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Time-harmonic problem

Let Ω be a Lipschitz, polyhedral domain with connected boundary ∂Ω.

Given k > 0 and source term f ∈ L2(Ω) (div f = 0), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

− k2εE = f in Ω ;

div εE = 0 in Ω ;

E × n = 0 on ∂Ω.

NB. With coefficients ε, µ > 0 a.e. ; ε, ε−1, µ, µ−1 ∈ L∞(Ω).
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Time-harmonic problem

Let Ω be a Lipschitz, polyhedral domain with connected boundary ∂Ω.

Given k > 0 and source term f ∈ L2(Ω) (div f = 0), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

− k2εE = f in Ω ;

div εE = 0 in Ω ;

E × n = 0 on ∂Ω.

We assume that the problem is well-posed: ‖E‖H(curl ;Ω) . ‖f‖
L2(Ω), where

H(curl ; Ω) := {v ∈ L2(Ω) | curlv ∈ L2(Ω)}.
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Time-harmonic problem

Let Ω be a Lipschitz, polyhedral domain with connected boundary ∂Ω.

Given k > 0 and source term f ∈ L2(Ω) (div f = 0), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

− k2εE = f in Ω ;

div εE = 0 in Ω ;

E × n = 0 on ∂Ω.

We assume that the problem is well-posed.

Let H0(curl ; Ω) := {v ∈ L2(Ω) | curlv ∈ L2(Ω), v × n|∂Ω = 0}.
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Time-harmonic problem

Let Ω be a Lipschitz, polyhedral domain with connected boundary ∂Ω.

Given k > 0 and source term f ∈ L2(Ω) (div f = 0), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

− k2εE = f in Ω ;

div εE = 0 in Ω ;

E × n = 0 on ∂Ω.

We assume that the problem is well-posed.

Let H0(curl ; Ω) := {v ∈ L2(Ω) | curlv ∈ L2(Ω), v × n|∂Ω = 0}.

An equivalent variational formulation is:

(V F )







Find E ∈ H0(curl ; Ω) s.t.

∀v ∈ H0(curl ; Ω), (µ−1
curlE|curlv)− k2(εE|v) = (f |v).

Above, (v|v′) :=

∫

Ω
v · v′ dΩ.

Sophia-Antipolis, April 2013 – p. 3/19



Regularity of the fields

E ∈ XN (Ω, ε) := {v ∈ H0(curl ,Ω) |div εv ∈ L2(Ω)}.
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Regularity of the fields

E ∈ XN (Ω, ε) := {v ∈ H0(curl ,Ω) |div εv ∈ L2(Ω)}.

µ−1
curlE ∈ XT (Ω, µ) := {v ∈ H(curl ,Ω) |div µv ∈ L2(Ω), µv · n|∂Ω = 0}.

Theorem [Costabel-Dauge-Nicaise’99]: Assume that ε, µ−1 ∈ W 1,∞(Ω).
If Ω is convex then XN (Ω, ε) ⊂ H1(Ω) and XT (Ω, µ) ⊂ H1(Ω).
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If Ω is convex then XN (Ω, ε) ⊂ H1(Ω) and XT (Ω, µ) ⊂ H1(Ω).
If Ω is non-convex then ∃δDir

max, δ
Neu
max ∈]1/2, 1[ s.t.

XN (Ω, ε) ⊂ Hδ(Ω), ∀δ ∈ [0, δDir
max[ and XT (Ω, µ) ⊂ Hδ(Ω), ∀δ ∈ [0, δNeu
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max[.

Assume that ε, µ−1 ∈ W 1,∞(Ω) from now on.

To fix ideas, consider that Ω is non-convex and define δmax := min(δDir
max, δ

Neu
max).

Choose a regularity exponent δ ∈]1/2, δmax[.
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Regularity of the fields

E ∈ XN (Ω, ε) := {v ∈ H0(curl ,Ω) |div εv ∈ L2(Ω)}.

