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Motivation

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a
heterogeneous medium like below.

The domain Ω:

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

At a given frequency ω, the (negative) metamaterial is modelled as a material with
real, strictly negative, electric permittivity ε and magnetic permeability µ.
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8

<

:

ε := εeffective(ω) < 0

µ := µeffective(ω) < 0
in a (negative) metamaterial, in some frequency ranges.
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Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a
heterogeneous medium like below.

The domain Ω:

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

8

<

:

ε := εeffective(ω) < 0

µ := µeffective(ω) < 0
in a (negative) metamaterial, in some frequency ranges.

NB. In general, εeffective(ω) = ε′ + ı ε′′, (ε′, ε′′) ∈ R
2, and it can happen that

|ε′′| << |ε′|, so we neglect the imaginary part ; similarly for µeffective(ω).
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Motivation

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a
heterogeneous medium like below.

The domain Ω:

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

Possible practical applications:

perfect lens [Pendry’00], [Maystre-Enoch’04],

photonic traps [Genov-Zhang-Zhang’09], etc.
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Motivation

Goal: Solve numerically a time-harmonic problem in electromagnetism, set in a
heterogeneous medium like below.

The domain Ω:

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

Questions:

Is the problem to be solved well-posed?

How to compute a numerical approximation of the solution?
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Maxwell problem (electric field)
Given ω > 0 and source terms J ∈ L

2(Ω), ̺ ∈ H−1(Ω) (div J − ıω̺ = 0).
8

>

>

>

>

>

<

>

>

>

>

>

:

Find E ∈ L
2(Ω) with curlE ∈ L

2(Ω) s.t.

curl
`

µ−1curlE
´

− ω2εE = ıωJ in Ω ;

div εE = ̺ in Ω ;

E × n = 0 on ∂Ω.
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Given ω > 0 and source terms J ∈ L

2(Ω), ̺ ∈ H−1(Ω) (div J − ıω̺ = 0).
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>
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>

:

Find E ∈ L
2(Ω) with curlE ∈ L

2(Ω) s.t.

curl
`

µ−1curlE
´

− ω2εE = ıωJ in Ω ;

div εE = ̺ in Ω ;

E × n = 0 on ∂Ω.

First, solve (assume that ∂Ω is connected):

(Pϕ)

8

<

:

Find ϕ ∈ H1
0 (Ω) s.t.

div εgradϕ = ̺ in Ω.
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E × n = 0 on ∂Ω.

First, solve (assume that ∂Ω is connected):

(Pϕ)

8

<

:

Find ϕ ∈ H1
0 (Ω) s.t.

div εgradϕ = ̺ in Ω.

Second, set K := ıωJ + ω2εgradϕ, and solve:

(PE)

8

>

>

>

>

>

<

>

>

>

>

>

:

Find E
′ ∈ L

2(Ω) with curlE′ ∈ L
2(Ω) s.t.

curl
`

µ−1curlE′
´

− ω2εE
′ = K in Ω ;

div εE
′ = 0 in Ω ;

E
′ × n = 0 on ∂Ω.

Nice, April 2011 – p.4/21



Maxwell problem (electric field)
Given ω > 0 and source terms J ∈ L
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First, solve (assume that ∂Ω is connected):

(Pϕ)

8
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:

Find ϕ ∈ H1
0 (Ω) s.t.

div εgradϕ = ̺ in Ω.

Second, set K := ıωJ + ω2εgradϕ, and solve:

(PE)

8

>

>

>

>

>

<

>

>

>

>

>

:

Find E
′ ∈ L

2(Ω) with curlE′ ∈ L
2(Ω) s.t.

curl
`

µ−1curlE′
´

− ω2εE
′ = K in Ω ;

div εE
′ = 0 in Ω ;

E
′ × n = 0 on ∂Ω.

The electric field E := E
′ + gradϕ solves the Maxwell problem.
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Maxwell problem (electric field)-2

Classically, one solves equivalent Variational Formulations.
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Maxwell problem (electric field)-2

Classically, one solves equivalent Variational Formulations.

