# Electromagnetic wave propagation at classical material/meta-material interfaces 

Anne-Sophie Bonnet-Bendhia, Patrick Ciarlet online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, UMR 7231 CNRS-ENSTA-INRIA

## Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain $\Omega$ :


At a given frequency, the metamaterial is modelled as a material with real, strictly negative, electric permittivity $\varepsilon$ and magnetic permeability $\mu$.

## Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain $\Omega$ :


At a given frequency, the metamaterial is modelled as a material with real, strictly negative, electric permittivity $\varepsilon$ and magnetic permeability $\mu$.

- Possible practical applications: perfect lens, invisibility cloaking, etc.


## Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain $\Omega$ :


At a given frequency, the metamaterial is modelled as a material with real, strictly negative, electric permittivity $\varepsilon$ and magnetic permeability $\mu$.

- Questions:
e Is the problem to be solved well-posed?
- How to compute a numerical approximation of the solution?


## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- When $\varepsilon, \mu>0\left(\varepsilon, \mu, \varepsilon^{-1}, \mu^{-1} \in L^{\infty}(\Omega)\right)$ :
which functional space to measure the electric field?
which associated discretization?
$\diamond \mathcal{H}_{0}(\operatorname{curl} ; \Omega):=\left\{\mathcal{F} \in L^{2}(\Omega)^{3} \mid \operatorname{curl} \mathcal{F} \in L^{2}(\Omega)^{3}, \mathcal{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\}$ (Edge FE).


## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- When $\varepsilon, \mu>0\left(\varepsilon, \mu, \varepsilon^{-1}, \mu^{-1} \in L^{\infty}(\Omega)\right)$ :
which functional space to measure the electric field?
which associated discretization?
$\mathcal{H}_{0}(\operatorname{curl} ; \Omega):=\left\{\mathcal{F} \in L^{2}(\Omega)^{3} \mid \operatorname{curl} \mathcal{F} \in L^{2}(\Omega)^{3}, \mathcal{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\}$.
$\diamond \mathcal{X}_{0}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L^{2}(\Omega)\right\}$ (Continuous Galerkin FE).


## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- When $\varepsilon, \mu>0\left(\varepsilon, \mu, \varepsilon^{-1}, \mu^{-1} \in L^{\infty}(\Omega)\right)$ :
which functional space to measure the electric field?
which associated discretization?
$\mathcal{H}_{0}(\operatorname{curl} ; \Omega):=\left\{\mathcal{F} \in L^{2}(\Omega)^{3} \mid \operatorname{curl} \mathcal{F} \in L^{2}(\Omega)^{3}, \mathcal{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\}$.
$\mathcal{X}_{0}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L^{2}(\Omega)\right\}$.
$\diamond \mathcal{X}_{\gamma}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L_{\gamma}^{2}(\Omega)\right\}$ (Continuous Galerkin FE).


## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- When $\varepsilon, \mu>0\left(\varepsilon, \mu, \varepsilon^{-1}, \mu^{-1} \in L^{\infty}(\Omega)\right)$ :
which functional space to measure the electric field?
which associated discretization?
$\mathcal{H}_{0}(\operatorname{curl} ; \Omega):=\left\{\mathcal{F} \in L^{2}(\Omega)^{3} \mid \operatorname{curl} \mathcal{F} \in L^{2}(\Omega)^{3}, \mathcal{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\}$.
$\mathcal{X}_{0}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L^{2}(\Omega)\right\}$.
$\mathcal{X}_{\gamma}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L_{\gamma}^{2}(\Omega)\right\}$.
$\diamond L^{2}(\Omega)^{3}$ (Discontinuous Galerkin FE).
Etc.


## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- When $\varepsilon, \mu>0\left(\varepsilon, \mu, \varepsilon^{-1}, \mu^{-1} \in L^{\infty}(\Omega)\right)$ :
which functional space to measure the electric field?
which associated discretization?
Our choice: $\mathcal{X}_{0}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L^{2}(\Omega)\right\}$ (CG FE).
(Assumption: no singular electric fields).


