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Motivation

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a
heterogeneous medium like below.

The domain Ω:

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

At a given frequency, the metamaterial is modelled as a material with real, strictly
negative, electric permittivity ε and magnetic permeability µ.
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At a given frequency, the metamaterial is modelled as a material with real, strictly
negative, electric permittivity ε and magnetic permeability µ.

Possible practical applications: perfect lens, invisibility cloaking, etc.
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Motivation

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a
heterogeneous medium like below.

The domain Ω:

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

At a given frequency, the metamaterial is modelled as a material with real, strictly
negative, electric permittivity ε and magnetic permeability µ.

Questions:

Is the problem to be solved well-posed?

How to compute a numerical approximation of the solution?
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Maxwell problem (electric field)

Given ω > 0 and source term F ∈ L2(Ω)3 (F := ıωJ , divF = 0).
Find E ∈ L2(Ω)3 with curl E ∈ L2(Ω)3 such that

8

>

<

>

:

curl

„

1

µ
curl E

«

− ω2εE = F in Ω ;

E × n = 0 on ∂Ω.
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Maxwell problem (electric field)

Given ω > 0 and source term F ∈ L2(Ω)3 (F := ıωJ , divF = 0).
Find E ∈ L2(Ω)3 with curl E ∈ L2(Ω)3 such that

8

>

<

>

:

curl

„

1

µ
curl E

«

− ω2εE = F in Ω ;

E × n = 0 on ∂Ω.

When ε, µ > 0 (ε, µ, ε−1, µ−1 ∈ L∞(Ω)):
which functional space to measure the electric field?
which associated discretization?

� H0(curl ; Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3, F × n|∂Ω = 0} (Edge FE) .
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H0(curl ; Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3, F × n|∂Ω = 0} .
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γ(Ω)} (Continuous Galerkin FE) .
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«

− ω2εE = F in Ω ;

E × n = 0 on ∂Ω.

When ε, µ > 0 (ε, µ, ε−1, µ−1 ∈ L∞(Ω)):
which functional space to measure the electric field?
which associated discretization?

H0(curl ; Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3, F × n|∂Ω = 0} .

X0(ε; Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)} .

Xγ(ε; Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2
γ(Ω)} .

� L2(Ω)3 (Discontinuous Galerkin FE) .
Etc.
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Maxwell problem (electric field)

Given ω > 0 and source term F ∈ L2(Ω)3 (F := ıωJ , divF = 0).
Find E ∈ L2(Ω)3 with curl E ∈ L2(Ω)3 such that

8

>
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>

:

curl

„

1

µ
curl E

«

− ω2εE = F in Ω ;

E × n = 0 on ∂Ω.

When ε, µ > 0 (ε, µ, ε−1, µ−1 ∈ L∞(Ω)):
which functional space to measure the electric field?
which associated discretization?

Our choice: X0(ε; Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)} (CG FE) .

(Assumption: no singular electric fields).
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Maxwell problem (electric field)

Given ω > 0 and source term F ∈ L2(Ω)3 (F := ıωJ , divF = 0).
Find E ∈ L2(Ω)3 with curl E ∈ L2(Ω)3 such that

8

>
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:

curl

„

1

µ
curl E

«

− ω2εE = F in Ω ;

E × n = 0 on ∂Ω.

When ε, µ > 0 (ε, µ, ε−1, µ−1 ∈ L∞(Ω)):
which functional space to measure the electric field?
which associated discretization?

Our choice: X0(ε; Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)} (CG FE) .

Equivalent (Augmented) Variational Formulation:
Find E ∈ X0(ε; Ω) such that

Z

Ω

„

1

µ
curl E · curl Ē ′ + s div εEdiv εĒ ′

«

dΩ−ω2

Z

Ω
εE·Ē ′dΩ =

Z

Ω
F·Ē ′dΩ, ∀E ′ ∈ X0(ε; Ω) .
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Well-posedness, whenε, µ > 0...

Well-posedness stems from the two properties:

(1) coerciveness over X0(ε; Ω) of

a(E, E ′) :=

Z

Ω

„

1

µ
curl E · curl Ē ′ + s div εEdiv εĒ ′

«

dΩ .
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Well-posedness, whenε, µ > 0...