First, in H1
0 (Ω):

(V Fϕ)

8

<

:

Find ϕ ∈ H1
0 (Ω) s.t.

∀ψ ∈ H1
0 (Ω),

Z

Ω
εgradϕ · gradψ dΩ = −〈̺, ψ〉.
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Maxwell problem (electric field)-2

Classically, one solves equivalent Variational Formulations.

First, in H1
0 (Ω):

(V Fϕ)

8

<

:

Find ϕ ∈ H1
0 (Ω) s.t.

∀ψ ∈ H1
0 (Ω),

Z

Ω
εgradϕ · gradψ dΩ = −〈̺, ψ〉.

Second, in H0(curl ; Ω) := {F ∈ L
2(Ω) | curlF ∈ L

2(Ω), F × n|∂Ω = 0}:

(V FE)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Find E
′ ∈ H0(curl ; Ω) s.t.

∀F ∈ H0(curl ; Ω),

Z

Ω
µ−1curlE′ · curlF dΩ

−ω2

Z

Ω
εE

′ · F dΩ =

Z

Ω
K · F dΩ ;

div εE
′ = 0 in Ω.
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Indefinite problems

At the crossing of the
interface, both ε and µ
exhibit a sign-shift.

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2
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exhibit a sign-shift.

n
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Σ
ΩΩ
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1
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The permittivity ε has a sign-shift:

The form (ψ,ψ′) 7→

Z

Ω
εgradψ · gradψ′ dΩ is indefinite.
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In addition, what are the properties of the "electric" functional space

Xε(Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)} ?

Namely, the compact imbedding of Xε(Ω) into L
2(Ω).
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At the crossing of the
interface, both ε and µ
exhibit a sign-shift.

n
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dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

The permeability µ has a sign-shift:

The form (F ,F ′) 7→

Z

Ω
µ−1curlF · curlF ′ dΩ is indefinite.

In addition, what are the properties of the "electric" functional space

Xε(Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)} ?

Namely, the compact imbedding of Xε(Ω) into L
2(Ω): [BonnetBenDhia-Jr-Zwölf’08].

Then (F ,F ′) 7→ ω2

Z

Ω
εF · F ′ dΩ is treated as a compact perturbation term.
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Indefinite problems

At the crossing of the
interface, both ε and µ
exhibit a sign-shift.

n

metamaterial

dielectric

Σ
ΩΩ

ε,µ>0
ε,µ<0

1
2

The permeability µ has a sign-shift:

The form (F ,F ′) 7→

Z

Ω
µ−1curlF · curlF ′ dΩ is indefinite.

In addition, what are the properties of the "electric" functional space

Xε(Ω) := {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)} ?

Namely, the compact imbedding of Xε(Ω) into L
2(Ω): [BonnetBenDhia-Jr-Zwölf’08].

From now on, we focus mainly on the indefiniteness .
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Indefinite problems-2

To fix ideas, we consider Problem (Pϕ), ie. the Variational Formulation

(V Fϕ)

8

<

:

Find ϕ ∈ H1
0 (Ω) s.t.

∀ψ ∈ H1
0 (Ω),

Z

Ω
εgradϕ · gradψ dΩ = −〈̺, ψ〉.
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To fix ideas, we consider Problem (Pϕ), ie. the Variational Formulation

(V Fϕ)

8

<

:

Find ϕ ∈ H1
0 (Ω) s.t.

∀ψ ∈ H1
0 (Ω),

Z

Ω
εgradϕ · gradψ dΩ = −〈̺, ψ〉.

We "simplify" the Problem (PE) by considering the Transverse Magnetic mode.

It is set in an infinite cylinder, Ω⊥ × R. Moreover ∂z · ≡ 0.

The scalar electric field Ez is governed by

(V FEz
)

8

>

>

>

>

<

>

>

>

>

:

Find Ez ∈ H1
0 (Ω⊥) s.t.

