Use of explicit inf-sup operators to solve indefinite problems

Patrick Ciarlet
online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, UMR 7231 CNRS-ENSTA-INRIA

Outline

- Well-posedness with the help of explicit inf-sup operators: T-coercivity.
- Numerical approximation and convergence via T-coercivity.
- Helmholtz equation in acoustics.
- Time-harmonic problems in electromagnetics.
- Transmission problems with sign changing coefficients.
- Conclusion.

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation
(VF) Find $u \in V$ s.t. $\forall w \in W, a(u, w)=\langle f, w\rangle$.

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- [Hadamard] The Problem $(V F)$ is well-posed if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$
\exists C>0, \forall f \in W^{\prime},\|u\|_{V} \leq C\|f\|_{W^{\prime}}
$$

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- [Hadamard] The Problem ($V F$) is well-posed if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$
\begin{gathered}
\exists C>0, \forall f \in W^{\prime},\|u\|_{V} \leq C\|f\|_{W^{\prime}} . \\
\text { How can one prove well-posedness? }
\end{gathered}
$$

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- [Hadamard] The Problem ($V F$) is well-posed if, and only if, for all f, it has one and only one solution u, with continuous dependence:

$$
\begin{gathered}
\exists C>0, \forall f \in W^{\prime},\|u\|_{V} \leq C\|f\|_{W^{\prime}} . \\
\text { How can one prove well-posedness? }
\end{gathered}
$$

- [Lax-Milgram] OK provided that $a(\cdot, \cdot)$ is coercive!

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in W:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in W:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Theorem (Well-posedness) The two assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in W:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text {, bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

NB. In other words, the form $\left(v, v^{\prime}\right) \mapsto a\left(v, \mathrm{~T} v^{\prime}\right)$ is coercive on $V \times V$.

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) \quad \forall w \in W:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text {, bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

Abstract setting-2

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{array}{ll}
\left(B N B_{1}\right) & \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha^{\prime}\|v\|_{V} . \\
\left(B N B_{2}\right) & \forall w \in W:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{array}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

- Definition (T-coercivity) The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text {, bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realizes conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$ explicitly.

Abstract setting-3

$$
V=W, \text { case of a hermitian form } a
$$

The previous definition and theorem can be simplified...

Abstract setting-3

$$
V=W \text {, case of a hermitian form } a
$$

The previous definition and theorem can be simplified...

- Definition (T-coercivity) The hermitian form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

Abstract setting-3

$$
V=W \text {, case of a hermitian form } a
$$

The previous definition and theorem can be simplified...

- Definition (T-coercivity) The hermitian form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem ($V F)$ with hermitian form is well-posed;
(ii) the hermitian form $a(\cdot, \cdot)$ satisfies condition $\left(B N B_{1}\right)$.
(iii) the hermitian form $a(\cdot, \cdot)$ is T-coercive.

Numerical approximation

- Conforming discretization:

2 let $\left(V_{h}\right)_{h}$ be finite dimensional vector subspaces of $V\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(V_{h}\right)=+\infty\right)$;

- let $\left(W_{h}\right)_{h}$ be finite dimensional vector subspaces of $W\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(W_{h}\right)=+\infty\right)$.

Aim: solve the Discrete Variational Formulation

$$
(D V F) \quad \text { Find } u_{h} \in V_{h} \text { s.t. } \forall w_{h} \in W_{h}, a\left(u_{h}, w_{h}\right)=\left\langle f, w_{h}\right\rangle .
$$

Numerical approximation

- Conforming discretization:

2 let $\left(V_{h}\right)_{h}$ be finite dimensional vector subspaces of $V\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(V_{h}\right)=+\infty\right)$;

- let $\left(W_{h}\right)_{h}$ be finite dimensional vector subspaces of $W\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(W_{h}\right)=+\infty\right)$.

Aim: solve the Discrete Variational Formulation

$$
(D V F) \quad \text { Find } u_{h} \in V_{h} \text { s.t. } \forall w_{h} \in W_{h}, a\left(u_{h}, w_{h}\right)=\left\langle f, w_{h}\right\rangle .
$$

NB. For simplicity, the discrete forms are assumed to be exact.

Numerical approximation

- Conforming discretization:

2 let $\left(V_{h}\right)_{h}$ be finite dimensional vector subspaces of $V\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(V_{h}\right)=+\infty\right)$;

- let $\left(W_{h}\right)_{h}$ be finite dimensional vector subspaces of $W\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(W_{h}\right)=+\infty\right)$.

Aim: solve the Discrete Variational Formulation

$$
(D V F) \quad \text { Find } u_{h} \in V_{h} \text { s.t. } \forall w_{h} \in W_{h}, a\left(u_{h}, w_{h}\right)=\left\langle f, w_{h}\right\rangle .
$$

- [Babuska-Brezzi] Introduce the uniform discrete inf-sup condition

$$
(U D I S C) \quad \exists \alpha_{\dagger}>0, \forall h>0, \forall v_{h} \in V_{h}, \sup _{w_{h} \in W_{h} \backslash\{0\}} \frac{\left|a\left(v_{h}, w_{h}\right)\right|}{\left\|w_{h}\right\|_{W}} \geq \alpha_{\dagger}\left\|v_{h}\right\|_{V} .
$$

Numerical approximation

- Conforming discretization:

2 let $\left(V_{h}\right)_{h}$ be finite dimensional vector subspaces of $V\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(V_{h}\right)=+\infty\right)$;

- let $\left(W_{h}\right)_{h}$ be finite dimensional vector subspaces of $W\left(\lim _{h \rightarrow 0} \operatorname{dim}\left(W_{h}\right)=+\infty\right)$.

Aim: solve the Discrete Variational Formulation

$$
(D V F) \quad \text { Find } u_{h} \in V_{h} \text { s.t. } \forall w_{h} \in W_{h}, a\left(u_{h}, w_{h}\right)=\left\langle f, w_{h}\right\rangle .
$$

- [Babuska-Brezzi] Introduce the uniform discrete inf-sup condition

$$
(\text { UDISC }) \quad \exists \alpha_{\dagger}>0, \forall h>0, \forall v_{h} \in V_{h}, \sup _{w_{h} \in W_{h} \backslash\{0\}} \frac{\left|a\left(v_{h}, w_{h}\right)\right|}{\left\|w_{h}\right\|_{W}} \geq \alpha_{\dagger}\left\|v_{h}\right\|_{V} .
$$

- Definition (T_{h}-coercivity) The form $a(\cdot, \cdot)$ is uniformly T_{h}-coercive if

$$
\begin{aligned}
\exists \alpha^{\star}, \beta^{\star}>0, \forall h>0, \exists \mathrm{~T}_{h} \in & \mathcal{L}(\\
& \left.V_{h}, W_{h}\right), \forall v_{h} \in V_{h}, \\
& \left|a\left(v_{h}, \mathrm{~T}_{h} v_{h}\right)\right| \geq \alpha^{\star}\left\|v_{h}\right\|_{V}^{2} \text { and }\left|\left|\left|\mathrm{T}_{h}\right|\right|\right| \leq \beta^{\star} .
\end{aligned}
$$

Numerical approximation-2

- Theorem (approximation error) The three assertions below are equivalent:
(i) Problems $(D V F)$ are well-posed with uniform continuous dependence;
(ii) the form $a(\cdot, \cdot)$ satisfies the uniform discrete inf-sup condition (UDISC);
(iii) the form $a(\cdot, \cdot)$ is uniformly T_{h}-coercive.

If one of these conditions is satisfied, the error $\left\|u-u_{h}\right\|_{V}$ is bounded by

$$
\text { (Strang) } \quad\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V}
$$

with C independent of f and h.

Numerical approximation-2

- Theorem (approximation error) The three assertions below are equivalent:
(i) Problems $(D V F)$ are well-posed with uniform continuous dependence;
(ii) the form $a(\cdot, \cdot)$ satisfies the uniform discrete inf-sup condition (UDISC);
(iii) the form $a(\cdot, \cdot)$ is uniformly T_{h}-coercive.

If one of these conditions is satisfied, the error $\left\|u-u_{h}\right\|_{V}$ is bounded by

$$
\text { (Strang) } \quad\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V}
$$

with C independent of f and h.

- Proposition (T_{h}-coercivity)

Assume

- $\exists \mathrm{T} \in \mathcal{L}(V, W)$, bijective, such that $\left(v, v^{\prime}\right) \mapsto a\left(v, \mathrm{~T} v^{\prime}\right)$ is coercive on $V \times V$;
- $\exists\left(\mathrm{T}_{h}\right)_{h}, \mathrm{~T}_{h} \in \mathcal{L}\left(V_{h}, W_{h}\right)$ s.t. $\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\| \|_{W}}{\left\|v_{h}\right\|_{V}}\right)=0$.

Then, the form $a(\cdot, \cdot)$ is uniformly T_{h}-coercive for h small enough.

Numerical approximation-2

- Theorem (approximation error) The three assertions below are equivalent:
(i) Problems $(D V F)$ are well-posed with uniform continuous dependence;
(ii) the form $a(\cdot, \cdot)$ satisfies the uniform discrete inf-sup condition (UDISC);
(iii) the form $a(\cdot, \cdot)$ is uniformly T_{h}-coercive.

If one of these conditions is satisfied, the error $\left\|u-u_{h}\right\|_{V}$ is bounded by

$$
\text { (Strang) } \quad\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V}
$$

with C independent of f and h.

