A practical tool to solve indefinite problems: T-coercivity

A.-S. Bonnet-Bendhia, L. Chesnel, Patrick Ciarlet

online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, UMR 7231 CNRS-ENSTA-INRIA

Motivation: indefinite problems in electromagnetics.

Well-posedness: abstract theory and T-coercivity.

- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.

- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.
- Optimality of T-coercivity.

- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.
- Optimality of T-coercivity.
- Numerical examples.

- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.
- Optimality of T-coercivity.
- Numerical examples.
- Conclusion.

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

At a given frequency ω , the (negative) metamaterial is modelled as a material with real, strictly negative, electric permittivity ε and magnetic permeability μ .

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

$$\begin{cases} \varepsilon := \varepsilon_{effective}(\omega) & < 0 \\ \mu := \mu_{effective}(\omega) & < 0 \end{cases}$$

in a (negative) metamaterial, in some frequency ranges.

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

 $\begin{cases} \varepsilon := \varepsilon_{effective}(\omega) & < 0 \\ \mu := \mu_{effective}(\omega) & < 0 \end{cases} \text{ in a (negative) metamaterial, in some frequency ranges.} \end{cases}$

NB. In general, $\varepsilon_{effective}(\omega) = \varepsilon' + \imath \varepsilon''$, $(\varepsilon', \varepsilon'') \in \mathbb{R}^2$, and it can happen that $|\varepsilon''| << |\varepsilon'|$, so we neglect the imaginary part ; similarly for $\mu_{effective}(\omega)$.

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

- perfect lens [Pendry'00], [Maystre-Enoch'04],
- photonic traps [Genov-Zhang-Zhang'09], etc.

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

- Is the problem to be solved well-posed?
- Solution How to compute a numerical approximation of the solution?

Given $\omega > 0$ and source terms $J \in L^2(\Omega)$, $\varrho \in H^{-1}(\Omega)$ (div $J - \iota \omega \varrho = 0$).

$$\begin{aligned} \mathbf{Find} \ \mathbf{E} \in \mathbf{L}^2(\Omega) \ \text{with } \mathbf{curl} \ \mathbf{E} \in \mathbf{L}^2(\Omega) \ \text{s.t.} \\ \mathbf{curl} \ \left(\mu^{-1}\mathbf{curl} \ \mathbf{E}\right) - \omega^2 \varepsilon \ \mathbf{E} = \imath \omega \mathbf{J} & \text{in } \Omega ; \\ \operatorname{div} \varepsilon \ \mathbf{E} = \varrho & \text{in } \Omega ; \\ \mathbf{E} \times \mathbf{n} = 0 & \text{on } \partial \Omega. \end{aligned}$$

Given $\omega > 0$ and source terms $J \in L^2(\Omega)$, $\varrho \in H^{-1}(\Omega)$ (div $J - \iota \omega \varrho = 0$).

Find
$$\mathbf{E} \in \mathbf{L}^2(\Omega)$$
 with $\operatorname{curl} \mathbf{E} \in \mathbf{L}^2(\Omega)$ s.t.
 $\operatorname{curl} (\mu^{-1} \operatorname{curl} \mathbf{E}) - \omega^2 \varepsilon \mathbf{E} = \imath \omega \mathbf{J}$ in Ω ;
 $\operatorname{div} \varepsilon \mathbf{E} = \varrho$ in Ω ;

$$oldsymbol{E} imes oldsymbol{n} = 0$$
 on $\partial \Omega$

First, solve (assume that $\partial \Omega$ is connected):

$$(P_{\varphi}) \quad \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \operatorname{div} \varepsilon \operatorname{\mathbf{grad}} \varphi = \varrho & \text{in } \Omega. \end{cases}$$

Given $\omega > 0$ and source terms $J \in L^2(\Omega)$, $\varrho \in H^{-1}(\Omega)$ (div $J - \iota \omega \varrho = 0$).

Find
$$\mathbf{E} \in \mathbf{L}^2(\Omega)$$
 with $\operatorname{curl} \mathbf{E} \in \mathbf{L}^2(\Omega)$ s.t.
 $\operatorname{curl} (\mu^{-1} \operatorname{curl} \mathbf{E}) - \omega^2 \varepsilon \mathbf{E} = \imath \omega \mathbf{J}$ in Ω ;
 $\operatorname{div} \varepsilon \mathbf{E} = \varrho$ in Ω ;

$${oldsymbol E} imes {oldsymbol n} = 0$$
 on $\partial \Omega$

First, solve (assume that $\partial \Omega$ is connected):

$$(P_{\varphi}) \quad \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \operatorname{div} \varepsilon \operatorname{\mathbf{grad}} \varphi = \varrho & \text{in } \Omega. \end{cases}$$

Second, set $m{K}:=\imath\omegam{J}+\omega^2arepsilon\,{f grad}\,arphi$, and solve:

$$(P_E) \begin{cases} \text{Find } \mathbf{E}' \in \mathbf{L}^2(\Omega) \text{ with } \operatorname{curl} \mathbf{E}' \in \mathbf{L}^2(\Omega) \text{ s.t.} \\ \operatorname{curl} \left(\mu^{-1} \operatorname{curl} \mathbf{E}' \right) - \omega^2 \varepsilon \, \mathbf{E}' = \mathbf{K} & \text{ in } \Omega \text{ ;} \\ \operatorname{div} \varepsilon \, \mathbf{E}' = 0 & \text{ in } \Omega \text{ ;} \\ \mathbf{E}' \times \mathbf{n} = 0 & \text{ on } \partial \Omega \end{cases}$$

Given $\omega > 0$ and source terms $J \in L^2(\Omega)$, $\varrho \in H^{-1}(\Omega)$ (div $J - \iota \omega \varrho = 0$).