∀F ∈ H1
0 (Ω⊥),

Z

Ω⊥

µ−1gradEz · gradF dΩ⊥

−ω2

Z

Ω⊥

εEzF dΩ⊥ = ıω

Z

Ω⊥

JzF dΩ⊥.
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Find Ez ∈ H1
0 (Ω⊥) s.t.

∀F ∈ H1
0 (Ω⊥),

Z

Ω⊥

µ−1gradEz · gradF dΩ⊥

−ω2

Z

Ω⊥

εEzF dΩ⊥ = ıω

Z

Ω⊥

JzF dΩ⊥.

NB. (F,F ′) 7→ ω2

Z

Ω⊥

ε FF ′ dΩ⊥ is obviously a compact perturbation term.
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Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form over V × V ;

f be an element of V ′, the dual space of V .

Nice, April 2011 – p.8/21



Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form over V × V ;

f be an element of V ′, the dual space of V .

Solve the Variational Formulation

(V F )

8

<

:

Find u ∈ V s.t.

∀v ∈ V, a(u, v) = 〈f, v〉.

Nice, April 2011 – p.8/21



Abstract setting

Let

V be a Hilbert space ;
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Solve the Variational Formulation

(V F )

8

<

:

Find u ∈ V s.t.

∀v ∈ V, a(u, v) = 〈f, v〉.

[Hadamard] The Problem (V F ) is well-posed if, and only if, for all f , it has one and
only one solution u, with continuous dependence:

∃C > 0, ∀f ∈ V ′, ‖u‖V ≤ C ‖f‖V ′ .
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Abstract setting

Let

V be a Hilbert space ;

a(·, ·) be a continuous sesquilinear form over V × V ;

f be an element of V ′, the dual space of V .

Solve the Variational Formulation

(V F )

8

<

:

Find u ∈ V s.t.

∀v ∈ V, a(u, v) = 〈f, v〉.

[Hadamard] The Problem (V F ) is well-posed if, and only if, for all f , it has one and
only one solution u, with continuous dependence:

∃C > 0, ∀f ∈ V ′, ‖u‖V ≤ C ‖f‖V ′ .

How can one prove well-posedness?

[Lax-Milgram] OK provided that a(·, ·) is coercive!
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Abstract setting-2

[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v,w)|

‖w‖V

≥ α′ ‖v‖V .

(BNB2) ∀w ∈ V : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.
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[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v,w)|

‖w‖V

≥ α′ ‖v‖V .

(BNB2) ∀w ∈ V : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.

Theorem (Well-posedness) The two assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies conditions (BNB1) and (BNB2).
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(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v,w)|

‖w‖V

≥ α′ ‖v‖V .

(BNB2) ∀w ∈ V : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.

Definition ( T-coercivity) The form a(·, ·) is T-coercive if

∃T ∈ L(V ), bijective,∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V .
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Abstract setting-2

[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v,w)|

‖w‖V

≥ α′ ‖v‖V .

(BNB2) ∀w ∈ V : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.

Definition ( T-coercivity) The form a(·, ·) is T-coercive if

∃T ∈ L(V ), bijective,∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V .

Theorem (Well-posedness) The three assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies conditions (BNB1) and (BNB2).

(iii) the form a(·, ·) is T-coercive.
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Abstract setting-3

Solve the coercive+compact Variational Formulation

(V Fc+c)

8

<

:

Find u ∈ V s.t.

∀v ∈ V, a0(u, v) + c(u, v) = 〈f, v〉 ,

with a0(·, ·) and c(·, ·) two continuous sesquilinear forms over V × V :

(c1) The form a0(·, ·) is T-coercive ;

(c2) The operator C ∈ L(V ) associated to c(·, ·) is compact.
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∀v ∈ V, a0(u, v) + c(u, v) = 〈f, v〉 ,
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(c1) The form a0(·, ·) is T-coercive ;

(c2) The operator C ∈ L(V ) associated to c(·, ·) is compact.

Definition (Uniqueness principle) The Problem (V Fc+c) satisfies a
uniqueness principle if, and only if, f = 0 implies u = 0.
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Abstract setting-3

Solve the coercive+compact Variational Formulation

(V Fc+c)

8

<

:

Find u ∈ V s.t.

