{cases} (\mathcal{E}, \mathcal{F})_{\mathcal{X}_{\gamma}} + {}_{L^{2}_{-\gamma}} \langle p, \operatorname{div} \mathcal{F} \rangle_{L^{2}_{\gamma}} = \lambda(\mathcal{E}, \mathcal{F})_{0}, \ \forall \mathcal{F} \in \mathcal{X}_{\gamma} \\ {}_{L^{2}_{-\gamma}} \langle q, \operatorname{div} \mathcal{E} \rangle_{L^{2}_{\gamma}} = 0, \ \forall q \in L^{2}_{-\gamma}(\Omega). \end{cases}$$

It is equivalent to the original eigenproblem (p = 0, see the Annex of [Jr'05].)

• The *mixed eigenproblem* to be solved writes Find $(\mathcal{E}, p, \lambda) \in \mathcal{X}_{\gamma} \times L^{2}_{-\gamma}(\Omega) \times \mathbb{R}^{+}$ such that

$$\begin{cases} (\mathcal{E},\mathcal{F})_{\mathcal{X}_{\gamma}} + {}_{L^{2}_{-\gamma}} \langle p, \operatorname{div} \mathcal{F} \rangle_{L^{2}_{\gamma}} = \lambda(\mathcal{E},\mathcal{F})_{0}, \ \forall \mathcal{F} \in \mathcal{X}_{\gamma} \\ {}_{L^{2}_{-\gamma}} \langle q, \operatorname{div} \mathcal{E} \rangle_{L^{2}_{\gamma}} = 0, \ \forall q \in L^{2}_{-\gamma}(\Omega). \end{cases}$$

It is equivalent to the original eigenproblem (p = 0, see the Annex of [Jr'05].)

■ A discrete approximation is $((\mathcal{X}_h)_h \subset \mathcal{X}_{\gamma}, (M_h)_h \subset L^2_{-\gamma}(\Omega))$ Find $(\mathcal{E}_h, p_h, \lambda_h) \in \mathcal{X}_h \times M_h \times \mathbb{R}^+$ such that

$$\begin{cases} (\mathcal{E}_h, \mathcal{F}_h)_{\mathcal{X}_{\gamma}} + {}_{L^2_{-\gamma}} \langle p_h, \operatorname{div} \mathcal{F}_h \rangle_{L^2_{\gamma}} = \lambda_h (\mathcal{E}_h, \mathcal{F}_h)_0, \ \forall \mathcal{F}_h \in \mathcal{X}_h \\ {}_{L^2_{-\gamma}} \langle q_h, \operatorname{div} \mathcal{E}_h \rangle_{L^2_{\gamma}} = 0, \ \forall q_h \in M_h. \end{cases}$$

Abstract convergence theory, see [Boffi-Brezzi-Gastaldi'97], [Boffi'06]. Uses strong approximability of solutions \mathcal{E} , weak approximability of solutions p(with (\mathcal{E}, p) solutions to the plain mixed problem...)

• A desired property is the uniform discrete inf-sup condition

$$\exists \beta > 0, \forall h, \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}} \ge \beta.$$

A desired property is the uniform discrete inf-sup condition

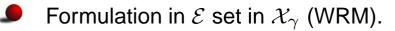
$$\exists \beta > 0, \ \forall h, \ \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}} \ge \beta.$$

Formulation with \mathcal{E} set in \mathcal{X}_0 (Ω convex or SCM in 2D, 2D1/2 domains).

- With the P₂ iso P₁ Taylor-Hood finite element, as in [Assous-Degond-Heintzé-Raviart-Segré'93]. The udisc is satisfied, cf. [Girault-Jr'02].
- With the $P_{k+1} P_k$ Taylor-Hood finite elements, the *udisc* is satisfied, cf. [Stenberg'84], [Boffi'97].

A desired property is the uniform discrete inf-sup condition

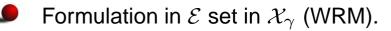
$$\exists \beta > 0, \forall h, \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}} \ge \beta.$$



• With the $P_{k+1} - P_k$ Taylor-Hood finite elements The *udisc* is not satisfied anymore!

A desired property is the uniform discrete inf-sup condition

$$\exists \beta > 0, \forall h, \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}} \ge \beta.$$



Solution With the $P_{k+1} - P_k$ Taylor-Hood finite elements The *udisc* is not satisfied anymore!

Why?