µ−1
curlE ∈ XT (Ω, µ) := {v ∈ H(curl ,Ω) |div µv ∈ L2(Ω), µv · n|∂Ω = 0}.
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XN (Ω, ε) ⊂ Hδ(Ω), ∀δ ∈ [0, δDir
max[ and XT (Ω, µ) ⊂ Hδ(Ω), ∀δ ∈ [0, δNeu

max[.

Assume that ε, µ−1 ∈ W 1,∞(Ω) from now on.

To fix ideas, consider that Ω is non-convex and define δmax := min(δDir
max, δ

Neu
max).

Choose a regularity exponent δ ∈]1/2, δmax[.

NB. If Ω is convex, then δ = 1.
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Edge element discretization

Let (Th)h be a shape regular family of tetrahedral meshes of Ω.

Define Xh := {vh ∈ H0(curl ; Ω) |vh|K = aK + bK × x, ∀K ∈ Th}.
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Edge element discretization

Let (Th)h be a shape regular family of tetrahedral meshes of Ω.

Define Xh := {vh ∈ H0(curl ; Ω) |vh|K = aK + bK × x, ∀K ∈ Th}.

The discrete variational formulation writes:

(DV F )







Find Eh ∈ Xh s.t.

∀vh ∈ Xh, (µ−1
curlEh|curlvh)− k2(εEh|vh) = (f |vh).
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Find Eh ∈ Xh s.t.

∀vh ∈ Xh, (µ−1
curlEh|curlvh)− k2(εEh|vh) = (f |vh).

Classically: ∃h0, ∀h < h0, ‖E −Eh‖H(curl ;Ω) . infvh∈Xh
‖E − vh‖H(curl ;Ω).
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Edge element discretization

Let (Th)h be a shape regular family of tetrahedral meshes of Ω.

Define Xh := {vh ∈ H0(curl ; Ω) |vh|K = aK + bK × x, ∀K ∈ Th}.

The discrete variational formulation writes:

(DV F )







Find Eh ∈ Xh s.t.

∀vh ∈ Xh, (µ−1
curlEh|curlvh)− k2(εEh|vh) = (f |vh).

Classically: ∃h0, ∀h < h0, ‖E −Eh‖H(curl ;Ω) . infvh∈Xh
‖E − vh‖H(curl ;Ω).

Edge element interpolation (δ ∈]1/2, δmax[), cf. [Alonso-Valli’99], [Jr-Zou’99]:

∀h < h0, ‖E −Eh‖H(curl ;Ω) . hδ ‖f‖
L2(Ω).
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Edge element discretization

Let (Th)h be a shape regular family of tetrahedral meshes of Ω.

Define Xh := {vh ∈ H0(curl ; Ω) |vh|K = aK + bK × x, ∀K ∈ Th}.

The discrete variational formulation writes:

(DV F )







Find Eh ∈ Xh s.t.

∀vh ∈ Xh, (µ−1
curlEh|curlvh)− k2(εEh|vh) = (f |vh).

Classically: ∃h0, ∀h < h0, ‖E −Eh‖H(curl ;Ω) . infvh∈Xh
‖E − vh‖H(curl ;Ω).

Edge element interpolation (δ ∈]1/2, δmax[), cf. [Alonso-Valli’99], [Jr-Zou’99]:

∀h < h0, ‖E −Eh‖H(curl ;Ω) . hδ ‖f‖
L2(Ω).

QUESTION: What of ‖div ε(E −Eh)‖?
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On the divergence

Using v = ∇q for q ∈ H1
0 (Ω) in (VF) yields

〈div εE, q〉 = −(εE|∇q) =
1

k2
(f |∇q) = −

1

k2
〈div f , q〉 = 0.

It follows that div εE = 0.
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1

k2
〈div f , q〉 = 0.

It follows that div εE = 0.

Define Qh := {qh ∈ H1
0 (Ω) | qh|K ∈ P1(K), ∀K ∈ Th}.