- Proposition (T_{h}-coercivity)

Assume

- $\exists \mathrm{T} \in \mathcal{L}(V, W)$, bijective, such that $\left(v, v^{\prime}\right) \mapsto a\left(v, \mathrm{~T} v^{\prime}\right)$ is coercive on $V \times V$;
- $\exists\left(\mathrm{T}_{h}\right)_{h}, \mathrm{~T}_{h} \in \mathcal{L}\left(V_{h}, W_{h}\right)$ s.t. $\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\| \|_{W}}{\left\|v_{h}\right\|_{V}}\right)=0$.

Then, the form $a(\cdot, \cdot)$ is uniformly T_{h}-coercive for h small enough.

- Similar approach, see [Buffa-Costabel-Schwab'02] for BEM.
- Non-conforming discretization, see [Chung-Jr'1x] for DG.

Helmholtz equation in acoustics

- Consider a bounded domain Ω of \mathbb{R}^{d}, with $d=1,2,3$.

We study the classical problem

$$
\left\{\begin{array}{l}
\text { Find } u \in H^{1}(\Omega) \text { such that } \\
\operatorname{div}(\sigma \nabla u)+\omega^{2} \eta u=f \text { in } \Omega \\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

- Above, f is a source, $\omega>0$ is the given pulsation.
- $\sigma, \eta \in L^{\infty}(\Omega)$, and $\exists \sigma_{-}, \eta_{-}>0$ such that $\sigma>\sigma_{-}$and $\eta>\eta_{-}$a.e. in Ω. NB. Other boundary conditions are possible...

Helmholtz equation in acoustics

- Consider a bounded domain Ω of \mathbb{R}^{d}, with $d=1,2,3$.

We study the classical problem

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\int_{\Omega} \sigma \nabla u \cdot \nabla v d \Omega-\omega^{2} \int_{\Omega} \eta u v d \Omega=-\langle f, v\rangle, \forall v \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

e Above, $f \in H^{-1}(\Omega)$.

Helmholtz equation in acoustics

- Consider a bounded domain Ω of \mathbb{R}^{d}, with $d=1,2,3$.

We study the classical problem

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\int_{\Omega} \sigma \nabla u \cdot \nabla v d \Omega-\omega^{2} \int_{\Omega} \eta u v d \Omega=-\langle f, v\rangle, \forall v \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

- Within our framework:
- $V=W=H_{0}^{1}(\Omega)$.
- $a^{a c}(v, w)=\int_{\Omega}\left(\sigma \nabla v \cdot \nabla w-\omega^{2} \eta v w\right) d \Omega$.

$$
\text { How can one achieve T-coercivity of the form } a^{a c}(\cdot, \cdot) ?
$$

Helmholtz equation in acoustics

- Consider a bounded domain Ω of \mathbb{R}^{d}, with $d=1,2,3$. We study the classical problem

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\int_{\Omega} \sigma \nabla u \cdot \nabla v d \Omega-\omega^{2} \int_{\Omega} \eta u v d \Omega=-\langle f, v\rangle, \forall v \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

- Within our framework:
- $V=W=H_{0}^{1}(\Omega)$.
- $a^{a c}(v, w)=\int_{\Omega}\left(\sigma \nabla v \cdot \nabla w-\omega^{2} \eta v w\right) d \Omega$.

$$
\text { How can one achieve T-coercivity of the form } a^{a c}(\cdot, \cdot) \text { ? }
$$

- Choose the norms:
- $v \mapsto\|v\|_{0}:=\left(\int_{\Omega} \eta v^{2} d \Omega\right)^{1 / 2}$ in $L^{2}(\Omega)$.
e $v \mapsto\|v\|_{1}:=\left(\int_{\Omega} \eta v^{2} d \Omega+\int_{\Omega} \sigma|\nabla v|^{2} d \Omega\right)^{1 / 2}$ in $H^{1}(\Omega)$.

Helmholtz equation in acoustics-2

- Spectral Theorem: $\exists\left(v_{\ell}\right)_{\ell \geq 0}$, a Hilbert basis of $H_{0}^{1}(\Omega)$ made up of eigenfunctions

$$
\left\{\begin{array}{l}
\text { Find }\left(v_{\ell}, \lambda_{\ell}\right) \in H_{0}^{1}(\Omega) \times \mathbb{R} \text { such that } v_{\ell} \neq 0 \text { and } \\
\int_{\Omega} \sigma \nabla v_{\ell} \cdot \nabla w d \Omega=\lambda_{\ell} \int_{\Omega} \eta v_{\ell} w d \Omega, \forall w \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

In addition

- $\left(v_{\ell}\right)_{\ell \geq 0}$ is also an orthogonal basis of $L^{2}(\Omega)$;
- all eigenvalues are of finite multiplicity;
- $\lambda_{0}>0$, and $\lim _{\ell \rightarrow \infty} \lambda_{\ell}=+\infty$.

NB. The eigenpairs are ordered by increasing values of the eigenvalues.

Helmholtz equation in acoustics-2

- Spectral Theorem: $\exists\left(v_{\ell}\right)_{\ell \geq 0}$, a Hilbert basis of $H_{0}^{1}(\Omega)$ made up of eigenfunctions

$$
\left\{\begin{array}{l}
\text { Find }\left(v_{\ell}, \lambda_{\ell}\right) \in H_{0}^{1}(\Omega) \times \mathbb{R} \text { such that } v_{\ell} \neq 0 \text { and } \\
\int_{\Omega} \sigma \nabla v_{\ell} \cdot \nabla w d \Omega=\lambda_{\ell} \int_{\Omega} \eta v_{\ell} w d \Omega, \forall w \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

- Choice of $\mathrm{T}^{a c}$:

Let $\ell_{\max }$ denote the largest index $\ell \geq 0$ such that $\lambda_{\ell}<\omega^{2}$. Introduce:

- $V^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\text {max }}}\left(v_{\ell}\right)$, a finite dimensional vector subspace of $H_{0}^{1}(\Omega)$;
e the orthogonal projection operator P^{-}from $H_{0}^{1}(\Omega)$ to V^{-}.
NB. When ω^{2} is smaller than $\lambda_{0}, \ell_{\max }=-1, V^{-}=\{0\}$ and $\mathrm{P}^{-}=0 \ldots$

Helmholtz equation in acoustics-2

- Spectral Theorem: $\exists\left(v_{\ell}\right)_{\ell \geq 0}$, a Hilbert basis of $H_{0}^{1}(\Omega)$ made up of eigenfunctions

$$
\left\{\begin{array}{l}
\text { Find }\left(v_{\ell}, \lambda_{\ell}\right) \in H_{0}^{1}(\Omega) \times \mathbb{R} \text { such that } v_{\ell} \neq 0 \text { and } \\
\int_{\Omega} \sigma \nabla v_{\ell} \cdot \nabla w d \Omega=\lambda_{\ell} \int_{\Omega} \eta v_{\ell} w d \Omega, \forall w \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

- Choice of $\mathrm{T}^{a c}$:

Let $\ell_{\max }$ denote the largest index $\ell \geq 0$ such that $\lambda_{\ell}<\omega^{2}$. Introduce:

- $V^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\text {max }}}\left(v_{\ell}\right)$, a finite dimensional vector subspace of $H_{0}^{1}(\Omega)$;
e the orthogonal projection operator P^{-}from $H_{0}^{1}(\Omega)$ to V^{-}.
NB. When ω^{2} is smaller than $\lambda_{0}, \ell_{\max }=-1, V^{-}=\{0\}$ and $\mathrm{P}^{-}=0 \ldots$
Define $\mathrm{T}^{a c}:=\mathrm{I}_{H_{0}^{1}(\Omega)}-2 \mathrm{P}^{-}$:

$$
\mathrm{T}^{a c} v_{\ell}:=\left\{\begin{array}{l}
-v_{\ell} \text { if } 0 \leq \ell \leq \ell_{\max } \\
+v_{\ell} \text { if } \ell>\ell_{\max }
\end{array}\right.
$$

Helmholtz equation in acoustics-2

- Spectral Theorem: $\exists\left(v_{\ell}\right)_{\ell \geq 0}$, a Hilbert basis of $H_{0}^{1}(\Omega)$ made up of eigenfunctions

$$
\left\{\begin{array}{l}
\text { Find }\left(v_{\ell}, \lambda_{\ell}\right) \in H_{0}^{1}(\Omega) \times \mathbb{R} \text { such that } v_{\ell} \neq 0 \text { and } \\
\int_{\Omega} \sigma \nabla v_{\ell} \cdot \nabla w d \Omega=\lambda_{\ell} \int_{\Omega} \eta v_{\ell} w d \Omega, \forall w \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

- Choice of $\mathrm{T}^{a c}$:

Let $\ell_{\max }$ denote the largest index $\ell \geq 0$ such that $\lambda_{\ell}<\omega^{2}$. Introduce:

- $V^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\max }}\left(v_{\ell}\right)$, a finite dimensional vector subspace of $H_{0}^{1}(\Omega)$;
e the orthogonal projection operator P^{-}from $H_{0}^{1}(\Omega)$ to V^{-}.
NB. When ω^{2} is smaller than $\lambda_{0}, \ell_{\max }=-1, V^{-}=\{0\}$ and $\mathrm{P}^{-}=0 \ldots$
Define $\mathrm{T}^{a c}:=\mathrm{I}_{H_{0}^{1}(\Omega)}-2 \mathrm{P}^{-}$.
- Proposition $a^{a c}:(v, w) \mapsto \int_{\Omega}\left(\sigma \nabla v \cdot \nabla w-\omega^{2} \eta v w\right) d \Omega$ is T-coercive:

$$
\forall v \in H_{0}^{1}(\Omega),\left|a^{a c}\left(v, \mathrm{~T}^{a c} v\right)\right| \geq \underline{\alpha}\|v\|_{V}^{2}, \quad \text { with } \underline{\alpha}:=\min _{\ell \geq 0}\left|\frac{\lambda_{\ell}-\omega^{2}}{1+\lambda_{\ell}}\right| .
$$

Helmholtz equation in acoustics-3

- Conforming discretization: Lagrange finite elements $\Longrightarrow\left(V_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a^{a c}\left(u_{h}, v_{h}\right)=-\left\langle f, v_{h}\right\rangle, \forall v_{h} \in V_{h} .
$$

How can one achieve the uniform T_{h}-coercivity of the form $a^{a c}(\cdot, \cdot)$?