Well-posedness stems from the two properties:

(1) coerciveness over X0(ε; Ω) of

a(E, E ′) :=

Z

Ω

„

1

µ
curl E · curl Ē ′ + s div εEdiv εĒ ′

«

dΩ .

Ok provided s > s? > 0 a.e. in Ω (assuming ∂Ω connected).
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Well-posedness, whenε, µ > 0...

Well-posedness stems from the two properties:

(1) coerciveness over X0(ε; Ω) of

a(E, E ′) :=
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„
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µ
curl E · curl Ē ′ + s div εEdiv εĒ ′

«

dΩ .

Ok provided s > s? > 0 a.e. in Ω (assuming ∂Ω connected).

(2) compactness of the term

b(E, E ′) := −ω2

Z

Ω
εE · Ē ′dΩ .

Ok as the canonical embedding of X0(ε; Ω) into L2(Ω)3 is compact (cf. [Weber’80]).

This is the so-called coercive+compact framework .

� These two ingredients fundamentally rely on: ε > ε? > 0 and µ > µ? > 0 a.e. in Ω.

� Numerical convergence then follows, for sufficiently small meshsize h...
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Study of a scalar model problem

Assume that the problem is independent of z.
The third component e := Ez(x, y) is governed by
find e ∈ H1(Ω) such that

8

>

<

>

:

curl

„

1

µ
curl e

«

− ω2εe = f in Ω ;

e = 0 on ∂Ω.
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Study of a scalar model problem

Assume that the problem is independent of z.
The third component e := Ez(x, y) is governed by
find e ∈ H1(Ω) such that

8

>

<

>

:

curl

„

1

µ
curl e

«

− ω2εe = f in Ω ;

e = 0 on ∂Ω.

To fix ideas: ε and µ con-
stant over Ωi, i = 1, 2

(εi := ε|Ωi
, µi := µ|Ωi

) ε ,µ  >0

metamaterial

dielectric

Σ
ΩΩ

2
1

11
2 2ε ,µ  <0
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Study of a scalar model problem

Assume that the problem is independent of z.
The third component e := Ez(x, y) is governed by
find e ∈ H1(Ω) such that

8

>

<

>

:

curl

„

1

µ
curl e

«

− ω2εe = f in Ω ;

e = 0 on ∂Ω.

Define the (negative) contrasts: κε :=
ε1

ε2
, κµ :=

µ1

µ2
.
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Study of a scalar model problem

Assume that the problem is independent of z.
The third component e := Ez(x, y) is governed by
find e ∈ H1(Ω) such that

8

>

<

>

:

curl

„

1

µ
curl e

«

− ω2εe = f in Ω ;

e = 0 on ∂Ω.

Define the (negative) contrasts: κε :=
ε1

ε2
, κµ :=

µ1

µ2
.

Jump of the trace of the
normal derivative across
the interface (with κµ < 0)
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Study of a scalar model problem

Assume that the problem is independent of z.
The third component e := Ez(x, y) is governed by
find e ∈ H1(Ω) such that

8

>

<

>

:

curl

„

1

µ
curl e

«

− ω2εe = f in Ω ;

e = 0 on ∂Ω.

Define the (negative) contrasts: κε :=
ε1

ε2
, κµ :=

µ1

µ2
.

State of the art: [Costabel-Stephan’85], [Bonnet-Dauge-Ramdani’99], [Ramdani’99].

If κµ = −1, the problem is always ill-posed.

If the interface Σ is smooth, then the problem is well-posed (except for resonance
frequencies) as soon as κµ 6= −1.

If Σ is piecewise smooth (ie. in the presence of corners), then the problem is
well-posed (except for resonance frequencies) as soon as

κµ 6∈]κinf
µ , κsup

µ [ , with − 1 ∈]κinf
µ , κsup

µ [ .
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Discretization (1): the two-field formulation

Introduce the new – magnetic-like – "unknown" h2 :=
“

1
|µ2|

curl e
”

|Ω2

.