## Maxwell problem (electric field)

- Given $\omega>0$ and source term $\mathcal{F} \in L^{2}(\Omega)^{3}(\mathcal{F}:=\imath \omega \mathcal{J}, \operatorname{div} \mathcal{F}=0)$. Find $\mathcal{E} \in L^{2}(\Omega)^{3}$ with $\operatorname{curl} \mathcal{E} \in L^{2}(\Omega)^{3}$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E}\right)-\omega^{2} \varepsilon \mathcal{E}=\mathcal{F} & \text { in } \Omega \\ \mathcal{E} \times \mathbf{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- When $\varepsilon, \mu>0\left(\varepsilon, \mu, \varepsilon^{-1}, \mu^{-1} \in L^{\infty}(\Omega)\right)$ :
which functional space to measure the electric field?
which associated discretization?
Our choice: $\mathcal{X}_{0}(\varepsilon ; \Omega):=\left\{\mathcal{F} \in \mathcal{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F} \in L^{2}(\Omega)\right\}$ (CG FE).
- Equivalent (Augmented) Variational Formulation:

Find $\mathcal{E} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$ such that
$\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega=\int_{\Omega} \mathcal{F} \cdot \overline{\mathcal{E}}^{\prime} d \Omega, \forall \mathcal{E}^{\prime} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$.

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

Ok provided $s>s_{\star}>0$ a.e. in $\Omega$ (assuming $\partial \Omega$ connected).

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

Ok provided $s>s_{\star}>0$ a.e. in $\Omega$ (assuming $\partial \Omega$ connected).
(2) compactness of the term

$$
b\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega
$$

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

Ok provided $s>s_{\star}>0$ a.e. in $\Omega$ (assuming $\partial \Omega$ connected).
(2) compactness of the term

$$
b\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega
$$

Ok as the canonical embedding of $\mathcal{X}_{0}(\varepsilon ; \Omega)$ into $L^{2}(\Omega)^{3}$ is compact (cf. [Weber'80]).

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

Ok provided $s>s_{\star}>0$ a.e. in $\Omega$ (assuming $\partial \Omega$ connected).
(2) compactness of the term

$$
b\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega
$$

Ok as the canonical embedding of $\mathcal{X}_{0}(\varepsilon ; \Omega)$ into $L^{2}(\Omega)^{3}$ is compact (cf. [Weber'80]).

This is the so-called coercive+compact framework

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

Ok provided $s>s_{\star}>0$ a.e. in $\Omega$ (assuming $\partial \Omega$ connected).
(2) compactness of the term

$$
b\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega
$$

Ok as the canonical embedding of $\mathcal{X}_{0}(\varepsilon ; \Omega)$ into $L^{2}(\Omega)^{3}$ is compact (cf. [Weber'80]).

This is the so-called coercive+compact framework
$\diamond$ These two ingredients fundamentally rely on: $\varepsilon>\varepsilon_{\star}>0$ and $\mu>\mu_{\star}>0$ a.e. in $\Omega$.

## Well-posedness, when $\varepsilon, \mu>0$...

Well-posedness stems from the two properties:
(1) coerciveness over $\mathcal{X}_{0}(\varepsilon ; \Omega)$ of

$$
a\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=\int_{\Omega}\left(\frac{1}{\mu} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+s \operatorname{div} \varepsilon \mathcal{E} \operatorname{div} \varepsilon \overline{\mathcal{E}}^{\prime}\right) d \Omega .
$$

Ok provided $s>s_{\star}>0$ a.e. in $\Omega$ (assuming $\partial \Omega$ connected).
(2) compactness of the term

$$
b\left(\mathcal{E}, \mathcal{E}^{\prime}\right):=-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega
$$

Ok as the canonical embedding of $\mathcal{X}_{0}(\varepsilon ; \Omega)$ into $L^{2}(\Omega)^{3}$ is compact (cf. [Weber'80]).

This is the so-called coercive+compact framework.
$\diamond$ These two ingredients fundamentally rely on: $\varepsilon>\varepsilon_{\star}>0$ and $\mu>\mu_{\star}>0$ a.e. in $\Omega$.
$\diamond$ Numerical convergence then follows, for sufficiently small meshsize $h . .$.

## Study of a scalar model problem

- Assume that the problem is independent of $z$.

The third component $e:=\mathcal{E}_{z}(x, y)$ is governed by find $e \in H^{1}(\Omega)$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} e\right)-\omega^{2} \varepsilon e=f & \text { in } \Omega \\ e=0 & \text { on } \partial \Omega\end{cases}
$$

## Study of a scalar model problem

- Assume that the problem is independent of $z$.

The third component $e:=\mathcal{E}_{z}(x, y)$ is governed by find $e \in H^{1}(\Omega)$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} e\right)-\omega^{2} \varepsilon e=f & \text { in } \Omega \\ e=0 & \text { on } \partial \Omega\end{cases}
$$

To fix ideas: $\varepsilon$ and $\mu$ constant over $\Omega_{i}, i=1,2$ $\left(\varepsilon_{i}:=\varepsilon_{\mid \Omega_{i}}, \mu_{i}:=\mu_{\mid \Omega_{i}}\right)$


## Study of a scalar model problem

- Assume that the problem is independent of $z$.