Helmholtz equation in acoustics-3

- Conforming discretization: Lagrange finite elements $\Longrightarrow\left(V_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a^{a c}\left(u_{h}, v_{h}\right)=-\left\langle f, v_{h}\right\rangle, \forall v_{h} \in V_{h} .
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{a c}(\cdot, \cdot) \text { ? }
$$

- Idea (simple!): Build a suitable approximation of V^{-}in V_{h}. Choose approximations $\left(v_{\ell, h}\right)_{0 \leq \ell \leq \ell_{\text {max }}}$ of the basis vectors $\left(v_{\ell}\right)_{0 \leq \ell \leq \ell_{\text {max }}}$, and set

$$
V_{h}^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\max }}\left(v_{\ell, h}\right) .
$$

Helmholtz equation in acoustics-3

- Conforming discretization: Lagrange finite elements $\Longrightarrow\left(V_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a^{a c}\left(u_{h}, v_{h}\right)=-\left\langle f, v_{h}\right\rangle, \forall v_{h} \in V_{h} .
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{a c}(\cdot, \cdot) \text { ? }
$$

- Idea (simple!): Build a suitable approximation of V^{-}in V_{h}. Because V^{-}is finite dimensional, one can find, for h small enough, a sequence of orthonormal families $\left(v_{\ell, h}\right)_{0 \leq \ell \leq \ell_{\max }, h}$ and a uniform bound $\delta\left(\lim _{h \rightarrow 0} \delta(h)=0\right)$ s.t.

$$
\left\|v_{\ell}-v_{\ell, h}\right\|_{1} \leq \delta(h), 0 \leq \ell \leq \ell_{\max }, \text { for } h \text { small enough. }
$$

Helmholtz equation in acoustics-3

- Conforming discretization: Lagrange finite elements $\Longrightarrow\left(V_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a^{a c}\left(u_{h}, v_{h}\right)=-\left\langle f, v_{h}\right\rangle, \forall v_{h} \in V_{h} .
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{a c}(\cdot, \cdot) ?
$$

- Idea (simple!): Build a suitable approximation of V^{-}in V_{h}. Because V^{-}is finite dimensional, one can find, for h small enough, a sequence of orthonormal families $\left(v_{\ell, h}\right)_{0 \leq \ell \leq \ell_{\max }, h}$ and a uniform bound $\delta\left(\lim _{h \rightarrow 0} \delta(h)=0\right)$ s.t.

$$
\left\|v_{\ell}-v_{\ell, h}\right\|_{1} \leq \delta(h), 0 \leq \ell \leq \ell_{\max }, \text { for } h \text { small enough. }
$$

- Introduce:
- the orthogonal projection operator P_{h}^{-}from V_{h} to $V_{h}^{-}=\operatorname{span}_{0 \leq \ell \leq \ell_{\text {max }}}\left(v_{\ell, h}\right)$;
- the operator $\mathrm{T}_{h}^{a c}:=\mathrm{I}_{V_{h}}-2 \mathrm{P}_{h}^{-}$of $\mathcal{L}\left(V_{h}\right)$.

Helmholtz equation in acoustics-3

- Conforming discretization: Lagrange finite elements $\Longrightarrow\left(V_{h}\right)_{h} \ldots$

The Discrete Variational Formulation writes:

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a^{a c}\left(u_{h}, v_{h}\right)=-\left\langle f, v_{h}\right\rangle, \forall v_{h} \in V_{h} .
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{a c}(\cdot, \cdot) ?
$$

- Idea (simple!): Build a suitable approximation of V^{-}in V_{h}.

Because V^{-}is finite dimensional, one can find, for h small enough, a sequence of orthonormal families $\left(v_{\ell, h}\right)_{0 \leq \ell \leq \ell_{\max }, h}$ and a uniform bound $\delta\left(\lim _{h \rightarrow 0} \delta(h)=0\right)$ s.t.

$$
\left\|v_{\ell}-v_{\ell, h}\right\|_{1} \leq \delta(h), 0 \leq \ell \leq \ell_{\max }, \text { for } h \text { small enough. }
$$

- Introduce:
- the orthogonal projection operator P_{h}^{-}from V_{h} to $V_{h}^{-}=\operatorname{span}_{0 \leq \ell \leq \ell_{\text {max }}}\left(v_{\ell, h}\right)$;
- the operator $\mathrm{T}_{h}^{a c}:=\mathrm{I}_{V_{h}}-2 \mathrm{P}_{h}^{-}$of $\mathcal{L}\left(V_{h}\right)$.
- Proposition There holds $\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}^{a c}-\mathrm{T}^{a c}\right)\left(v_{h}\right)\right\|_{1}}{\left\|v_{h}\right\|_{1}}\right)=0$. Hence, the discrete solution u_{h} converges to u, with a rate governed by (Strang).

Time-harmonic problem in EM-ics

- Consider a bounded domain Ω of \mathbb{R}^{3}.

We study the classical problem

$$
\left\{\begin{array}{l}
\text { Find } \boldsymbol{e} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { such that } \\
-\omega^{2} \varepsilon \boldsymbol{e}+\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{e}\right)=\boldsymbol{f} \text { in } \Omega \\
\boldsymbol{e} \times \boldsymbol{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

- Above, \boldsymbol{f} is a source, $\omega>0$ is the given pulsation.
- $\varepsilon, \mu \in L^{\infty}(\Omega)$, and $\exists \varepsilon_{-}, \mu_{-}>0$ such that $\varepsilon>\varepsilon_{-}$and $\mu>\mu_{-}$a.e. in Ω. NB. Other boundary conditions are possible...

Time-harmonic problem in EM-ics

- Consider a bounded domain Ω of \mathbb{R}^{3}.

We study the classical problem
$\left\{\begin{array}{l}\text { Find } \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{e} \cdot \operatorname{curl} \boldsymbol{v} d \Omega-\omega^{2} \int_{\Omega} \varepsilon \boldsymbol{e} \cdot \boldsymbol{v} d \Omega=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d \Omega, \forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .\end{array}\right.$

- Above, $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)$.

Time-harmonic problem in EM-ics

- Consider a bounded domain Ω of \mathbb{R}^{3}.

We study the classical problem
$\left\{\begin{array}{l}\text { Find } \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{e} \cdot \operatorname{curl} \boldsymbol{v} d \Omega-\omega^{2} \int_{\Omega} \varepsilon \boldsymbol{e} \cdot \boldsymbol{v} d \Omega=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d \Omega, \forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .\end{array}\right.$

- Within our framework:
- $V=W=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$.
- $a^{E M}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega}\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w}-\omega^{2} \varepsilon \boldsymbol{v} \cdot \boldsymbol{w}\right) d \Omega$.

$$
\text { How can one achieve T-coercivity of the form } a^{E M}(\cdot, \cdot) \text { ? }
$$

Time-harmonic problem in EM-ics

- Consider a bounded domain Ω of \mathbb{R}^{3}.

We study the classical problem
$\left\{\begin{array}{l}\text { Find } \boldsymbol{e} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{e} \cdot \operatorname{curl} \boldsymbol{v} d \Omega-\omega^{2} \int_{\Omega} \varepsilon \boldsymbol{e} \cdot \boldsymbol{v} d \Omega=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d \Omega, \forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .\end{array}\right.$

- Within our framework:
- $V=W=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$.
- $a^{E M}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega}\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w}-\omega^{2} \varepsilon \boldsymbol{v} \cdot \boldsymbol{w}\right) d \Omega$.

$$
\text { How can one achieve T-coercivity of the form } a^{E M}(\cdot, \cdot) \text { ? }
$$

- Choose the norms:
- $\boldsymbol{v} \mapsto\|\boldsymbol{v}\|_{0}:=\left(\int_{\Omega} \varepsilon|\boldsymbol{v}|^{2} d \Omega\right)^{1 / 2}$ in $\boldsymbol{L}^{2}(\Omega)$.
- $\boldsymbol{v} \mapsto\|\boldsymbol{v}\|_{\text {curl }}:=\left(\int_{\Omega} \varepsilon|\boldsymbol{v}|^{2} d \Omega+\int_{\Omega} \mu^{-1}|\operatorname{curl} \boldsymbol{v}|^{2} d \Omega\right)^{1 / 2}$ in $\boldsymbol{H}(\mathbf{c u r l} ; \Omega)$.

Time-harmonic problem in EM-ics-2

- DIFFICULTY: the embedding of $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is not compact! Hence, the spectral Theorem can not be applied "as is"...

