A practical tool to solve indefinite problems: T-coercivity

A.-S. Bonnet-Bendhia, L. Chesnel, Patrick Ciarlet
online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, UMR 7231 CNRS-ENSTA-INRIA

Outline

- Motivation: indefinite problems in electromagnetics.

Outline

- Motivation: indefinite problems in electromagnetics.
- Well-posedness: abstract theory and T-coercivity.

Outline

- Motivation: indefinite problems in electromagnetics.
- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.

Outline

- Motivation: indefinite problems in electromagnetics.
- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.
- Optimality of T-coercivity.

Outline

- Motivation: indefinite problems in electromagnetics.
- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.
- Optimality of T-coercivity.
- Numerical examples.

Outline

- Motivation: indefinite problems in electromagnetics.
- Well-posedness: abstract theory and T-coercivity.
- Practical T-coercivity.
- Optimality of T-coercivity.
- Numerical examples.
- Conclusion.

Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain Ω :

At a given frequency ω, the (negative) metamaterial is modelled as a material with real, strictly negative, electric permittivity ε and magnetic permeability μ.

Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain Ω :

$$
\left\{\begin{array}{ll}
\varepsilon:=\varepsilon_{\text {effective }}(\omega) & <0 \\
\mu:=\mu_{\text {effective }}(\omega) & <0
\end{array}\right. \text { in a (negative) metamaterial, in some frequency ranges. }
$$

Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain Ω :

$$
\left\{\begin{array}{ll}
\varepsilon:=\varepsilon_{\text {effective }}(\omega) & <0 \\
\mu:=\mu_{\text {effective }}(\omega) & <0
\end{array}\right. \text { in a (negative) metamaterial, in some frequency ranges. }
$$

NB. In general, $\varepsilon_{\text {effective }}(\omega)=\varepsilon^{\prime}+\imath \varepsilon^{\prime \prime},\left(\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right) \in \mathbb{R}^{2}$, and it can happen that $\left|\varepsilon^{\prime \prime}\right| \ll\left|\varepsilon^{\prime}\right|$, so we neglect the imaginary part ; similarly for $\mu_{\text {effective }}(\omega)$.

Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain Ω :

- Possible practical applications:
e perfect lens [Pendry'00], [Maystre-Enoch'04],
- photonic traps [Genov-Zhang-Zhang'09], etc.

Motivation

- Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a heterogeneous medium like below.

The domain Ω :

- Questions:
- Is the problem to be solved well-posed?
- How to compute a numerical approximation of the solution?

Maxwell problem (electric field)

- Given $\omega>0$ and source terms $\boldsymbol{J} \in \boldsymbol{L}^{2}(\Omega), \varrho \in H^{-1}(\Omega)(\operatorname{div} \boldsymbol{J}-\imath \omega \varrho=0)$.

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \varepsilon \boldsymbol{E}=\imath \omega \boldsymbol{J} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

Maxwell problem (electric field)

- Given $\omega>0$ and source terms $\boldsymbol{J} \in \boldsymbol{L}^{2}(\Omega), \varrho \in H^{-1}(\Omega)(\operatorname{div} \boldsymbol{J}-\imath \omega \varrho=0)$.

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \varepsilon \boldsymbol{E}=\imath \omega \boldsymbol{J} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- First, solve (assume that $\partial \Omega$ is connected):

$$
\left(P_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\operatorname{div} \varepsilon \operatorname{grad} \varphi=\varrho
\end{array} \quad \text { in } \Omega .\right.
$$

Maxwell problem (electric field)

- Given $\omega>0$ and source terms $\boldsymbol{J} \in \boldsymbol{L}^{2}(\Omega), \varrho \in H^{-1}(\Omega)(\operatorname{div} \boldsymbol{J}-\imath \omega \varrho=0)$.

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \varepsilon \boldsymbol{E}=\imath \omega \boldsymbol{J} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- First, solve (assume that $\partial \Omega$ is connected):

$$
\left(P_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\operatorname{div} \varepsilon \operatorname{grad} \varphi=\varrho
\end{array} \quad \text { in } \Omega .\right.
$$

- Second, set $\boldsymbol{K}:=\imath \omega \boldsymbol{J}+\omega^{2} \varepsilon \operatorname{grad} \varphi$, and solve:

$$
\left(P_{E}\right) \begin{cases}\text { Find } \boldsymbol{E}^{\prime} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E}^{\prime} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}^{\prime}\right)-\omega^{2} \varepsilon \boldsymbol{E}^{\prime}=\boldsymbol{K} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}^{\prime}=0 & \text { in } \Omega \\ \boldsymbol{E}^{\prime} \times \boldsymbol{n}=0 & \text { on } \partial \Omega\end{cases}
$$

Maxwell problem (electric field)

- Given $\omega>0$ and source terms $\boldsymbol{J} \in \boldsymbol{L}^{2}(\Omega), \varrho \in H^{-1}(\Omega)(\operatorname{div} \boldsymbol{J}-\imath \omega \varrho=0)$.

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \varepsilon \boldsymbol{E}=\imath \omega \boldsymbol{J} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- First, solve (assume that $\partial \Omega$ is connected):

$$
\left(P_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\operatorname{div} \varepsilon \operatorname{grad} \varphi=\varrho
\end{array} \quad \text { in } \Omega .\right.
$$

- Second, set $\boldsymbol{K}:=\imath \omega \boldsymbol{J}+\omega^{2} \varepsilon \operatorname{grad} \varphi$, and solve:

$$
\left(P_{E}\right) \begin{cases}\text { Find } \boldsymbol{E}^{\prime} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E}^{\prime} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}^{\prime}\right)-\omega^{2} \varepsilon \boldsymbol{E}^{\prime}=\boldsymbol{K} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}^{\prime}=0 & \text { in } \Omega \\ \boldsymbol{E}^{\prime} \times \boldsymbol{n}=0 & \text { on } \partial \Omega\end{cases}
$$

- The electric field $\boldsymbol{E}:=\boldsymbol{E}^{\prime}+\operatorname{grad} \varphi$ solves the Maxwell problem.