Find
$$\mathbf{E} \in \mathbf{L}^2(\Omega)$$
 with $\operatorname{curl} \mathbf{E} \in \mathbf{L}^2(\Omega)$ s.t.
 $\operatorname{curl} (\mu^{-1} \operatorname{curl} \mathbf{E}) - \omega^2 \varepsilon \mathbf{E} = \imath \omega \mathbf{J}$ in Ω ;
 $\operatorname{div} \varepsilon \mathbf{E} = \varrho$ in Ω ;

$${oldsymbol E} imes {oldsymbol n} = 0$$
 on $\partial \Omega$

First, solve (assume that $\partial \Omega$ is connected):

$$(P_{\varphi}) \quad \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \operatorname{div} \varepsilon \operatorname{\mathbf{grad}} \varphi = \varrho & \text{in } \Omega. \end{cases}$$

Second, set $m{K}:=\imath\omegam{J}+\omega^2arepsilon\,{f grad}\,arphi$, and solve:

$$P_{E} \left\{ \begin{array}{l} \textit{Find } \mathbf{E}' \in \mathbf{L}^{2}(\Omega) \textit{ with } \mathbf{curl } \mathbf{E}' \in \mathbf{L}^{2}(\Omega) \textit{ s.t.} \\ \mathbf{curl } (\mu^{-1}\mathbf{curl } \mathbf{E}') - \omega^{2} \varepsilon \mathbf{E}' = \mathbf{K} \qquad \text{ in } \Omega ; \\ \operatorname{div} \varepsilon \mathbf{E}' = 0 \qquad \qquad \text{ in } \Omega ; \end{array} \right.$$

$$\begin{bmatrix} \mathbf{E}' \times \mathbf{n} = 0 & \text{on } \partial \Omega. \end{bmatrix}$$

The electric field $oldsymbol{E} := oldsymbol{E}' + oldsymbol{grad} arphi oldsymbol{s}$ solves the Maxwell problem.

Nice, April 2011 - p.4/21

Classically, one solves equivalent Variational Formulations.

Classically, one solves equivalent Variational Formulations.

• First, in $H_0^1(\Omega)$:

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \varphi \cdot \overline{\operatorname{\mathbf{grad}} \psi} \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

Classically, one solves equivalent Variational Formulations.

• First, in $H_0^1(\Omega)$:

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \psi \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

Second, in $\boldsymbol{H}_0(\operatorname{\mathbf{curl}};\Omega) := \{ \boldsymbol{F} \in \boldsymbol{L}^2(\Omega) \, | \, \operatorname{\mathbf{curl}} \boldsymbol{F} \in \boldsymbol{L}^2(\Omega), \ \boldsymbol{F} \times \boldsymbol{n}_{|\partial\Omega} = 0 \}$:

$$(VF_E) \begin{cases} Find E' \in H_0(\operatorname{curl};\Omega) \text{ s.t.} \\ \forall F \in H_0(\operatorname{curl};\Omega), \quad \int_{\Omega} \mu^{-1} \operatorname{curl} E' \cdot \overline{\operatorname{curl} F} d\Omega \\ & -\omega^2 \int_{\Omega} \varepsilon E' \cdot \overline{F} d\Omega = \int_{\Omega} K \cdot \overline{F} d\Omega ; \\ \operatorname{div} \varepsilon E' = 0 \quad \text{in } \Omega. \end{cases}$$

At the crossing of the interface, both ε and μ exhibit a sign-shift.

At the crossing of the interface, both ε and μ exhibit a sign-shift.

P The permittivity ε has a sign-shift:

The form
$$(\psi, \psi') \mapsto \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \psi \cdot \operatorname{\mathbf{grad}} \psi' d\Omega$$
 is indefinite.

At the crossing of the interface, both ε and μ exhibit a sign-shift.

P The permeability μ has a sign-shift:

The form
$$(\mathbf{F}, \mathbf{F}') \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{F}' d\Omega$$
 is indefinite.

At the crossing of the interface, both ε and μ exhibit a sign-shift.

P The permeability μ has a sign-shift:

The form
$$(\mathbf{F}, \mathbf{F}') \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{F}' d\Omega$$
 is indefinite.

In addition, what are the properties of the "electric" functional space

$$\boldsymbol{X}_{\boldsymbol{\varepsilon}}(\Omega) := \{ \boldsymbol{F} \in \boldsymbol{H}_0(\mathbf{curl}; \Omega) \, | \, \mathrm{div} \, \boldsymbol{\varepsilon} \, \boldsymbol{F} \in L^2(\Omega) \} ?$$

At the crossing of the interface, both ε and μ exhibit a sign-shift.

D The permeability μ has a sign-shift:

The form
$$(\mathbf{F}, \mathbf{F}') \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{F}' d\Omega$$
 is indefinite.

In addition, what are the properties of the "electric" functional space

$$\boldsymbol{X}_{\boldsymbol{\varepsilon}}(\Omega) := \{ \boldsymbol{F} \in \boldsymbol{H}_0(\mathbf{curl}; \Omega) \, | \, \mathrm{div} \, \boldsymbol{\varepsilon} \, \boldsymbol{F} \in L^2(\Omega) \} ?$$

Namely, the compact imbedding of $X_{\varepsilon}(\Omega)$ into $L^{2}(\Omega)$.

At the crossing of the interface, both ε and μ exhibit a sign-shift.

D The permeability μ has a sign-shift:

The form
$$(\mathbf{F}, \mathbf{F}') \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{F}' d\Omega$$
 is indefinite.

In addition, what are the properties of the "electric" functional space

$$\boldsymbol{X}_{\boldsymbol{\varepsilon}}(\Omega) := \{ \boldsymbol{F} \in \boldsymbol{H}_0(\mathbf{curl}; \Omega) \, | \, \mathrm{div} \, \boldsymbol{\varepsilon} \, \boldsymbol{F} \in L^2(\Omega) \} ?$$

Namely, the compact imbedding of $X_{\varepsilon}(\Omega)$ into $L^2(\Omega)$: [BonnetBenDhia-Jr-Zwölf'08]. Then $(F, F') \mapsto \omega^2 \int_{\Omega} \varepsilon F \cdot \overline{F'} d\Omega$ is treated as a compact perturbation term.

At the crossing of the interface, both ε and μ exhibit a sign-shift.

D The permeability μ has a sign-shift:

The form
$$(\mathbf{F}, \mathbf{F}') \mapsto \int_{\Omega} \boldsymbol{\mu}^{-1} \operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{F}' d\Omega$$
 is indefinite.