In order to check the discrete inf-sup condition, let

$$\beta_h = \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}}.$$

How can one estimate $(\beta_h)_h$?

In order to check the discrete inf-sup condition, let

$$\beta_h = \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}}.$$

How can one estimate $(\beta_h)_h$?

Introduce the *plain* mixed Variational Formulation (rhs f, g). Find (\mathcal{E}_h, p_h) such that

$$a(\mathcal{E}_h, \mathcal{F}_h) + b(p_h, \mathcal{F}_h) = f(\mathcal{F}_h), \ \forall \mathcal{F}_h \in \mathcal{X}_h$$
$$b(q_h, \mathcal{E}_h) = g(q_h), \ \forall q_h \in M_h.$$

In order to check the discrete inf-sup condition, let

$$\beta_h = \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}}.$$

How can one estimate $(\beta_h)_h$?

Introduce the *matrix version* of the plain mixed Variational Formulation. Find $(\vec{\mathcal{E}}, \vec{p})$ such that

$$\begin{cases} \mathbb{A} \, \vec{\mathcal{E}} + \mathbb{B}^T \vec{p} = \vec{f} \\ \mathbb{B} \, \vec{\mathcal{E}} = \vec{g}. \end{cases}$$

In order to check the discrete inf-sup condition, let

$$\beta_h = \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}}.$$

How can one estimate $(\beta_h)_h$?

Introduce the *matrix version* of the plain mixed Variational Formulation. Find $(\vec{\mathcal{E}}, \vec{p})$ such that

$$\begin{cases} \mathbb{A} \, \vec{\mathcal{E}} + \mathbb{B}^T \vec{p} = \vec{f} \\ \mathbb{B} \, \vec{\mathcal{E}} = \vec{g}. \end{cases}$$

Proposition (e. g. [Jamelot'05]): Define \mathbb{M} by $(\mathbb{M}\vec{q} | \vec{q}) = ||q_h||_{M_h}^2$. There holds

$$\kappa(\mathbb{M}^{-1}(\mathbb{B}\mathbb{A}^{-1}\mathbb{B}^T)) \leq \left(\frac{\|b\|}{\beta_h}\right)^2$$

In order to check the discrete inf-sup condition, let

$$\beta_h = \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}}.$$

How can one estimate $(\beta_h)_h$?

- Practical experiments with the $P_2 P_1$ Taylor-Hood finite element.
 - In the unit cube (see [Hechme-Jr'07a])

Meshsize	h'	h'/2	h'/4
κ	2.9	2.8	2.8

 \Rightarrow Consistent with the fact that $(\beta_h)_h$ is independent of h...

In order to check the discrete inf-sup condition, let

$$\beta_h = \inf_{q_h \in M_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{L_{-\gamma}^2 \langle q_h, \operatorname{div} \mathcal{F}_h \rangle_{L_{\gamma}^2}}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|q_h\|_{0,-\gamma}}.$$

How can one estimate $(\beta_h)_h$?

Practical experiments with the $P_2 - P_1$ Taylor-Hood finite element.

The WRM in a 2D L-shape domain (see [Hechme-Jr'07a])

Meshsize	h	h/2	h/4	h/8
κ	29	69	161	364

 $\Rightarrow (\beta_h)_h$ decreases sharply when h decreases...

Consider a family of triangular/tetrahedral meshes $(\mathcal{T}_h)_h$ of $\Omega \subset \mathbb{R}^d$.

Consider a family of triangular/tetrahedral meshes $(\mathcal{T}_h)_h$ of $\Omega \subset \mathbb{R}^d$.

Standard family of $P_{k+1} - P_k$ Taylor-Hood finite elements:

$$\mathcal{X}_{h} = \{\mathcal{F}_{h} \in C^{0}(\bar{\Omega})^{d} \mid \mathcal{F}_{h|T} \in P_{k+1}(T)^{d}, \forall T \in \mathcal{T}_{h}, \text{and } \mathcal{F}_{h} \times \mathbf{n}_{|\partial\Omega} = 0\},\$$

$$M_{h} = \{q_{h} \in C^{0}(\bar{\Omega}) \mid q_{h|T} \in P_{k}(T), \forall T \in \mathcal{T}_{h}\}.$$

Consider a family of triangular/tetrahedral meshes $(\mathcal{T}_h)_h$ of $\Omega \subset \mathbb{R}^d$.