∀v ∈ V, a0(u, v) + c(u, v) = 〈f, v〉 ,

with a0(·, ·) and c(·, ·) two continuous sesquilinear forms over V × V :

(c1) The form a0(·, ·) is T-coercive ;

(c2) The operator C ∈ L(V ) associated to c(·, ·) is compact.

Definition (Uniqueness principle) The Problem (V Fc+c) satisfies a
uniqueness principle if, and only if, f = 0 implies u = 0.

Theorem (Well-posedness) Assume that (c1) and (c2) hold, and that the Problem
(V Fc+c) satisfies a uniqueness principle. Then, it is well-posed.

(cf. [Bonnet-Jr-Zwölf’10])
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Abstract setting-3

Solve the coercive+compact Variational Formulation

(V Fc+c)

8

<

:

Find u ∈ V s.t.

∀v ∈ V, a0(u, v) + c(u, v) = 〈f, v〉 ,

with a0(·, ·) and c(·, ·) two continuous sesquilinear forms over V × V :

(c1) The form a0(·, ·) is T-coercive ;

(c2) The operator C ∈ L(V ) associated to c(·, ·) is compact.

Definition (Uniqueness principle) The Problem (V Fc+c) satisfies a
uniqueness principle if, and only if, f = 0 implies u = 0.

Theorem (Well-posedness) Assume that (c1) and (c2) hold, and that the Problem
(V Fc+c) satisfies a uniqueness principle. Then, it is well-posed.

(cf. [Bonnet-Jr-Zwölf’10])

NB. The operator associated to (a0 + c)(·, ·) is Fredholm of index 0 (and injective).
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Practical T-coercivity

In our case (Problem (V Fϕ)):

Ω, Ω1 and Ω2 are domains of R
d, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;
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Practical T-coercivity

In our case (Problem (V Fϕ)):

Ω, Ω1 and Ω2 are domains of R
d, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;
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Practical T-coercivity

In our case (Problem (V Fϕ)):

Ω, Ω1 and Ω2 are domains of R
d, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

Z

Ω
σ grad v · gradw dΩ.
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Practical T-coercivity

In our case (Problem (V Fϕ)):

Ω, Ω1 and Ω2 are domains of R
d, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

Z

Ω
σ grad v · gradw dΩ.

Introduce Vk := {vk ∈ H1(Ωk) | vk|Γk
= 0}, k = 1, 2:

V = {v | v|Ωk
∈ Vk, k = 1, 2, MatchingΣ(v|Ω1

, v|Ω2
) = 0} ,

with MatchingΣ(v1, v2) := v1|Σ − v2|Σ.
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Practical T-coercivity

In our case (Problem (V Fϕ)):

Ω, Ω1 and Ω2 are domains of R
d, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

Z

Ω
σ grad v · gradw dΩ.

Introduce ak(vk, wk) :=

Z

Ωk

σkgrad vk · gradwk dΩ, k = 1, 2:

∀v, w ∈ V, a(v, w) = a1(v|Ω1
, w|Ω1

) + a2(v|Ω2
, w|Ω2

) ;
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Practical T-coercivity

In our case (Problem (V Fϕ)):

Ω, Ω1 and Ω2 are domains of R
d, d ≥ 1: Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 ;

the interface is Σ := Ω1 ∩ Ω2 ; the boundaries are Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 ;

V := H1
0 (Ω) ; the form is a(v, w) :=

Z

Ω
σ grad v · gradw dΩ.

Introduce ak(vk, wk) :=

Z

Ωk

σkgrad vk · gradwk dΩ, k = 1, 2:

∀v, w ∈ V, a(v, w) = a1(v|Ω1
, w|Ω1

) + a2(v|Ω2
, w|Ω2

) ;

∀v1 ∈ V1, σ
−
1 ‖grad v1‖2

L2(Ω1)
≤ +a1(v1, v1) ≤ σ+

1 ‖grad v1‖2
L2(Ω1)

;

∀v2 ∈ V2, σ
−
2 ‖grad v2‖2

L2(Ω2)
≤ −a2(v2, v2) ≤ σ+

2 ‖grad v2‖2
L2(Ω2)

.