In addition, what are the properties of the "electric" functional space

$$\boldsymbol{X}_{\boldsymbol{\varepsilon}}(\Omega) := \{ \boldsymbol{F} \in \boldsymbol{H}_0(\mathbf{curl}; \Omega) \, | \, \mathrm{div} \, \boldsymbol{\varepsilon} \, \boldsymbol{F} \in L^2(\Omega) \} ?$$

Namely, the compact imbedding of $X_{\varepsilon}(\Omega)$ into $L^{2}(\Omega)$: [BonnetBenDhia-Jr-Zwölf'08].

From now on, we focus mainly on the indefiniteness

To fix ideas, we consider Problem (P_{φ}) , ie. the Variational Formulation

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \psi \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

To fix ideas, we consider Problem (P_{φ}) , ie. the Variational Formulation

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

We "simplify" the Problem (P_E) by considering the Transverse Magnetic mode.

To fix ideas, we consider Problem (P_{φ}) , ie. the Variational Formulation

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \psi \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

Solution We "simplify" the Problem (P_E) by considering the Transverse Magnetic mode. It is set in an infinite cylinder, $\Omega_{\perp} \times \mathbb{R}$. Moreover $\partial_z \cdot \equiv 0$.

To fix ideas, we consider Problem (P_{φ}) , ie. the Variational Formulation

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \varphi \cdot \overline{\operatorname{\mathbf{grad}} \psi} \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

We "simplify" the Problem (P_E) by considering the Transverse Magnetic mode.
 It is set in an infinite cylinder, Ω_⊥ × ℝ. Moreover ∂_z · ≡ 0.
 The scalar electric field E_z is governed by

$$(VF_{E_z}) \begin{cases} \text{Find } E_z \in H_0^1(\Omega_{\perp}) \text{ s.t.} \\ \forall F \in H_0^1(\Omega_{\perp}), \quad \int_{\Omega_{\perp}} \mu^{-1} \operatorname{grad} E_z \cdot \overline{\operatorname{grad} F} d\Omega_{\perp} \\ -\omega^2 \int_{\Omega_{\perp}} \varepsilon E_z \overline{F} d\Omega_{\perp} = \imath \omega \int_{\Omega_{\perp}} J_z \overline{F} d\Omega_{\perp}. \end{cases}$$

To fix ideas, we consider Problem (P_{φ}) , ie. the Variational Formulation

$$(VF_{\varphi}) \begin{cases} \text{Find } \varphi \in H_0^1(\Omega) \text{ s.t.} \\ \forall \psi \in H_0^1(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{\mathbf{grad}} \varphi \cdot \overline{\operatorname{\mathbf{grad}} \psi} \, d\Omega = -\langle \varrho, \psi \rangle. \end{cases}$$

We "simplify" the Problem (P_E) by considering the Transverse Magnetic mode.
 It is set in an infinite cylinder, Ω_⊥ × ℝ. Moreover ∂_z · ≡ 0.
 The scalar electric field E_z is governed by

$$(VF_{E_z}) \begin{cases} \text{Find } E_z \in H_0^1(\Omega_{\perp}) \text{ s.t.} \\ \forall F \in H_0^1(\Omega_{\perp}), \quad \int_{\Omega_{\perp}} \mu^{-1} \operatorname{grad} E_z \cdot \overline{\operatorname{grad} F} d\Omega_{\perp} \\ -\omega^2 \int_{\Omega_{\perp}} \varepsilon E_z \overline{F} d\Omega_{\perp} = \imath \omega \int_{\Omega_{\perp}} J_z \overline{F} d\Omega_{\perp}. \end{cases}$$

NB. $(F, F') \mapsto \omega^2 \int_{\Omega_{\perp}} \varepsilon F \overline{F'} d\Omega_{\perp}$ is obviously a compact perturbation term.

🔎 Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V', the dual space of V.

Let

- V be a Hilbert space;
- \square $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V', the dual space of V.
- Solve the Variational Formulation

$$(VF) \begin{cases} Find \ u \in V \ s.t. \\ \forall v \in V, \ a(u,v) = \langle f, v \rangle. \end{cases}$$

🗩 Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V', the dual space of V.
- Solve the Variational Formulation

$$(VF) \begin{cases} Find \ u \in V \ s.t. \\ \forall v \in V, \ a(u,v) = \langle f, v \rangle. \end{cases}$$

[Hadamard] The Problem (VF) is *well-posed* if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$\exists C > 0, \ \forall f \in V', \ \|u\|_V \le C \, \|f\|_{V'}.$$

🗩 Let

- V be a Hilbert space;
- \blacksquare $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V', the dual space of V.
- Solve the Variational Formulation

$$(VF) \begin{cases} Find \ u \in V \ s.t. \\ \forall v \in V, \ a(u,v) = \langle f, v \rangle. \end{cases}$$

[Hadamard] The Problem (VF) is *well-posed* if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$\exists C > 0, \ \forall f \in V', \ \|u\|_V \le C \, \|f\|_{V'}.$$

How can one prove well-posedness?

Let

- V be a Hilbert space;
- \blacksquare $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V', the dual space of V.
- Solve the Variational Formulation

$$(VF) \begin{cases} Find \ u \in V \ s.t. \\ \forall v \in V, \ a(u,v) = \langle f, v \rangle. \end{cases}$$

[Hadamard] The Problem (VF) is *well-posed* if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$\exists C > 0, \ \forall f \in V', \ \|u\|_V \le C \, \|f\|_{V'}.$$

How can one prove well-posedness?

[Lax-Milgram] OK provided that $a(\cdot, \cdot)$ is coercive!

[Banach-Necas-Babuska] Introduce the two conditions

$$(BNB_1) \qquad \exists \alpha' > 0, \ \forall v \in V, \ \sup_{w \in V \setminus \{0\}} \frac{|a(v,w)|}{\|w\|_V} \ge \alpha' \, \|v\|_V.$$

 $(BNB_2) \qquad \forall w \in V : \{ \forall v \in V, \ a(v,w) = 0 \} \implies \{w = 0 \}.$

NB. Condition (BNB_1) is called an *inf-sup condition*, or a *stability condition*.