Standard family of $P_{k+1} - P_k$ Taylor-Hood finite elements:

$$\mathcal{X}_{h} = \{\mathcal{F}_{h} \in C^{0}(\bar{\Omega})^{d} \mid \mathcal{F}_{h|T} \in P_{k+1}(T)^{d}, \forall T \in \mathcal{T}_{h}, \text{and } \mathcal{F}_{h} \times \mathbf{n}_{|\partial\Omega} = 0\},\$$

$$M_{h} = \{q_{h} \in C^{0}(\bar{\Omega}) \mid q_{h|T} \in P_{k}(T), \forall T \in \mathcal{T}_{h}\}.$$

New family of $P_{k+1} - P_k$ finite elements (cf. [Hechme-Jr'07a]):

$$\begin{aligned} \mathcal{X}_h &= \{\mathcal{F}_h \in C^0(\bar{\Omega})^d \mid \mathcal{F}_{h|T} \in P_{k+1}(T)^d, \forall T \in \mathcal{T}_h, \text{and } \mathcal{F}_h \times \mathbf{n}_{|\partial\Omega} = 0\}, \\ \bar{M}_h &= \{\bar{q}_h \in C^0(\bar{\Omega}) \mid \bar{q}_{h|T} \in P_k(T), \forall T \in \mathcal{T}_h, \text{and } \bar{q}_{h|E_h} = 0\}, \end{aligned}$$

with E_h a neighborhood of the reentrant corners and/or edges:

 $E_h = \bigcup_{T \in \mathcal{T}_h \ s.t. \ T \cap E \neq \emptyset} T.$

Consider a family of triangular/tetrahedral meshes $(\mathcal{T}_h)_h$ of $\Omega \subset \mathbb{R}^d$.

Standard family of $P_{k+1} - P_k$ Taylor-Hood finite elements:

$$\mathcal{X}_{h} = \{\mathcal{F}_{h} \in C^{0}(\bar{\Omega})^{d} \mid \mathcal{F}_{h|T} \in P_{k+1}(T)^{d}, \forall T \in \mathcal{T}_{h}, \text{and } \mathcal{F}_{h} \times \mathbf{n}_{|\partial\Omega} = 0\},\$$

$$M_{h} = \{q_{h} \in C^{0}(\bar{\Omega}) \mid q_{h|T} \in P_{k}(T), \forall T \in \mathcal{T}_{h}\}.$$

New family of $P_{k+1} - P_k$ finite elements (cf. [Hechme-Jr'07a]):

$$\begin{aligned} \mathcal{X}_h &= \{\mathcal{F}_h \in C^0(\bar{\Omega})^d \mid \mathcal{F}_{h|T} \in P_{k+1}(T)^d, \forall T \in \mathcal{T}_h, \text{and } \mathcal{F}_h \times \mathbf{n}_{|\partial\Omega} = 0\}, \\ \bar{M}_h &= \{\bar{q}_h \in C^0(\bar{\Omega}) \mid \bar{q}_{h|T} \in P_k(T), \forall T \in \mathcal{T}_h, \text{and } \bar{q}_{h|E_h} = 0\}, \end{aligned}$$

with E_h a neighborhood of the reentrant corners and/or edges:

$$E_h = \bigcup_{T \in \mathcal{T}_h \ s.t. \ T \cap E \neq \emptyset} T.$$

 \Rightarrow Zero Near Singularity $P_{k+1} - P_k$ finite elements

Remarks

In the variational formulations, at the discrete level, one has $_{L^{2}_{-\gamma}}\langle \bar{q}_{h}, \operatorname{div} \mathcal{F}_{h} \rangle_{L^{2}_{\gamma}} = (\bar{q}_{h}, \operatorname{div} \mathcal{F}_{h})_{0}, \forall (\mathcal{F}_{h}, q_{h}) \in \mathcal{X}_{h} \times \bar{M}_{h}...$

Remarks

In the variational formulations, at the discrete level, one has $L^2_{-\gamma} \langle \bar{q}_h, \operatorname{div} \mathcal{F}_h \rangle_{L^2_{\gamma}} = (\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0, \forall (\mathcal{F}_h, q_h) \in \mathcal{X}_h \times \bar{M}_h...$

As a consequence, the quantity of interest is

$$\bar{\beta}_h = \inf_{\bar{q}_h \in \bar{M}_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{(\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0}{\|\mathcal{F}_h\|_{\mathcal{X}_\gamma} \|\bar{q}_h\|_{0, -\gamma}}.$$

Remarks

In the variational formulations, at the discrete level, one has $L^2_{-\gamma} \langle \bar{q}_h, \operatorname{div} \mathcal{F}_h \rangle_{L^2_{\gamma}} = (\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0, \forall (\mathcal{F}_h, q_h) \in \mathcal{X}_h \times \bar{M}_h...$

As a consequence, the quantity of interest is

$$\bar{\beta}_h = \inf_{\bar{q}_h \in \bar{M}_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{(\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0}{\|\mathcal{F}_h\|_{\mathcal{X}_\gamma} \|\bar{q}_h\|_{0, -\gamma}}.$$

Method of proof (udisc): the macroelement technique (cf. [Stenberg'84], [Boffi'97]).

