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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V × W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u, w) = 〈f, w〉.
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Abstract setting

Let

V and W be two Hilbert spaces ;

a(·, ·) be a continuous sesquilinear form over V × W ;

f be an element of W ′, the dual space of W .

Aim: solve the Variational Formulation

(V F ) Find u ∈ V s.t. ∀w ∈ W, a(u, w) = 〈f, w〉.

[Hadamard] The Problem (V F ) is well-posed if, and only if, for all f , it has one and
only one solution u, with continuous dependence:

∃C > 0, ∀f ∈ W ′, ‖u‖V ≤ C ‖f‖W ′ .

How can one prove well-posedness?

[Lax-Milgram] OK provided that a(·, ·) is coercive!
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Abstract setting-2

[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|

‖w‖W
≥ α′ ‖v‖V .

(BNB2) ∀w ∈ W : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.
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[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|

‖w‖W
≥ α′ ‖v‖V .

(BNB2) ∀w ∈ W : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.

Theorem (Well-posedness) The two assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies conditions (BNB1) and (BNB2).
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Abstract setting-2

[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|

‖w‖W
≥ α′ ‖v‖V .

(BNB2) ∀w ∈ W : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.

Definition ( T-coercivity) The form a(·, ·) is T-coercive if

∃T ∈ L(V, W ), bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V .

NB. In other words, the form (v, v′) 7→ a(v, Tv′) is coercive on V × V .
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Abstract setting-2

[Banach-Necas-Babuska] Introduce the two conditions

(BNB1) ∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|

‖w‖W
≥ α′ ‖v‖V .

(BNB2) ∀w ∈ W : {∀v ∈ V, a(v, w) = 0} =⇒ {w = 0}.

NB. Condition (BNB1) is called an inf-sup condition, or a stability condition.

Definition ( T-coercivity) The form a(·, ·) is T-coercive if

∃T ∈ L(V, W ), bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V .

Theorem (Well-posedness) The three assertions below are equivalent:

(i) the Problem (V F ) is well-posed ;

(ii) the form a(·, ·) satisfies conditions (BNB1) and (BNB2).

(iii) the form a(·, ·) is T-coercive.

The operator T realizes conditions (BNB1) and (BNB2) explicitly.
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Abstract setting-3

V = W , case of a hermitian form a

The previous definition and theorem can be simplified...
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Abstract setting-3

V = W , case of a hermitian form a

The previous definition and theorem can be simplified...

Definition ( T-coercivity) The hermitian form a(·, ·) is T-coercive if

∃T ∈ L(V ), ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α ‖v‖2
V .

Theorem (Well-posedness) The three assertions below are equivalent:

(i) the Problem (V F ) with hermitian form is well-posed ;

(ii) the hermitian form a(·, ·) satisfies condition (BNB1).

(iii) the hermitian form a(·, ·) is T-coercive.
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Numerical approximation

Conforming discretization:

let (Vh)h be finite dimensional vector subspaces of V (limh→0 dim(Vh) = +∞) ;

let (Wh)h be finite dimensional vector subspaces of W (limh→0 dim(Wh) = +∞).

Aim: solve the Discrete Variational Formulation

(DV F ) Find uh ∈ Vh s.t. ∀wh ∈ Wh, a(uh, wh) = 〈f, wh〉.
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Numerical approximation

Conforming discretization:

let (Vh)h be finite dimensional vector subspaces of V (limh→0 dim(Vh) = +∞) ;

let (Wh)h be finite dimensional vector subspaces of W (limh→0 dim(Wh) = +∞).

Aim: solve the Discrete Variational Formulation

(DV F ) Find uh ∈ Vh s.t. ∀wh ∈ Wh, a(uh, wh) = 〈f, wh〉.

NB. For simplicity, the discrete forms are assumed to be exact.
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Conforming discretization:

let (Vh)h be finite dimensional vector subspaces of V (limh→0 dim(Vh) = +∞) ;

let (Wh)h be finite dimensional vector subspaces of W (limh→0 dim(Wh) = +∞).

Aim: solve the Discrete Variational Formulation

(DV F ) Find uh ∈ Vh s.t. ∀wh ∈ Wh, a(uh, wh) = 〈f, wh〉.

[Babuska-Brezzi] Introduce the uniform discrete inf-sup condition

(UDISC) ∃α† > 0, ∀h > 0, ∀vh ∈ Vh, sup
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|a(vh, wh)|
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Numerical approximation

Conforming discretization:

let (Vh)h be finite dimensional vector subspaces of V (limh→0 dim(Vh) = +∞) ;

let (Wh)h be finite dimensional vector subspaces of W (limh→0 dim(Wh) = +∞).

Aim: solve the Discrete Variational Formulation

(DV F ) Find uh ∈ Vh s.t. ∀wh ∈ Wh, a(uh, wh) = 〈f, wh〉.

[Babuska-Brezzi] Introduce the uniform discrete inf-sup condition

(UDISC) ∃α† > 0, ∀h > 0, ∀vh ∈ Vh, sup
wh∈Wh\{0}

|a(vh, wh)|

‖wh‖W
≥ α†‖vh‖V .

Definition ( Th-coercivity) The form a(·, ·) is uniformly Th-coercive if

∃α⋆, β⋆ > 0, ∀h > 0, ∃Th ∈ L(Vh, Wh), ∀vh ∈ Vh,

|a(vh, Thvh)| ≥ α⋆‖vh‖
2
V and |||Th||| ≤ β⋆.
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Numerical approximation-2

Theorem (approximation error) The three assertions below are equivalent:

(i) Problems (DV F ) are well-posed with uniform continuous dependence ;

(ii) the form a(·, ·) satisfies the uniform discrete inf-sup condition (UDISC) ;

(iii) the form a(·, ·) is uniformly Th-coercive.

If one of these conditions is satisfied, the error ‖u − uh‖V is bounded by

(Strang) ‖u − uh‖V ≤ C inf
vh∈Vh

‖u − vh‖V ,

with C independent of f and h.
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Numerical approximation-2

Theorem (approximation error) The three assertions below are equivalent:

(i) Problems (DV F ) are well-posed with uniform continuous dependence ;

(ii) the form a(·, ·) satisfies the uniform discrete inf-sup condition (UDISC) ;

(iii) the form a(·, ·) is uniformly Th-coercive.

If one of these conditions is satisfied, the error ‖u − uh‖V is bounded by

(Strang) ‖u − uh‖V ≤ C inf
vh∈Vh

‖u − vh‖V ,

with C independent of f and h.