[Banach-Necas-Babuska] Introduce the two conditions

$$(BNB_1) \qquad \exists \alpha' > 0, \ \forall v \in V, \ \sup_{w \in V \setminus \{0\}} \frac{|a(v,w)|}{\|w\|_V} \ge \alpha' \, \|v\|_V.$$

 $(BNB_2) \qquad \forall w \in V : \{ \forall v \in V, \ a(v,w) = 0 \} \implies \{w = 0 \}.$

NB. Condition (BNB_1) is called an *inf-sup condition*, or a *stability condition*.

- Theorem (Well-posedness) The two assertions below are equivalent:
 - (i) the Problem (VF) is well-posed;
 - (ii) the form $a(\cdot, \cdot)$ satisfies conditions (BNB_1) and (BNB_2) .

[Banach-Necas-Babuska] Introduce the two conditions

$$(BNB_1) \qquad \exists \alpha' > 0, \ \forall v \in V, \ \sup_{w \in V \setminus \{0\}} \frac{|a(v,w)|}{\|w\|_V} \ge \alpha' \|v\|_V.$$

 $(BNB_2) \qquad \forall w \in V : \{ \forall v \in V, \ a(v,w) = 0 \} \implies \{w = 0 \}.$

NB. Condition (BNB_1) is called an *inf-sup condition*, or a *stability condition*. Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

 $\exists \mathtt{T} \in \mathcal{L}(V), \text{ bijective}, \exists \underline{\alpha} > 0, \forall v \in V, |a(v, \mathtt{T}v)| \geq \underline{\alpha} \|v\|_{V}^{2}.$

[Banach-Necas-Babuska] Introduce the two conditions

$$(BNB_1) \qquad \exists \alpha' > 0, \ \forall v \in V, \ \sup_{w \in V \setminus \{0\}} \frac{|a(v,w)|}{\|w\|_V} \ge \alpha' \|v\|_V.$$

 $(BNB_2) \qquad \forall w \in V : \{ \forall v \in V, \ a(v,w) = 0 \} \implies \{w = 0 \}.$

NB. Condition (BNB_1) is called an *inf-sup condition*, or a *stability condition*.

Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

 $\exists T \in \mathcal{L}(V), \text{ bijective}, \exists \underline{\alpha} > 0, \forall v \in V, |a(v, Tv)| \geq \underline{\alpha} ||v||_V^2.$

Theorem (Well-posedness) The three assertions below are equivalent:

- (i) the Problem (VF) is well-posed;
- (ii) the form $a(\cdot, \cdot)$ satisfies conditions (BNB_1) and (BNB_2) .
- (iii) the form $a(\cdot, \cdot)$ is T-coercive.

Solve the coercive+compact Variational Formulation

$$(VF_{c+c}) \begin{cases} \text{Find } u \in V \text{ s.t.} \\ \forall v \in V, \ a_0(u,v) + c(u,v) = \langle f, v \rangle, \end{cases}$$

with $a_0(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:

- (c_1) The form $a_0(\cdot, \cdot)$ is T-coercive;
- (c_2) The operator $C \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.

Solve the coercive+compact Variational Formulation

$$(VF_{c+c}) \begin{cases} \text{Find } u \in V \text{ s.t.} \\ \forall v \in V, \ a_0(u,v) + c(u,v) = \langle f, v \rangle, \end{cases}$$

with $a_0(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:

- (c_1) The form $a_0(\cdot, \cdot)$ is T-coercive;
- (c_2) The operator $C \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.
- Definition (Uniqueness principle) The Problem (VF_{c+c}) satisfies a uniqueness principle if, and only if, f = 0 implies u = 0.

Solve the coercive+compact Variational Formulation

$$(VF_{c+c}) \begin{cases} \text{Find } u \in V \text{ s.t.} \\ \forall v \in V, \ a_0(u,v) + c(u,v) = \langle f, v \rangle, \end{cases}$$

with $a_0(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:

- (c_1) The form $a_0(\cdot, \cdot)$ is T-coercive;
- (c_2) The operator $C \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.
- Definition (Uniqueness principle) The Problem (VF_{c+c}) satisfies a uniqueness principle if, and only if, f = 0 implies u = 0.

Theorem (Well-posedness) Assume that (c_1) and (c_2) hold, and that the Problem (VF_{c+c}) satisfies a uniqueness principle. Then, it is well-posed.

(cf. [Bonnet-Jr-Zwölf'10])

Solve the coercive+compact Variational Formulation

$$(VF_{c+c}) \begin{cases} \text{Find } u \in V \text{ s.t.} \\ \forall v \in V, \ a_0(u,v) + c(u,v) = \langle f, v \rangle, \end{cases}$$

with $a_0(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:

- (c_1) The form $a_0(\cdot, \cdot)$ is T-coercive;
- (c_2) The operator $C \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.
- Definition (Uniqueness principle) The Problem (VF_{c+c}) satisfies a uniqueness principle if, and only if, f = 0 implies u = 0.

Theorem (Well-posedness) Assume that (c_1) and (c_2) hold, and that the Problem (VF_{c+c}) satisfies a uniqueness principle. Then, it is well-posed.

(cf. [Bonnet-Jr-Zwölf'10])

NB. The operator associated to $(a_0 + c)(\cdot, \cdot)$ is Fredholm of index 0 (and injective).

In our case (Problem (VF_{φ})):

 $\ \, \ \, \Omega, \, \Omega_1 \text{ and } \Omega_2 \text{ are domains of } \mathbb{R}^d, \, d \geq 1 : \, \Omega_1 \cap \Omega_2 = \emptyset, \, \overline{\Omega} = \overline{\Omega_1} \cup \overline{\Omega_2} \ ; \ \,$

Nice, April 2011 – p.11/21

In our case (Problem (VF_{φ})):

- the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;

In our case (Problem (VF_{φ})):

- the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;
- $V := H_0^1(\Omega)$; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.

In our case (Problem (VF_{φ})):

- If the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;

•
$$V := H_0^1(\Omega)$$
; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.