Maxwell problem (electric field)-2

- Classically, one solves equivalent Variational Formulations.

Maxwell problem (electric field)-2

- Classically, one solves equivalent Variational Formulations.
- First, in $H_{0}^{1}(\Omega)$:

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

Maxwell problem (electric field)-2

- Classically, one solves equivalent Variational Formulations.
- First, in $H_{0}^{1}(\Omega)$:

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

- Second, in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega):=\left\{\boldsymbol{F} \in \boldsymbol{L}^{2}(\Omega) \mid \operatorname{curl} \boldsymbol{F} \in \boldsymbol{L}^{2}(\Omega), \boldsymbol{F} \times \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$:

$$
\left(V F_{E}\right) \begin{cases}\text { Find } \boldsymbol{E}^{\prime} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \text { s.t. } \\ \forall \boldsymbol{F} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega), & \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E}^{\prime} \cdot \overline{\operatorname{curl} \boldsymbol{F}} d \Omega \\ & -\omega^{2} \int_{\Omega} \varepsilon \boldsymbol{E}^{\prime} \cdot \overline{\boldsymbol{F}} d \Omega=\int_{\Omega} \boldsymbol{K} \cdot \overline{\boldsymbol{F}} d \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}^{\prime}=0 \quad \text { in } \Omega . & \end{cases}
$$

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

- The permittivity ε has a sign-shift:

The form $\left(\psi, \psi^{\prime}\right) \mapsto \int_{\Omega} \varepsilon \operatorname{grad} \psi \cdot \operatorname{grad} \psi^{\prime} d \Omega$ is indefinite.

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

- The permeability μ has a sign-shift:

The form $\left(\boldsymbol{F}, \boldsymbol{F}^{\prime}\right) \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{F} \cdot \operatorname{curl} \boldsymbol{F}^{\prime} d \Omega$ is indefinite.

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

- The permeability μ has a sign-shift:

$$
\text { The form }\left(\boldsymbol{F}, \boldsymbol{F}^{\prime}\right) \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{F} \cdot \operatorname{curl} \boldsymbol{F}^{\prime} d \Omega \text { is indefinite. }
$$

In addition, what are the properties of the "electric" functional space

$$
\boldsymbol{X}_{\varepsilon}(\Omega):=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\} ?
$$

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

- The permeability μ has a sign-shift:

$$
\text { The form }\left(\boldsymbol{F}, \boldsymbol{F}^{\prime}\right) \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{F} \cdot \operatorname{curl} \boldsymbol{F}^{\prime} d \Omega \text { is indefinite. }
$$

In addition, what are the properties of the "electric" functional space

$$
\boldsymbol{X}_{\varepsilon}(\Omega):=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\} ?
$$

Namely, the compact imbedding of $\boldsymbol{X}_{\varepsilon}(\Omega)$ into $\boldsymbol{L}^{2}(\Omega)$.

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

- The permeability μ has a sign-shift:

The form $\left(\boldsymbol{F}, \boldsymbol{F}^{\prime}\right) \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{F} \cdot \operatorname{curl} \boldsymbol{F}^{\prime} d \Omega$ is indefinite.
In addition, what are the properties of the "electric" functional space

$$
\boldsymbol{X}_{\varepsilon}(\Omega):=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\} ?
$$

Namely, the compact imbedding of $\boldsymbol{X}_{\varepsilon}(\Omega)$ into $\boldsymbol{L}^{2}(\Omega)$: [BonnetBenDhia-Jr-Zwölf'08].
Then $\left(\boldsymbol{F}, \boldsymbol{F}^{\prime}\right) \mapsto \omega^{2} \int_{\Omega} \varepsilon \boldsymbol{F} \cdot \overline{\boldsymbol{F}^{\prime}} d \Omega$ is treated as a compact perturbation term.

Indefinite problems

At the crossing of the interface, both ε and μ exhibit a sign-shift.

- The permeability μ has a sign-shift:

The form $\left(\boldsymbol{F}, \boldsymbol{F}^{\prime}\right) \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{F} \cdot \operatorname{curl} \boldsymbol{F}^{\prime} d \Omega$ is indefinite.
In addition, what are the properties of the "electric" functional space

$$
\boldsymbol{X}_{\varepsilon}(\Omega):=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\} ?
$$

Namely, the compact imbedding of $\boldsymbol{X}_{\varepsilon}(\Omega)$ into $\boldsymbol{L}^{2}(\Omega)$: [BonnetBenDhia-Jr-Zwölf'08].

> From now on, we focus mainly on the indefiniteness

Indefinite problems-2

- To fix ideas, we consider Problem $\left(P_{\varphi}\right)$, ie. the Variational Formulation

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

Indefinite problems-2

- To fix ideas, we consider Problem $\left(P_{\varphi}\right)$, ie. the Variational Formulation

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

- We "simplify" the Problem $\left(P_{E}\right)$ by considering the Transverse Magnetic mode.