For qh ∈ Qh, one can use vh = ∇qh ∈ Xh in (DVF), so

−(εEh|∇qh) =
1

k2
(f |∇qh) = −

1

k2
〈div f , qh〉 = 0.
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Conclusion: Eh ∈ Vh := {vh ∈ Xh | (εvh|∇qh) = 0, ∀qh ∈ Qh}.

Sophia-Antipolis, April 2013 – p. 6/19



On the divergence

Using v = ∇q for q ∈ H1
0 (Ω) in (VF) yields
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For qh ∈ Qh, one can use vh = ∇qh ∈ Xh in (DVF), so

−(εEh|∇qh) =
1

k2
(f |∇qh) = −

1

k2
〈div f , qh〉 = 0.

Conclusion: Eh ∈ Vh := {vh ∈ Xh | (εvh|∇qh) = 0, ∀qh ∈ Qh}.

Theorem [Vh]: Assume that (Th)h is quasi-uniform. Let s ∈]1/2, 1], then

∀vh ∈ Vh, ‖div εvh‖H−s(Ω) . hs+δ−1‖curlvh‖L2(Ω).
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(f |∇qh) = −

1

k2
〈div f , qh〉 = 0.

Conclusion: Eh ∈ Vh := {vh ∈ Xh | (εvh|∇qh) = 0, ∀qh ∈ Qh}.

Theorem [Vh]: Assume that (Th)h is quasi-uniform. Let s ∈]1/2, 1], then

∀vh ∈ Vh, ‖div εvh‖H−s(Ω) . hs+δ−1‖curlvh‖L2(Ω).

Corollary : ‖div ε(E −Eh)‖H−s(Ω) . hs+δ−1‖f‖
L2(Ω).
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On the divergence – Proof

Proof of the Theorem [Vh]

Step 1: Let vh ∈ Vh, q ∈ Hs
0(Ω), and qh ∈ Qh:
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On the divergence – Proof

Proof of the Theorem [Vh]

Step 1: Let vh ∈ Vh, q ∈ Hs
0(Ω), and qh ∈ Qh:

〈div εvh, q〉 = −(εvh|∇q) = −(εvh|∇(q − qh)) = −
∑

K

∫

K
εvh · ∇(q − qh) dΩ

Sophia-Antipolis, April 2013 – p. 7/19



On the divergence – Proof

Proof of the Theorem [Vh]

Step 1: Let vh ∈ Vh, q ∈ Hs
0(Ω), and qh ∈ Qh:

〈div εvh, q〉 = −(εvh|∇q) = −(εvh|∇(q − qh)) = −
∑

K

∫

K
εvh · ∇(q − qh) dΩ

ibp in K... . ‖vh‖L2(Ω) ‖q − qh‖L2(Ω)

+

(

∑

f∈Fh

‖[εvh · n]‖2
L2(f)

)1/2(
∑

f∈Fh

‖q − qh‖
2
L2(f)

)1/2

where Fh denotes the set of faces of Th and [·] the jump across the faces.
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On the divergence – Proof

Proof of the Theorem [Vh]

Step 1: Let vh ∈ Vh, q ∈ Hs
0(Ω), and qh ∈ Qh:

〈div εvh, q〉 . ‖vh‖L2(Ω) ‖q − qh‖L2(Ω)

+

(
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‖[εvh · n]‖2
L2(f)

)1/2(
∑

f∈Fh

‖q − qh‖
2
L2(f)

)1/2

.

Step 2: Evaluate ‖q − qh‖L2(Ω) and (
∑

f∈Fh
‖q − qh‖

2
L2(f)

)1/2 wrt ‖q‖Hs(Ω).

(for some appropriate choice of qh).
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K |q|Hs(K).

Sophia-Antipolis, April 2013 – p. 7/19



On the divergence – Proof

Proof of the Theorem [Vh]

Step 1: Let vh ∈ Vh, q ∈ Hs
0(Ω), and qh ∈ Qh:

〈div εvh, q〉 . ‖vh‖L2(Ω) ‖q − qh‖L2(Ω)

+

(

∑

f∈Fh

‖[εvh · n]‖2
L2(f)

)1/2(
∑

f∈Fh

‖q − qh‖
2
L2(f)

)1/2

.