Introduce
$$V_k := \{ v_k \in H^1(\Omega_k) \mid v_k|_{\Gamma_k} = 0 \}, k = 1, 2$$
:

$$V = \{ v \, | \, v_{|\Omega_k} \in V_k, \ k = 1, 2, \ \mathsf{Matching}_{\Sigma}(v_{|\Omega_1}, v_{|\Omega_2}) = 0 \}$$

with $\operatorname{Matching}_{\Sigma}(v_1, v_2) := v_1|_{\Sigma} - v_2|_{\Sigma}$.

In our case (Problem (VF_{φ})):

- $\ \, \ \, \Omega, \, \Omega_1 \text{ and } \Omega_2 \text{ are domains of } \mathbb{R}^d, \, d \geq 1: \, \Omega_1 \cap \Omega_2 = \emptyset, \, \overline{\Omega} = \overline{\Omega_1} \cup \overline{\Omega_2} \ ; \ \,$
- the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;

•
$$V := H_0^1(\Omega)$$
; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.

Introduce
$$a_k(v_k, w_k) := \int_{\Omega_k} \sigma_k \operatorname{grad} v_k \cdot \operatorname{\overline{grad}} w_k \, d\Omega, \, k = 1, 2$$
:

$$\forall v, w \in V, \ a(v, w) = a_1(v_{|\Omega_1}, w_{|\Omega_1}) + a_2(v_{|\Omega_2}, w_{|\Omega_2}) \ ;$$

In our case (Problem (VF_{φ})):

- the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;

•
$$V := H_0^1(\Omega)$$
; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.

Introduce
$$a_k(v_k, w_k) := \int_{\Omega_k} \sigma_k \operatorname{grad} v_k \cdot \operatorname{\overline{grad}} w_k \, d\Omega, \, k = 1, 2:$$

$$\forall v, w \in V, \, a(v, w) = a_1(v_{|\Omega_1}, w_{|\Omega_1}) + a_2(v_{|\Omega_2}, w_{|\Omega_2}) ;$$

$$\forall v_1 \in V_1, \sigma_1^- \|\operatorname{grad} v_1\|_{L^2(\Omega_1)}^2 \leq +a_1(v_1, v_1) \leq \sigma_1^+ \|\operatorname{grad} v_1\|_{L^2(\Omega_1)}^2;$$

$$\forall v_2 \in V_2, \sigma_2^- \|\operatorname{grad} v_2\|_{L^2(\Omega_2)}^2 \leq -a_2(v_2, v_2) \leq \sigma_2^+ \|\operatorname{grad} v_2\|_{L^2(\Omega_2)}^2.$$
NB. We assume $0 < \sigma_k^- \leq \sigma_k^+ < \infty, \, k = 1, 2.$

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

First try:

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{ in } \Omega_1 \\ -v_2 & \text{ in } \Omega_2 \end{cases}$$

(+) Obviously, $(T_-)^2 = I$.

(-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

First try:

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

(+) Obviously, $(T_{-})^{2} = I$.

(-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T} \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

(+) Obviously, $(T_{-})^{2} = I$.

(-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T} \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

(+) $T \in \mathcal{L}(H_0^1(\Omega)).$

(+) One checks easily that $T^2 = I!$

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

(+) Obviously, $(T_-)^2 = I$.

(-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T} \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

$$\mathbf{T}^{2} v = \begin{cases} (\mathbf{T}v)_{1} = v_{1} & \text{in } \Omega_{1} \\ -(\mathbf{T}v)_{2} + 2R_{1} (\mathbf{T}v)_{1} = -(-v_{2} + 2R_{1} v_{1}) + 2R_{1} v_{1} = v_{2} & \text{in } \Omega_{2} \end{cases}$$

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

(+) Obviously, $(T_{-})^{2} = I$.

(-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T} \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

$$\mathbf{T}^{2} v = \begin{cases} (\mathbf{T}v)_{1} = v_{1} & \text{in } \Omega_{1} \\ -(\mathbf{T}v)_{2} + 2R_{1} (\mathbf{T}v)_{1} = -(-v_{2} + 2R_{1} v_{1}) + 2R_{1} v_{1} = v_{2} & \text{in } \Omega_{2} \end{cases}$$

Can one achieve T-coercivity?

Computations:

$$\begin{aligned} |a(v, \mathsf{T}v)| &= |a_1(v_1, v_1) - a_2(v_2, v_2) + 2a_2(v_2, R_1 v_1)| \\ &\geq |a_1(v_1, v_1) - a_2(v_2, v_2)| - 2|a_2(v_2, R_1 v_1)| \\ &\geq \sigma_1^- ||v_1||_{V_1}^2 - a_2(v_2, v_2) - 2|a_2(v_2, R_1 v_1)| \end{aligned}$$

Computations: let $\eta > 0$, apply Young's inequality

$$\begin{aligned} a(v, \mathsf{T}v)| &= |a_1(v_1, v_1) - a_2(v_2, v_2) + 2a_2(v_2, R_1 v_1)| \\ &\geq |a_1(v_1, v_1) - a_2(v_2, v_2)| - 2|a_2(v_2, R_1 v_1)| \\ &\geq \sigma_1^- ||v_1||_{V_1}^2 - a_2(v_2, v_2) - 2|a_2(v_2, R_1 v_1)| \\ &\geq \sigma_1^- ||v_1||_{V_1}^2 - a_2(v_2, v_2) + \eta a_2(v_2, v_2) + \eta^{-1}a_2(R_1 v_1, R_1 v_1) \\ &\geq (\sigma_1^- - \eta^{-1}\sigma_2^+ |||R_1|||^2) ||v_1||_{V_1}^2 - (1 - \eta)a_2(v_2, v_2). \end{aligned}$$

Computations: let $\eta > 0$, apply Young's inequality

$$\begin{aligned} |a(v, \mathsf{T}v)| &= |a_1(v_1, v_1) - a_2(v_2, v_2) + 2a_2(v_2, R_1 v_1)| \\ &\geq |a_1(v_1, v_1) - a_2(v_2, v_2)| - 2|a_2(v_2, R_1 v_1)| \\ &\geq \sigma_1^- ||v_1||_{V_1}^2 - a_2(v_2, v_2) - 2|a_2(v_2, R_1 v_1)| \\ &\geq \sigma_1^- ||v_1||_{V_1}^2 - a_2(v_2, v_2) + \eta a_2(v_2, v_2) + \eta^{-1}a_2(R_1 v_1, R_1 v_1) \\ &\geq (\sigma_1^- - \eta^{-1}\sigma_2^+ |||R_1|||^2) ||v_1||_{V_1}^2 - (1 - \eta)a_2(v_2, v_2). \end{aligned}$$