Time-harmonic problem in EM-ics-2

- DIFFICULTY: the embedding of $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is not compact! Hence, the spectral Theorem can not be applied "as is"...
- Proposition There holds the decomposition

$$
\begin{aligned}
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)= & \boldsymbol{G}^{\perp_{\text {curl }}} \boldsymbol{W}_{\varepsilon} \\
\text { where } & \boldsymbol{G}:=\nabla H_{0}^{1}(\Omega), \boldsymbol{W}_{\varepsilon}:=\left\{\boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega): \operatorname{div}(\varepsilon \boldsymbol{w})=0\right\} .
\end{aligned}
$$

Time-harmonic problem in EM-ics-2

- DIFFICULTY: the embedding of $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is not compact! Hence, the spectral Theorem can not be applied "as is"...
- Proposition There holds the decomposition

$$
\begin{aligned}
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)= & \boldsymbol{G}^{\perp_{\text {curl }}}{ }_{\oplus} \boldsymbol{W}_{\varepsilon} \\
\text { where } & \boldsymbol{G}:=\nabla H_{0}^{1}(\Omega), \boldsymbol{W}_{\varepsilon}:=\left\{\boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega): \operatorname{div}(\varepsilon \boldsymbol{w})=0\right\} .
\end{aligned}
$$

- Idea: one can try and build two Hilbert bases:

2 one for \boldsymbol{G} (cf. acoustics section): $\left(\boldsymbol{e}_{\ell}\right)_{\ell<0}$, with $\boldsymbol{e}_{\ell}:=\nabla v_{-(1+\ell)}$ for $\ell<0$;

- one for $\boldsymbol{W}_{\varepsilon}$.

Time-harmonic problem in EM-ics-2

- DIFFICULTY: the embedding of $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is not compact! Hence, the spectral Theorem can not be applied "as is"...
- Proposition There holds the decomposition

$$
\begin{aligned}
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)= & \boldsymbol{G}^{\perp_{\text {curl }}}{ }_{\oplus} \boldsymbol{W}_{\varepsilon} \\
\text { where } & \boldsymbol{G}:=\nabla H_{0}^{1}(\Omega), \boldsymbol{W}_{\varepsilon}:=\left\{\boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega): \operatorname{div}(\varepsilon \boldsymbol{w})=0\right\} .
\end{aligned}
$$

$\left(\boldsymbol{e}_{\ell}\right)_{\ell<0}$ Hilbert basis of \boldsymbol{G}, with $\boldsymbol{e}_{\ell}:=\nabla v_{-(1+\ell)}$ for $\ell<0$.

- Theorem [Weber'80] $\boldsymbol{W}_{\varepsilon}$ is compactly embedded into $\boldsymbol{L}^{2}(\Omega)$.
- DIFFICULTY: $\boldsymbol{W}_{\varepsilon}$ is not dense in $\boldsymbol{L}^{2}(\Omega)$.

Time-harmonic problem in EM-ics-2

- DIFFICULTY: the embedding of $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is not compact! Hence, the spectral Theorem can not be applied "as is"...
- Proposition There holds the decomposition

$$
\begin{aligned}
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)= & \boldsymbol{G}^{\perp_{\text {curl }}} \boldsymbol{W}_{\varepsilon} \\
\text { where } & \boldsymbol{G}:=\nabla H_{0}^{1}(\Omega), \boldsymbol{W}_{\varepsilon}:=\left\{\boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega): \operatorname{div}(\varepsilon \boldsymbol{w})=0\right\} .
\end{aligned}
$$

$\left(\boldsymbol{e}_{\ell}\right)_{\ell<0}$ Hilbert basis of \boldsymbol{G}, with $\boldsymbol{e}_{\ell}:=\nabla v_{-(1+\ell)}$ for $\ell<0$.

- Theorem [Weber'80] $\boldsymbol{W}_{\varepsilon}$ is compactly embedded into $\boldsymbol{L}^{2}(\Omega)$.
- DIFFICULTY: $\boldsymbol{W}_{\varepsilon}$ is not dense in $\boldsymbol{L}^{2}(\Omega)$.
- New pivot space: $\boldsymbol{H}(\operatorname{div} \varepsilon 0 ; \Omega):=\{\boldsymbol{w} \in \boldsymbol{H}(\operatorname{div} \varepsilon ; \Omega): \operatorname{div}(\varepsilon \boldsymbol{w})=0\}$.
(+) $\boldsymbol{W}_{\varepsilon}$ is compactly embedded into $\boldsymbol{H}(\operatorname{div} \varepsilon 0 ; \Omega)$;
(+) one can prove that $\boldsymbol{W}_{\varepsilon}$ is dense in $\boldsymbol{H}(\operatorname{div} \varepsilon 0 ; \Omega)$.

Time-harmonic problem in EM-ics-2

- DIFFICULTY: the embedding of $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is not compact! Hence, the spectral Theorem can not be applied "as is"...
- Proposition There holds the decomposition

$$
\begin{aligned}
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)= & \boldsymbol{G}^{\perp_{\text {curl }}}{ }_{\oplus} \boldsymbol{W}_{\varepsilon} \\
\text { where } & \boldsymbol{G}:=\nabla H_{0}^{1}(\Omega), \boldsymbol{W}_{\varepsilon}:=\left\{\boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega): \operatorname{div}(\varepsilon \boldsymbol{w})=0\right\} .
\end{aligned}
$$

$\left(\boldsymbol{e}_{\ell}\right)_{\ell<0}$ Hilbert basis of \boldsymbol{G}, with $\boldsymbol{e}_{\ell}:=\nabla v_{-(1+\ell)}$ for $\ell<0$.

- Spectral Theorem: $\exists\left(\boldsymbol{e}_{\ell}\right)_{\ell \geq 0}$ a Hilbert basis of $\boldsymbol{W}_{\varepsilon}$ made up of eigenfunctions

$$
\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{e}_{\ell}, \mu_{\ell}\right) \in \boldsymbol{W}_{\varepsilon} \times \mathbb{R} \text { such that } \boldsymbol{e}_{\ell} \neq 0 \text { and } \\
\int_{\Omega}\left(\varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w}+\mu^{-1} \operatorname{curl} \boldsymbol{e}_{\ell} \cdot \operatorname{curl} \boldsymbol{w}\right) d \Omega=\left(1+\mu_{\ell}\right) \int_{\Omega} \varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w} d \Omega, \forall \boldsymbol{w} \in \boldsymbol{W}_{\varepsilon} .
\end{array}\right.
$$

- all eigenvalues are of finite multiplicity;
- $\mu_{\ell}=0$ occurs K times, with $K+1$ number of c.c. of $\partial \Omega$, and $\lim _{\ell \rightarrow \infty} \mu_{\ell}=+\infty$. NB. The eigenpairs are ordered by increasing values of the eigenvalues.

Time-harmonic problem in EM-ics-3

- Conclusion: $\left(\boldsymbol{e}_{\ell}\right)_{\ell}$ is a Hilbert basis of $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ such that

$$
\forall \ell, \exists \mu_{\ell} \geq 0,\left(\boldsymbol{e}_{\ell}, \boldsymbol{w}\right)_{\mathbf{c u r l}}=\left(1+\mu_{\ell}\right) \int_{\Omega} \varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w} d \Omega, \forall \boldsymbol{w} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) .
$$

- For $\ell<0$: $\boldsymbol{e}_{\ell} \in \boldsymbol{G}$ and $\mu_{\ell}=0$;
- For $\ell \geq 0: \boldsymbol{e}_{\ell} \in \boldsymbol{W}_{\varepsilon}$ and μ_{ℓ} are eigenpairs, and - all eigenvalues are of finite multiplicity;
- $\mu_{\ell}=0$ occurs K times, and $\lim _{\ell \rightarrow \infty} \mu_{\ell}=+\infty$.

Time-harmonic problem in EM-ics-3

- Conclusion: $\left(\boldsymbol{e}_{\ell}\right)_{\ell}$ is a Hilbert basis of $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ such that

$$
\forall \ell, \exists \mu_{\ell} \geq 0,\left(\boldsymbol{e}_{\ell}, \boldsymbol{w}\right)_{\mathbf{c u r l}}=\left(1+\mu_{\ell}\right) \int_{\Omega} \varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w} d \Omega, \forall \boldsymbol{w} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) .
$$

NB. Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

Time-harmonic problem in EM-ics-3

- Conclusion: $\left(\boldsymbol{e}_{\ell}\right)_{\ell}$ is a Hilbert basis of $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ such that

$$
\forall \ell, \exists \mu_{\ell} \geq 0,\left(\boldsymbol{e}_{\ell}, \boldsymbol{w}\right)_{\mathbf{c u r l}}=\left(1+\mu_{\ell}\right) \int_{\Omega} \varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w} d \Omega, \forall \boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)
$$

NB. Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

- Choice of $\mathrm{T}^{E M}$:

Let $\ell_{\max }$ denote the largest index ℓ such that $\mu_{\ell}<\omega^{2}$. Introduce:

- $\boldsymbol{V}^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\max }}\left(\boldsymbol{e}_{\ell}\right)$, a finite dimensional vector subspace of $\boldsymbol{W}_{\varepsilon}$;
- the orthogonal projection operator P^{-}from $\boldsymbol{H}_{0}(\mathbf{\operatorname { c u r l }} ; \Omega)$ to \boldsymbol{V}^{-}.