Remarks

In the variational formulations, at the discrete level, one has $L^2_{-\gamma} \langle \bar{q}_h, \operatorname{div} \mathcal{F}_h \rangle_{L^2_{\gamma}} = (\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0, \forall (\mathcal{F}_h, q_h) \in \mathcal{X}_h \times \bar{M}_h...$

As a consequence, the quantity of interest is

$$\bar{\beta}_h = \inf_{\bar{q}_h \in \bar{M}_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{(\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0}{\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}} \|\bar{q}_h\|_{0, -\gamma}}.$$

Method of proof (udisc): the macroelement technique (cf. [Stenberg'84], [Boffi'97]).
 → Follows (more or less!) the series of lemmas of [Stenberg'84].

Remarks

In the variational formulations, at the discrete level, one has $L^2_{-\gamma} \langle \bar{q}_h, \operatorname{div} \mathcal{F}_h \rangle_{L^2_{\gamma}} = (\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0, \forall (\mathcal{F}_h, q_h) \in \mathcal{X}_h \times \bar{M}_h...$

As a consequence, the quantity of interest is

$$\bar{\beta}_h = \inf_{\bar{q}_h \in \bar{M}_h} \sup_{\mathcal{F}_h \in \mathcal{X}_h} \frac{(\bar{q}_h, \operatorname{div} \mathcal{F}_h)_0}{\|\mathcal{F}_h\|_{\mathcal{X}_\gamma} \|\bar{q}_h\|_{0, -\gamma}}.$$

Method of proof (udisc): the macroelement technique (cf. [Stenberg'84], [Boffi'97]).

- \rightarrow Follows (more or less!) the series of lemmas of [Stenberg'84].
- \rightarrow Difficulties:
 - Presence of *weights* in $\|\mathcal{F}_h\|_{\mathcal{X}_{\gamma}}$ and $\|\bar{q}_h\|_{0,-\gamma}$.
 - Local estimates (near the reentrant edges).
 - Existence of *gradients* in \mathcal{X}_h .
 - Non-zero mean value Lagrange multipliers.

Solution Existence of *gradients* in \mathcal{X}_h (bibliography of [Costabel-Dauge'02] revisited):

Existence of gradients in \mathcal{X}_h (bibliography of [Costabel-Dauge'02] revisited):

- $k = 2, 3, \dots$: OK in 2D (*HCT* FE ; [Hsieh'62]+[Clough-Tocher'65], [Percell-76]...)
- $k = 2, 4, \dots$: OK in 3D (*HCT* FE ; [Alfeld'84], [Worsey-Farin'87]...)
- $\rightarrow k = 1$: OK in 2D/3D (*Powell-Sabin* interpolant; [Sorokina-Worsey'07]).

Existence of gradients in \mathcal{X}_h (bibliography of [Costabel-Dauge'02] revisited):

- $k = 2, 3, \dots$: OK in 2D (*HCT* FE ; [Hsieh'62]+[Clough-Tocher'65], [Percell-76]...)
- $k = 2, 4, \dots$: OK in 3D (*HCT* FE ; [Alfeld'84], [Worsey-Farin'87]...)
- $\rightarrow k = 1$: OK in 2D/3D (*Powell-Sabin* interpolant; [Sorokina-Worsey'07]).
- The final result on $(\bar{\beta}_h)_h$:

Measuring the quality of the *regular* family of triangulations $(T_h)_h$.