Proposition ( Th-coercivity)

Assume

∃T ∈ L(V, W ), bijective, such that (v, v′) 7→ a(v, Tv′) is coercive on V × V ;

∃(Th)h, Th ∈ L(Vh, Wh) s.t. limh→0

“

supvh∈Vh\{0}
||(Th−T)(vh)||W

||vh||V

”

= 0.

Then, the form a(·, ·) is uniformly Th-coercive for h small enough.
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Numerical approximation-2

Theorem (approximation error) The three assertions below are equivalent:

(i) Problems (DV F ) are well-posed with uniform continuous dependence ;

(ii) the form a(·, ·) satisfies the uniform discrete inf-sup condition (UDISC) ;

(iii) the form a(·, ·) is uniformly Th-coercive.

If one of these conditions is satisfied, the error ‖u − uh‖V is bounded by

(Strang) ‖u − uh‖V ≤ C inf
vh∈Vh

‖u − vh‖V ,

with C independent of f and h.

Proposition ( Th-coercivity)

Assume

∃T ∈ L(V, W ), bijective, such that (v, v′) 7→ a(v, Tv′) is coercive on V × V ;

∃(Th)h, Th ∈ L(Vh, Wh) s.t. limh→0

“

supvh∈Vh\{0}
||(Th−T)(vh)||W

||vh||V

”

= 0.

Then, the form a(·, ·) is uniformly Th-coercive for h small enough.

Similar approach, see [Buffa-Costabel-Schwab’02] for BEM.

Non-conforming discretization, see [Chung-Jr’1x] for DG.
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Helmholtz equation in acoustics

Consider a bounded domain Ω of R
d, with d = 1, 2, 3.

We study the classical problem

8

>

>

<

>

>

:

Find u ∈ H1(Ω) such that

div (σ∇u) + ω2ηu = f in Ω

u = 0 on ∂Ω.

Above, f is a source, ω > 0 is the given pulsation.

σ, η ∈ L∞(Ω), and ∃σ−, η− > 0 such that σ > σ− and η > η− a.e. in Ω.

NB. Other boundary conditions are possible...
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Helmholtz equation in acoustics

Consider a bounded domain Ω of R
d, with d = 1, 2, 3.

We study the classical problem

8

<

:

Find u ∈ H1
0 (Ω) such that

Z

Ω
σ∇u · ∇v dΩ − ω2

Z

Ω
ηuv dΩ = −〈f, v〉, ∀v ∈ H1

0 (Ω).

Above, f ∈ H−1(Ω).
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Helmholtz equation in acoustics

Consider a bounded domain Ω of R
d, with d = 1, 2, 3.

We study the classical problem

8

<

:

Find u ∈ H1
0 (Ω) such that

Z

Ω
σ∇u · ∇v dΩ − ω2

Z

Ω
ηuv dΩ = −〈f, v〉, ∀v ∈ H1

0 (Ω).

Within our framework:

V = W = H1
0 (Ω).

aac(v, w) =

Z

Ω
(σ∇v · ∇w − ω2ηvw) dΩ.

How can one achieve T-coercivity of the form aac(·, ·)?
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Helmholtz equation in acoustics

Consider a bounded domain Ω of R
d, with d = 1, 2, 3.

We study the classical problem

8

<

:

Find u ∈ H1
0 (Ω) such that

Z

Ω
σ∇u · ∇v dΩ − ω2

Z

Ω
ηuv dΩ = −〈f, v〉, ∀v ∈ H1

0 (Ω).

Within our framework:

V = W = H1
0 (Ω).

aac(v, w) =

Z

Ω
(σ∇v · ∇w − ω2ηvw) dΩ.

How can one achieve T-coercivity of the form aac(·, ·)?

Choose the norms:

v 7→ ‖v‖0 :=

„

Z

Ω
ηv2 dΩ

«1/2

in L2(Ω).

v 7→ ‖v‖1 :=

„

Z

Ω
ηv2 dΩ +

Z

Ω
σ|∇v|2 dΩ

«1/2

in H1(Ω).
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Helmholtz equation in acoustics-2

Spectral Theorem : ∃(vℓ)ℓ≥0, a Hilbert basis of H1
0 (Ω) made up of eigenfunctions

8

<

:

Find (vℓ, λℓ) ∈ H1
0 (Ω) × R such that vℓ 6= 0 and

Z

Ω
σ∇vℓ · ∇w dΩ = λℓ

Z

Ω
ηvℓw dΩ, ∀w ∈ H1

0 (Ω).

In addition

(vℓ)ℓ≥0 is also an orthogonal basis of L2(Ω) ;

all eigenvalues are of finite multiplicity ;

λ0 > 0, and limℓ→∞ λℓ = +∞.

NB. The eigenpairs are ordered by increasing values of the eigenvalues.

Nancy, April 2012 – p.9/24



Helmholtz equation in acoustics-2

Spectral Theorem : ∃(vℓ)ℓ≥0, a Hilbert basis of H1
0 (Ω) made up of eigenfunctions

8

<

:

Find (vℓ, λℓ) ∈ H1
0 (Ω) × R such that vℓ 6= 0 and

Z

Ω
σ∇vℓ · ∇w dΩ = λℓ

Z

Ω
ηvℓw dΩ, ∀w ∈ H1

0 (Ω).

Choice of Tac:

Let ℓmax denote the largest index ℓ ≥ 0 such that λℓ < ω2. Introduce:

V − := span0≤ℓ≤ℓmax
(vℓ), a finite dimensional vector subspace of H1

0 (Ω) ;

the orthogonal projection operator P− from H1
0 (Ω) to V −.

NB. When ω2 is smaller than λ0, ℓmax = −1, V − = {0} and P− = 0...
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Helmholtz equation in acoustics-2

Spectral Theorem : ∃(vℓ)ℓ≥0, a Hilbert basis of H1
0 (Ω) made up of eigenfunctions

8

<

:

Find (vℓ, λℓ) ∈ H1
0 (Ω) × R such that vℓ 6= 0 and

Z

Ω
σ∇vℓ · ∇w dΩ = λℓ

Z

Ω
ηvℓw dΩ, ∀w ∈ H1

0 (Ω).

Choice of Tac:

Let ℓmax denote the largest index ℓ ≥ 0 such that λℓ < ω2. Introduce:

V − := span0≤ℓ≤ℓmax
(vℓ), a finite dimensional vector subspace of H1

0 (Ω) ;

the orthogonal projection operator P− from H1
0 (Ω) to V −.