NB. We assume 0 < σ−
k

≤ σ+
k
<∞, k = 1, 2.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = I!
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.

T
2 v =

8

<

:

(Tv)1 = v1 in Ω1

−(Tv)2 + 2R1 (Tv)1 = −(−v2 + 2R1 v1) + 2R1 v1 = v2 in Ω2

.
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Practical T-coercivity-2

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = I.

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.

T
2 v =

8

<

:

(Tv)1 = v1 in Ω1

−(Tv)2 + 2R1 (Tv)1 = −(−v2 + 2R1 v1) + 2R1 v1 = v2 in Ω2

.

Can one achieve T-coercivity?
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Practical T-coercivity-3

Computations:

|a(v, Tv)| = |a1(v1, v1) − a2(v2, v2) + 2a2(v2, R1 v1)|

≥ |a1(v1, v1) − a2(v2, v2)| − 2|a2(v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− a2(v2, v2) − 2|a2(v2, R1 v1)|
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Practical T-coercivity-3

Computations: let η > 0, apply Young’s inequality

|a(v, Tv)| = |a1(v1, v1) − a2(v2, v2) + 2a2(v2, R1 v1)|

≥ |a1(v1, v1) − a2(v2, v2)| − 2|a2(v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− a2(v2, v2) − 2|a2(v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− a2(v2, v2) + ηa2(v2, v2) + η−1a2(R1 v1, R1 v1)

≥ (σ−
1 − η−1σ+

2 |||R1|||
2)‖v1‖

2
V1

− (1 − η)a2(v2, v2).
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Practical T-coercivity-3

Computations: let η > 0, apply Young’s inequality

|a(v, Tv)| = |a1(v1, v1) − a2(v2, v2) + 2a2(v2, R1 v1)|

≥ |a1(v1, v1) − a2(v2, v2)| − 2|a2(v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− a2(v2, v2) − 2|a2(v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− a2(v2, v2) + ηa2(v2, v2) + η−1a2(R1 v1, R1 v1)

≥ (σ−
1 − η−1σ+

2 |||R1|||
2)‖v1‖

2
V1

− (1 − η)a2(v2, v2).

To obtain |a(v, Tv)| ≥ α(η) ‖v‖2
V for some η > 0, one needs

σ−
1

σ+
2

> |||R1|||
2.
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Practical T-coercivity-4

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.
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Practical T-coercivity-4

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = I!
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Practical T-coercivity-4

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = I!

To obtain |a(v, Tv)| ≥ α ‖v‖2
V , one needs

σ−
2

σ+
1

> |||R2|||
2.
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Practical T-coercivity-4

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = I!

To obtain |a(v, Tv)| ≥ α ‖v‖2
V , one needs

σ−
2

σ+
1

> |||R2|||
2.

Conclusion: to achieve T-coercivity , one needs

σ−
1

σ+
2

>

„

inf
R1

|||R1|||

«2

or
σ−
2

σ+
1

>

„

inf
R2

|||R2|||

«2

.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1 = σ+

1 = σ1, and σ−
2 = σ+

2 = |σ2| ;

define the contrast κσ =
σ2

σ1
∈] −∞, 0[.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1 = σ+

1 = σ1, and σ−
2 = σ+

2 = |σ2| ;

define the contrast κσ =
σ2

σ1
.

First case: σ1 6= −σ2, or κσ 6= −1, in a symmetric geometry.

Sample symmetric geometry:
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1 = σ+

1 = σ1, and σ−
2 = σ+

2 = |σ2| ;

define the contrast κσ =
σ2

σ1
.

First case: σ1 6= −σ2, or κσ 6= −1, in a symmetric geometry.

Let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, R1v1(x, y) = v1(x,−y), a.e. in Ω2.

One finds |||R1||| = 1.