 $\exists \sigma > 1, \ \forall h, \ \forall T \in \mathcal{T}_h, \ h_T \leq \sigma \ \rho_T ;$ $\exists \eta > 1, \ \forall h, \ \forall T, T' \in \mathcal{T}_h, \ T \cap T' \neq \emptyset \implies \rho_T \leq \eta \ \rho_{T'}.$

Existence of gradients in \mathcal{X}_h (bibliography of [Costabel-Dauge'02] revisited):

- \blacktriangleright $k = 2, 3, \dots$: OK in 2D (*HCT* FE ; [Hsieh'62]+[Clough-Tocher'65], [Percell-76]...)
- \blacktriangleright $k = 2, 4, \dots$: OK in 3D (*HCT* FE ; [Alfeld'84], [Worsey-Farin'87]...)
- $\rightarrow k = 1$: OK in 2D/3D (*Powell-Sabin* interpolant; [Sorokina-Worsey'07]).

The final result on $(\bar{\beta}_h)_h$: Measuring the quality of the *regular* family of triangulations $(T_h)_h$.

> $\exists \sigma > 1, \forall h, \forall T \in \mathcal{T}_h, h_T \leq \sigma \rho_T;$ $\exists \eta > 1, \forall h, \forall T, T' \in \mathcal{T}_h, T \cap T' \neq \emptyset \implies \rho_T \leq \eta \rho_{T'}.$

Theorem ([Hechme-Jr'07a]): There exists a constant C > 0 such that

$$\bar{\beta}_h \ge C \, (\sigma^5 \, \eta)^{-1}.$$

Existence of gradients in \mathcal{X}_h (bibliography of [Costabel-Dauge'02] revisited):

- $k = 2, 3, \dots$: OK in 2D (*HCT* FE ; [Hsieh'62]+[Clough-Tocher'65], [Percell-76]...)
- $k = 2, 4, \dots$: OK in 3D (*HCT* FE ; [Alfeld'84], [Worsey-Farin'87]...)
- $\rightarrow k = 1$: OK in 2D/3D (*Powell-Sabin* interpolant; [Sorokina-Worsey'07]).
- The final result on $(\bar{\beta}_h)_h$:

Measuring the quality of the *regular* family of triangulations $(T_h)_h$.

 $\exists \sigma > 1, \ \forall h, \ \forall T \in \mathcal{T}_h, \ h_T \leq \sigma \ \rho_T ;$ $\exists \eta > 1, \ \forall h, \ \forall T, T' \in \mathcal{T}_h, \ T \cap T' \neq \emptyset \implies \rho_T \leq \eta \ \rho_{T'}.$

Theorem ([Hechme-Jr'07a]): There exists a constant C > 0 such that

$$\bar{\beta}_h \ge C \, (\sigma^5 \, \eta)^{-1}.$$

Zero Near Singularity finite elements satisfy the udisc

Computing eigenvalues and eigenvectors

Find $(\mathcal{E}_h, \bar{p}_h, \lambda_h) \in \mathcal{X}_h \times \bar{M}_h \times \mathbb{R}^+$ such that

$$(\mathcal{E}_h, \mathcal{F}_h)_{\mathcal{X}_{\gamma}} + (\bar{p}_h, \operatorname{div} \mathcal{F}_h)_0 = \lambda_h (\mathcal{E}_h, \mathcal{F}_h)_0, \ \forall \mathcal{F}_h \in \mathcal{X}_h \\ (\bar{q}_h, \operatorname{div} \mathcal{E}_h)_0 = 0, \ \forall \bar{q}_h \in \bar{M}_h.$$

Proof of convergence, apply the theory of [Boffi-Brezzi-Gastaldi'97]. (cf. [Buffa-Jamelot-Jr'07].)

Computing eigenvalues and eigenvectors

Find $(\mathcal{E}_h, \bar{p}_h, \lambda_h) \in \mathcal{X}_h \times \bar{M}_h \times \mathbb{R}^+$ such that

 $\begin{cases} (\mathcal{E}_h, \mathcal{F}_h)_{\mathcal{X}_{\gamma}} + (\bar{p}_h, \operatorname{div} \mathcal{F}_h)_0 = \lambda_h (\mathcal{E}_h, \mathcal{F}_h)_0, \ \forall \mathcal{F}_h \in \mathcal{X}_h \\ (\bar{q}_h, \operatorname{div} \mathcal{E}_h)_0 = 0, \ \forall \bar{q}_h \in \bar{M}_h. \end{cases}$