Step 2: Evaluate ‖q − qh‖L2(Ω) and (
∑

f∈Fh
‖q − qh‖

2
L2(f)

)1/2 wrt ‖q‖Hs(Ω).

Local trace inequality:

∀K ∈ Th, ∀q ∈ Hs(K), ‖q‖L2(∂K) . h
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‖q − qh‖

2
L2(f)

)1/2 . hs−1/2‖q‖Hs(Ω).
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0(Ω), ‖q − Πhq‖Hs(Ω) . ‖q‖Hs(Ω), ‖q −Πhq‖L2(Ω) . hs‖q‖Hs(Ω).

Hence, ‖div εvh‖H−s(Ω) . hs‖vh‖L2(Ω) + hs−1/2
(

∑

f∈Fh

‖[εvh · n]‖2
L2(f)

)1/2.
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On the divergence – Proof

Steps 1-2: For vh ∈ Vh,

‖div εvh‖H−s(Ω) . hs‖vh‖L2(Ω) + hs−1/2

(

∑

f∈Fh

‖[εvh · n]‖2
L2(f)

)1/2

.
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‖div εvh‖H−s(Ω) . hs‖vh‖L2(Ω) + hs−1/2

(

∑

f∈Fh

‖[εvh · n]‖2
L2(f)

)1/2

.

Step 3: Evaluate (
∑

f∈Fh
‖[εvh · n]‖2

L2(f)
)1/2.
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∑
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‖[εvh · n]‖2
L2(f)

)1/2

.

Step 3: Evaluate (
∑

f∈Fh
‖[εvh · n]‖2

L2(f)
)1/2.

Proposition [Monk’03]: ∃v ∈ H0(curl ; Ω) s.t. curlv = curlvh, div εv = 0 in Ω,

‖v‖
Hδ(Ω) . ‖curlvh‖L2(Ω), ‖v − vh‖L2(Ω) . hδ‖v‖

Hδ(Ω) + h‖curlvh‖L2(Ω).
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Proposition [Monk’03]: ∃v ∈ H0(curl ; Ω) s.t. curlv = curlvh, div εv = 0 in Ω,

‖v‖
Hδ(Ω) . ‖curlvh‖L2(Ω), ‖v − vh‖L2(Ω) . hδ‖v‖

Hδ(Ω) + h‖curlvh‖L2(Ω).

By construction, [εvh · n] = [ε(vh − v) · n] across all faces.
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Hδ(Ω) + h‖curlvh‖L2(Ω).

By construction, [εvh · n] = [ε(vh − v) · n] across all faces.

+ local trace inequality: (
∑

f∈Fh
‖[εvh · n]‖2

L2(f)
)1/2 . hδ−1/2‖curlvh‖L2(Ω).
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+ local trace inequality: (
∑

f∈Fh
‖[εvh · n]‖2

L2(f)
)1/2 . hδ−1/2‖curlvh‖L2(Ω).

It follows that ‖div εvh‖H−s(Ω) . hs‖vh‖L2(Ω) + hs+δ−1‖curlvh‖L2(Ω).
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On the divergence – Proof

Steps 1-2: For vh ∈ Vh,

‖div εvh‖H−s(Ω) . hs‖vh‖L2(Ω) + hs−1/2
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∑
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L2(f)

)1/2

.

Step 3: Evaluate (
∑
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‖v‖
Hδ(Ω) . ‖curlvh‖L2(Ω), ‖v − vh‖L2(Ω) . hδ‖v‖

Hδ(Ω) + h‖curlvh‖L2(Ω).

By construction, [εvh · n] = [ε(vh − v) · n] across all faces.

+ local trace inequality: (
∑

f∈Fh
‖[εvh · n]‖2

L2(f)
)1/2 . hδ−1/2‖curlvh‖L2(Ω).

It follows that ‖div εvh‖H−s(Ω) . hs‖vh‖L2(Ω) + hs+δ−1‖curlvh‖L2(Ω).