To obtain $|a(v, Tv)| \ge \underline{\alpha}(\eta) \|v\|_V^2$ for some $\eta > 0$, one needs

$$\frac{\sigma_1^-}{\sigma_2^+} > |||R_1|||^2.$$

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathrm{T}\, v := \begin{cases} v_1 - 2R_2 \, v_2 & \text{ in } \Omega_1 \\ -v_2 & \text{ in } \Omega_2 \end{cases}$$

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathrm{T}\, v := \begin{cases} v_1 - 2R_2 \, v_2 & \text{ in } \Omega_1 \\ -v_2 & \text{ in } \Omega_2 \end{cases}$$

(+) $\mathbf{T} \in \mathcal{L}(H_0^1(\Omega)).$

(+) One checks easily that $T^2 = I!$

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathrm{T}\, v := \left\{ \begin{array}{cc} v_1 - 2R_2 \, v_2 & \text{ in } \Omega_1 \\ -v_2 & \text{ in } \Omega_2 \end{array} \right.$$

- (+) $\mathbf{T} \in \mathcal{L}(H_0^1(\Omega)).$
- (+) One checks easily that $T^2 = I!$

• To obtain $|a(v, Tv)| \ge \underline{\alpha} ||v||_V^2$, one needs

$$\frac{\sigma_2^-}{\sigma_1^+} > |||R_2|||^2.$$

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathrm{T}\, v := \left\{ \begin{array}{cc} v_1 - 2R_2 \, v_2 & \mbox{ in } \Omega_1 \\ -v_2 & \mbox{ in } \Omega_2 \end{array} \right.$$

(+) $\mathbf{T} \in \mathcal{L}(H_0^1(\Omega)).$

(+) One checks easily that $T^2 = I!$

To obtain $|a(v, Tv)| \geq \underline{\alpha} \|v\|_V^2$, one needs

$$\frac{\sigma_2^-}{\sigma_1^+} > |||R_2|||^2.$$

Conclusion: to achieve T-coercivity , one needs

$$\frac{\sigma_1^-}{\sigma_2^+} > \left(\inf_{R_1} |||R_1|||\right)^2 \quad \text{ or } \quad \frac{\sigma_2^-}{\sigma_1^+} > \left(\inf_{R_2} |||R_2|||\right)^2.$$

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} = \frac{\sigma_2}{\sigma_1} \in]-\infty, 0[.$

- Study of an elementary setting:
 - piecewise constant coefficient σ ; in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} = \frac{\sigma_2}{\sigma_1}$.

<u>First case</u>: $\sigma_1 \neq -\sigma_2$, or $\kappa_{\sigma} \neq -1$, in a symmetric geometry.

- Study of an elementary setting:
 - piecewise constant coefficient σ ; in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} = \frac{\sigma_2}{\sigma_1}$.
- <u>First case</u>: $\sigma_1 \neq -\sigma_2$, or $\kappa_{\sigma} \neq -1$, in a symmetric geometry.

Let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, $R_1v_1(x, y) = v_1(x, -y)$, a.e. in Ω_2 . One finds $|||R_1||| = 1$.

To achieve T-coercivity, one needs $\frac{\sigma_1}{|\sigma_2|} > 1$.

- Study of an elementary setting:
 - piecewise constant coefficient σ ; in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} = \frac{\sigma_2}{\sigma_1}$.
- First case: $\sigma_1 \neq -\sigma_2$, or $\kappa_{\sigma} \neq -1$, in a symmetric geometry.

Let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, $R_1v_1(x, y) = v_1(x, -y)$, a.e. in Ω_2 . One finds $|||R_1||| = 1$.

To achieve T-coercivity, one needs $\frac{\sigma_1}{|\sigma_2|} > 1$. Let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, $R_2v_2(x, y) = v_2(x, -y)$, a.e. in Ω_1 . One finds $|||R_2||| = 1$.

To achieve T-coercivity, one needs $\frac{|\sigma_2|}{\sigma_1} > 1$.

- Study of an elementary setting:
 - piecewise constant coefficient σ ; in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} = \frac{\sigma_2}{\sigma_1}$.
- First case: $\sigma_1 \neq -\sigma_2$, or $\kappa_\sigma \neq -1$, in a symmetric geometry. Let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, $R_1v_1(x, y) = v_1(x, -y)$, a.e. in Ω_2 . One finds $|||R_1||| = 1$.

To achieve T-coercivity, one needs $\frac{\sigma_1}{|\sigma_2|} > 1$. Let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, $R_2v_2(x, y) = v_2(x, -y)$, a.e. in Ω_1 . One finds $|||R_2||| = 1$.

To achieve T-coercivity, one needs $\frac{|\sigma_2|}{\sigma_1} > 1$.

<u>Conclusion</u>: Problem (VF_{φ}) is well-posed when $\kappa_{\sigma} \neq -1$.

- Study of an elementary setting:
 - **•** piecewise constant coefficient σ .

Study of an elementary setting:

• piecewise constant coefficient σ .

Second case: $\sigma_1 = -\sigma_2$, or $\kappa_{\sigma} = -1$, in a symmetric geometry.

Study of an elementary setting:

- piecewise constant coefficient σ .
- Second case: $\sigma_1 = -\sigma_2$, or $\kappa_{\sigma} = -1$, in a symmetric geometry. Let $g \in C_0^{\infty}(\Sigma)$ and solve for k = 1, 2

$$\left\{ \begin{array}{ll} \textit{Find } U_k \in H^1_{0,\Gamma_k}(\Omega) \textit{ s.t.} \\ \Delta U_k = 0 & \quad \text{ in } \Omega_k ; \\ U_k = g & \quad \text{ on } \Sigma. \end{array} \right.$$

Define u by $u_{|\Omega_k} = U_k$, k = 1, 2: Matching_{Σ} $(u_{|\Omega_1}, u_{|\Omega_2}) = 0$, so $u \in H_0^1(\Omega)$.