- Proof of convergence, apply the theory of [Boffi-Brezzi-Gastaldi'97]. (cf. [Buffa-Jamelot-Jr'07].)
- Sonvergence results on n smallest eigenvalues ($n \in \mathbb{N}$.)
 - $(E_{\lambda})_{\lambda \leq \lambda_n}$ the corresponding *eigenspaces*.
 - Approximation error $\varepsilon_{\lambda}(h) = \sup_{v \in E_{\lambda}, \|v\|_{\mathcal{X}_{\gamma}} = 1} \inf_{\mathcal{F}_{h} \in \mathcal{X}_{h}} \|v \mathcal{F}_{h}\|_{\mathcal{X}_{\gamma}}$ (worst case: $\varepsilon_{\lambda}(h) \leq C_{\varepsilon} h^{\gamma - \gamma_{min} - \varepsilon}$.)
 - Error on eigenvalues: $|\lambda \lambda_h| < C_n \varepsilon_{\lambda}(h)^2$.
 - **Solution** Gap between exact and discrete eigenspaces: $\hat{\delta}(E_{\lambda}, E_{\lambda_h}) < C_n \varepsilon_{\lambda}(h)$.

Computing eigenvalues and eigenvectors

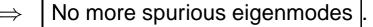
Find $(\mathcal{E}_h, \bar{p}_h, \lambda_h) \in \mathcal{X}_h \times \bar{M}_h \times \mathbb{R}^+$ such that

 $\begin{cases} (\mathcal{E}_h, \mathcal{F}_h)_{\mathcal{X}_{\gamma}} + (\bar{p}_h, \operatorname{div} \mathcal{F}_h)_0 = \lambda_h (\mathcal{E}_h, \mathcal{F}_h)_0, \ \forall \mathcal{F}_h \in \mathcal{X}_h \\ (\bar{q}_h, \operatorname{div} \mathcal{E}_h)_0 = 0, \ \forall \bar{q}_h \in \bar{M}_h. \end{cases}$

Proof of convergence, apply the theory of [Boffi-Brezzi-Gastaldi'97]. (cf. [Buffa-Jamelot-Jr'07].)

Sonvergence results on n smallest eigenvalues ($n \in \mathbb{N}$.)

- $(E_{\lambda})_{\lambda \leq \lambda_n}$ the corresponding *eigenspaces*.
- Approximation error $\varepsilon_{\lambda}(h) = \sup_{v \in E_{\lambda}, \|v\|_{\mathcal{X}_{\gamma}} = 1} \inf_{\mathcal{F}_{h} \in \mathcal{X}_{h}} \|v \mathcal{F}_{h}\|_{\mathcal{X}_{\gamma}}$ (worst case: $\varepsilon_{\lambda}(h) \leq C_{\varepsilon} h^{\gamma - \gamma_{min} - \varepsilon}$.)
- Error on eigenvalues: $|\lambda \lambda_h| < C_n \varepsilon_{\lambda}(h)^2$.
- Solution Gap between exact and discrete eigenspaces: $\hat{\delta}(E_{\lambda}, E_{\lambda_h}) < C_n \varepsilon_{\lambda}(h)$.

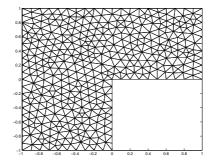


Numerical experiments in 2D

On a 'practical' example, taken from Monique Dauge's benchmark.

- 2D, L-shaped, domain, straight sides, corners in (0,0), (1,0), (1,1), (-1,1), (-1,-1), (0,-1).
- First five eigenvalues (with repetition), up to six digits:
 - $\lambda_1 = 1.47562$, eigenmode has the strong unbounded singularity;
 - \blacktriangleright $\lambda_2 = 3.53403$; $\lambda_3 = \lambda_4 = 9.86960$; $\lambda_5 = 11.3895$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- Experiments (cf. [Buffa-Jamelot-Jr'07]):
 - on a series of quasi-uniform meshes;
 - P relative errors $r_{k,h} = |\lambda_{k,h} \lambda_k| / \lambda_k$, 1 ≤ k ≤ 5 are reported.

Numerical experiments in 2D



Three meshes with respectively

- 738, 2952 and 11808 triangles;
- **9** 410, 1557 and 6065 vertices;
- Results for the Zero Near Singularity finite elements:

mesh	$r_{1,h}$	$r_{2,h}$	$r_{3,h}$	$r_{4,h}$	$r_{5,h}$
uniform1	1.3e - 2	3.3e - 4	9.4e - 5	1.1e - 4	9.9e - 3
uniform2	8.0e - 3	6.2e - 5	2.3e - 5	2.5e - 5	1.3e - 5
uniform3	4.4e - 3	1.2e - 5	5.5e - 6	6.2e - 6	5.3e - 6

On a second 'practical' example, taken from Monique Dauge's benchmark.