Define a new formulation, with unknowns e over Ω and h2 over Ω2:

8

<

:

e ∈ H1
0 (Ω)

h2 ∈ {p ∈ H(curl; Ω2) |div |µ2|p ∈ L2(Ω2), |µ2|p · n|∂Ω2\Σ = 0}
.
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Discretization (1): the two-field formulation

Introduce the new – magnetic-like – "unknown" h2 :=
“

1
|µ2|

curl e
”

|Ω2

.

Define a new formulation, with unknowns e over Ω and h2 over Ω2:

8

<

:

e ∈ H1
0 (Ω)

h2 ∈ {p ∈ H(curl; Ω2) |div |µ2|p ∈ L2(Ω2), |µ2|p · n|∂Ω2\Σ = 0}
.

[Bonnet-Jr-Zwölf’07].

Well-posedness can be recovered, provided |κµ| is "large enough".

(The new formulation fits into the coercive+compact framework).

Numerical convergence then follows.

Added cost (related to hh
2 ) reasonable if Ω2 is "small" wrt Ω1.

Numerical experiments can be found in [Zwölf’07].
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Discretization (2): the natural formulation

Discretize directly the "standard" variational formulation.
Find e ∈ H1

0 (Ω) such that

curl

„

1

µ
curl e

«

− ω2εe = f in Ω .
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Discretization (2): the natural formulation

Discretize directly the "standard" variational formulation.
Find e ∈ H1

0 (Ω) such that

Z

Ω

1

µ
curl e · curl ē′dΩ − ω2

Z

Ω
εeē′dΩ =

Z

Ω
fē′dΩ, ∀e′ ∈ H1

0 (Ω) .

Everything goes well numerically, provided |κµ| is "large enough" (cf. [Zwölf’07]).

Why?
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Discretization (2): the natural formulation

Discretize directly the "standard" variational formulation.
Find e ∈ H1

0 (Ω) such that

Z

Ω

1

µ
curl e · curl ē′dΩ − ω2

Z

Ω
εeē′dΩ =

Z

Ω
fē′dΩ, ∀e′ ∈ H1

0 (Ω) .

=: ascal(e, e
′).

[Bonnet-Jr-Zwölf’09].

Replace the coercivity of the bilinear form ascal(·, ·) by the more general T-coercivity,
where T is a bijective, continuous linear operator of H1

0 (Ω) (α > 0):

ascal(e, Te) ≥ α‖e‖2
H1

0
(Ω)

, ∀e ∈ H1
0 (Ω) ⇐= Tv =

8

<

:

v1 in Ω1

−v2 + 2R(v|Σ) in Ω2

.

Then, the coercive+compact framework is recovered (for |κµ| "large enough").
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Discretization (2): the natural formulation

Discretize directly the "standard" variational formulation.
Find e ∈ H1

0 (Ω) such that

Z

Ω

1

µ
curl e · curl ē′dΩ − ω2

Z

Ω
εeē′dΩ =

Z

Ω
fē′dΩ, ∀e′ ∈ H1

0 (Ω) .

=: ascal(e, e
′).

[Bonnet-Jr-Zwölf’09].

For all h, let V h be the discrete subspace of H1
0 (Ω).

Define T
h ∈ L(V h) such that:

the form ascal(·, ·) is T
h-coercive, with a coercivity constant independent of h ;

the (Th)h are uniformly continuous.

The error estimate is recovered (via a uniform stability estimate for ascal over (V h)h):

∃C > 0 ,∃h0 > 0 ,∀h ∈]0, h0] ‖u − uh‖H1

0
(Ω) ≤ C inf

vh∈V h

‖u − vh‖H1

0
(Ω) .
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Back to the Maxwell problem

In addition to a compact embedding result, establish either

(1) T- and uniform T
h- coercivity, or

(2) a well-posed two-field formulation.
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Back to the Maxwell problem

In addition to a compact embedding result, establish either

(1) T- and uniform T
h- coercivity, or

(2) a well-posed two-field formulation.

[Bonnet-Jr-Zwölf’08] on approach (2):

The embedding of X0(ε; Ω) into L2(Ω)3 is compact.