NB. When ω2 is smaller than λ0, ℓmax = −1, V − = {0} and P− = 0...

Define T
ac := IH1

0
(Ω) − 2P−:

T
acvℓ :=

8

<

:

−vℓ if 0 ≤ ℓ ≤ ℓmax

+vℓ if ℓ > ℓmax.
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Helmholtz equation in acoustics-2

Spectral Theorem : ∃(vℓ)ℓ≥0, a Hilbert basis of H1
0 (Ω) made up of eigenfunctions

8

<

:

Find (vℓ, λℓ) ∈ H1
0 (Ω) × R such that vℓ 6= 0 and

Z

Ω
σ∇vℓ · ∇w dΩ = λℓ

Z

Ω
ηvℓw dΩ, ∀w ∈ H1

0 (Ω).

Choice of Tac:

Let ℓmax denote the largest index ℓ ≥ 0 such that λℓ < ω2. Introduce:

V − := span0≤ℓ≤ℓmax
(vℓ), a finite dimensional vector subspace of H1

0 (Ω) ;

the orthogonal projection operator P− from H1
0 (Ω) to V −.

NB. When ω2 is smaller than λ0, ℓmax = −1, V − = {0} and P− = 0...

Define T
ac := IH1

0
(Ω) − 2P−.

Proposition aac : (v, w) 7→

Z

Ω
(σ∇v · ∇w − ω2ηvw) dΩ is T-coercive:

∀v ∈ H1
0 (Ω), |aac(v, Tacv)| ≥ α ‖v‖2

V , with α := min
ℓ≥0

˛

˛

˛

˛

λℓ − ω2

1 + λℓ

˛

˛

˛

˛

.
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Helmholtz equation in acoustics-3

Conforming discretization: Lagrange finite elements =⇒ (Vh)h...
The Discrete Variational Formulation writes:

Find uh ∈ Vh s.t. aac(uh, vh) = −〈f, vh〉, ∀vh ∈ Vh.

How can one achieve the uniform Th-coercivity of the form aac(·, ·)?

Nancy, April 2012 – p.10/24



Helmholtz equation in acoustics-3

Conforming discretization: Lagrange finite elements =⇒ (Vh)h...
The Discrete Variational Formulation writes:

Find uh ∈ Vh s.t. aac(uh, vh) = −〈f, vh〉, ∀vh ∈ Vh.

How can one achieve the uniform Th-coercivity of the form aac(·, ·)?

Idea (simple!): Build a suitable approximation of V − in Vh.
Choose approximations (vℓ,h)0≤ℓ≤ℓmax

of the basis vectors (vℓ)0≤ℓ≤ℓmax
, and set

V −
h := span0≤ℓ≤ℓmax

(vℓ,h).

Nancy, April 2012 – p.10/24



Helmholtz equation in acoustics-3

Conforming discretization: Lagrange finite elements =⇒ (Vh)h...
The Discrete Variational Formulation writes:

Find uh ∈ Vh s.t. aac(uh, vh) = −〈f, vh〉, ∀vh ∈ Vh.

How can one achieve the uniform Th-coercivity of the form aac(·, ·)?

Idea (simple!): Build a suitable approximation of V − in Vh.
Because V − is finite dimensional, one can find, for h small enough, a sequence of
orthonormal families (vℓ,h)0≤ℓ≤ℓmax,h and a uniform bound δ (limh→0 δ(h) = 0) s.t.

‖vℓ − vℓ,h‖1 ≤ δ(h), 0 ≤ ℓ ≤ ℓmax, for h small enough.
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Helmholtz equation in acoustics-3

Conforming discretization: Lagrange finite elements =⇒ (Vh)h...
The Discrete Variational Formulation writes:
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Because V − is finite dimensional, one can find, for h small enough, a sequence of
orthonormal families (vℓ,h)0≤ℓ≤ℓmax,h and a uniform bound δ (limh→0 δ(h) = 0) s.t.

‖vℓ − vℓ,h‖1 ≤ δ(h), 0 ≤ ℓ ≤ ℓmax, for h small enough.

Introduce:

the orthogonal projection operator P−
h from Vh to V −

h = span0≤ℓ≤ℓmax
(vℓ,h) ;

the operator Tac
h := IVh

− 2P−h of L(Vh).
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Helmholtz equation in acoustics-3

Conforming discretization: Lagrange finite elements =⇒ (Vh)h...
The Discrete Variational Formulation writes:

Find uh ∈ Vh s.t. aac(uh, vh) = −〈f, vh〉, ∀vh ∈ Vh.

How can one achieve the uniform Th-coercivity of the form aac(·, ·)?

Idea (simple!): Build a suitable approximation of V − in Vh.
Because V − is finite dimensional, one can find, for h small enough, a sequence of
orthonormal families (vℓ,h)0≤ℓ≤ℓmax,h and a uniform bound δ (limh→0 δ(h) = 0) s.t.

‖vℓ − vℓ,h‖1 ≤ δ(h), 0 ≤ ℓ ≤ ℓmax, for h small enough.

Introduce:

the orthogonal projection operator P−
h from Vh to V −

h = span0≤ℓ≤ℓmax
(vℓ,h) ;

the operator Tac
h := IVh

− 2P−h of L(Vh).

Proposition There holds limh→0

“

supvh∈Vh\{0}
||(Tac

h
−T

ac)(vh)||1
||vh||1

”

= 0.

Hence, the discrete solution uh converges to u, with a rate governed by (Strang).
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Time-harmonic problem in EM-ics

Consider a bounded domain Ω of R
3.

We study the classical problem

8

>

>

<

>

>

:

Find e ∈ H(curl; Ω) such that

−ω2εe + curl(µ−1
curle) = f in Ω

e× n = 0 on ∂Ω.

Above, f is a source, ω > 0 is the given pulsation.

ε, µ ∈ L∞(Ω), and ∃ε−, µ− > 0 such that ε > ε− and µ > µ− a.e. in Ω.

NB. Other boundary conditions are possible...
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Time-harmonic problem in EM-ics

Consider a bounded domain Ω of R
3.

We study the classical problem

8

<

:

Find e ∈ H0(curl; Ω) such that
Z

Ω
µ−1

curle · curlv dΩ − ω2

Z

Ω
εe · v dΩ =

Z

Ω
f · v dΩ, ∀v ∈ H0(curl; Ω).

Above, f ∈ L2(Ω).
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Time-harmonic problem in EM-ics

Consider a bounded domain Ω of R
3.