Indefinite problems-2

- To fix ideas, we consider Problem $\left(P_{\varphi}\right)$, ie. the Variational Formulation

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

- We "simplify" the Problem $\left(P_{E}\right)$ by considering the Transverse Magnetic mode. It is set in an infinite cylinder, $\Omega_{\perp} \times \mathbb{R}$. Moreover $\partial_{z} \cdot \equiv 0$.

Indefinite problems-2

- To fix ideas, we consider Problem $\left(P_{\varphi}\right)$, ie. the Variational Formulation

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

- We "simplify" the Problem $\left(P_{E}\right)$ by considering the Transverse Magnetic mode.

It is set in an infinite cylinder, $\Omega_{\perp} \times \mathbb{R}$. Moreover $\partial_{z} \cdot \equiv 0$.
The scalar electric field E_{z} is governed by

$$
\left(V F_{E_{z}}\right)\left\{\begin{array}{l}
\text { Find } E_{z} \in H_{0}^{1}\left(\Omega_{\perp}\right) \text { s.t. } \\
\forall F \in H_{0}^{1}\left(\Omega_{\perp}\right), \quad \int_{\Omega_{\perp}} \mu^{-1} \operatorname{grad} E_{z} \cdot \overline{\operatorname{grad} F} d \Omega_{\perp} \\
\\
-\omega^{2} \int_{\Omega_{\perp}} \varepsilon E_{z} \bar{F} d \Omega_{\perp}=\imath \omega \int_{\Omega_{\perp}} J_{z} \bar{F} d \Omega_{\perp} .
\end{array}\right.
$$

Indefinite problems-2

- To fix ideas, we consider Problem $\left(P_{\varphi}\right)$, ie. the Variational Formulation

$$
\left(V F_{\varphi}\right)\left\{\begin{array}{l}
\text { Find } \varphi \in H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \psi \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \varepsilon \operatorname{grad} \varphi \cdot \overline{\operatorname{grad} \psi} d \Omega=-\langle\varrho, \psi\rangle .
\end{array}\right.
$$

- We "simplify" the Problem $\left(P_{E}\right)$ by considering the Transverse Magnetic mode.

It is set in an infinite cylinder, $\Omega_{\perp} \times \mathbb{R}$. Moreover $\partial_{z} \cdot \equiv 0$.
The scalar electric field E_{z} is governed by
$\left(V F_{E_{z}}\right)\left\{\begin{array}{l}\text { Find } E_{z} \in H_{0}^{1}\left(\Omega_{\perp}\right) \text { s.t. } \\ \forall F \in H_{0}^{1}\left(\Omega_{\perp}\right), \quad \int_{\Omega_{\perp}} \mu^{-1} \operatorname{grad} E_{z} \cdot \overline{\operatorname{grad} F} d \Omega_{\perp} \\ \\ -\omega^{2} \int_{\Omega_{\perp}} \varepsilon E_{z} \bar{F} d \Omega_{\perp}=\imath \omega \int_{\Omega_{\perp}} J_{z} \bar{F} d \Omega_{\perp} .\end{array}\right.$
NB. $\left(F, F^{\prime}\right) \mapsto \omega^{2} \int_{\Omega_{\perp}} \varepsilon F \overline{F^{\prime}} d \Omega_{\perp}$ is obviously a compact perturbation term.

Abstract setting

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Abstract setting

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V^{\prime}, the dual space of V.
- Solve the Variational Formulation
$(V F)\left\{\begin{array}{l}\text { Find } u \in V \text { s.t. } \\ \forall v \in V, a(u, v)=\langle f, v\rangle .\end{array}\right.$

Abstract setting

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V^{\prime}, the dual space of V.
- Solve the Variational Formulation

$$
(V F)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a(u, v)=\langle f, v\rangle .
\end{array}\right.
$$

[Hadamard] The Problem ($V F$) is well-posed if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$
\exists C>0, \forall f \in V^{\prime},\|u\|_{V} \leq C\|f\|_{V^{\prime}}
$$

Abstract setting

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V^{\prime}, the dual space of V.
- Solve the Variational Formulation

$$
(V F)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a(u, v)=\langle f, v\rangle .
\end{array}\right.
$$

[Hadamard] The Problem ($V F$) is well-posed if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$
\exists C>0, \forall f \in V^{\prime},\|u\|_{V} \leq C\|f\|_{V^{\prime}}
$$

How can one prove well-posedness?

Abstract setting

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times V$;
- f be an element of V^{\prime}, the dual space of V.
- Solve the Variational Formulation

$$
(V F)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a(u, v)=\langle f, v\rangle .
\end{array}\right.
$$

[Hadamard] The Problem ($V F$) is well-posed if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$
\exists C>0, \forall f \in V^{\prime},\|u\|_{V} \leq C\|f\|_{V^{\prime}}
$$

How can one prove well-posedness?
[Lax-Milgram] OK provided that $a(\cdot, \cdot)$ is coercive!

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in V \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{V}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in V:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in V \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{V}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in V:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Theorem (Well-posedness) The two assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in V \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{V}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in V:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V) \text {, bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in V \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{V}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in V:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V) \text {, bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} \text {. }
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

Abstract setting-3

- Solve the coercive+compact Variational Formulation

$$
\left(V F_{c+c}\right)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a_{0}(u, v)+c(u, v)=\langle f, v\rangle
\end{array}\right.
$$

with $a_{0}(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:
(c_{1}) The form $a_{0}(\cdot, \cdot)$ is T-coercive;
(c_{2}) The operator $\mathrm{C} \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.