Time-harmonic problem in EM-ics-3

- Conclusion: $\left(\boldsymbol{e}_{\ell}\right)_{\ell}$ is a Hilbert basis of $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ such that

$$
\forall \ell, \exists \mu_{\ell} \geq 0,\left(\boldsymbol{e}_{\ell}, \boldsymbol{w}\right)_{\mathbf{c u r l}}=\left(1+\mu_{\ell}\right) \int_{\Omega} \varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w} d \Omega, \forall \boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)
$$

NB. Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

- Choice of $\mathrm{T}^{E M}$:

Let $\ell_{\max }$ denote the largest index ℓ such that $\mu_{\ell}<\omega^{2}$. Introduce:

- $\boldsymbol{V}^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\max }}\left(\boldsymbol{e}_{\ell}\right)$, a finite dimensional vector subspace of $\boldsymbol{W}_{\varepsilon}$;
- the orthogonal projection operator P^{-}from $\boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r }} ; \Omega)$ to \boldsymbol{V}^{-}.

Define $\mathrm{T}^{E M}:=-\mathrm{i}_{\boldsymbol{G}}+\mathrm{i}_{W_{\varepsilon}}-2 \mathrm{P}^{-}$:

$$
\mathrm{T}^{E M} \boldsymbol{e}_{\ell}:=\left\{\begin{array}{l}
-\boldsymbol{e}_{\ell} \text { if } \ell \leq \ell_{\max } \\
+\boldsymbol{e}_{\ell} \text { if } \ell>\ell_{\max }
\end{array}\right.
$$

Time-harmonic problem in EM-ics-3

- Conclusion: $\left(\boldsymbol{e}_{\ell}\right)_{\ell}$ is a Hilbert basis of $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ such that

$$
\forall \ell, \exists \mu_{\ell} \geq 0,\left(\boldsymbol{e}_{\ell}, \boldsymbol{w}\right)_{\mathbf{c u r l}}=\left(1+\mu_{\ell}\right) \int_{\Omega} \varepsilon \boldsymbol{e}_{\ell} \cdot \boldsymbol{w} d \Omega, \forall \boldsymbol{w} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)
$$

NB. Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

- Choice of $\mathrm{T}^{E M}$:

Let $\ell_{\max }$ denote the largest index ℓ such that $\mu_{\ell}<\omega^{2}$. Introduce:

- $\boldsymbol{V}^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\text {max }}}\left(\boldsymbol{e}_{\ell}\right)$, a finite dimensional vector subspace of $\boldsymbol{W}_{\varepsilon}$;
- the orthogonal projection operator P^{-}from $\boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r }} ; \Omega)$ to \boldsymbol{V}^{-}.

Define $\mathrm{T}^{E M}:=-\mathrm{i}_{\boldsymbol{G}}+\mathrm{i}_{W_{\varepsilon}}-2 \mathrm{P}^{-}$.

- Proposition $a^{E M}:(\boldsymbol{v}, \boldsymbol{w}) \mapsto \int_{\Omega}\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{w}-\omega^{2} \varepsilon \boldsymbol{v} \cdot \boldsymbol{w}\right) d \Omega$ is T-coercive.

Time-harmonic problem in EM-ics-4

- Conforming discretization: Nédélec's first family finite elements $\Longrightarrow\left(\boldsymbol{V}_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } \boldsymbol{e}_{h} \in \boldsymbol{V}_{h} \text { s.t. } a^{E M}\left(\boldsymbol{e}_{h}, \boldsymbol{v}_{h}\right)=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_{h} d \Omega, \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h} .
$$

How can one achieve the uniform T_{h}-coercivity of the form $a^{E M}(\cdot, \cdot)$?

Time-harmonic problem in EM-ics-4

- Conforming discretization: Nédélec's first family finite elements $\Longrightarrow\left(\boldsymbol{V}_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } \boldsymbol{e}_{h} \in \boldsymbol{V}_{h} \text { s.t. } a^{E M}\left(\boldsymbol{e}_{h}, \boldsymbol{v}_{h}\right)=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_{h} d \Omega, \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h}
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{E M}(\cdot, \cdot) \text { ? }
$$

DIFFICULTY: Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

Time-harmonic problem in EM-ics-4

- Conforming discretization: Nédélec's first family finite elements $\Longrightarrow\left(\boldsymbol{V}_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } \boldsymbol{e}_{h} \in \boldsymbol{V}_{h} \text { s.t. } a^{E M}\left(\boldsymbol{e}_{h}, \boldsymbol{v}_{h}\right)=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_{h} d \Omega, \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h} .
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{E M}(\cdot, \cdot) \text { ? }
$$

DIFFICULTY: Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

- Idea:
- split elements of $\boldsymbol{V}_{h}\left(\approx\right.$ exact decomposition $\left.\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)=\boldsymbol{G} \oplus \boldsymbol{W}_{\varepsilon}\right)$;
- take the opposite of the gradient part;
- use the orthogonal projection on the other part (cf. acoustics section).

Time-harmonic problem in EM-ics-4

- Conforming discretization: Nédélec's first family finite elements $\Longrightarrow\left(\boldsymbol{V}_{h}\right)_{h} \ldots$ The Discrete Variational Formulation writes:

$$
\text { Find } \boldsymbol{e}_{h} \in \boldsymbol{V}_{h} \text { s.t. } a^{E M}\left(\boldsymbol{e}_{h}, \boldsymbol{v}_{h}\right)=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_{h} d \Omega, \forall \boldsymbol{v}_{h} \in \boldsymbol{V}_{h} .
$$

$$
\text { How can one achieve the uniform } \mathrm{T}_{h} \text {-coercivity of the form } a^{E M}(\cdot, \cdot) \text { ? }
$$

DIFFICULTY: Given any $\omega>0$, there is an infinite number of ℓ s.t. $\mu_{\ell}<\omega^{2}$.

- Idea:
- split elements of $\boldsymbol{V}_{h}\left(\approx\right.$ exact decomposition $\left.\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)=\boldsymbol{G} \oplus \boldsymbol{W}_{\varepsilon}\right)$;
- take the opposite of the gradient part;
- use the orthogonal projection on the other part (cf. acoustics section).

DIFFICULTY: The discrete splitting needs to be uniformly close to the exact splitting.

Time-harmonic problem in EM-ics-5

- Given $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}$:
- the exact splitting is $\exists!(\varphi, \boldsymbol{w}) \in H_{0}^{1}(\Omega) \times \boldsymbol{W}_{\varepsilon}, \boldsymbol{v}_{h}=\nabla \varphi+\boldsymbol{w}$.
- a discrete splitting is $\left(\varphi_{h}, \boldsymbol{w}_{h}\right) \in V_{h} \times \boldsymbol{V}_{h}, \boldsymbol{v}_{h}=\nabla \varphi_{h}+\boldsymbol{w}_{h}$.

NB. Provided the orders of FE are appropriately chosen, there holds $\nabla V_{h} \subset \boldsymbol{V}_{h}$.

Time-harmonic problem in EM-ics-5

- Given $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}$:
- the exact splitting is $\exists!(\varphi, \boldsymbol{w}) \in H_{0}^{1}(\Omega) \times \boldsymbol{W}_{\varepsilon}, \boldsymbol{v}_{h}=\nabla \varphi+\boldsymbol{w}$.
- a discrete splitting is $\left(\varphi_{h}, \boldsymbol{w}_{h}\right) \in V_{h} \times \boldsymbol{V}_{h}, \boldsymbol{v}_{h}=\nabla \varphi_{h}+\boldsymbol{w}_{h}$.

NB. Provided the orders of FE are appropriately chosen, there holds $\nabla V_{h} \subset \boldsymbol{V}_{h}$.

- Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

$$
\left\|\nabla\left(\varphi-\varphi_{h}\right)\right\|_{\text {curl }}=\left\|\boldsymbol{w}-\boldsymbol{w}_{h}\right\|_{\text {curl }} \leq C_{r} h^{\mathrm{s}}\left\|\boldsymbol{v}_{h}\right\|_{\text {curl }}
$$

with $\mathrm{s}:=\mathrm{s}(\Omega, \varepsilon)>0, C_{r}>0$ independent of \boldsymbol{v}_{h}.

Time-harmonic problem in EM-ics-5

- Given $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}$:
- the exact splitting is $\exists!(\varphi, \boldsymbol{w}) \in H_{0}^{1}(\Omega) \times \boldsymbol{W}_{\varepsilon}, \boldsymbol{v}_{h}=\nabla \varphi+\boldsymbol{w}$.
- a discrete splitting is $\left(\varphi_{h}, \boldsymbol{w}_{h}\right) \in V_{h} \times \boldsymbol{V}_{h}, \boldsymbol{v}_{h}=\nabla \varphi_{h}+\boldsymbol{w}_{h}$.

NB. Provided the orders of FE are appropriately chosen, there holds $\nabla V_{h} \subset \boldsymbol{V}_{h}$.

- Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

$$
\left\|\nabla\left(\varphi-\varphi_{h}\right)\right\|_{\text {curl }}=\left\|\boldsymbol{w}-\boldsymbol{w}_{h}\right\|_{\text {curl }} \leq C_{r} h^{\mathrm{s}}\left\|\boldsymbol{v}_{h}\right\|_{\text {curl }}
$$

with $\mathrm{s}:=\mathrm{s}(\Omega, \varepsilon)>0, C_{r}>0$ independent of \boldsymbol{v}_{h}.
Proof (main ingredients!)