The third component $e:=\mathcal{E}_{z}(x, y)$ is governed by find $e \in H^{1}(\Omega)$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} e\right)-\omega^{2} \varepsilon e=f & \text { in } \Omega \\ e=0 & \text { on } \partial \Omega\end{cases}
$$

- Define the (negative) contrasts: $\kappa_{\varepsilon}:=\frac{\varepsilon_{1}}{\varepsilon_{2}}, \kappa_{\mu}:=\frac{\mu_{1}}{\mu_{2}}$.


## Study of a scalar model problem

- Assume that the problem is independent of $z$.

The third component $e:=\mathcal{E}_{z}(x, y)$ is governed by find $e \in H^{1}(\Omega)$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} e\right)-\omega^{2} \varepsilon e=f & \text { in } \Omega \\ e=0 & \text { on } \partial \Omega\end{cases}
$$

- Define the (negative) contrasts: $\kappa_{\varepsilon}:=\frac{\varepsilon_{1}}{\varepsilon_{2}}, \kappa_{\mu}:=\frac{\mu_{1}}{\mu_{2}}$.

Jump of the trace of the normal derivative across the interface (with $\kappa_{\mu}<0$ )


## Study of a scalar model problem

- Assume that the problem is independent of $z$.

The third component $e:=\mathcal{E}_{z}(x, y)$ is governed by find $e \in H^{1}(\Omega)$ such that

$$
\begin{cases}\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} e\right)-\omega^{2} \varepsilon e=f & \text { in } \Omega \\ e=0 & \text { on } \partial \Omega\end{cases}
$$

- Define the (negative) contrasts: $\kappa_{\varepsilon}:=\frac{\varepsilon_{1}}{\varepsilon_{2}}, \kappa_{\mu}:=\frac{\mu_{1}}{\mu_{2}}$.
- State of the art: [Costabel-Stephan'85], [Bonnet-Dauge-Ramdani'99], [Ramdani'99].
- If $\kappa_{\mu}=-1$, the problem is always ill-posed.
- If the interface $\Sigma$ is smooth, then the problem is well-posed (except for resonance frequencies) as soon as $\kappa_{\mu} \neq-1$.
- If $\Sigma$ is piecewise smooth (ie. in the presence of corners), then the problem is well-posed (except for resonance frequencies) as soon as

$$
\left.\kappa_{\mu} \notin\right] \kappa_{\mu}^{\inf }, \kappa_{\mu}^{\text {sup }}[, \text { with }-1 \in] \kappa_{\mu}^{\inf }, \kappa_{\mu}^{\text {sup }}[.
$$

## Discretization (1): the two-field formulation

- Introduce the new - magnetic-like - "unknown" $\underline{\mathbf{h}}_{2}:=\left(\frac{1}{\left|\mu_{2}\right|} \operatorname{curl} e\right)_{\mid \Omega_{2}}$.

Define a new formulation, with unknowns $e$ over $\Omega$ and $\underline{\mathbf{h}}_{2}$ over $\Omega_{2}$ :

$$
\left\{\begin{array}{l}
e \in H_{0}^{1}(\Omega) \\
\underline{\mathbf{h}}_{2} \in\left\{\mathbf{p} \in H\left(\operatorname{curl} ; \Omega_{2}\right)|\operatorname{div}| \mu_{2}\left|\mathbf{p} \in L^{2}\left(\Omega_{2}\right),\left|\mu_{2}\right| \mathbf{p} \cdot \mathbf{n}_{\mid \partial \Omega_{2} \backslash \Sigma}=0\right\}\right.
\end{array}\right.
$$

## Discretization (1): the two-field formulation

- Introduce the new - magnetic-like - "unknown" $\underline{\mathbf{h}}_{2}:=\left(\frac{1}{\left|\mu_{2}\right|} \operatorname{curl} e\right)_{\mid \Omega_{2}}$.