We study the classical problem

8

<

:

Find e ∈ H0(curl; Ω) such that
Z

Ω
µ−1

curle · curlv dΩ − ω2

Z

Ω
εe · v dΩ =

Z

Ω
f · v dΩ, ∀v ∈ H0(curl; Ω).

Within our framework:

V = W = H0(curl; Ω).

aEM (v, w) =

Z

Ω
(µ−1

curlv · curlw − ω2εv · w) dΩ.

How can one achieve T-coercivity of the form aEM (·, ·)?
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Time-harmonic problem in EM-ics

Consider a bounded domain Ω of R
3.

We study the classical problem

8

<

:

Find e ∈ H0(curl; Ω) such that
Z

Ω
µ−1

curle · curlv dΩ − ω2

Z

Ω
εe · v dΩ =

Z

Ω
f · v dΩ, ∀v ∈ H0(curl; Ω).

Within our framework:

V = W = H0(curl; Ω).

aEM (v, w) =

Z

Ω
(µ−1

curlv · curlw − ω2εv · w) dΩ.

How can one achieve T-coercivity of the form aEM (·, ·)?

Choose the norms:

v 7→ ‖v‖0 :=

„

Z

Ω
ε|v|2 dΩ

«1/2

in L2(Ω).

v 7→ ‖v‖curl :=

„

Z

Ω
ε|v|2 dΩ +

Z

Ω
µ−1| curlv|2 dΩ

«1/2

in H(curl; Ω).
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Time-harmonic problem in EM-ics-2

DIFFICULTY: the embedding of H0(curl; Ω) into L2(Ω) is not compact!
Hence, the Spectral Theorem can not be applied “as is”...
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Time-harmonic problem in EM-ics-2

DIFFICULTY: the embedding of H0(curl; Ω) into L2(Ω) is not compact!
Hence, the Spectral Theorem can not be applied “as is”...

Proposition There holds the decomposition

H0(curl; Ω) = G
⊥curl

⊕ Wε

where G := ∇H1
0 (Ω), Wε := {w ∈ H0(curl; Ω) : div (εw) = 0}.
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Time-harmonic problem in EM-ics-2

DIFFICULTY: the embedding of H0(curl; Ω) into L2(Ω) is not compact!
Hence, the Spectral Theorem can not be applied “as is”...

Proposition There holds the decomposition

H0(curl; Ω) = G
⊥curl

⊕ Wε

where G := ∇H1
0 (Ω), Wε := {w ∈ H0(curl; Ω) : div (εw) = 0}.

Idea: one can try and build two Hilbert bases:

one for G (cf. acoustics section): (eℓ)ℓ<0, with eℓ := ∇v−(1+ℓ) for ℓ < 0 ;

one for Wε.
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Time-harmonic problem in EM-ics-2

DIFFICULTY: the embedding of H0(curl; Ω) into L2(Ω) is not compact!
Hence, the Spectral Theorem can not be applied “as is”...

Proposition There holds the decomposition

H0(curl; Ω) = G
⊥curl

⊕ Wε

where G := ∇H1
0 (Ω), Wε := {w ∈ H0(curl; Ω) : div (εw) = 0}.

(eℓ)ℓ<0 Hilbert basis of G, with eℓ := ∇v−(1+ℓ) for ℓ < 0.

Theorem [Weber’80] Wε is compactly embedded into L2(Ω).

DIFFICULTY: Wε is not dense in L2(Ω).
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Time-harmonic problem in EM-ics-2

DIFFICULTY: the embedding of H0(curl; Ω) into L2(Ω) is not compact!
Hence, the Spectral Theorem can not be applied “as is”...

Proposition There holds the decomposition

H0(curl; Ω) = G
⊥curl

⊕ Wε

where G := ∇H1
0 (Ω), Wε := {w ∈ H0(curl; Ω) : div (εw) = 0}.

(eℓ)ℓ<0 Hilbert basis of G, with eℓ := ∇v−(1+ℓ) for ℓ < 0.

Theorem [Weber’80] Wε is compactly embedded into L2(Ω).

DIFFICULTY: Wε is not dense in L2(Ω).

New pivot space: H(div ε0;Ω) := {w ∈ H(div ε; Ω) : div (εw) = 0}.

(+) Wε is compactly embedded into H(div ε0;Ω) ;

(+) one can prove that Wε is dense in H(div ε0;Ω).
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Time-harmonic problem in EM-ics-2

DIFFICULTY: the embedding of H0(curl; Ω) into L2(Ω) is not compact!
Hence, the Spectral Theorem can not be applied “as is”...

Proposition There holds the decomposition

H0(curl; Ω) = G
⊥curl

⊕ Wε

where G := ∇H1
0 (Ω), Wε := {w ∈ H0(curl; Ω) : div (εw) = 0}.

(eℓ)ℓ<0 Hilbert basis of G, with eℓ := ∇v−(1+ℓ) for ℓ < 0.

Spectral Theorem : ∃(eℓ)ℓ≥0 a Hilbert basis of Wε made up of eigenfunctions

8

<

:

Find (eℓ, µℓ) ∈ Wε × R such that eℓ 6= 0 and
Z

Ω
(εeℓ · w + µ−1

curleℓ · curlw) dΩ = (1 + µℓ)

Z

Ω
εeℓ · wdΩ, ∀w ∈ Wε.

all eigenvalues are of finite multiplicity ;

µℓ = 0 occurs K times, with K + 1 number of c.c. of ∂Ω, and limℓ→∞ µℓ = +∞.

NB. The eigenpairs are ordered by increasing values of the eigenvalues.
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Time-harmonic problem in EM-ics-3

Conclusion: (eℓ)ℓ is a Hilbert basis of H0(curl; Ω) such that

∀ℓ, ∃µℓ ≥ 0, (eℓ, w)curl = (1 + µℓ)

Z

Ω
εeℓ · wdΩ, ∀w ∈ H0(curl; Ω).

For ℓ < 0: eℓ ∈ G and µℓ = 0 ;

For ℓ ≥ 0: eℓ ∈ Wε and µℓ are eigenpairs, and
all eigenvalues are of finite multiplicity ;
µℓ = 0 occurs K times, and limℓ→∞ µℓ = +∞.

Nancy, April 2012 – p.13/24



Time-harmonic problem in EM-ics-3

Conclusion: (eℓ)ℓ is a Hilbert basis of H0(curl; Ω) such that

∀ℓ, ∃µℓ ≥ 0, (eℓ, w)curl = (1 + µℓ)

Z

Ω
εeℓ · wdΩ, ∀w ∈ H0(curl; Ω).