- regular-singular splitting of elements of $\boldsymbol{W}_{\varepsilon}$, cf. [Costabel-Dauge-Nicaise'99];
- edge element approximability of piecewise-smooth fields, cf. [Monk'03];
- edge element interpolation of gradients, cf. [Nédélec'80].

Time-harmonic problem in EM-ics-5

- Given $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}$:
- the exact splitting is $\exists!(\varphi, \boldsymbol{w}) \in H_{0}^{1}(\Omega) \times \boldsymbol{W}_{\varepsilon}, \boldsymbol{v}_{h}=\nabla \varphi+\boldsymbol{w}$.
- a discrete splitting is $\left(\varphi_{h}, \boldsymbol{w}_{h}\right) \in V_{h} \times \boldsymbol{V}_{h}, \boldsymbol{v}_{h}=\nabla \varphi_{h}+\boldsymbol{w}_{h}$.

NB. Provided the orders of FE are appropriately chosen, there holds $\nabla V_{h} \subset \boldsymbol{V}_{h}$.

- Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

$$
\left\|\nabla\left(\varphi-\varphi_{h}\right)\right\|_{\text {curl }}=\left\|\boldsymbol{w}-\boldsymbol{w}_{h}\right\|_{\text {curl }} \leq C_{r} h^{\mathrm{s}}\left\|\boldsymbol{v}_{h}\right\|_{\text {curl }}
$$

with $\mathrm{s}:=\mathrm{s}(\Omega, \varepsilon)>0, C_{r}>0$ independent of \boldsymbol{v}_{h}.

- Approximate \boldsymbol{V}^{-}in \boldsymbol{V}_{h}, cf. acoustics section: $\boldsymbol{V}_{h}^{-}:=\operatorname{span}_{0 \leq \ell \leq \ell_{\max }}\left(\boldsymbol{e}_{\ell, h}\right)$, with

$$
\left\|\boldsymbol{e}_{\ell}-\boldsymbol{e}_{\ell, h}\right\|_{\text {curl }} \leq \delta(h), 0 \leq \ell \leq \ell_{\max }, \text { for } h \text { small enough }\left(\lim _{h \rightarrow 0} \delta(h)=0\right)
$$

Time-harmonic problem in EM-ics-5

- Given $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}$:
- the exact splitting is $\exists!(\varphi, \boldsymbol{w}) \in H_{0}^{1}(\Omega) \times \boldsymbol{W}_{\varepsilon}, \boldsymbol{v}_{h}=\nabla \varphi+\boldsymbol{w}$.
- a discrete splitting is $\left(\varphi_{h}, \boldsymbol{w}_{h}\right) \in V_{h} \times \boldsymbol{V}_{h}, \boldsymbol{v}_{h}=\nabla \varphi_{h}+\boldsymbol{w}_{h}$.

NB. Provided the orders of FE are appropriately chosen, there holds $\nabla V_{h} \subset \boldsymbol{V}_{h}$.

- Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

$$
\left\|\nabla\left(\varphi-\varphi_{h}\right)\right\|_{\text {curl }}=\left\|\boldsymbol{w}-\boldsymbol{w}_{h}\right\|_{\text {curl }} \leq C_{r} h^{\mathrm{s}}\left\|\boldsymbol{v}_{h}\right\|_{\text {curl }}
$$

with $\mathrm{s}:=\mathrm{s}(\Omega, \varepsilon)>0, C_{r}>0$ independent of \boldsymbol{v}_{h}.

- Introduce:
- the orthogonal projection operator P_{h}^{-}from \boldsymbol{V}_{h} to \boldsymbol{V}_{h}^{-};
- the operator $\mathrm{T}_{h}^{E M}$ of $\mathcal{L}\left(\boldsymbol{V}_{h}\right)$ defined by $\mathrm{T}_{h}^{E M}\left(\boldsymbol{v}_{h}\right):=-\nabla \varphi_{h}+\left(\mathrm{I}_{\boldsymbol{V}_{h}}-2 \mathrm{P}_{h}^{-}\right)\left(\boldsymbol{w}_{h}\right)$.

Time-harmonic problem in EM-ics-5

- Given $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}$:

2 the exact splitting is $\exists!(\varphi, \boldsymbol{w}) \in H_{0}^{1}(\Omega) \times \boldsymbol{W}_{\varepsilon}, \boldsymbol{v}_{h}=\nabla \varphi+\boldsymbol{w}$.

- a discrete splitting is $\left(\varphi_{h}, \boldsymbol{w}_{h}\right) \in V_{h} \times \boldsymbol{V}_{h}, \boldsymbol{v}_{h}=\nabla \varphi_{h}+\boldsymbol{w}_{h}$.

NB. Provided the orders of FE are appropriately chosen, there holds $\nabla V_{h} \subset \boldsymbol{V}_{h}$.

- Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

$$
\left\|\nabla\left(\varphi-\varphi_{h}\right)\right\|_{\text {curl }}=\left\|\boldsymbol{w}-\boldsymbol{w}_{h}\right\|_{\text {curl }} \leq C_{r} h^{\mathrm{s}}\left\|\boldsymbol{v}_{h}\right\|_{\text {curl }}
$$

with $\mathrm{s}:=\mathrm{s}(\Omega, \varepsilon)>0, C_{r}>0$ independent of \boldsymbol{v}_{h}.

- Introduce:
- the orthogonal projection operator P_{h}^{-}from \boldsymbol{V}_{h} to \boldsymbol{V}_{h}^{-};
- the operator $\mathrm{T}_{h}^{E M}$ of $\mathcal{L}\left(\boldsymbol{V}_{h}\right)$ defined by $\mathrm{T}_{h}^{E M}\left(\boldsymbol{v}_{h}\right):=-\nabla \varphi_{h}+\left(\mathrm{I}_{\boldsymbol{V}_{h}}-2 \mathrm{P}_{h}^{-}\right)\left(\boldsymbol{w}_{h}\right)$.
- Proposition There holds $\lim _{h \rightarrow 0}\left(\sup _{\boldsymbol{v}_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}^{E M}-\mathrm{T}^{E M}\right)\left(\boldsymbol{v}_{h}\right)\right\|_{\text {curl }}}{\left\|\boldsymbol{v}_{h}\right\|_{\text {curl }}}\right)=0$.

Hence, the discrete solution e_{h} converges to e, with a rate governed by (Strang).

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\operatorname{div}(\sigma \nabla u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$ is a sign-changing coefficient: $\left\{\begin{array}{l}\sigma>0 \text { in } \Omega_{1}, \text { with } \operatorname{meas}\left(\Omega_{1}\right)>0 \text {; } \\ \sigma<0 \text { in } \Omega_{2}, \text { with meas }\left(\Omega_{2}\right)>0 .\end{array}\right.$
- $\sigma^{-1} \in L^{\infty}(\Omega)$.

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\operatorname{div}(\sigma \nabla u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.
- $\sigma^{-1} \in L^{\infty}(\Omega)$.

NB. The "generalized" Helmholtz equation div $(\sigma \nabla u)+\omega^{2} \eta u=f$ with $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10].

When $\sigma<0$, this models a metamaterial.
One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\operatorname{div}(\sigma \nabla u)=f \text { in } \Omega .
\end{array}\right.
$$

2 $\quad \sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.

- $\sigma^{-1} \in L^{\infty}(\Omega)$.
- The main dificulty is that $(v, w) \mapsto \int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$ is not coercive in $H_{0}^{1}(\Omega)$.

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\operatorname{div}(\sigma \nabla u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.
- $\sigma^{-1} \in L^{\infty}(\Omega)$.
- The main dificulty is that $(v, w) \mapsto \int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$ is not coercive in $H_{0}^{1}(\Omega)$. Structure of spectrum? Use of the Spectral Theorem?

$$
\Longrightarrow \quad \text { New approach to achieve T-coercivity! }
$$

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
\operatorname{div}(\sigma \nabla u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.
- $\sigma^{-1} \in L^{\infty}(\Omega)$.
- The main dificulty is that $(v, w) \mapsto \int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$ is not coercive in $H_{0}^{1}(\Omega)$. Structure of spectrum? Use of the Spectral Theorem?

$$
\Longrightarrow \quad \text { New approach to achieve T-coercivity! }
$$

- We follow [BonnetBenDhia-Jr-Zwölf'10]:
- Ω_{1} and Ω_{2} are domains of \mathbb{R}^{d};
e $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$ is the interface;
- $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$ are the boundaries.

Sign-changing coefficients-2

- For the transmission problem with sign-changing coefficient:
- $V=H_{0}^{1}(\Omega)$;
- the sesquilinear form is $a^{t r}(v, w)=\int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$.

NB. Complex-valued forms, to enable the introduction of dissipation...