To achieve T-coercivity, one needs
σ1

|σ2|
> 1.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1 = σ+

1 = σ1, and σ−
2 = σ+

2 = |σ2| ;

define the contrast κσ =
σ2

σ1
.

First case: σ1 6= −σ2, or κσ 6= −1, in a symmetric geometry.

Let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, R1v1(x, y) = v1(x,−y), a.e. in Ω2.

One finds |||R1||| = 1.

To achieve T-coercivity, one needs
σ1

|σ2|
> 1.

Let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, R2v2(x, y) = v2(x,−y), a.e. in Ω1.

One finds |||R2||| = 1.

To achieve T-coercivity, one needs
|σ2|

σ1
> 1.
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Optimality of T-coercivity

Study of an elementary setting:

piecewise constant coefficient σ ;

in this case, σ−
1 = σ+

1 = σ1, and σ−
2 = σ+

2 = |σ2| ;

define the contrast κσ =
σ2

σ1
.

First case: σ1 6= −σ2, or κσ 6= −1, in a symmetric geometry.

Let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, R1v1(x, y) = v1(x,−y), a.e. in Ω2.

One finds |||R1||| = 1.

To achieve T-coercivity, one needs
σ1

|σ2|
> 1.

Let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, R2v2(x, y) = v2(x,−y), a.e. in Ω1.

One finds |||R2||| = 1.

To achieve T-coercivity, one needs
|σ2|

σ1
> 1.

Conclusion: Problem (V Fϕ) is well-posed when κσ 6= −1 .
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Optimality of T-coercivity-2

Study of an elementary setting:

piecewise constant coefficient σ.
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Optimality of T-coercivity-2

Study of an elementary setting:

piecewise constant coefficient σ.

Second case: σ1 = −σ2, or κσ = −1, in a symmetric geometry.

Sample symmetric geometry:
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Optimality of T-coercivity-2

Study of an elementary setting:

piecewise constant coefficient σ.

Second case: σ1 = −σ2, or κσ = −1, in a symmetric geometry.

Let g ∈ C∞
0 (Σ) and solve for k = 1, 2

8

>

>

<

>

>

:

Find Uk ∈ H1
0,Γk

(Ω) s.t.

∆Uk = 0 in Ωk ;

Uk = g on Σ.

Define u by u|Ωk
= Uk, k = 1, 2: MatchingΣ(u|Ω1

, u|Ω2
) = 0, so u ∈ H1

0 (Ω).
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Optimality of T-coercivity-2

Study of an elementary setting:

piecewise constant coefficient σ.

Second case: σ1 = −σ2, or κσ = −1, in a symmetric geometry.

Let g ∈ C∞
0 (Σ) and solve for k = 1, 2

8

>

>

<

>

>

:

Find Uk ∈ H1
0,Γk

(Ω) s.t.

∆Uk = 0 in Ωk ;

Uk = g on Σ.

Define u by u|Ωk
= Uk, k = 1, 2: MatchingΣ(u|Ω1

, u|Ω2
) = 0, so u ∈ H1

0 (Ω).

By symmetry, u(x,−y) = u(x, y) a.e. in Ω: so σ1
∂u1

∂y
= σ2

∂u2

∂y
on Σ.
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Optimality of T-coercivity-2

Study of an elementary setting:

piecewise constant coefficient σ.

Second case: σ1 = −σ2, or κσ = −1, in a symmetric geometry.

Let g ∈ C∞
0 (Σ) and solve for k = 1, 2

8

>

>

<

>

>

:

Find Uk ∈ H1
0,Γk

(Ω) s.t.

∆Uk = 0 in Ωk ;

Uk = g on Σ.

Define u by u|Ωk
= Uk, k = 1, 2: MatchingΣ(u|Ω1

, u|Ω2
) = 0, so u ∈ H1

0 (Ω).

By symmetry, u(x,−y) = u(x, y) a.e. in Ω: so σ1
∂u1

∂y
= σ2

∂u2

∂y
on Σ.

It follows that u ∈ H1
0 (Ω), with div σ gradu = 0 in Ω.
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Optimality of T-coercivity-2

Study of an elementary setting:

piecewise constant coefficient σ.