- **9** 3D, thick L-shaped, domain $(] 1, 1[^2 \setminus [-1, 0]^2) \times]0, 1[.$
- First nine eigenvalues (with repetition), up to six digits:
 - $\lambda_1 = 9.6397$; $\lambda_2 = 11.3452$; $\lambda_3 = 13.4036$; $\lambda_4 = 15.1972$;
 - $\lambda_5 = 19.5093$; $\lambda_6 = \lambda_7 = \lambda_8 = 19.7392$; $\lambda_9 = 21.2591$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- Experiments (cf. [Hechme-Jr'07b]):
 - on a graded mesh (grading towards the reentrant edge);
 - In the second secon

On a second 'practical' example, taken from Monique Dauge's benchmark.

- **9** 3D, thick L-shaped, domain $(] 1, 1[^2 \setminus [-1, 0]^2) \times]0, 1[.$
- First nine eigenvalues (with repetition), up to six digits:

•
$$\lambda_1 = 9.6397$$
; $\lambda_2 = 11.3452$; $\lambda_3 = 13.4036$; $\lambda_4 = 15.1972$;

- $\lambda_5 = 19.5093$; $\lambda_6 = \lambda_7 = \lambda_8 = 19.7392$; $\lambda_9 = 21.2591$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- Experiments (cf. [Hechme-Jr'07b]):
 - comparison of the mixed approach with
 - the parameterized approach [Costabel-Dauge'02] with parameter s = ι. Find $(\mathcal{E}'_h, \lambda'_h) \in \mathcal{X}_h \times \mathbb{C}$ such that

 $(\operatorname{\mathbf{curl}} \mathcal{E}'_h, \operatorname{\mathbf{curl}} \mathcal{F}_h)_0 + \imath (\operatorname{div} \mathcal{E}'_h, \operatorname{div} \mathcal{F}_h)_{0,\gamma} = \lambda'_h (\mathcal{E}'_h, \mathcal{F}_h)_0, \ \forall \mathcal{F}_h \in \mathcal{X}_h.$

Spurious (curl-free) eigenvalues are filtered out by comparing

$$Re(\lambda'_h)$$
 to $Im(\lambda'_h)$.

On a second 'practical' example, taken from Monique Dauge's benchmark.

- **9** 3D, thick L-shaped, domain $(] 1, 1[^2 \setminus [-1, 0]^2) \times]0, 1[.$
- First nine eigenvalues (with repetition), up to six digits:

•
$$\lambda_1 = 9.6397$$
; $\lambda_2 = 11.3452$; $\lambda_3 = 13.4036$; $\lambda_4 = 15.1972$;

- $\lambda_5 = 19.5093$; $\lambda_6 = \lambda_7 = \lambda_8 = 19.7392$; $\lambda_9 = 21.2591$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- Experiments (cf. [Hechme-Jr'07b]):
 - comparison of the mixed approach with
 - ▶ the filter approach [Costabel-Dauge'03], [Hechme-Jr'07b]. Find $(\mathcal{E}_h, \lambda_h) \in \mathcal{X}_h \times \mathbb{R}^+$ such that

$$(\mathcal{E}_h, \mathcal{F}_h)_{\mathcal{X}_{\gamma}} = \lambda_h(\mathcal{E}_h, \mathcal{F}_h)_0, \ \forall \mathcal{F}_h \in \mathcal{X}_h.$$

Spurious (curl-free) eigenvalues are filtered out by evaluating the filter ratio

$$\frac{\|\operatorname{div} \mathcal{E}_h\|_{0,\gamma}}{\|\operatorname{curl} \mathcal{E}_h\|_0}.$$

A mesh with

4032 tetrahedra; 1010 vertices.

Number of d.o.f.

15818 for the parameterized and filter approaches; 18162 for the mixed approach.

Results:

Method	Filter	Parameterized	Mixed
r_1	6.1×10^{-4}	6.1×10^{-4}	6.2×10^{-4}
r_2	6.5×10^{-3}	1.1×10^{-2}	8.5×10^{-3}
r_3	8.1×10^{-4}	7.4×10^{-4}	8.4×10^{-4}
r_4	1.1×10^{-4}	1.0×10^{-4}	1.1×10^{-4}
r_5	2.0×10^{-3}	4.7×10^{-3}	6.9×10^{-3}
r_6	1.8×10^{-4}	1.8×10^{-4}	1.8×10^{-4}
r_7	1.2×10^{-3}	1.1×10^{-3}	1.2×10^{-3}
r_8	1.2×10^{-3}	1.1×10^{-3}	1.3×10^{-3}
r_9	1.3×10^{-3}	1.1×10^{-3}	1.1×10^{-2}

Focusing on eigenvalues or eigenvectors?