Define a new formulation, with unknowns $e$ over $\Omega$ and $\underline{h}_{2}$ over $\Omega_{2}$ :

$$
\left\{\begin{array}{l}
e \in H_{0}^{1}(\Omega) \\
\underline{\mathbf{h}}_{2} \in\left\{\mathbf{p} \in H\left(\operatorname{curl} ; \Omega_{2}\right)|\operatorname{div}| \mu_{2}\left|\mathbf{p} \in L^{2}\left(\Omega_{2}\right),\left|\mu_{2}\right| \mathbf{p} \cdot \mathbf{n}_{\mid \partial \Omega_{2} \backslash \Sigma}=0\right\}\right.
\end{array}\right.
$$

- [Bonnet-Jr-Zwö|f'07].

Well-posedness can be recovered, provided $\left|\kappa_{\mu}\right|$ is "large enough".
(The new formulation fits into the coercive+compact framework).
Numerical convergence then follows.
Added cost (related to $\underline{\mathbf{h}}_{2}^{h}$ ) reasonable if $\Omega_{2}$ is "small" wrt $\Omega_{1}$.
Numerical experiments can be found in [Zwölf'07].

## Discretization (2): the natural formulation

- Discretize directly the "standard" variational formulation.

Find $e \in H_{0}^{1}(\Omega)$ such that

$$
\operatorname{curl}\left(\frac{1}{\mu} \operatorname{curl} e\right)-\omega^{2} \varepsilon e=f \text { in } \Omega .
$$

## Discretization (2): the natural formulation

- Discretize directly the "standard" variational formulation.

Find $e \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \frac{1}{\mu} \operatorname{curl} e \cdot \operatorname{curl} \bar{e}^{\prime} d \Omega-\omega^{2} \int_{\Omega} \varepsilon e e^{\prime} d \Omega=\int_{\Omega} f \bar{e}^{\prime} d \Omega, \forall e^{\prime} \in H_{0}^{1}(\Omega) .
$$

Everything goes well numerically, provided $\left|\kappa_{\mu}\right|$ is "large enough" (cf. [Zwölf'07]).
Why?

## Discretization (2): the natural formulation

- Discretize directly the "standard" variational formulation.

Find $e \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
& \int_{\Omega} \frac{1}{\mu} \operatorname{curl} e \cdot \operatorname{curl} \bar{e}^{\prime} d \Omega-\omega^{2} \int_{\Omega} \varepsilon e \bar{e}^{\prime} d \Omega=\int_{\Omega} f \bar{e}^{\prime} d \Omega, \forall e^{\prime} \in H_{0}^{1}(\Omega) . \\
& \quad=: a_{\text {scal }}\left(e, e^{\prime}\right) .
\end{aligned}
$$

- [Bonnet-Jr-Zwölf'09].

Replace the coercivity of the bilinear form $a_{\text {scal }}(\cdot, \cdot)$ by the more general $\mathbb{T}$-coercivity, where $\mathbb{T}$ is a bijective, continuous linear operator of $H_{0}^{1}(\Omega)(\alpha>0)$ :

$$
a_{\text {scal }}(e, \mathbb{T} e) \geq \alpha\|e\|_{H_{0}^{1}(\Omega)}^{2}, \forall e \in H_{0}^{1}(\Omega) \Longleftarrow \mathbb{T} v=\left\{\begin{array}{l}
v_{1} \text { in } \Omega_{1} \\
-v_{2}+2 \mathcal{R}\left(\left.v\right|_{\Sigma)} \text { in } \Omega_{2}\right.
\end{array}\right.
$$

Then, the coercive+compact framework is recovered (for $\left|\kappa_{\mu}\right|$ "large enough").

## Discretization (2): the natural formulation

- Discretize directly the "standard" variational formulation.

Find $e \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
& \int_{\Omega} \frac{1}{\mu} \mathbf{c u r l} e \cdot \operatorname{curl} \bar{e}^{\prime} d \Omega-\omega^{2} \int_{\Omega} \varepsilon e e^{\prime} d \Omega=\int_{\Omega} f \bar{e}^{\prime} d \Omega, \forall e^{\prime} \in H_{0}^{1}(\Omega) . \\
& \quad=: a_{\text {scal }}\left(e, e^{\prime}\right)
\end{aligned}
$$

- [Bonnet-Jr-Zwölf'09].

For all $h$, let $V^{h}$ be the discrete subspace of $H_{0}^{1}(\Omega)$.
Define $\mathbb{T}^{h} \in \mathcal{L}\left(V^{h}\right)$ such that:

- the form $a_{\text {scal }}(\cdot, \cdot)$ is $\mathbb{T}^{h}$-coercive, with a coercivity constant independent of $h$;
- the $\left(\mathbb{T}^{h}\right)_{h}$ are uniformly continuous.