Second case: σ1 = −σ2, or κσ = −1, in a symmetric geometry.

Let g ∈ C∞
0 (Σ) and solve for k = 1, 2

8

>

>

<

>

>

:

Find Uk ∈ H1
0,Γk

(Ω) s.t.

∆Uk = 0 in Ωk ;

Uk = g on Σ.

Define u by u|Ωk
= Uk, k = 1, 2: MatchingΣ(u|Ω1

, u|Ω2
) = 0, so u ∈ H1

0 (Ω).

By symmetry, u(x,−y) = u(x, y) a.e. in Ω: so σ1
∂u1

∂y
= σ2

∂u2

∂y
on Σ.

It follows that u ∈ H1
0 (Ω), with div σ gradu = 0 in Ω.

Conclusion: Problem (V Fϕ) is ill-posed when κσ = −1 (Critical case.)
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Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

Nice, April 2011 – p.17/21



Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

Sample geometry:
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Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

3. Interface with a boundary vertex

Sample geometry:

Nice, April 2011 – p.17/21



Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

3. Interface with a boundary vertex

4. C1-class interface

Sample geometry:
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Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

3. Interface with a boundary vertex

4. C1-class interface

Handle general geometries by localization.
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Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

3. Interface with a boundary vertex

4. C1-class interface

Handle general geometries by localization.

Build a partition of unity, and use the T-coercivity results locally.

A priori estimate: there exists an interval IΣ of ] −∞, 0[ s.t. if κσ 6∈ IΣ, then

∃C > 0, ∀v ∈ H1
0 (Ω), ‖v‖H1

0
(Ω) ≤ C {‖div σ grad v‖H−1(Ω) + ‖v‖L2(Ω)}.

Use Peetre’s Lemma to conclude.
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Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

3. Interface with a boundary vertex

4. C1-class interface

Handle general geometries by localization.

If κσ 6∈ IΣ, then Problem (V Fϕ) is well-posed in the Fredholm sense.

In this case, the associated operator is Fredholm of index 0.
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Optimality of T-coercivity-3

Simple geometries:

1. Symmetric geometry

2. Interface with an interior vertex

3. Interface with a boundary vertex

4. C1-class interface

Handle general geometries by localization.

If κσ 6∈ IΣ, then Problem (V Fϕ) is well-posed in the Fredholm sense.

In this case, the associated operator is Fredholm of index 0.

The interval IΣ always contains −1.

If the interface is C1 without endpoints, then IΣ = {−1}.

Problem (V FEz
) can be solved similarly.
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Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

Nice, April 2011 – p.18/21



Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

When is it Fredholm of index 0? (use the previous result)

Locally symmetric geometry:
κσ 6= −1.
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Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

When is it Fredholm of index 0? (use the previous result)

Right angles:
κσ 6∈ [−3,−1/3].
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Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

When is it Fredholm of index 0? (use the previous result)

Boundary vertices with
angles π/4 and 3π/4:
κσ 6∈ [−3,−1/3].
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Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

When is it not Fredholm? (direct computations: line singularity)

Locally symmetric geometry:
κσ = −1.
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Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

When is it not Fredholm? (direct computations: pointwise singularity)

Right angles:
κσ ∈] − 3,−1/3[.
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Optimality of T-coercivity-4

When is the operator

Fredholm (of index 0) ;

or not Fredholm? (Critical case.)

When is it not Fredholm? (direct computations: pointwise singularity)

Boundary vertices with
angles π/4 and 3π/4:
κσ ∈] − 3,−1/3[.
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Numerical experiments

In a symmetric domain, made up of two adjacent squares.

An exact piecewise smooth solution of Problem (V Fϕ) is available.

Two contrasts: κσ ∈ {−2,−1.001}.

Discretization using P1 Lagrange FE.

We study below the influence of the meshes.
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Numerical experiments

In a symmetric domain, made up of two adjacent squares.

An exact piecewise smooth solution of Problem (V Fϕ) is available.

Discretization using P1 Lagrange FE.

We study below the influence of the meshes.