NB. Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.
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Time-harmonic problem in EM-ics-3

Conclusion: (eℓ)ℓ is a Hilbert basis of H0(curl; Ω) such that

∀ℓ, ∃µℓ ≥ 0, (eℓ, w)curl = (1 + µℓ)

Z

Ω
εeℓ · wdΩ, ∀w ∈ H0(curl; Ω).

NB. Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.

Choice of TEM :

Let ℓmax denote the largest index ℓ such that µℓ < ω2. Introduce:

V − := span0≤ℓ≤ℓmax
(eℓ), a finite dimensional vector subspace of Wε ;

the orthogonal projection operator P− from H0(curl; Ω) to V −.
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Time-harmonic problem in EM-ics-3

Conclusion: (eℓ)ℓ is a Hilbert basis of H0(curl; Ω) such that

∀ℓ, ∃µℓ ≥ 0, (eℓ, w)curl = (1 + µℓ)

Z

Ω
εeℓ · wdΩ, ∀w ∈ H0(curl; Ω).

NB. Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.

Choice of TEM :

Let ℓmax denote the largest index ℓ such that µℓ < ω2. Introduce:

V − := span0≤ℓ≤ℓmax
(eℓ), a finite dimensional vector subspace of Wε ;

the orthogonal projection operator P− from H0(curl; Ω) to V −.

Define T
EM := −i G + i W ε

− 2P−:

T
EMeℓ :=

8

<

:

−eℓ if ℓ ≤ ℓmax

+eℓ if ℓ > ℓmax.
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Time-harmonic problem in EM-ics-3

Conclusion: (eℓ)ℓ is a Hilbert basis of H0(curl; Ω) such that

∀ℓ, ∃µℓ ≥ 0, (eℓ, w)curl = (1 + µℓ)

Z

Ω
εeℓ · wdΩ, ∀w ∈ H0(curl; Ω).

NB. Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.

Choice of TEM :

Let ℓmax denote the largest index ℓ such that µℓ < ω2. Introduce:

V − := span0≤ℓ≤ℓmax
(eℓ), a finite dimensional vector subspace of Wε ;

the orthogonal projection operator P− from H0(curl; Ω) to V −.

Define T
EM := −i G + i W ε

− 2P−.

Proposition aEM : (v, w) 7→

Z

Ω
(µ−1

curlv ·curlw−ω2εv ·w) dΩ is T-coercive.

Nancy, April 2012 – p.13/24



Time-harmonic problem in EM-ics-4

Conforming discretization: Nédélec’s first family finite elements =⇒ (V h)h...
The Discrete Variational Formulation writes:

Find eh ∈ V h s.t. aEM (eh, vh) =

Z

Ω
f · vh dΩ, ∀vh ∈ V h.

How can one achieve the uniform Th-coercivity of the form aEM (·, ·)?
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Conforming discretization: Nédélec’s first family finite elements =⇒ (V h)h...
The Discrete Variational Formulation writes:

Find eh ∈ V h s.t. aEM (eh, vh) =

Z

Ω
f · vh dΩ, ∀vh ∈ V h.

How can one achieve the uniform Th-coercivity of the form aEM (·, ·)?

DIFFICULTY: Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.
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Time-harmonic problem in EM-ics-4

Conforming discretization: Nédélec’s first family finite elements =⇒ (V h)h...
The Discrete Variational Formulation writes:

Find eh ∈ V h s.t. aEM (eh, vh) =

Z

Ω
f · vh dΩ, ∀vh ∈ V h.

How can one achieve the uniform Th-coercivity of the form aEM (·, ·)?

DIFFICULTY: Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.

Idea:

split elements of V h (≈ exact decomposition H0(curl; Ω) = G⊕Wε) ;

take the opposite of the gradient part ;

use the orthogonal projection on the other part (cf. acoustics section).
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Time-harmonic problem in EM-ics-4

Conforming discretization: Nédélec’s first family finite elements =⇒ (V h)h...
The Discrete Variational Formulation writes:

Find eh ∈ V h s.t. aEM (eh, vh) =

Z

Ω
f · vh dΩ, ∀vh ∈ V h.

How can one achieve the uniform Th-coercivity of the form aEM (·, ·)?

DIFFICULTY: Given any ω > 0, there is an infinite number of ℓ s.t. µℓ < ω2.

Idea:

split elements of V h (≈ exact decomposition H0(curl; Ω) = G⊕Wε) ;

take the opposite of the gradient part ;

use the orthogonal projection on the other part (cf. acoustics section).

DIFFICULTY: The discrete splitting needs to be uniformly close to the exact splitting.
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Time-harmonic problem in EM-ics-5

Given vh ∈ V h:

the exact splitting is ∃!(ϕ, w) ∈ H1
0 (Ω) × Wε, vh = ∇ϕ + w.

a discrete splitting is (ϕh, wh) ∈ Vh × V h, vh = ∇ϕh + wh.

NB. Provided the orders of FE are appropriately chosen, there holds ∇Vh ⊂ V h.
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Time-harmonic problem in EM-ics-5

Given vh ∈ V h:

the exact splitting is ∃!(ϕ, w) ∈ H1
0 (Ω) × Wε, vh = ∇ϕ + w.

a discrete splitting is (ϕh, wh) ∈ Vh × V h, vh = ∇ϕh + wh.

NB. Provided the orders of FE are appropriately chosen, there holds ∇Vh ⊂ V h.

Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

‖∇(ϕ − ϕh)‖curl = ‖w − wh‖curl ≤ Cr hs ‖vh‖curl,

with s := s(Ω, ε) > 0, Cr > 0 independent of vh.
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Time-harmonic problem in EM-ics-5

Given vh ∈ V h:

the exact splitting is ∃!(ϕ, w) ∈ H1
0 (Ω) × Wε, vh = ∇ϕ + w.

a discrete splitting is (ϕh, wh) ∈ Vh × V h, vh = ∇ϕh + wh.

NB. Provided the orders of FE are appropriately chosen, there holds ∇Vh ⊂ V h.

Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

‖∇(ϕ − ϕh)‖curl = ‖w − wh‖curl ≤ Cr hs ‖vh‖curl,

with s := s(Ω, ε) > 0, Cr > 0 independent of vh.