The error estimate is recovered (via a uniform stability estimate for $a_{\text {scal }}$ over $\left.\left(V^{h}\right)_{h}\right)$ :

$$
\left.\left.\exists \mathcal{C}>0, \exists h_{0}>0, \forall h \in\right] 0, h_{0}\right] \quad\left\|u-u^{h}\right\|_{H_{0}^{1}(\Omega)} \leq \mathcal{C} \inf _{v^{h} \in V^{h}}\left\|u-v^{h}\right\|_{H_{0}^{1}(\Omega)}
$$

## Back to the Maxwell problem

In addition to a compact embedding result, establish either
(1) $\mathbb{T}$ - and uniform $\mathbb{T}^{h}$ - coercivity, or
(2) a well-posed two-field formulation.

## Back to the Maxwell problem

In addition to a compact embedding result, establish either
(1) $\mathbb{T}$ - and uniform $\mathbb{T}^{h}$ - coercivity, or
(2) a well-posed two-field formulation.

- [Bonnet-Jr-Zwölf'08] on approach (2):
- The embedding of $\mathcal{X}_{0}(\varepsilon ; \Omega)$ into $L^{2}(\Omega)^{3}$ is compact.
- The two-field formulation, with $\underline{\mathcal{H}}_{2}:=\left(\frac{1}{\left|\mu_{2}\right|} \operatorname{curl} \mathcal{E}\right)_{\mid \Omega_{2}}$ :

$$
\left\{\begin{array}{l}
\mathcal{E} \in\left\{\mathcal{F} \in \mathcal{X}_{0}(\varepsilon ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F}=0\right\} \\
\underline{\mathcal{H}}_{2} \in H\left(\operatorname{curl} ; \Omega_{2}\right)
\end{array}\right.
$$

fits into the coercive+compact framework.

## Back to the Maxwell problem

In addition to a compact embedding result, establish either
(1) $\mathbb{T}$ - and uniform $\mathbb{T}^{h}$ - coercivity, or
(2) a well-posed two-field formulation.

- [Bonnet-Jr-Zwölf'08] on approach (2):
- The embedding of $\mathcal{X}_{0}(\varepsilon ; \Omega)$ into $L^{2}(\Omega)^{3}$ is compact.
- The two-field formulation, with $\underline{\mathcal{H}}_{2}:=\left(\frac{1}{\left|\mu_{2}\right|} \operatorname{curl} \mathcal{E}\right)_{\mid \Omega_{2}}$ :

$$
\left\{\begin{array}{l}
\mathcal{E} \in\left\{\mathcal{F} \in \mathcal{X}_{0}(\varepsilon ; \Omega) \mid \operatorname{div} \varepsilon \mathcal{F}=0\right\} \\
\underline{\mathcal{H}}_{2} \in H\left(\operatorname{curl} ; \Omega_{2}\right)
\end{array}\right.
$$

fits into the coercive+compact framework.

## Assumptions:

- Compact embedding: smooth interface and $\left|\kappa_{\varepsilon}\right|$ "large enough".
- Two-field formulation: $\left|\kappa_{\mu}\right|$ "large enough".


## Numerical experiments

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$ ).
- An exact piecewise smooth solution is available.
- Discretization of the natural formulation (with $s_{\mid \Omega_{i}}=1 /\left(\mu_{i} \varepsilon_{i}^{2}\right)$ ):

Find $\mathcal{E} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$ such that

$$
\int_{\Omega} \frac{1}{\mu}\left(\operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+\operatorname{div} \mathcal{E} \operatorname{div} \overline{\mathcal{E}}^{\prime}\right) d \Omega-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega=\int_{\Omega} \mathcal{F} \cdot \overline{\mathcal{E}}^{\prime} d \Omega, \forall \mathcal{E}^{\prime} \in \mathcal{X}_{0}(\varepsilon ; \Omega) .
$$

## Numerical experiments

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$ ).
- An exact piecewise smooth solution is available.
- Discretization of the natural formulation (with $s_{\mid \Omega_{i}}=1 /\left(\mu_{i} \varepsilon_{i}^{2}\right)$ ):

Find $\mathcal{E} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$ such that

$$
\int_{\Omega} \frac{1}{\mu}\left(\operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+\operatorname{div} \mathcal{E} \operatorname{div} \overline{\mathcal{E}}^{\prime}\right) d \Omega-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega=\int_{\Omega} \mathcal{F} \cdot \overline{\mathcal{E}}^{\prime} d \Omega, \forall \mathcal{E}^{\prime} \in \mathcal{X}_{0}(\varepsilon ; \Omega) .
$$

$$
\text { "Usual" case: } \omega=4 \text {, }
$$

$$
\left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1)
$$

$$
\left(\varepsilon_{2}, \mu_{2}\right)=(+1,+1)
$$ with $P_{2}$ Lagrange FE.