Contrast κσ = −2:
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Numerical experiments

In a symmetric domain, made up of two adjacent squares.

An exact piecewise smooth solution of Problem (V Fϕ) is available.

Discretization using P1 Lagrange FE.

We study below the influence of the meshes.

Contrast κσ = −1.001:
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Numerical experiments-2

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

Piecewise constant ε, µ.

An exact piecewise smooth solution of Maxwell’s equations is available.

Discretization of the augmented formulation [Jr’05]

(set in Xε(Ω) = {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)}.)

8

>

>

>

>

<

>

>

>

>

:

Find E
′ ∈ Xε(Ω) s.t.

∀F ∈ Xε(Ω),

Z

Ω
µ−1(curlE′ · curlF + ε−2div εE

′div εF ) dΩ

−ω2

Z

Ω
εE

′ · F dΩ =

Z

Ω
K · F dΩ .
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Numerical experiments-2

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

Piecewise constant ε, µ.

An exact piecewise smooth solution of Maxwell’s equations is available.

Discretization of the augmented formulation [Jr’05]

(set in Xε(Ω) = {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)}.)

"Usual" case: ω = 4,
(ε1, µ1) = (+1,+1),
(ε2, µ2) = (+1,+1),
with P2 Lagrange FE.
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Numerical experiments-2

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

Piecewise constant ε, µ.

An exact piecewise smooth solution of Maxwell’s equations is available.

Discretization of the augmented formulation [Jr’05]

(set in Xε(Ω) = {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)}.)

"Unusual" case: ω = 4,
(ε1, µ1) = (+1,+1),
(ε2, µ2) = (−2,− 1

2
),

with P2 Lagrange FE.
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Numerical experiments-2

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

Piecewise constant ε, µ.

An exact piecewise smooth solution of Maxwell’s equations is available.

Discretization of the augmented formulation [Jr’05]

(set in Xε(Ω) = {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)}.)

"Unusual" case: ω = 4,
(ε1, µ1) = (+1,+1),
(ε2, µ2) = (−2,− 1

2
),

computed electric field (Eh
y ).
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Numerical experiments-2

In the unit cube, split in two halves (with Σ := { 1
2
}×]0, 1[×]0, 1[).

Piecewise constant ε, µ.

An exact piecewise smooth solution of Maxwell’s equations is available.

Discretization of the augmented formulation [Jr’05]

(set in Xε(Ω) = {F ∈ H0(curl ; Ω) |div εF ∈ L2(Ω)}.)

"Unusual" case: ω = 4,
(ε1, µ1) = (+1,+1),
(ε2, µ2) = (−2,− 1

2
),

computed magnetic field (Hh
z ).
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Conclusions/Perspectives

For the scalar problems:

numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf’10],
[Nicaise-Venel’11], DG-approach [Chung-Jr’11], etc.) ;

theoretical study of the critical cases (with X. Claeys (ISAE)) ;

discretization and numerical analysis of the critical cases.
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Conclusions/Perspectives

For the scalar problems:

numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf’10],
[Nicaise-Venel’11], DG-approach [Chung-Jr’11], etc.) ;

theoretical study of the critical cases (with X. Claeys (ISAE)) ;

discretization and numerical analysis of the critical cases.

For the Maxwell problem(s):

work out the theory of T-coercivity (side results: compact imbedding(s), etc.) ;

numerical analysis when T-coercivity applies.
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Conclusions/Perspectives

For the scalar problems:

numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf’10],
[Nicaise-Venel’11], DG-approach [Chung-Jr’11], etc.) ;

theoretical study of the critical cases (with X. Claeys (ISAE)) ;

discretization and numerical analysis of the critical cases.

For the Maxwell problem(s):

work out the theory of T-coercivity (side results: compact imbedding(s), etc.) ;

numerical analysis when T-coercivity applies.

In the critical cases: are models derived from physics still relevant?

re-visit models (homogenization, multi-scale numerics, etc.).

(METAMATH Project, submitted to ANR ; coordinator S. Fliss (POEMS)).
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