Proof (main ingredients!)

regular-singular splitting of elements of Wε, cf. [Costabel-Dauge-Nicaise’99] ;

edge element approximability of piecewise-smooth fields, cf. [Monk’03] ;

edge element interpolation of gradients, cf. [Nédélec’80].
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Time-harmonic problem in EM-ics-5

Given vh ∈ V h:

the exact splitting is ∃!(ϕ, w) ∈ H1
0 (Ω) × Wε, vh = ∇ϕ + w.

a discrete splitting is (ϕh, wh) ∈ Vh × V h, vh = ∇ϕh + wh.

NB. Provided the orders of FE are appropriately chosen, there holds ∇Vh ⊂ V h.

Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

‖∇(ϕ − ϕh)‖curl = ‖w − wh‖curl ≤ Cr hs ‖vh‖curl,

with s := s(Ω, ε) > 0, Cr > 0 independent of vh.

Approximate V − in V h, cf. acoustics section: V −
h := span0≤ℓ≤ℓmax

(eℓ,h), with

‖eℓ − eℓ,h‖curl ≤ δ(h), 0 ≤ ℓ ≤ ℓmax, for h small enough ( lim
h→0

δ(h) = 0).
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Time-harmonic problem in EM-ics-5

Given vh ∈ V h:

the exact splitting is ∃!(ϕ, w) ∈ H1
0 (Ω) × Wε, vh = ∇ϕ + w.

a discrete splitting is (ϕh, wh) ∈ Vh × V h, vh = ∇ϕh + wh.

NB. Provided the orders of FE are appropriately chosen, there holds ∇Vh ⊂ V h.

Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

‖∇(ϕ − ϕh)‖curl = ‖w − wh‖curl ≤ Cr hs ‖vh‖curl,

with s := s(Ω, ε) > 0, Cr > 0 independent of vh.

Introduce:

the orthogonal projection operator P−
h from V h to V −

h ;

the operator TEM
h of L(V h) defined by T

EM
h (vh) := −∇ϕh +(IV h

− 2P−h )(wh).
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Time-harmonic problem in EM-ics-5

Given vh ∈ V h:

the exact splitting is ∃!(ϕ, w) ∈ H1
0 (Ω) × Wε, vh = ∇ϕ + w.

a discrete splitting is (ϕh, wh) ∈ Vh × V h, vh = ∇ϕh + wh.

NB. Provided the orders of FE are appropriately chosen, there holds ∇Vh ⊂ V h.

Proposition (Uniform discrete splittings)

Assume that ε is piecewise-constant: there exists a discrete splitting such that

‖∇(ϕ − ϕh)‖curl = ‖w − wh‖curl ≤ Cr hs ‖vh‖curl,

with s := s(Ω, ε) > 0, Cr > 0 independent of vh.

Introduce:

the orthogonal projection operator P−
h from V h to V −

h ;

the operator TEM
h of L(V h) defined by T

EM
h (vh) := −∇ϕh +(IV h

− 2P−h )(wh).

Proposition There holds limh→0

„

supvh∈V h\{0}
||(TEM

h
−T

EM )(vh)||curl

||vh||curl

«

= 0.

Hence, the discrete solution eh converges to e, with a rate governed by (Strang).
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of R
d, d = 1, 2, 3.

8

<

:

Find u ∈ H1
0 (Ω) such that

div (σ∇u) = f in Ω.

σ ∈ L∞(Ω) is a sign-changing coefficient:

8

<

:

σ > 0 in Ω1, with meas(Ω1) > 0 ;

σ < 0 in Ω2, with meas(Ω2) > 0.

σ−1 ∈ L∞(Ω).
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of R
d, d = 1, 2, 3.

8

<

:

Find u ∈ H1
0 (Ω) such that

div (σ∇u) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

NB. The “generalized” Helmholtz equation div (σ∇u) + ω2ηu = f with η ∈ L∞(Ω)

can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf’10].
When σ < 0, this models a metamaterial.
One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr’12].
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of R
d, d = 1, 2, 3.

8

<

:

Find u ∈ H1
0 (Ω) such that

div (σ∇u) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

The main dificulty is that (v, w) 7→

Z

Ω
σ ∇v · ∇w dΩ is not coercive in H1

0 (Ω).
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of R
d, d = 1, 2, 3.

8

<

:

Find u ∈ H1
0 (Ω) such that

div (σ∇u) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

The main dificulty is that (v, w) 7→

Z

Ω
σ ∇v · ∇w dΩ is not coercive in H1

0 (Ω).

Structure of spectrum? Use of the Spectral Theorem ?

=⇒ New approach to achieve T-coercivity!
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Sign-changing coefficients

Consider a scalar transmission problem, set in a bounded domain Ω of R
d, d = 1, 2, 3.

8

<

:

Find u ∈ H1
0 (Ω) such that

div (σ∇u) = f in Ω.

σ ∈ L∞(Ω), is a sign-changing coefficient.

σ−1 ∈ L∞(Ω).

The main dificulty is that (v, w) 7→

Z

Ω
σ ∇v · ∇w dΩ is not coercive in H1

0 (Ω).

Structure of spectrum? Use of the Spectral Theorem ?

=⇒ New approach to achieve T-coercivity!

We follow [BonnetBenDhia-Jr-Zwölf’10]:

Ω1 and Ω2 are domains of R
d ;

Σ := Ω1 ∩ Ω2 is the interface ;

Γk := ∂Ω ∩ ∂Ωk, k = 1, 2 are the boundaries.
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Sign-changing coefficients-2

For the transmission problem with sign-changing coefficient:

V = H1
0 (Ω) ;

the sesquilinear form is atr(v, w) =

Z

Ω
σ ∇v · ∇w dΩ.

NB. Complex-valued forms, to enable the introduction of dissipation...
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Sign-changing coefficients-2

For the transmission problem with sign-changing coefficient:

V = H1
0 (Ω) ;

the sesquilinear form is atr(v, w) =

Z

Ω
σ ∇v · ∇w dΩ.

Introduce Vk := {vk ∈ H1(Ωk) | vk|Γk
= 0}, k = 1, 2:

V = {v | v|Ωk
∈ Vk, k = 1, 2, MatchingΣ(v|Ω1

, v|Ω2
) = 0} ,

with MatchingΣ(v1, v2) := v1|Σ − v2|Σ.
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Sign-changing coefficients-2

For the transmission problem with sign-changing coefficient:

V = H1
0 (Ω) ;

the sesquilinear form is atr(v, w) =

Z

Ω
σ ∇v · ∇w dΩ.