With the help of the Proposition (and δ < 1), one concludes that

‖div εvh‖H−s(Ω) . hs+δ−1‖curlvh‖L2(Ω).
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Time-harmonic problem (summary)

Assumptions:

ε, µ−1 ∈ W 1,∞(Ω) ;

(Th)h is quasi-uniform.
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Time-harmonic problem (summary)

Assumptions:

ε, µ−1 ∈ W 1,∞(Ω) ;

(Th)h is quasi-uniform.

If Ω is convex : let s ∈]1/2, 1], then

∀h < h0, h
−1‖E −Eh‖H(curl ;Ω) + h−s‖div ε(E −Eh)‖H−s(Ω) . ‖f‖

L2(Ω).

Sophia-Antipolis, April 2013 – p. 9/19



Time-harmonic problem (summary)

Assumptions:

ε, µ−1 ∈ W 1,∞(Ω) ;

(Th)h is quasi-uniform.

If Ω is convex : let s ∈]1/2, 1], then

∀h < h0, h
−1‖E −Eh‖H(curl ;Ω) + h−s‖div ε(E −Eh)‖H−s(Ω) . ‖f‖

L2(Ω).

If Ω is non-convex : let δ ∈]1/2, δmax[ and s ∈]1/2, 1], then

∀h < h0, h
−δ‖E −Eh‖H(curl ;Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖

L2(Ω).

Sophia-Antipolis, April 2013 – p. 9/19



Stationary problem: mixed approach

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

NB. With coefficients ε, µ−1 ∈ W 1,∞(Ω).
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Stationary problem: mixed approach

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

To take into account the condition on the divergence on the variational formulation, one
uses classically an equivalent mixed formulation (with p = 0):

(MV F )















Find (E, p) ∈ H0(curl ; Ω)×H1
0 (Ω) s.t.

∀v ∈ H0(curl ; Ω), (µ−1
curlE|curlv) + (εv|∇p) = (f |v)

∀q ∈ H1
0 (Ω), (εE|∇q) = −(g|q).
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Stationary problem: mixed approach

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

The discrete mixed variational formulation uses edge elements for the field and P1

elements for the multiplier (with ph = 0):

(DMV F )















Find (Eh, ph) ∈ Xh ×Qh s.t.

∀vh ∈ Xh, (µ−1
curlEh|curlvh) + (εvh|∇ph) = (f |vh)

∀q ∈ Qh, (εEh|∇qh) = −(g|qh).
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Stationary problem: mixed approach

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

The discrete mixed variational formulation uses edge elements for the field and P1

elements for the multiplier (with ph = 0):

(DMV F )















Find (Eh, ph) ∈ Xh ×Qh s.t.

∀vh ∈ Xh, (µ−1
curlEh|curlvh) + (εvh|∇ph) = (f |vh)

∀q ∈ Qh, (εEh|∇qh) = −(g|qh).

For δ ∈]1/2, δmax[, one obtains, cf. [Chen-Du-Zou’00]:

‖E −Eh‖H(curl ;Ω) . hδ {‖f‖
L2(Ω) + ‖g‖L2(Ω)}.
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Stationary problem

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

NB. With coefficients ε, µ−1 ∈ W 1,∞(Ω).
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Stationary problem

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

To take into account the condition on the divergence on the variational formulation, we
choose to add some small perturbation (below γ(h) > 0 is “small”), by introducing

ah(v,v
′) := (µ−1

curlv|curlv′) + γ(h)(εv|v′) for v,v′ ∈ H0(curl ; Ω).
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Stationary problem

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

To take into account the condition on the divergence on the variational formulation, we
choose to add some small perturbation (below γ(h) > 0 is “small”), by introducing

ah(v,v
′) := (µ−1

curlv|curlv′) + γ(h)(εv|v′) for v,v′ ∈ H0(curl ; Ω).

If g = 0, we solve the discrete variational formulation

Find Eh ∈ Xh s.t. ∀vh ∈ Xh, ah(Eh,vh) = (f |vh).