Study of an elementary setting:

- piecewise constant coefficient σ .
- Second case: $\sigma_1 = -\sigma_2$, or $\kappa_{\sigma} = -1$, in a symmetric geometry. Let $g \in C_0^{\infty}(\Sigma)$ and solve for k = 1, 2

$$\left\{ \begin{array}{ll} \textit{Find } U_k \in H^1_{0,\Gamma_k}(\Omega) \textit{ s.t.} \\ \Delta U_k = 0 & \quad \text{ in } \Omega_k ; \\ U_k = g & \quad \text{ on } \Sigma. \end{array} \right.$$

Define u by $u_{|\Omega_k} = U_k$, k = 1, 2: Matching_{Σ} $(u_{|\Omega_1}, u_{|\Omega_2}) = 0$, so $u \in H_0^1(\Omega)$. By symmetry, u(x, -y) = u(x, y) a.e. in Ω : so $\sigma_1 \frac{\partial u_1}{\partial y} = \sigma_2 \frac{\partial u_2}{\partial y}$ on Σ .

Study of an elementary setting:

- piecewise constant coefficient σ .
- Second case: $\sigma_1 = -\sigma_2$, or $\kappa_{\sigma} = -1$, in a symmetric geometry. Let $g \in C_0^{\infty}(\Sigma)$ and solve for k = 1, 2

$$\left\{ \begin{array}{ll} \textit{Find } U_k \in H^1_{0,\Gamma_k}(\Omega) \textit{ s.t.} \\ \Delta U_k = 0 & \quad \text{ in } \Omega_k ; \\ U_k = g & \quad \text{ on } \Sigma. \end{array} \right.$$

Define u by $u_{|\Omega_k} = U_k$, k = 1, 2: Matching $_{\Sigma}(u_{|\Omega_1}, u_{|\Omega_2}) = 0$, so $u \in H_0^1(\Omega)$. By symmetry, u(x, -y) = u(x, y) a.e. in Ω : so $\sigma_1 \frac{\partial u_1}{\partial y} = \sigma_2 \frac{\partial u_2}{\partial y}$ on Σ . It follows that $u \in H_0^1(\Omega)$, with div σ grad u = 0 in Ω .

Study of an elementary setting:

- P piecewise constant coefficient σ .
- Second case: $\sigma_1 = -\sigma_2$, or $\kappa_{\sigma} = -1$, in a symmetric geometry. Let $g \in C_0^{\infty}(\Sigma)$ and solve for k = 1, 2

$$\left\{ \begin{array}{ll} \textit{Find } U_k \in H^1_{0,\Gamma_k}(\Omega) \textit{ s.t.} \\ \Delta U_k = 0 & \quad \text{ in } \Omega_k ; \\ U_k = g & \quad \text{ on } \Sigma. \end{array} \right.$$

Define u by $u_{|\Omega_k} = U_k$, k = 1, 2: Matching $_{\Sigma}(u_{|\Omega_1}, u_{|\Omega_2}) = 0$, so $u \in H_0^1(\Omega)$. By symmetry, u(x, -y) = u(x, y) a.e. in Ω : so $\sigma_1 \frac{\partial u_1}{\partial y} = \sigma_2 \frac{\partial u_2}{\partial y}$ on Σ . It follows that $u \in H_0^1(\Omega)$, with div σ grad u = 0 in Ω .

<u>Conclusion</u>: Problem (VF_{φ}) is ill-posed when $\kappa_{\sigma} = -1$ (*Critical case.*)

- Simple geometries:
 - 1. Symmetric geometry

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex
 - 3. Interface with a boundary vertex

Sample geometry:

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex
 - 3. Interface with a boundary vertex
 - 4. C^1 -class interface

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex
 - 3. Interface with a boundary vertex
 - 4. C^1 -class interface
- Handle general geometries by localization.

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex
 - 3. Interface with a boundary vertex
 - 4. C^1 -class interface
- Handle general geometries by localization.
 - Build a partition of unity, and use the T-coercivity results locally.
 - A priori estimate: there exists an interval I_{Σ} of $] \infty, 0[$ s.t. if $\kappa_{\sigma} \notin I_{\Sigma}$, then

 $\exists C > 0, \ \forall v \in H_0^1(\Omega), \ \|v\|_{H_0^1(\Omega)} \le C \{ \|\operatorname{div} \sigma \operatorname{\mathbf{grad}} v\|_{H^{-1}(\Omega)} + \|v\|_{L^2(\Omega)} \}.$

Use Peetre's Lemma to conclude.

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex
 - 3. Interface with a boundary vertex
 - 4. C^1 -class interface
- Handle general geometries by localization.

If $\kappa_{\sigma} \notin I_{\Sigma}$, then Problem (VF_{φ}) is well-posed in the Fredholm sense.

In this case, the associated operator is Fredholm of index 0.

- Simple geometries:
 - 1. Symmetric geometry
 - 2. Interface with an interior vertex
 - 3. Interface with a boundary vertex
 - 4. C^1 -class interface
- Handle general geometries by localization.

If $\kappa_{\sigma} \notin I_{\Sigma}$, then Problem (VF_{φ}) is well-posed in the Fredholm sense.

- In this case, the associated operator is Fredholm of index 0.
- The interval I_{Σ} always contains -1.
- If the interface is C^1 without endpoints, then $I_{\Sigma} = \{-1\}$.
- Problem (VF_{E_z}) can be solved similarly.

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

When is it Fredholm of index 0?

Locally symmetric geometry: $\kappa_{\sigma} \neq -1$.

(use the previous result)

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

When is it Fredholm of index 0?

(use the previous result)

Right angles: $\kappa_{\sigma} \not\in [-3, -1/3].$

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

When is it Fredholm of index 0?

(use the previous result)

Boundary vertices with angles $\pi/4$ and $3\pi/4$: $\kappa_{\sigma} \notin [-3, -1/3].$

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

When is it not Fredholm?

(direct computations: line singularity)

Locally symmetric geometry: $\kappa_{\sigma} = -1.$

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

When is it not Fredholm?