Introduce atr
k (vk, wk) :=

Z

Ωk

σ ∇vk · ∇wk dΩ, k = 1, 2:

∀v, w ∈ V, atr(v, w) = atr
1 (v|Ω1

, w|Ω1
) + atr

2 (v|Ω2
, w|Ω2

) ;

Nancy, April 2012 – p.17/24



Sign-changing coefficients-2

For the transmission problem with sign-changing coefficient:

V = H1
0 (Ω) ;

the sesquilinear form is atr(v, w) =

Z

Ω
σ ∇v · ∇w dΩ.

Introduce atr
k (vk, wk) :=

Z

Ωk

σ ∇vk · ∇wk dΩ, k = 1, 2:

∀v, w ∈ V, atr(v, w) = atr
1 (v|Ω1

, w|Ω1
) + atr

2 (v|Ω2
, w|Ω2

) ;

∀v1 ∈ V1, σ−
1 ‖∇v1‖2

L2(Ω1)
≤ +atr

1 (v1, v1) ≤ σ+
1 ‖∇v1‖2

L2(Ω1)
;

∀v2 ∈ V2, σ−
2 ‖∇v2‖2

L2(Ω2)
≤ −atr

2 (v2, v2) ≤ σ+
2 ‖∇v2‖2

L2(Ω2)
.

NB. We have 0 < σ−
k ≤ σ+

k < ∞, k = 1, 2.
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Sign-changing coefficients-3

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

NB. Given v ∈ H1
0 (Ω), we set vk := v|Ωk

, k = 1, 2.
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Sign-changing coefficients-3

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = IH1

0
(Ω).

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.
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Sign-changing coefficients-3

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = IH1

0
(Ω).

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.

Nancy, April 2012 – p.18/24



Sign-changing coefficients-3

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = IH1

0
(Ω).

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = IH1

0
(Ω)!

Nancy, April 2012 – p.18/24



Sign-changing coefficients-3

First try:

∀v ∈ H1
0 (Ω), T− v :=

8

<

:

v1 in Ω1

−v2 in Ω2

.

(+) Obviously, (T−)2 = IH1

0
(Ω).

(–) But T− 6∈ L(H1
0 (Ω)), because the matching condition is not enforced.

Second try: let R1 ∈ L(V1, V2) s.t. for all v1 ∈ V1, MatchingΣ(v1, R1v1) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1 in Ω1

−v2+2R1 v1 in Ω2

.

Can one achieve T-coercivity?
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Sign-changing coefficients-4

Some elementary computations:

|atr(v, Tv)| = |atr
1 (v1, v1) − atr

2 (v2, v2) + 2atr
2 (v2, R1 v1)|

≥ |atr
1 (v1, v1) − atr

2 (v2, v2)| − 2|atr
2 (v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− atr
2 (v2, v2) − 2|atr

2 (v2, R1 v1)|
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Some elementary computations: let δ > 0, apply Young’s inequality

|atr(v, Tv)| = |atr
1 (v1, v1) − atr

2 (v2, v2) + 2atr
2 (v2, R1 v1)|

≥ |atr
1 (v1, v1) − atr

2 (v2, v2)| − 2|atr
2 (v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− atr
2 (v2, v2) − 2|atr

2 (v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− atr
2 (v2, v2) + δatr

2 (v2, v2) + δ−1atr
2 (R1 v1, R1 v1)

≥ (σ−
1 − δ−1σ+

2 |||R1|||
2)‖v1‖

2
V1

− (1 − δ)atr
2 (v2, v2).

Nancy, April 2012 – p.19/24



Sign-changing coefficients-4

Some elementary computations: let δ > 0, apply Young’s inequality

|atr(v, Tv)| = |atr
1 (v1, v1) − atr

2 (v2, v2) + 2atr
2 (v2, R1 v1)|

≥ |atr
1 (v1, v1) − atr

2 (v2, v2)| − 2|atr
2 (v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− atr
2 (v2, v2) − 2|atr

2 (v2, R1 v1)|

≥ σ−
1 ‖v1‖

2
V1

− atr
2 (v2, v2) + δatr

2 (v2, v2) + δ−1atr
2 (R1 v1, R1 v1)

≥ (σ−
1 − δ−1σ+

2 |||R1|||
2)‖v1‖

2
V1

− (1 − δ)atr
2 (v2, v2).

Hence, to obtain |atr(v, Tv)| ≥ α ‖v‖2
V with α > 0, it is sufficient that

σ−
1

σ+
2

> |||R1|||
2.
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Sign-changing coefficients-5

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.
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Sign-changing coefficients-5

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = IH1

0
(Ω)!

To obtain |atr(v, Tv)| ≥ α ‖v‖2
V with α > 0, it is sufficient that

σ−
2

σ+
1

> |||R2|||
2.
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Sign-changing coefficients-5

Third try: let R2 ∈ L(V2, V1) s.t. for all v2 ∈ V2, MatchingΣ(R2v2, v2) = 0.

∀v ∈ H1
0 (Ω), T v :=

8

<

:

v1−2R2 v2 in Ω1

−v2 in Ω2

.

(+) T ∈ L(H1
0 (Ω)).

(+) One checks easily that T2 = IH1

0
(Ω)!

To obtain |atr(v, Tv)| ≥ α ‖v‖2
V with α > 0, it is sufficient that

σ−
2

σ+
1

> |||R2|||
2.

Conclusion: to achieve T-coercivity , one needs

σ−
1

σ+
2

>

„

inf
R1

|||R1|||

«2

or
σ−
2

σ+
1

>

„

inf
R2

|||R2|||

«2

.
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Sign-changing coefficients-6

How to choose the operators R1 or R2?

using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf’10], [Nicaise-Venel’11] ;

using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr’12].
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using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf’10], [Nicaise-Venel’11] ;

using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr’12].

Numerical studies in (Vh)h:

in general, one cannot build discrete operators (Th)h s.t.

limh→0

“

supvh∈Vh\{0}
||(Th−T)(vh)||V

||vh||V

”

= 0 ;

one can only prove that (Rk,h)h is bounded wrt |||Rk|||, k = 1, 2.
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= 0 ;

one can only prove that (Rk,h)h is bounded wrt |||Rk|||, k = 1, 2.
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2 or σ−
2 /σ+

1 are sufficiently large to ensure
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1

σ+
2

> |||R1,h|||
2 or

σ−
2

σ+
1

> |||R2,h|||
2, for h small enough.
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2
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1
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Under this last assumption, convergence follows.
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How to choose the operators R1 or R2?

using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf’10], [Nicaise-Venel’11] ;

using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr’12].