Abstract setting-3

- Solve the coercive+compact Variational Formulation

$$
\left(V F_{c+c}\right)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a_{0}(u, v)+c(u, v)=\langle f, v\rangle
\end{array}\right.
$$

with $a_{0}(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:
(c_{1}) The form $a_{0}(\cdot, \cdot)$ is T-coercive;
(c_{2}) The operator $\mathrm{C} \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.

- Definition (Uniqueness principle) The Problem ($V F_{c+c}$) satisfies a uniqueness principle if, and only if, $f=0$ implies $u=0$.

Abstract setting-3

- Solve the coercive+compact Variational Formulation

$$
\left(V F_{c+c}\right)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a_{0}(u, v)+c(u, v)=\langle f, v\rangle
\end{array}\right.
$$

with $a_{0}(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:
(c_{1}) The form $a_{0}(\cdot, \cdot)$ is T-coercive;
(c_{2}) The operator $\mathrm{C} \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.

- Definition (Uniqueness principle) The Problem ($V F_{c+c}$) satisfies a uniqueness principle if, and only if, $f=0$ implies $u=0$.
- Theorem (Well-posedness) Assume that (c_{1}) and (c_{2}) hold, and that the Problem ($V F_{c+c}$) satisfies a uniqueness principle. Then, it is well-posed.
(cf. [Bonnet-Jr-Zwölf'10])

Abstract setting-3

- Solve the coercive + compact Variational Formulation

$$
\left(V F_{c+c}\right)\left\{\begin{array}{l}
\text { Find } u \in V \text { s.t. } \\
\forall v \in V, a_{0}(u, v)+c(u, v)=\langle f, v\rangle
\end{array}\right.
$$

with $a_{0}(\cdot, \cdot)$ and $c(\cdot, \cdot)$ two continuous sesquilinear forms over $V \times V$:
(c_{1}) The form $a_{0}(\cdot, \cdot)$ is T-coercive;
(c_{2}) The operator $\mathrm{C} \in \mathcal{L}(V)$ associated to $c(\cdot, \cdot)$ is compact.

- Definition (Uniqueness principle) The Problem ($V F_{c+c}$) satisfies a uniqueness principle if, and only if, $f=0$ implies $u=0$.
- Theorem (Well-posedness) Assume that (c_{1}) and (c_{2}) hold, and that the Problem ($V F_{c+c}$) satisfies a uniqueness principle. Then, it is well-posed.
(cf. [Bonnet-Jr-Zwölf'10])
NB. The operator associated to $\left(a_{0}+c\right)(\cdot, \cdot)$ is Fredholm of index 0 (and injective).

Practical T-coercivity

- In our case (Problem ($\left.V F_{\varphi}\right)$):
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;

Practical T-coercivity

- In our case (Problem $\left(V F_{\varphi}\right)$):
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;

Practical T-coercivity

- In our case (Problem $\left(V F_{\varphi}\right)$):
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.

Practical T-coercivity

- In our case (Problem $\left(V F_{\varphi}\right)$):
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.
- Introduce $V_{k}:=\left\{v_{k} \in H^{1}\left(\Omega_{k}\right) \mid v_{k \mid \Gamma_{k}}=0\right\}, k=1,2$:

$$
V=\left\{v \mid v_{\mid \Omega_{k}} \in V_{k}, k=1,2, \text { Matching }_{\Sigma}\left(v_{\mid \Omega_{1}}, v_{\mid \Omega_{2}}\right)=0\right\}
$$

with Matching ${ }_{\Sigma}\left(v_{1}, v_{2}\right):=v_{1 \mid \Sigma}-v_{2 \mid \Sigma}$.

Practical T-coercivity

- In our case (Problem $\left(V F_{\varphi}\right)$):
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.
- Introduce $a_{k}\left(v_{k}, w_{k}\right):=\int_{\Omega_{k}} \sigma_{k} \operatorname{grad} v_{k} \cdot \overline{\operatorname{grad} w_{k}} d \Omega, k=1,2$:

$$
\forall v, w \in V, a(v, w)=a_{1}\left(v_{\mid \Omega_{1}}, w_{\mid \Omega_{1}}\right)+a_{2}\left(v_{\mid \Omega_{2}}, w_{\mid \Omega_{2}}\right) ;
$$

Practical T-coercivity

- In our case (Problem $\left(V F_{\varphi}\right)$):
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.
- Introduce $a_{k}\left(v_{k}, w_{k}\right):=\int_{\Omega_{k}} \sigma_{k} \operatorname{grad} v_{k} \cdot \overline{\operatorname{grad} w_{k}} d \Omega, k=1,2$:

$$
\forall v, w \in V, a(v, w)=a_{1}\left(v_{\mid \Omega_{1}}, w_{\mid \Omega_{1}}\right)+a_{2}\left(v_{\mid \Omega_{2}}, w_{\mid \Omega_{2}}\right) ;
$$

$\forall v_{1} \in V_{1}, \sigma_{1}^{-}\left\|\operatorname{grad} v_{1}\right\|_{L^{2}\left(\Omega_{1}\right)}^{2} \leq+a_{1}\left(v_{1}, v_{1}\right) \leq \sigma_{1}^{+}\left\|\operatorname{grad} v_{1}\right\|_{L^{2}\left(\Omega_{1}\right)}^{2} ;$
$\forall v_{2} \in V_{2}, \sigma_{2}^{-}\left\|\operatorname{grad} v_{2}\right\|_{L^{2}\left(\Omega_{2}\right)}^{2} \leq-a_{2}\left(v_{2}, v_{2}\right) \leq \sigma_{2}^{+}\left\|\operatorname{grad} v_{2}\right\|_{L^{2}\left(\Omega_{2}\right)}^{2}$.
NB. We assume $0<\sigma_{k}^{-} \leq \sigma_{k}^{+}<\infty, k=1,2$.