By construction, Eh ∈ Vh.
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Stationary problem

Given source terms f ∈ L2(Ω) (div f = 0) and g ∈ L2(Ω), solve:


























Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.

curl
(

µ−1
curlE

)

= f in Ω ;

div εE = g in Ω ;

E × n = 0 on ∂Ω.

To take into account the condition on the divergence on the variational formulation, we
choose to add some small perturbation (below γ(h) > 0 is “small”), by introducing

ah(v,v
′) := (µ−1

curlv|curlv′) + γ(h)(εv|v′) for v,v′ ∈ H0(curl ; Ω).

If g 6= 0, we solve two discrete variational formulations

1. Find φh ∈ Qh s.t. ∀qh ∈ Qh, (ε∇φh|∇qh) = −(εg|qh).

2. Find Eh ∈ Xh s.t. ∀vh ∈ Xh, ah(Eh,vh) = (f |vh) + γ(h)(ε∇φh|vh).

By construction, Eh −∇φh ∈ Vh.
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Stationary problem: convergence

Theorem : Assume that (Th)h is quasi-uniform, 0 < γ(h) . h2. Let s ∈]1/2, 1], then

h−δ‖E−Eh‖H(curl ;Ω) + h1−s−δ‖div ε(E−Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).
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Stationary problem: convergence

Theorem : Assume that (Th)h is quasi-uniform, 0 < γ(h) . h2. Let s ∈]1/2, 1], then

h−δ‖E−Eh‖H(curl ;Ω) + h1−s−δ‖div ε(E−Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).

Proof of the Theorem [case g = 0]
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Stationary problem: convergence

Theorem : Assume that (Th)h is quasi-uniform, 0 < γ(h) . h2. Let s ∈]1/2, 1], then

h−δ‖E−Eh‖H(curl ;Ω) + h1−s−δ‖div ε(E−Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).

Proof of the Theorem [case g = 0]

Step 1: use Cauchy-Schwarz’ and Young’s inequalities to find

‖E−Eh‖ah
. inf

vh∈Xh

‖E−vh‖ah
+(γ(h))1/2‖E‖

L2(Ω), where ‖ · ‖ah
:= (ah(·, ·))

1/2.
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‖E−Eh‖ah
. inf

vh∈Xh

‖E−vh‖ah
+(γ(h))1/2‖E‖

L2(Ω), where ‖ · ‖ah
:= (ah(·, ·))

1/2.

As 0 < γ(h) . h2, one obtains with edge element interpolation

‖curl (E −Eh)‖L2(Ω) . (hδ + (γ(h))1/2)‖f‖
L2(Ω) . hδ‖f‖

L2(Ω).
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Stationary problem: convergence

Theorem : Assume that (Th)h is quasi-uniform, 0 < γ(h) . h2. Let s ∈]1/2, 1], then

h−δ‖E−Eh‖H(curl ;Ω) + h1−s−δ‖div ε(E−Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).

Proof of the Theorem [case g = 0]

Step 1: use Cauchy-Schwarz’ and Young’s inequalities to find

‖E−Eh‖ah
. inf

vh∈Xh

‖E−vh‖ah
+(γ(h))1/2‖E‖

L2(Ω), where ‖ · ‖ah
:= (ah(·, ·))

1/2.

As 0 < γ(h) . h2, one obtains with edge element interpolation

‖curl (E −Eh)‖L2(Ω) . (hδ + (γ(h))1/2)‖f‖
L2(Ω) . hδ‖f‖

L2(Ω).

Eh ∈ Vh, so the Theorem [Vh] yields

‖div ε(E −Eh)‖H−s(Ω) . hs+δ−1‖f‖
L2(Ω).
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Stationary problem: convergence

Step 1: h−δ‖curl (E −Eh)‖L2(Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω).
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Stationary problem: convergence

Step 1: h−δ‖curl (E −Eh)‖L2(Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω).