Sign-changing coefficients-2

- For the transmission problem with sign-changing coefficient:
- $V=H_{0}^{1}(\Omega)$;
- the sesquilinear form is $a^{t r}(v, w)=\int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$.
- Introduce $V_{k}:=\left\{v_{k} \in H^{1}\left(\Omega_{k}\right) \mid v_{k \mid \Gamma_{k}}=0\right\}, k=1,2$:

$$
V=\left\{v \mid v_{\mid \Omega_{k}} \in V_{k}, k=1,2, \text { Matching }_{\Sigma}\left(v_{\mid \Omega_{1}}, v_{\mid \Omega_{2}}\right)=0\right\},
$$

$$
\text { with } \operatorname{Matching}_{\Sigma}\left(v_{1}, v_{2}\right):=v_{1 \mid \Sigma}-v_{2 \mid \Sigma} .
$$

Sign-changing coefficients-2

- For the transmission problem with sign-changing coefficient:
- $V=H_{0}^{1}(\Omega)$;
- the sesquilinear form is $a^{t r}(v, w)=\int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$.
- Introduce $a_{k}^{t r}\left(v_{k}, w_{k}\right):=\int_{\Omega_{k}} \sigma \nabla v_{k} \cdot \overline{\nabla w_{k}} d \Omega, k=1,2$:

$$
\forall v, w \in V, a^{t r}(v, w)=a_{1}^{t r}\left(v_{\mid \Omega_{1}}, w_{\mid \Omega_{1}}\right)+a_{2}^{t r}\left(v_{\mid \Omega_{2}}, w_{\mid \Omega_{2}}\right)
$$

Sign-changing coefficients-2

- For the transmission problem with sign-changing coefficient:
- $V=H_{0}^{1}(\Omega)$;
- the sesquilinear form is $a^{t r}(v, w)=\int_{\Omega} \sigma \nabla v \cdot \overline{\nabla w} d \Omega$.
- Introduce $a_{k}^{t r}\left(v_{k}, w_{k}\right):=\int_{\Omega_{k}} \sigma \nabla v_{k} \cdot \overline{\nabla w_{k}} d \Omega, k=1,2$:

$$
\forall v, w \in V, a^{t r}(v, w)=a_{1}^{t r}\left(v_{\mid \Omega_{1}}, w_{\mid \Omega_{1}}\right)+a_{2}^{t r}\left(v_{\mid \Omega_{2}}, w_{\mid \Omega_{2}}\right) ;
$$

$$
\begin{aligned}
& \forall v_{1} \in V_{1}, \sigma_{1}^{-}\left\|\nabla v_{1}\right\|_{L^{2}\left(\Omega_{1}\right)}^{2} \leq+a_{1}^{t r}\left(v_{1}, v_{1}\right) \leq \sigma_{1}^{+}\left\|\nabla v_{1}\right\|_{L^{2}\left(\Omega_{1}\right)}^{2} \\
& \forall v_{2} \in V_{2}, \sigma_{2}^{-}\left\|\nabla v_{2}\right\|_{L^{2}\left(\Omega_{2}\right)}^{2} \leq-a_{2}^{t r}\left(v_{2}, v_{2}\right) \leq \sigma_{2}^{+}\left\|\nabla v_{2}\right\|_{L^{2}\left(\Omega_{2}\right)}^{2}
\end{aligned}
$$

NB. We have $0<\sigma_{k}^{-} \leq \sigma_{k}^{+}<\infty, k=1,2$.

Sign-changing coefficients-3

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{cases}
$$

NB. Given $v \in H_{0}^{1}(\Omega)$, we set $v_{k}:=v_{\mid \Omega_{k}}, k=1,2$.

Sign-changing coefficients-3

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

Sign-changing coefficients-3

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{cases}
$$

(+) Obviously, $\left(\mathrm{T}_{-}\right)^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, Matching ${ }_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { T } v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}\end{cases}
$$

Sign-changing coefficients-3

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{cases}
$$

(+) Obviously, $\left(\mathrm{T}_{-}\right)^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, Matching ${ }_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { T } v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}\end{cases}
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
$(+)$ One checks easily that $\mathrm{T}^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$!

Sign-changing coefficients-3

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2} & \text { in } \Omega_{2}\end{cases}
$$

(+) Obviously, $\left(\mathrm{T}_{-}\right)^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, Matching ${ }_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { T } v:= \begin{cases}v_{1} & \text { in } \Omega_{1} \\ -v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}\end{cases}
$$

Can one achieve T-coercivity?

Sign-changing coefficients-4

- Some elementary computations:

$$
\begin{aligned}
\left|a^{t r}(v, \mathrm{~T} v)\right| & =\left|a_{1}^{t r}\left(v_{1}, v_{1}\right)-a_{2}^{t r}\left(v_{2}, v_{2}\right)+2 a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq\left|a_{1}^{t r}\left(v_{1}, v_{1}\right)-a_{2}^{t r}\left(v_{2}, v_{2}\right)\right|-2\left|a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}^{t r}\left(v_{2}, v_{2}\right)-2\left|a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right|
\end{aligned}
$$

Sign-changing coefficients-4

- Some elementary computations: let $\delta>0$, apply Young's inequality

$$
\begin{aligned}
\left|a^{t r}(v, \mathrm{~T} v)\right| & =\left|a_{1}^{t r}\left(v_{1}, v_{1}\right)-a_{2}^{t r}\left(v_{2}, v_{2}\right)+2 a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq\left|a_{1}^{t r}\left(v_{1}, v_{1}\right)-a_{2}^{t r}\left(v_{2}, v_{2}\right)\right|-2\left|a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}^{t r}\left(v_{2}, v_{2}\right)-2\left|a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}^{t r}\left(v_{2}, v_{2}\right)+\delta a_{2}^{t r}\left(v_{2}, v_{2}\right)+\delta^{-1} a_{2}^{t r}\left(R_{1} v_{1}, R_{1} v_{1}\right) \\
& \geq\left(\sigma_{1}^{-}-\delta^{-1} \sigma_{2}^{+}\left\|R_{1} \mid\right\|^{2}\right)\left\|v_{1}\right\|_{V_{1}}^{2}-(1-\delta) a_{2}^{t r}\left(v_{2}, v_{2}\right)
\end{aligned}
$$

Sign-changing coefficients-4

- Some elementary computations: let $\delta>0$, apply Young's inequality

$$
\begin{aligned}
\left|a^{t r}(v, \mathrm{~T} v)\right| & =\left|a_{1}^{t r}\left(v_{1}, v_{1}\right)-a_{2}^{t r}\left(v_{2}, v_{2}\right)+2 a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq\left|a_{1}^{t r}\left(v_{1}, v_{1}\right)-a_{2}^{t r}\left(v_{2}, v_{2}\right)\right|-2\left|a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}^{t r}\left(v_{2}, v_{2}\right)-2\left|a_{2}^{t r}\left(v_{2}, R_{1} v_{1}\right)\right| \\
& \geq \sigma_{1}^{-}\left\|v_{1}\right\|_{V_{1}}^{2}-a_{2}^{t r}\left(v_{2}, v_{2}\right)+\delta a_{2}^{t r}\left(v_{2}, v_{2}\right)+\delta^{-1} a_{2}^{t r}\left(R_{1} v_{1}, R_{1} v_{1}\right) \\
& \geq\left(\sigma_{1}^{-}-\delta^{-1} \sigma_{2}^{+}\left\|R_{1} \mid\right\|^{2}\right)\left\|v_{1}\right\|_{V_{1}}^{2}-(1-\delta) a_{2}^{t r}\left(v_{2}, v_{2}\right)
\end{aligned}
$$

- Hence, to obtain $\left|a^{t r}(v, \mathrm{~T} v)\right| \geq \underline{\alpha}\|v\|_{V}^{2}$ with $\underline{\alpha}>0$, it is sufficient that

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1}\| \|^{2}
$$

Sign-changing coefficients-5

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, $\operatorname{Matching}_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Sign-changing coefficients-5

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, $\operatorname{Matching}_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
(+) One checks easily that $\mathrm{T}^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$!

Sign-changing coefficients-5

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, $\operatorname{Matching}_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
(+) One checks easily that $\mathrm{T}^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$!

- To obtain $\left|a^{t r}(v, \mathrm{~T} v)\right| \geq \underline{\alpha}\|v\|_{V}^{2}$ with $\underline{\alpha}>0$, it is sufficient that

$$
\frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\| \| R_{2}\| \|^{2}
$$

Sign-changing coefficients-5

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, $\operatorname{Matching}_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т } v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) $\mathrm{T} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
(+) One checks easily that $\mathrm{T}^{2}=\mathrm{I}_{H_{0}^{1}(\Omega)}$!

- To obtain $\left|a^{t r}(v, \mathrm{~T} v)\right| \geq \underline{\alpha}\|v\|_{V}^{2}$ with $\underline{\alpha}>0$, it is sufficient that

$$
\frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\| \| R_{2}\| \|^{2}
$$

- Conclusion: to achieve T-coercivity, one needs

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\left(\inf _{R_{1}}\left\|\mid R_{1}\right\| \|\right)^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left(\inf _{R_{2}}\left\|| | R_{2}\right\| \|\right)^{2}
$$

Sign-changing coefficients-6

- How to choose the operators R_{1} or R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12].

Sign-changing coefficients-6

- How to choose the operators R_{1} or R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12].
- Numerical studies in $\left(V_{h}\right)_{h}$:
- in general, one cannot build discrete operators $\left(\mathrm{T}_{h}\right)_{h}$ s.t.

$$
\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\|_{V}}{\left\|v_{h}\right\|_{V}}\right)=0 ;
$$

- one can only prove that $\left(R_{k, h}\right)_{h}$ is bounded wrt $\left\|\mid R_{k}\right\| \|, k=1,2$.