Practical T-coercivity-2

First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, $\operatorname{Matching}_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, $\left(\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, $\operatorname{Matching}_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
$(+)$ One checks easily that $\mathrm{T}^{2}=\mathrm{I}$!

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, $\left(\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, $\operatorname{Matching}_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\begin{gathered}
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right. \\
\mathrm{T}^{2} v=\left\{\begin{array}{l}
(\mathrm{T} v)_{1}=v_{1} \\
-(\mathrm{T} v)_{2}+2 R_{1}(\mathrm{~T} v)_{1}=-\left(-v_{2}+2 R_{1} v_{1}\right)+2 R_{1} v_{1}=v_{2} \\
\text { in } \Omega_{2}
\end{array}\right.
\end{gathered}
$$

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, $\left(\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, $\operatorname{Matching}_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\left.\begin{array}{c}
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right. \\
\mathrm{T}^{2} v=\left\{\begin{array}{l}
(\mathrm{T} v)_{1}=v_{1} \\
-(\mathrm{T} v)_{2}+2 R_{1}(\mathrm{~T} v)_{1}=-\left(-v_{2}+2 R_{1} v_{1}\right)+2 R_{1} v_{1}=v_{2}
\end{array} \quad \text { in } \Omega_{2}\right.
\end{array}\right\} \text { Can one achieve T-coercivity? }
$$

Practical T-coercivity-3

- Computations:

$$
\begin{aligned}
|a(v, \mathrm{~T} v)| & =\left|a_{1}\left(v_{1}, v_{1}\right)-a_{2}\left(v_{2}, v_{2}\right)+2 a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq\left|a_{1}\left(v_{1}, v_{1}\right)-a_{2}\left(v_{2}, v_{2}\right)\right|-2\left|a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}\left(v_{2}, v_{2}\right)-2\left|a_{2}\left(v_{2}, R_{1} v_{1}\right)\right|
\end{aligned}
$$

Practical T-coercivity-3

- Computations: let $\eta>0$, apply Young's inequality

$$
\begin{aligned}
|a(v, \mathrm{~T} v)| & =\left|a_{1}\left(v_{1}, v_{1}\right)-a_{2}\left(v_{2}, v_{2}\right)+2 a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq\left|a_{1}\left(v_{1}, v_{1}\right)-a_{2}\left(v_{2}, v_{2}\right)\right|-2\left|a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}\left(v_{2}, v_{2}\right)-2\left|a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}\left(v_{2}, v_{2}\right)+\eta a_{2}\left(v_{2}, v_{2}\right)+\eta^{-1} a_{2}\left(R_{1} v_{1}, R_{1} v_{1}\right) \\
& \geq\left(\sigma_{1}^{-}-\eta^{-1} \sigma_{2}^{+}\left\|R_{1} \mid\right\|^{2}\right)\left\|v_{1}\right\|_{V_{1}}^{2}-(1-\eta) a_{2}\left(v_{2}, v_{2}\right)
\end{aligned}
$$

Practical T-coercivity-3

- Computations: let $\eta>0$, apply Young's inequality

$$
\begin{aligned}
|a(v, \mathrm{~T} v)| & =\left|a_{1}\left(v_{1}, v_{1}\right)-a_{2}\left(v_{2}, v_{2}\right)+2 a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq\left|a_{1}\left(v_{1}, v_{1}\right)-a_{2}\left(v_{2}, v_{2}\right)\right|-2\left|a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}\left(v_{2}, v_{2}\right)-2\left|a_{2}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}\left(v_{2}, v_{2}\right)+\eta a_{2}\left(v_{2}, v_{2}\right)+\eta^{-1} a_{2}\left(R_{1} v_{1}, R_{1} v_{1}\right) \\
& \geq\left(\sigma_{1}^{-}-\eta^{-1} \sigma_{2}^{+}\left\|R_{1} \mid\right\|^{2}\right)\left\|v_{1}\right\|_{V_{1}}^{2}-(1-\eta) a_{2}\left(v_{2}, v_{2}\right)
\end{aligned}
$$

- To obtain $|a(v, \mathrm{~T} v)| \geq \underline{\alpha}(\eta)\|v\|_{V}^{2}$ for some $\eta>0$, one needs

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1}\| \|^{2}
$$

Practical T-coercivity-4

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, Matching $_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Practical T-coercivity-4

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, Matching ${ }_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
$(+)$ One checks easily that $\mathrm{T}^{2}=\mathrm{I}$!

Practical T-coercivity-4

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, $\operatorname{Matching}_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { T } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
$(+)$ One checks easily that $\mathrm{T}^{2}=\mathrm{I}$!

- To obtain $|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2}$, one needs

$$
\frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\| \| R_{2}\| \|^{2}
$$

Practical T-coercivity-4

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, $\operatorname{Matching}_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
$(+)$ One checks easily that $\mathrm{T}^{2}=\mathrm{I}$!

- To obtain $|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2}$, one needs

$$
\frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\| \| R_{2}\| \|^{2}
$$

- Conclusion: to achieve T-coercivity, one needs

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\left(\inf _{R_{1}}| |\left|R_{1}\right| \|\right)^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left(\inf _{R_{2}}| |\left|R_{2}\right| \|\right)^{2}
$$

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$;
define the contrast $\left.\kappa_{\sigma}=\frac{\sigma_{2}}{\sigma_{1}} \in\right]-\infty, 0[$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}=\frac{\sigma_{2}}{\sigma_{1}}$.
- First case: $\sigma_{1} \neq-\sigma_{2}$, or $\kappa_{\sigma} \neq-1$, in a symmetric geometry.