Step 2: Introduce the Helmholtz decomposition of E −Eh wrt (·|·):

E −Eh = e+∇φ, e ∈ L2(Ω), φ ∈ H1
0 (Ω) s.t. ∆φ = div (E −Eh).
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Stationary problem: convergence

Step 1: h−δ‖curl (E −Eh)‖L2(Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω).

Step 2: Introduce the Helmholtz decomposition of E −Eh wrt (·|·):

E −Eh = e+∇φ, e ∈ L2(Ω), φ ∈ H1
0 (Ω) s.t. ∆φ = div (E −Eh).

One finds by direct computations (‖E −Eh‖
2
L2(Ω)

= ‖e‖2
L2(Ω)

+ ‖∇φ‖2
L2(Ω)

)

‖ε1/2(E −Eh)‖L2(Ω) . ‖e‖
L2(Ω) + ‖div ε(E −Eh)‖H−1(Ω).
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Stationary problem: convergence

Step 1: h−δ‖curl (E −Eh)‖L2(Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω).

Step 2: Introduce the Helmholtz decomposition of E −Eh wrt (·|·):

E −Eh = e+∇φ, e ∈ L2(Ω), φ ∈ H1
0 (Ω) s.t. ∆φ = div (E −Eh).

One finds by direct computations (‖E −Eh‖
2
L2(Ω)

= ‖e‖2
L2(Ω)

+ ‖∇φ‖2
L2(Ω)

)

‖ε1/2(E −Eh)‖L2(Ω) . ‖e‖
L2(Ω) + ‖div ε(E −Eh)‖H−1(Ω).

Using an auxiliary problem, one can estimate ‖e‖
L2(Ω):















Find z ∈ H0(curl ; Ω) s.t.

curl
(

µ−1
curlz

)

= e in Ω ;

div z = 0 in Ω.
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Stationary problem: convergence

Step 1: h−δ‖curl (E −Eh)‖L2(Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω).

Step 2: Introduce the Helmholtz decomposition of E −Eh wrt (·|·):

E −Eh = e+∇φ, e ∈ L2(Ω), φ ∈ H1
0 (Ω) s.t. ∆φ = div (E −Eh).

One finds by direct computations (‖E −Eh‖
2
L2(Ω)

= ‖e‖2
L2(Ω)

+ ‖∇φ‖2
L2(Ω)

)

‖ε1/2(E −Eh)‖L2(Ω) . ‖e‖
L2(Ω) + ‖div ε(E −Eh)‖H−1(Ω).

Using an auxiliary problem, one can estimate ‖e‖
L2(Ω):

‖e‖
L2(Ω) . (hδ + (γ(h))1/2)‖E −Eh‖ah

+ (γ(h))1/2‖E‖
L2(Ω).
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Stationary problem: convergence

Step 1: h−δ‖curl (E −Eh)‖L2(Ω) + h1−s−δ‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω).

Step 2: Introduce the Helmholtz decomposition of E −Eh wrt (·|·):

E −Eh = e+∇φ, e ∈ L2(Ω), φ ∈ H1
0 (Ω) s.t. ∆φ = div (E −Eh).

One finds by direct computations (‖E −Eh‖
2
L2(Ω)

= ‖e‖2
L2(Ω)

+ ‖∇φ‖2
L2(Ω)

)

‖ε1/2(E −Eh)‖L2(Ω) . ‖e‖
L2(Ω) + ‖div ε(E −Eh)‖H−1(Ω).

Using an auxiliary problem, one can estimate ‖e‖
L2(Ω):

‖e‖
L2(Ω) . (hδ + (γ(h))1/2)‖E −Eh‖ah

+ (γ(h))1/2‖E‖
L2(Ω).

We conclude that

‖E −Eh‖L2(Ω) . hδ‖f‖
L2(Ω).
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Stationary problem (summary)

Assumptions:

ε, µ−1 ∈ W 1,∞(Ω) ;

(Th)h is quasi-uniform.
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Stationary problem (summary)

Assumptions:

ε, µ−1 ∈ W 1,∞(Ω) ;

(Th)h is quasi-uniform.