(direct computations: pointwise singularity)

Right angles: $\kappa_{\sigma} \in]-3, -1/3[.$

- When is the operator
 - Fredholm (of index 0);
 - or not Fredholm? (Critical case.)

When is it not Fredholm?

(direct computations: pointwise singularity)

Boundary vertices with angles $\pi/4$ and $3\pi/4$: $\kappa_{\sigma} \in]-3, -1/3[.$

- In a symmetric domain, made up of two adjacent squares.
- An *exact* piecewise smooth solution of Problem (VF_{φ}) is available.
- **•** Two contrasts: $\kappa_{\sigma} \in \{-2, -1.001\}$.
- **Discretization using** P_1 Lagrange FE.
- We study below the influence of the meshes.

- In a symmetric domain, made up of two adjacent squares.
- An *exact* piecewise smooth solution of Problem (VF_{φ}) is available.
- **Discretization using** P_1 Lagrange FE.
- We study below the influence of the meshes.

D Contrast
$$\kappa_{\sigma} = -2$$
:

- In a symmetric domain, made up of two adjacent squares.
- An *exact* piecewise smooth solution of Problem (VF_{φ}) is available.
- **Discretization using** P_1 Lagrange FE.
- We study below the influence of the meshes.
- **Contrast** $\kappa_{\sigma} = -1.001$:

- In the unit cube, split in two halves (with $\Sigma := \{\frac{1}{2}\} \times]0, 1[\times]0, 1[$).
- **Piecewise constant** ε , μ .
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the *augmented* formulation [Jr'05]

(set in $\boldsymbol{X}_{\varepsilon}(\Omega) = \{ \boldsymbol{F} \in \boldsymbol{H}_0(\operatorname{curl}; \Omega) | \operatorname{div} \varepsilon \, \boldsymbol{F} \in L^2(\Omega) \}.$)

Find
$$\mathbf{E}' \in \mathbf{X}_{\varepsilon}(\Omega)$$
 s.t.
 $\forall \mathbf{F} \in \mathbf{X}_{\varepsilon}(\Omega), \quad \int_{\Omega} \mu^{-1}(\operatorname{curl} \mathbf{E}' \cdot \overline{\operatorname{curl} \mathbf{F}} + \varepsilon^{-2} \operatorname{div} \varepsilon \mathbf{E}' \overline{\operatorname{div} \varepsilon \mathbf{F}}) d\Omega$
 $-\omega^{2} \int_{\Omega} \varepsilon \mathbf{E}' \cdot \overline{\mathbf{F}} d\Omega = \int_{\Omega} \mathbf{K} \cdot \overline{\mathbf{F}} d\Omega.$

- In the unit cube, split in two halves (with $\Sigma := \{\frac{1}{2}\} \times]0, 1[\times]0, 1[$).
- **Piecewise constant** ε , μ .
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [Jr'05]

(set in $\mathbf{X}_{\varepsilon}(\Omega) = \{ \mathbf{F} \in \mathbf{H}_0(\mathbf{curl}; \Omega) \, | \, \operatorname{div} \varepsilon \, \mathbf{F} \in L^2(\Omega) \}.$)

- In the unit cube, split in two halves (with $\Sigma := \{\frac{1}{2}\} \times]0, 1[\times]0, 1[$).
- **Piecewise constant** ε , μ .
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [Jr'05]

(set in $\mathbf{X}_{\varepsilon}(\Omega) = \{ \mathbf{F} \in \mathbf{H}_0(\mathbf{curl}; \Omega) \, | \, \operatorname{div} \varepsilon \, \mathbf{F} \in L^2(\Omega) \}.$)

- In the unit cube, split in two halves (with $\Sigma := \{\frac{1}{2}\} \times]0, 1[\times]0, 1[$).
- **Piecewise constant** ε , μ .
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the *augmented* formulation [Jr'05]

(set in $X_{\varepsilon}(\Omega) = \{ F \in H_0(\operatorname{curl}; \Omega) | \operatorname{div} \varepsilon F \in L^2(\Omega) \}$.)

"Unusual" case: $\omega = 4$, $(\varepsilon_1, \mu_1) = (+1, +1)$, $(\varepsilon_2, \mu_2) = (-2, -\frac{1}{2})$, computed electric field (\boldsymbol{E}_y^h) .

- In the unit cube, split in two halves (with $\Sigma := \{\frac{1}{2}\} \times]0, 1[\times]0, 1[$).
- **Piecewise constant** ε , μ .
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the *augmented* formulation [Jr'05]

(set in $\boldsymbol{X}_{\varepsilon}(\Omega) = \{ \boldsymbol{F} \in \boldsymbol{H}_0(\operatorname{curl}; \Omega) | \operatorname{div} \varepsilon \, \boldsymbol{F} \in L^2(\Omega) \}.$)

"Unusual" case: $\omega = 4$, $(\varepsilon_1, \mu_1) = (+1, +1)$, $(\varepsilon_2, \mu_2) = (-2, -\frac{1}{2})$, computed magnetic field (H_z^h).

Conclusions/Perspectives

• For the scalar problems:

- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], DG-approach [Chung-Jr'11], etc.);
- theoretical study of the critical cases (with X. Claeys (ISAE));
- discretization and numerical analysis of the *critical* cases.

Conclusions/Perspectives

For the scalar problems:

- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], DG-approach [Chung-Jr'11], etc.);
- theoretical study of the critical cases (with X. Claeys (ISAE));
- discretization and numerical analysis of the critical cases.
- For the Maxwell problem(s):
 - work out the theory of T-coercivity (side results: compact imbedding(s), etc.);
 - numerical analysis when T-coercivity applies.

Conclusions/Perspectives

• For the scalar problems:

- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], DG-approach [Chung-Jr'11], etc.);
- theoretical study of the critical cases (with X. Claeys (ISAE));
- discretization and numerical analysis of the critical cases.
- For the Maxwell problem(s):
 - work out the theory of T-coercivity (side results: compact imbedding(s), etc.);
 - numerical analysis when T-coercivity applies.
- In the critical cases: are models derived from physics still relevant?
 - re-visit models (homogenization, multi-scale numerics, etc.).
 (METAMATH Project, submitted to ANR; coordinator S. Fliss (POEMS)).