Sample symmetric geometry:

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$;
define the contrast $\kappa_{\sigma}=\frac{\sigma_{2}}{\sigma_{1}}$.
- First case: $\sigma_{1} \neq-\sigma_{2}$, or $\kappa_{\sigma} \neq-1$, in a symmetric geometry.

Let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}, R_{1} v_{1}(x, y)=v_{1}(x,-y)$, a.e. in Ω_{2}.
One finds $\left\|\left\|R_{1} \mid\right\|=1\right.$.
To achieve T-coercivity, one needs $\frac{\sigma_{1}}{\left|\sigma_{2}\right|}>1$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$;
define the contrast $\kappa_{\sigma}=\frac{\sigma_{2}}{\sigma_{1}}$.
- First case: $\sigma_{1} \neq-\sigma_{2}$, or $\kappa_{\sigma} \neq-1$, in a symmetric geometry.

Let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}, R_{1} v_{1}(x, y)=v_{1}(x,-y)$, a.e. in Ω_{2}.
One finds $\left\|\left|\left|R_{1}\right| \|=1\right.\right.$.
To achieve T-coercivity, one needs $\frac{\sigma_{1}}{\left|\sigma_{2}\right|}>1$.
Let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}, R_{2} v_{2}(x, y)=v_{2}(x,-y)$, a.e. in Ω_{1}.
One finds $\left\|\left|R_{2}\right|\right\|=1$.
To achieve T-coercivity, one needs $\frac{\left|\sigma_{2}\right|}{\sigma_{1}}>1$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}=\frac{\sigma_{2}}{\sigma_{1}}$.
- First case: $\sigma_{1} \neq-\sigma_{2}$, or $\kappa_{\sigma} \neq-1$, in a symmetric geometry.

Let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}, R_{1} v_{1}(x, y)=v_{1}(x,-y)$, a.e. in Ω_{2}. One finds $\left\|\left|R_{1}\right|\right\|=1$.
To achieve T-coercivity, one needs $\frac{\sigma_{1}}{\left|\sigma_{2}\right|}>1$.
Let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}, R_{2} v_{2}(x, y)=v_{2}(x,-y)$, a.e. in Ω_{1}.
One finds $\left\|\left|\left|R_{2}\right| \|=1\right.\right.$.
To achieve T-coercivity, one needs $\frac{\left|\sigma_{2}\right|}{\sigma_{1}}>1$.

- Conclusion: \square

Optimality of T-coercivity-2

- Study of an elementary setting:
- piecewise constant coefficient σ.

Optimality of T-coercivity-2

- Study of an elementary setting:
- piecewise constant coefficient σ.
- Second case: $\sigma_{1}=-\sigma_{2}$, or $\kappa_{\sigma}=-1$, in a symmetric geometry.

Sample symmetric geometry:

Optimality of T-coercivity-2

- Study of an elementary setting:
- piecewise constant coefficient σ.
- Second case: $\sigma_{1}=-\sigma_{2}$, or $\kappa_{\sigma}=-1$, in a symmetric geometry.

Let $g \in \mathcal{C}_{0}^{\infty}(\Sigma)$ and solve for $k=1,2$

$$
\begin{cases}\text { Find } U_{k} \in H_{0, \Gamma_{k}}^{1}(\Omega) \text { s.t. } & \\ \Delta U_{k}=0 & \text { in } \Omega_{k} ; \\ U_{k}=g & \text { on } \Sigma .\end{cases}
$$

Define u by $u_{\mid \Omega_{k}}=U_{k}, k=1,2$: Matching $_{\Sigma}\left(u_{\mid \Omega_{1}}, u_{\mid \Omega_{2}}\right)=0$, so $u \in H_{0}^{1}(\Omega)$.

Optimality of T-coercivity-2

- Study of an elementary setting:
- piecewise constant coefficient σ.
- Second case: $\sigma_{1}=-\sigma_{2}$, or $\kappa_{\sigma}=-1$, in a symmetric geometry.

Let $g \in \mathcal{C}_{0}^{\infty}(\Sigma)$ and solve for $k=1,2$

$$
\begin{cases}\text { Find } U_{k} \in H_{0, \Gamma_{k}}^{1}(\Omega) \text { s.t. } & \\ \Delta U_{k}=0 & \text { in } \Omega_{k} \\ U_{k}=g & \text { on } \Sigma .\end{cases}
$$

Define u by $u_{\mid \Omega_{k}}=U_{k}, k=1,2:$ Matching $_{\Sigma}\left(u_{\mid \Omega_{1}}, u_{\mid \Omega_{2}}\right)=0$, so $u \in H_{0}^{1}(\Omega)$.
By symmetry, $u(x,-y)=u(x, y)$ a.e. in Ω : so $\sigma_{1} \frac{\partial u_{1}}{\partial y}=\sigma_{2} \frac{\partial u_{2}}{\partial y}$ on Σ.

Optimality of T-coercivity-2

- Study of an elementary setting:
- piecewise constant coefficient σ.
- Second case: $\sigma_{1}=-\sigma_{2}$, or $\kappa_{\sigma}=-1$, in a symmetric geometry.