The two-field formulation, with H2 :=
“

1
|µ2|

curl E
”

|Ω2

:

8

<

:

E ∈ {F ∈ X0(ε; Ω) |div εF = 0}

H2 ∈ H(curl ; Ω2)

fits into the coercive+compact framework.
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Back to the Maxwell problem

In addition to a compact embedding result, establish either

(1) T- and uniform T
h- coercivity, or

(2) a well-posed two-field formulation.

[Bonnet-Jr-Zwölf’08] on approach (2):

The embedding of X0(ε; Ω) into L2(Ω)3 is compact.

The two-field formulation, with H2 :=
“

1
|µ2|

curl E
”

|Ω2

:

8

<

:

E ∈ {F ∈ X0(ε; Ω) |div εF = 0}

H2 ∈ H(curl ; Ω2)

fits into the coercive+compact framework.

Assumptions:

Compact embedding: smooth interface and |κε| "large enough".

Two-field formulation: |κµ| "large enough".
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Numerical experiments

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

An exact piecewise smooth solution is available.

Discretization of the natural formulation (with s|Ωi
= 1/(µi ε2

i )):
Find E ∈ X0(ε; Ω) such that

Z

Ω

1

µ

`

curl E · curl Ē ′ + div Ediv Ē ′
´

dΩ−ω2

Z

Ω
εE·Ē ′dΩ =

Z

Ω
F·Ē ′dΩ, ∀E ′ ∈ X0(ε; Ω) .
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Ω
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´

dΩ−ω2

Z

Ω
εE·Ē ′dΩ =

Z

Ω
F·Ē ′dΩ, ∀E ′ ∈ X0(ε; Ω) .

"Usual" case: ω = 4,
(ε1, µ1) = (+1, +1),
(ε2, µ2) = (+1, +1),
with P2 Lagrange FE.

errors

0.5 1.51.0
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0
log (|| . ||   )log (|| . ||          )

H(curl)
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slope = 3
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relative
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F·Ē ′dΩ, ∀E ′ ∈ X0(ε; Ω) .

"Unusual" case: ω = 4,
(ε1, µ1) = (+1, +1),
(ε2, µ2) = (−2,− 1

2
),

with P2 Lagrange FE.

errors

0.5 1.51.0

10

10

10

10

−1

−2

−3

−4

0
log (|| . ||   )log (|| . ||          )

H(curl)

slope = 2

slope = 3

log(1/h)

relative

MAFELAP’09 – p. 9/10



Numerical experiments

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

An exact piecewise smooth solution is available.

Discretization of the natural formulation (with s|Ωi
= 1/(µi ε2
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´

dΩ−ω2

Z

Ω
εE·Ē ′dΩ =

Z

Ω
F·Ē ′dΩ, ∀E ′ ∈ X0(ε; Ω) .

"Unusual" case: ω = 4,
(ε1, µ1) = (+1, +1),
(ε2, µ2) = (−2,− 1

2
),

computed electric field (Eh
y ).
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Numerical experiments
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}×]0, 1[×]0, 1[).

An exact piecewise smooth solution is available.

Discretization of the natural formulation (with s|Ωi
= 1/(µi ε2

i )):
Find E ∈ X0(ε; Ω) such that

Z

Ω
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curl E · curl Ē ′ + div Ediv Ē ′
´

dΩ−ω2

Z

Ω
εE·Ē ′dΩ =

Z

Ω
F·Ē ′dΩ, ∀E ′ ∈ X0(ε; Ω) .

"Unusual" case: ω = 4,
(ε1, µ1) = (+1, +1),
(ε2, µ2) = (−2,− 1

2
),

computed magnetic field (Hh
z ).
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Perspectives

For the Maxwell problem:

remove the regularity assumptions on the interface (allow corners and edges) ;

prove T- and uniform T
h- coercivity ;

enforce the divergence condition (with a Lagrange multiplier).
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Perspectives

For the Maxwell problem:

remove the regularity assumptions on the interface (allow corners and edges) ;

prove T- and uniform T
h- coercivity ;

enforce the divergence condition (with a Lagrange multiplier).

For both the scalar and the Maxwell problems, investigate the case when
κµ ∈]κinf

µ , κsup
µ [, κε ∈]κinf

ε , κsup
ε [:

(re)define a mathematical framework ;

are the models derived from physics still relevant?
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