Sign-changing coefficients-6

- How to choose the operators R_{1} or R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12].
- Numerical studies in $\left(V_{h}\right)_{h}$:
- in general, one cannot build discrete operators $\left(\mathrm{T}_{h}\right)_{h}$ s.t.

$$
\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\|_{V}}{\left\|v_{h}\right\|_{V}}\right)=0 ;
$$

- one can only prove that $\left(R_{k, h}\right)_{h}$ is bounded wrt $\left\|\mid R_{k}\right\| \|, k=1,2$.
- Safety net: choose σ s.t. $\sigma_{1}^{-} / \sigma_{2}^{+}$or $\sigma_{2}^{-} / \sigma_{1}^{+}$are sufficiently large to ensure

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1, h}\| \|^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left\|R_{2, h}\right\| \|^{2}, \quad \text { for } h \text { small enough. }
$$

Sign-changing coefficients-6

- How to choose the operators R_{1} or R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12].
- Numerical studies in $\left(V_{h}\right)_{h}$:
- in general, one cannot build discrete operators $\left(\mathrm{T}_{h}\right)_{h}$ s.t.

$$
\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\|_{V}}{\left\|v_{h}\right\|_{V}}\right)=0 ;
$$

- one can only prove that $\left(R_{k, h}\right)_{h}$ is bounded wrt $\left\|\left|R_{k}\right|\right\|, k=1,2$.
- Safety net: choose σ s.t. $\sigma_{1}^{-} / \sigma_{2}^{+}$or $\sigma_{2}^{-} / \sigma_{1}^{+}$are sufficiently large to ensure

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1, h}\| \|^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left\|R_{2, h}\right\| \|^{2}, \quad \text { for } h \text { small enough. }
$$

- Under this last assumption, convergence follows.

Sign-changing coefficients-6

- How to choose the operators R_{1} or R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12].
- Numerical studies in $\left(V_{h}\right)_{h}$:
- in general, one cannot build discrete operators $\left(\mathrm{T}_{h}\right)_{h}$ s.t.

$$
\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\|_{V}}{\left\|v_{h}\right\|_{V}}\right)=0 ;
$$

- one can only prove that $\left(R_{k, h}\right)_{h}$ is bounded wrt $\left\|\left|R_{k}\right|\right\|, k=1,2$.
- Safety net: choose σ s.t. $\sigma_{1}^{-} / \sigma_{2}^{+}$or $\sigma_{2}^{-} / \sigma_{1}^{+}$are sufficiently large to ensure

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1, h}\| \|^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left\|R_{2, h}\right\| \|^{2}, \quad \text { for } h \text { small enough. }
$$

- Under this last assumption, convergence follows.

NB. One can also add dissipation, cf. [Chesnel-Jr'1x]:
(+) convergence follows without safety net;
$(-)$ convergence rate is reduced.

Sign-changing coefficients-6

- How to choose the operators R_{1} or R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12].
- Numerical studies in $\left(V_{h}\right)_{h}$:
- in general, one cannot build discrete operators $\left(\mathrm{T}_{h}\right)_{h}$ s.t.

$$
\lim _{h \rightarrow 0}\left(\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{\left\|\left(\mathrm{T}_{h}-\mathrm{T}\right)\left(v_{h}\right)\right\|_{V}}{\left\|v_{h}\right\|_{V}}\right)=0 ;
$$

- one can only prove that $\left(R_{k, h}\right)_{h}$ is bounded wrt $\left\|\left|R_{k}\right|\right\|, k=1,2$.
- Safety net: choose σ s.t. $\sigma_{1}^{-} / \sigma_{2}^{+}$or $\sigma_{2}^{-} / \sigma_{1}^{+}$are sufficiently large to ensure

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1, h}\| \|^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left\|R_{2, h}\right\| \|^{2}, \quad \text { for } h \text { small enough. }
$$

- Under this last assumption, convergence follows.
- Numerical results:
e conforming discretization, cf. [Chesnel-Jr'1x].
- non-conforming discretization, cf. [Chung-Jr'1x];

Sign-changing coefficients-7

- In a symmetric domain. Here, $\Omega=]-1,1[\times] 0,1\left[, \Omega_{1}\right.$ and Ω_{2} are unit squares.
- $\sigma_{k}:=\sigma_{\mid \Omega_{k}}, k=1,2$, are constant numbers, and $\sigma_{2} / \sigma_{1}=-1.001 ; \omega=0$.
- An exact piecewise smooth solution of the transmission problem is available.
- Conforming discretization using P_{1} Lagrange FE.
- We study below the influence of the meshes (errors in L^{2}-norm ; $O\left(h^{2}\right)$ is expected).

Sign-changing coefficients-7

- In a symmetric domain.
- $\sigma_{k}:=\sigma_{\mid \Omega_{k}}, k=1,2$, are constant numbers, and $\sigma_{2} / \sigma_{1}=-1.001 ; \omega=0$.
- An exact piecewise smooth solution of the transmission problem is available.
- Conforming discretization using P_{1} Lagrange FE.
- We study below the influence of the meshes (errors in L^{2}-norm; $O\left(h^{2}\right)$ is expected).

Sign-changing coefficients-8

- In a rectangle. Here, $\Omega=] 0,5[\times] 0,2\left[, \Omega_{2}=\right] 1,3[\times] 0,2\left[\right.$, and $\Omega_{1}=\Omega \backslash \overline{\Omega_{2}}$.

- $\left(\sigma_{k}\right)_{k=1,2}$ are constant numbers, and $\sigma_{2} / \sigma_{1}=-1 / 3 ; \omega=1.6$ and $\eta=\sigma^{-1}$.
- An exact piecewise smooth solution of the transmission problem is available.
- Non-conforming discretization using staggered DG_{1} FE, cf. [Chung-Engquist'06/'09].
- Errors in L^{2}-norm; $O\left(h^{2}\right)$ is expected.

Sign-changing coefficients-8

- In a rectangle.

$\int\left(\sigma_{k}\right)_{k=1,2}$ are constant numbers, and $\sigma_{2} / \sigma_{1}=-1 / 3 ; \omega=1.6$ and $\eta=\sigma^{-1}$.
- An exact piecewise smooth solution of the transmission problem is available.
- Non-conforming discretization using staggered DG_{1} FE, cf. [Chung-Engquist'06/'09].

O Errors in L^{2}-norm ; $O\left(h^{2}\right)$ is expected. Numerically, the order is 1.9999.

Sign-changing coefficients-8

- In a rectangle.

- $\left(\sigma_{k}\right)_{k=1,2}$ are constant numbers, and $\sigma_{2} / \sigma_{1}=-1 / 3 ; \omega=1.6$ and $\eta=\sigma^{-1}$.
- An exact piecewise smooth solution of the transmission problem is available.
- Non-conforming discretization using staggered DG ${ }_{1}$ FE, cf. [Chung-Engquist'06/'09].
- Errors in L^{2}-norm ; $O\left(h^{2}\right)$ is expected. Numerically, the order is 1.9999.

Conclusion/Perspectives

- T-coercivity is versatile!
- BEM for the classical Maxwell problem (cf. [Buffa-Costabel-Schwab'02]) ;
- FEM for the classical scalar or Maxwell problems (cf. [Jr'12]);
- Vol. Int. Eq. Methods for scattering from gratings (cf. [Lechleiter-Nguyen'1x]);
- study of Interior Transmission Eigenvalue Problems:
- scalar case (cf. [BonnetBenDhia-Chesnel-Haddar'11]);
- Maxwell problem (cf. [Chesnel'1x]);
- etc.

Conclusion/Perspectives

- T-coercivity is versatile!
- Scalar problems with sign-shifting coefficients:
- introduction of T-coercivity during WAVES'07 (cf. [BonnetBenDhia-Jr-Zwölf'10]);
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], [Chesnel-Jr'1x], DG-approach [Chung-Jr'1x], etc.);
- theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr'12]);
- theoretical study of the critical cases (with [BonnetBenDhia-Chesnel-Claeys'1x]);
- discretization and numerical analysis of the critical cases.

Conclusion/Perspectives

- T-coercivity is versatile!
- Scalar problems with sign-shifting coefficients:
- introduction of T-coercivity during WAVES'07 (cf. [BonnetBenDhia-Jr-Zwölf'10]);
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], [Chesnel-Jr'1x], DG-approach [Chung-Jr'1x], etc.);
- theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr'12]);
- theoretical study of the critical cases (with [BonnetBenDhia-Chesnel-Claeys'1x]);
- discretization and numerical analysis of the critical cases.
- Maxwell problem(s) with sign-shifting coefficients:
- T-coercivity + side results during NELIA'11 (cf. [BonnetBenDhia-Chesnel-Jr'??]);
- numerical analysis when T-coercivity applies.

Conclusion/Perspectives

- T-coercivity is versatile!
- Scalar problems with sign-shifting coefficients:
- introduction of T-coercivity during WAVES'07 (cf. [BonnetBenDhia-Jr-Zwölf'10]);
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], [Chesnel-Jr'1x], DG-approach [Chung-Jr'1x], etc.);
- theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr'12]);
- theoretical study of the critical cases (with [BonnetBenDhia-Chesnel-Claeys'1x]);
- discretization and numerical analysis of the critical cases.
- Maxwell problem(s) with sign-shifting coefficients:
- T-coercivity + side results during NELIA'11 (cf. [BonnetBenDhia-Chesnel-Jr'??]);
- numerical analysis when T-coercivity applies.
- In the critical cases: are models derived from physics still relevant?
- re-visit models (homogenization, multi-scale numerics, etc.). (A.N.R. METAMATH Project ; coordinator S. Fliss (POEMS)).