Let $g \in \mathcal{C}_{0}^{\infty}(\Sigma)$ and solve for $k=1,2$

$$
\begin{cases}\text { Find } U_{k} \in H_{0, \Gamma_{k}}^{1}(\Omega) \text { s.t. } & \\ \Delta U_{k}=0 & \text { in } \Omega_{k} \\ U_{k}=g & \text { on } \Sigma .\end{cases}
$$

Define u by $u_{\mid \Omega_{k}}=U_{k}, k=1,2:$ Matching $_{\Sigma}\left(u_{\mid \Omega_{1}}, u_{\mid \Omega_{2}}\right)=0$, so $u \in H_{0}^{1}(\Omega)$.
By symmetry, $u(x,-y)=u(x, y)$ a.e. in Ω : so $\sigma_{1} \frac{\partial u_{1}}{\partial y}=\sigma_{2} \frac{\partial u_{2}}{\partial y}$ on Σ.
It follows that $u \in H_{0}^{1}(\Omega)$, with $\operatorname{div} \sigma \operatorname{grad} u=0$ in Ω.

Optimality of T-coercivity-2

- Study of an elementary setting:
- piecewise constant coefficient σ.
- Second case: $\sigma_{1}=-\sigma_{2}$, or $\kappa_{\sigma}=-1$, in a symmetric geometry.

Let $g \in \mathcal{C}_{0}^{\infty}(\Sigma)$ and solve for $k=1,2$

$$
\begin{cases}\text { Find } U_{k} \in H_{0, \Gamma_{k}}^{1}(\Omega) \text { s.t. } & \\ \Delta U_{k}=0 & \text { in } \Omega_{k} \\ U_{k}=g & \text { on } \Sigma .\end{cases}
$$

Define u by $u_{\mid \Omega_{k}}=U_{k}, k=1,2$: Matching $_{\Sigma}\left(u_{\mid \Omega_{1}}, u_{\mid \Omega_{2}}\right)=0$, so $u \in H_{0}^{1}(\Omega)$.
By symmetry, $u(x,-y)=u(x, y)$ a.e. in Ω : so $\sigma_{1} \frac{\partial u_{1}}{\partial y}=\sigma_{2} \frac{\partial u_{2}}{\partial y}$ on Σ.
It follows that $u \in H_{0}^{1}(\Omega)$, with $\operatorname{div} \sigma \operatorname{grad} u=0$ in Ω.

- Conclusion: \square
Problem $\left(V F_{\varphi}\right)$ is ill-posed when $\kappa_{\sigma}=-1$
(Critical case.)

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex

Sample geometry:

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex
3. Interface with a boundary vertex

Sample geometry:

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex
3. Interface with a boundary vertex
4. \mathcal{C}^{1}-class interface

Sample geometry:

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex
3. Interface with a boundary vertex
4. \mathcal{C}^{1}-class interface

- Handle general geometries by localization.

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex
3. Interface with a boundary vertex
4. \mathcal{C}^{1}-class interface

- Handle general geometries by localization.
- Build a partition of unity, and use the T-coercivity results locally.
- A priori estimate: there exists an interval I_{Σ} of $]-\infty, 0\left[\right.$ s.t. if $\kappa_{\sigma} \notin I_{\Sigma}$, then

$$
\exists C>0, \forall v \in H_{0}^{1}(\Omega),\|v\|_{H_{0}^{1}(\Omega)} \leq C\left\{\|\operatorname{div} \sigma \operatorname{grad} v\|_{H^{-1}(\Omega)}+\|v\|_{L^{2}(\Omega)}\right\} .
$$

- Use Peetre's Lemma to conclude.

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex
3. Interface with a boundary vertex
4. \mathcal{C}^{1}-class interface

- Handle general geometries by localization.

$$
\text { If } \kappa_{\sigma} \notin I_{\Sigma} \text {, then Problem }\left(V F_{\varphi}\right) \text { is well-posed in the Fredholm sense. }
$$

e In this case, the associated operator is Fredholm of index 0.

Optimality of T-coercivity-3

- Simple geometries:

1. Symmetric geometry
2. Interface with an interior vertex
3. Interface with a boundary vertex
4. \mathcal{C}^{1}-class interface

- Handle general geometries by localization.

$$
\text { If } \kappa_{\sigma} \notin I_{\Sigma} \text {, then Problem }\left(V F_{\varphi}\right) \text { is well-posed in the Fredholm sense. }
$$

- In this case, the associated operator is Fredholm of index 0.
- The interval I_{Σ} always contains -1 .
- If the interface is \mathcal{C}^{1} without endpoints, then $I_{\Sigma}=\{-1\}$.
- Problem $\left(V F_{E_{z}}\right)$ can be solved similarly.

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

When is it Fredholm of index 0? (use the previous result)

Locally symmetric geometry:
$\kappa_{\sigma} \neq-1$.

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

When is it Fredholm of index 0? (use the previous result)

Right angles:
$\kappa_{\sigma} \notin[-3,-1 / 3]$.

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

When is it Fredholm of index 0? (use the previous result)

Boundary vertices with angles $\pi / 4$ and $3 \pi / 4$:
$\kappa_{\sigma} \notin[-3,-1 / 3]$.

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

When is it not Fredholm? (direct computations: line singularity)

Locally symmetric geometry:
$\kappa_{\sigma}=-1$.

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

When is it not Fredholm? (direct computations: pointwise singularity)

Right angles:
$\left.\kappa_{\sigma} \in\right]-3,-1 / 3[$.

Optimality of T-coercivity-4

- When is the operator
- Fredholm (of index 0);
- or not Fredholm? (Critical case.)

When is it not Fredholm? (direct computations: pointwise singularity)

Boundary vertices with angles $\pi / 4$ and $3 \pi / 4$:
$\left.\kappa_{\sigma} \in\right]-3,-1 / 3[$.