On a last 'practical' example, taken from Monique Dauge's benchmark.

- **9** 3D, Fichera corner, domain $(] 1, 1[^3 \setminus [-1, 0]^3)$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- A graded mesh with

2688 tetrahedra; 665 vertices.

Experiments on the first eight eigenpairs (cf. [Hechme-Jr'07b]):

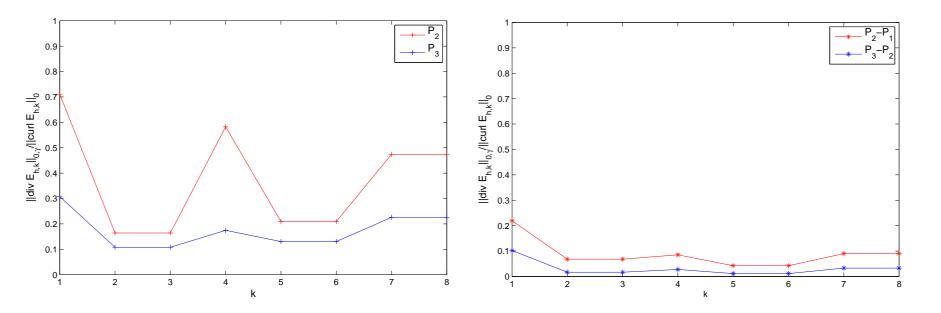
Focusing on eigenvalues or eigenvectors?

On a last 'practical' example, taken from Monique Dauge's benchmark.

- **9** 3D, Fichera corner, domain $(] 1, 1[^3 \setminus [-1, 0]^3)$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- A graded mesh with

2688 tetrahedra; 665 vertices.

Experiments on the first eight eigenpairs (cf. [Hechme-Jr'07b]): Filter ratios for the filter (left) and mixed (right) methods



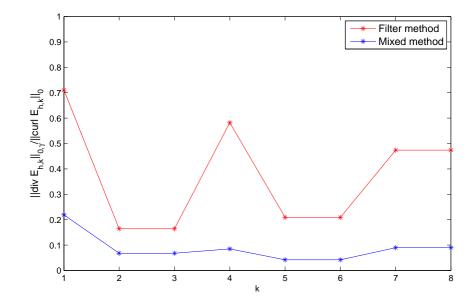
Focusing on eigenvalues or eigenvectors?

On a last 'practical' example, taken from Monique Dauge's benchmark.

- **9** 3D, Fichera corner, domain $(] 1, 1[^3 \setminus [-1, 0]^3)$.
- **P** The weight is implemented with $\gamma = 0.95$ (NB. $\gamma_{min} = 1/3$.)
- A graded mesh with

2688 tetrahedra; 665 vertices.

Experiments on the first eight eigenpairs (cf. [Hechme-Jr'07b]):
Filter ratios for both methods (P₂ FE for the field)



Concluding remarks

Implementing the mixed method with the WRM turned out to be a challenging problem!

- The classical $P_{k+1} P_k$ Taylor-Hood finite elements fail to verify the udisc.
 The Zero Near Singularity $P_{k+1} P_k$ finite elements provide an adequate answer.
 (with G. Hechme.)
- These FE allowed us to solve accurately the EM eigenvalue problem in mixed form. No more spurious eigenmodes. (with E. Jamelot, A. Buffa, G. Hechme.)

Concluding remarks

Implementing the mixed method with the WRM turned out to be a challenging problem!

- The classical $P_{k+1} P_k$ Taylor-Hood finite elements fail to verify the udisc.
 The Zero Near Singularity $P_{k+1} P_k$ finite elements provide an adequate answer.
 (with G. Hechme.)
- These FE allowed us to solve accurately the EM eigenvalue problem in mixed form. No more spurious eigenmodes. (with E. Jamelot, A. Buffa, G. Hechme.)
- Application to the time-dependent problem (Vlasov-Maxwell) has been completed. (with S. Labrunie.)
- Extension to materials (ε , μ piecewise constant) is possible. (with F. Lefèvre, S. Lohrengel, S. Nicaise.)