## Numerical experiments

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$ ).
- An exact piecewise smooth solution is available.
- Discretization of the natural formulation (with $s_{\mid \Omega_{i}}=1 /\left(\mu_{i} \varepsilon_{i}^{2}\right)$ ):

Find $\mathcal{E} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$ such that

$$
\int_{\Omega} \frac{1}{\mu}\left(\operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+\operatorname{div} \mathcal{E} \operatorname{div} \overline{\mathcal{E}}^{\prime}\right) d \Omega-\omega^{2} \int_{\Omega} \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega=\int_{\Omega} \mathcal{F} \cdot \overline{\mathcal{E}}^{\prime} d \Omega, \forall \mathcal{E}^{\prime} \in \mathcal{X}_{0}(\varepsilon ; \Omega) .
$$

"Unusual" case: $\omega=4$, $\left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1)$, $\left(\varepsilon_{2}, \mu_{2}\right)=\left(-2,-\frac{1}{2}\right)$, with $P_{2}$ Lagrange FE.


## Numerical experiments

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$ ).
- An exact piecewise smooth solution is available.
- Discretization of the natural formulation (with $s_{\mid \Omega_{i}}=1 /\left(\mu_{i} \varepsilon_{i}^{2}\right)$ ):

Find $\mathcal{E} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$ such that

$$
\int_{\Omega} \frac{1}{\mu}\left(\operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+\operatorname{div} \mathcal{E} \operatorname{div} \overline{\mathcal{E}}^{\prime}\right) d \Omega-\omega^{2} \int \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega=\int \mathcal{F} \cdot \overline{\mathcal{E}}^{\prime} d \Omega . \forall \mathcal{E}^{\prime} \in \mathcal{X}_{0}(\varepsilon ; \Omega) .
$$

"Unusual" case: $\omega=4$, $\left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1)$, $\left(\varepsilon_{2}, \mu_{2}\right)=\left(-2,-\frac{1}{2}\right)$, computed electric field $\left(\mathcal{E}_{y}^{h}\right)$.


## Numerical experiments

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$ ).
- An exact piecewise smooth solution is available.
- Discretization of the natural formulation (with $s_{\mid \Omega_{i}}=1 /\left(\mu_{i} \varepsilon_{i}^{2}\right)$ ):

Find $\mathcal{E} \in \mathcal{X}_{0}(\varepsilon ; \Omega)$ such that

$$
\int_{\Omega} \frac{1}{\mu}\left(\operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \overline{\mathcal{E}}^{\prime}+\operatorname{div} \mathcal{E} \operatorname{div} \overline{\mathcal{E}}^{\prime}\right) d \Omega-\omega^{2} \int \varepsilon \mathcal{E} \cdot \overline{\mathcal{E}}^{\prime} d \Omega=\int \mathcal{F} \cdot \overline{\mathcal{E}}^{\prime} d \Omega . \forall \mathcal{E}^{\prime} \in \mathcal{X}_{0}(\varepsilon ; \Omega) .
$$

"Unusual" case: $\omega=4$, $\left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1)$, $\left(\varepsilon_{2}, \mu_{2}\right)=\left(-2,-\frac{1}{2}\right)$, computed magnetic field $\left(\mathcal{H}_{z}^{h}\right)$.


## Perspectives

- For the Maxwell problem:
- remove the regularity assumptions on the interface (allow corners and edges);
- prove $\mathbb{T}$ - and uniform $\mathbb{T}^{h}$ - coercivity;
- enforce the divergence condition (with a Lagrange multiplier).


## Perspectives

- For the Maxwell problem:
- remove the regularity assumptions on the interface (allow corners and edges);
- prove $\mathbb{T}$ - and uniform $\mathbb{T}^{h}$ - coercivity;
- enforce the divergence condition (with a Lagrange multiplier).
- For both the scalar and the Maxwell problems, investigate the case when $\left.\kappa_{\mu} \in\right] \kappa_{\mu}^{\inf }, \kappa_{\mu}^{\text {sup }}\left[, \kappa_{\varepsilon} \in\right] \kappa_{\varepsilon}^{\inf }, \kappa_{\varepsilon}^{\text {sup }}[:$
- (re)define a mathematical framework;
- are the models derived from physics still relevant?