Numerical experiments

- In a symmetric domain, made up of two adjacent squares.
- An exact piecewise smooth solution of Problem $\left(V F_{\varphi}\right)$ is available.
- Two contrasts: $\kappa_{\sigma} \in\{-2,-1.001\}$.
- Discretization using P_{1} Lagrange FE.
- We study below the influence of the meshes.

Numerical experiments

- In a symmetric domain, made up of two adjacent squares.
- An exact piecewise smooth solution of Problem ($V F_{\varphi}$) is available.
- Discretization using P_{1} Lagrange FE.
- We study below the influence of the meshes.
- Contrast $\kappa_{\sigma}=-2$:

Contrast $=-2$

Numerical experiments

- In a symmetric domain, made up of two adjacent squares.
- An exact piecewise smooth solution of Problem $\left(V F_{\varphi}\right)$ is available.
- Discretization using P_{1} Lagrange FE.
- We study below the influence of the meshes.
- Contrast $\kappa_{\sigma}=-1.001$:

Contrast $=-1.001$

Numerical experiments-2

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$).
- Piecewise constant ε, μ.
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [J''05] $\left(\right.$ set in $\left.\boldsymbol{X}_{\varepsilon}(\Omega)=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\}.\right)$

$$
\left\{\begin{aligned}
& \text { Find } \boldsymbol{E}^{\prime} \in \boldsymbol{X}_{\varepsilon}(\Omega) \text { s.t. } \\
& \forall \boldsymbol{F} \in \boldsymbol{X}_{\varepsilon}(\Omega), \quad \int_{\Omega} \mu^{-1}\left(\operatorname{curl} \boldsymbol{E}^{\prime} \cdot\right.\left.\overline{\operatorname{curl} \boldsymbol{F}}+\varepsilon^{-2} \operatorname{div} \varepsilon \boldsymbol{E}^{\prime} \overline{\operatorname{div} \varepsilon \boldsymbol{F}}\right) d \Omega \\
&-\omega^{2} \int_{\Omega} \varepsilon \boldsymbol{E}^{\prime} \cdot \overline{\boldsymbol{F}} d \Omega=\int_{\Omega} \boldsymbol{K} \cdot \overline{\boldsymbol{F}} d \Omega .
\end{aligned}\right.
$$

Numerical experiments-2

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$).
- Piecewise constant ε, μ.
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [J''05] $\left(\right.$ set in $\left.\boldsymbol{X}_{\varepsilon}(\Omega)=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\}.\right)$
"Usual" case: $\omega=4$, $\left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1)$, $\left(\varepsilon_{2}, \mu_{2}\right)=(+1,+1)$, with P_{2} Lagrange FE.

Numerical experiments-2

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$).
- Piecewise constant ε, μ.
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [J''05] $\left(\right.$ set in $\left.\boldsymbol{X}_{\varepsilon}(\Omega)=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\}.\right)$

Numerical experiments-2

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$).
- Piecewise constant ε, μ.
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [Jr'05] $\left(\right.$ set in $\left.\boldsymbol{X}_{\varepsilon}(\Omega)=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\}.\right)$
"Unusual" case: $\omega=4$, $\left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1)$, $\left(\varepsilon_{2}, \mu_{2}\right)=\left(-2,-\frac{1}{2}\right)$, computed electric field (\boldsymbol{E}_{y}^{h}).

Numerical experiments-2

- In the unit cube, split in two halves (with $\left.\Sigma:=\left\{\frac{1}{2}\right\} \times\right] 0,1[\times] 0,1[$).
- Piecewise constant ε, μ.
- An exact piecewise smooth solution of Maxwell's equations is available.
- Discretization of the augmented formulation [Jr'05] $\left(\right.$ set in $\left.\boldsymbol{X}_{\varepsilon}(\Omega)=\left\{\boldsymbol{F} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{F} \in L^{2}(\Omega)\right\}.\right)$

$$
\begin{aligned}
& \text { "Unusual" case: } \omega=4, \\
& \left(\varepsilon_{1}, \mu_{1}\right)=(+1,+1), \\
& \left(\varepsilon_{2}, \mu_{2}\right)=\left(-2,-\frac{1}{2}\right), \\
& \text { computed magnetic field }\left(\boldsymbol{H}_{z}^{h}\right) \text {. }
\end{aligned}
$$

Conclusions/Perspectives

- For the scalar problems:
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], DG-approach [Chung-Jr'11], etc.) ;
- theoretical study of the critical cases (with X. Claeys (ISAE));
- discretization and numerical analysis of the critical cases.

Conclusions/Perspectives

- For the scalar problems:
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], DG-approach [Chung-Jr'11], etc.) ;
- theoretical study of the critical cases (with X. Claeys (ISAE));
- discretization and numerical analysis of the critical cases.
- For the Maxwell problem(s):
- work out the theory of T-coercivity (side results: compact imbedding(s), etc.);
- numerical analysis when T-coercivity applies.

Conclusions/Perspectives

- For the scalar problems:
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], DG-approach [Chung-Jr'11], etc.) ;
- theoretical study of the critical cases (with X. Claeys (ISAE));
- discretization and numerical analysis of the critical cases.
- For the Maxwell problem(s):
- work out the theory of T-coercivity (side results: compact imbedding(s), etc.);
- numerical analysis when T-coercivity applies.
- In the critical cases: are models derived from physics still relevant?
- re-visit models (homogenization, multi-scale numerics, etc.).
(METAMATH Project, submitted to ANR ; coordinator S. Fliss (POEMS)).