Numerical studies in (Vh)h:

in general, one cannot build discrete operators (Th)h s.t.

limh→0

“

supvh∈Vh\{0}
||(Th−T)(vh)||V

||vh||V

”

= 0 ;

one can only prove that (Rk,h)h is bounded wrt |||Rk|||, k = 1, 2.

Safety net: choose σ s.t. σ−
1 /σ+

2 or σ−
2 /σ+

1 are sufficiently large to ensure

σ−
1

σ+
2

> |||R1,h|||
2 or

σ−
2

σ+
1

> |||R2,h|||
2, for h small enough.

Under this last assumption, convergence follows.

NB. One can also add dissipation, cf. [Chesnel-Jr’1x]:

(+) convergence follows without safety net ;

(–) convergence rate is reduced.
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Sign-changing coefficients-6

How to choose the operators R1 or R2?

using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf’10], [Nicaise-Venel’11] ;

using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr’12].

Numerical studies in (Vh)h:

in general, one cannot build discrete operators (Th)h s.t.

limh→0

“

supvh∈Vh\{0}
||(Th−T)(vh)||V

||vh||V

”

= 0 ;

one can only prove that (Rk,h)h is bounded wrt |||Rk|||, k = 1, 2.

Safety net: choose σ s.t. σ−
1 /σ+

2 or σ−
2 /σ+

1 are sufficiently large to ensure

σ−
1

σ+
2

> |||R1,h|||
2 or

σ−
2

σ+
1

> |||R2,h|||
2, for h small enough.

Under this last assumption, convergence follows.

Numerical results:

conforming discretization, cf. [Chesnel-Jr’1x].

non-conforming discretization, cf. [Chung-Jr’1x] ;
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Sign-changing coefficients-7

In a symmetric domain. Here, Ω =] − 1, 1[×]0, 1[, Ω1 and Ω2 are unit squares.

σk := σ|Ωk
, k = 1, 2, are constant numbers, and σ2/σ1 = −1.001 ; ω = 0.

An exact piecewise smooth solution of the transmission problem is available.

Conforming discretization using P1 Lagrange FE.

We study below the influence of the meshes (errors in L2-norm ; O(h2) is expected).
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σk := σ|Ωk
, k = 1, 2, are constant numbers, and σ2/σ1 = −1.001 ; ω = 0.

An exact piecewise smooth solution of the transmission problem is available.

Conforming discretization using P1 Lagrange FE.

We study below the influence of the meshes (errors in L2-norm ; O(h2) is expected).
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Sign-changing coefficients-8

In a rectangle. Here, Ω =]0, 5[×]0, 2[, Ω2 =]1, 3[×]0, 2[, and Ω1 = Ω \ Ω2.

Ω
metamaterial

1Ω 1Ω2

(σk)k=1,2 are constant numbers, and σ2/σ1 = −1/3 ; ω = 1.6 and η = σ−1.

An exact piecewise smooth solution of the transmission problem is available.

Non-conforming discretization using staggered DG1 FE, cf. [Chung-Engquist’06/’09].

Errors in L2-norm ; O(h2) is expected.
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Ω
metamaterial

1Ω 1Ω2

(σk)k=1,2 are constant numbers, and σ2/σ1 = −1/3 ; ω = 1.6 and η = σ−1.

An exact piecewise smooth solution of the transmission problem is available.

Non-conforming discretization using staggered DG1 FE, cf. [Chung-Engquist’06/’09].

Errors in L2-norm ; O(h2) is expected. Numerically, the order is 1.9999.
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In a rectangle.

Ω
metamaterial

1Ω 1Ω2

(σk)k=1,2 are constant numbers, and σ2/σ1 = −1/3 ; ω = 1.6 and η = σ−1.

An exact piecewise smooth solution of the transmission problem is available.

Non-conforming discretization using staggered DG1 FE, cf. [Chung-Engquist’06/’09].

Errors in L2-norm ; O(h2) is expected. Numerically, the order is 1.9999.
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Conclusion/Perspectives

T-coercivity is versatile!

BEM for the classical Maxwell problem (cf. [Buffa-Costabel-Schwab’02]) ;

FEM for the classical scalar or Maxwell problems (cf. [Jr’12]) ;

Vol. Int. Eq. Methods for scattering from gratings (cf. [Lechleiter-Nguyen’1x]) ;

study of Interior Transmission Eigenvalue Problems:
scalar case (cf. [BonnetBenDhia-Chesnel-Haddar’11]) ;
Maxwell problem (cf. [Chesnel’1x]) ;

etc.
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Conclusion/Perspectives

T-coercivity is versatile!

Scalar problems with sign-shifting coefficients:

introduction of T-coercivity during WAVES’07 (cf. [BonnetBenDhia-Jr-Zwölf’10]) ;

numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf’10],
[Nicaise-Venel’11], [Chesnel-Jr’1x], DG-approach [Chung-Jr’1x], etc.) ;

theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr’12]) ;

theoretical study of the critical cases (with [BonnetBenDhia-Chesnel-Claeys’1x]) ;

discretization and numerical analysis of the critical cases.
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theoretical study of the critical cases (with [BonnetBenDhia-Chesnel-Claeys’1x]) ;

discretization and numerical analysis of the critical cases.

Maxwell problem(s) with sign-shifting coefficients:

T-coercivity + side results during NELIA’11 (cf. [BonnetBenDhia-Chesnel-Jr’??]) ;

numerical analysis when T-coercivity applies.
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Conclusion/Perspectives

T-coercivity is versatile!

Scalar problems with sign-shifting coefficients:

introduction of T-coercivity during WAVES’07 (cf. [BonnetBenDhia-Jr-Zwölf’10]) ;

numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf’10],
[Nicaise-Venel’11], [Chesnel-Jr’1x], DG-approach [Chung-Jr’1x], etc.) ;

theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr’12]) ;

theoretical study of the critical cases (with [BonnetBenDhia-Chesnel-Claeys’1x]) ;

discretization and numerical analysis of the critical cases.

Maxwell problem(s) with sign-shifting coefficients:

T-coercivity + side results during NELIA’11 (cf. [BonnetBenDhia-Chesnel-Jr’??]) ;

numerical analysis when T-coercivity applies.

In the critical cases: are models derived from physics still relevant?

re-visit models (homogenization, multi-scale numerics, etc.).

(A.N.R. METAMATH Project ; coordinator S. Fliss (POEMS)).
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