If Ω is convex : let s ∈]1/2, 1], then

h−1‖E −Eh‖H(curl ;Ω) + h−s‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).
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Stationary problem (summary)

Assumptions:

ε, µ−1 ∈ W 1,∞(Ω) ;

(Th)h is quasi-uniform.

If Ω is convex : let s ∈]1/2, 1], then

h−1‖E −Eh‖H(curl ;Ω) + h−s‖div ε(E −Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).

If Ω is non-convex : let δ ∈]1/2, δmax[ and s ∈]1/2, 1], then

h−δ‖E−Eh‖H(curl ;Ω) + h1−s−δ‖div ε(E−Eh)‖H−s(Ω) . ‖f‖
L2(Ω) + ‖g‖L2(Ω).
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Time-dependent problem

Given source terms J and ρ (charge conservation eq. ρt + divJ = 0), solve:



































Find E s.t.

εEtt + curl
(

µ−1
curlE

)

= −Jt in Ω×]0, T [ ;

div εE = ρ in Ω×]0, T [ ;

E × n = 0 on ∂Ω×]0, T [ ;

E(0) = E0 and Et(0) = ε−1(−J(0) + curlH0) in Ω.

NB. With coefficients ε, µ−1 ∈ W 1,∞(Ω).
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E × n = 0 on ∂Ω×]0, T [ ;

E(0) = E0 and Et(0) = ε−1(−J(0) + curlH0) in Ω.

Use edge elements in space, and second order backward finite differences in time

(time-step τ , ∂τun = un−un−1

τ
, ∂2

τu
n = ∂τun−∂τun−1

τ
): (En

h)n=0,1,···.
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τ
, ∂2

τu
n = ∂τun−∂τun−1

τ
): (En

h)n=0,1,···.

Approximate the initial conditions with the help of two-step stationary problems.

Theorem : Assume that (Th)h is quasi-uniform, 0 < γ(h) . h2.
Assume that J , ρ,E are "sufficiently smooth".
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Find E s.t.

εEtt + curl
(

µ−1
curlE

)
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div εE = ρ in Ω×]0, T [ ;

E × n = 0 on ∂Ω×]0, T [ ;

E(0) = E0 and Et(0) = ε−1(−J(0) + curlH0) in Ω.

Use edge elements in space, and second order backward finite differences in time

(time-step τ , ∂τun = un−un−1

τ
, ∂2

τu
n = ∂τun−∂τun−1

τ
): (En

h)n=0,1,···.

Approximate the initial conditions with the help of two-step stationary problems.

Theorem : Assume that (Th)h is quasi-uniform, 0 < γ(h) . h2.
Assume that J , ρ,E are "sufficiently smooth". Let δ ∈]1/2, δmax[ and s ∈]1/2, 1], then

max
n

(

‖∂τE
n
h −Et(nτ)‖

2
L2(Ω)

+ ‖curl (En
h −E(nτ))‖2

L2(Ω)

)

. (τ2 + τ2h2(δ−1) + h2δ) ;

max
n

(

‖div ε(En
h −E(nτ))‖H−s(Ω)

)

. τ + hs+δ−1.
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Other configurations

In the models, the coefficients ε and µ can be discontinuous.
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Other configurations

In the models, the coefficients ε and µ can be discontinuous.

Consider that they are piecewise constant: there exists a partition P := {Ωj}
J
j=1 of Ω

into J polyhedral subdomains s.t. εj := ε|Ωj
, µj := µ|Ωj

are constants for j = 1, J .

Define for r > 0: PHr(Ω) := {v ∈ L2(Ω) |v|Ωj
∈ Hr(Ωj), j = 1, · · · , J}.
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into J polyhedral subdomains s.t. εj := ε|Ωj
, µj := µ|Ωj

are constants for j = 1, J .

Define for r > 0: PHr(Ω) := {v ∈ L2(Ω) |v|Ωj
∈ Hr(Ωj), j = 1, · · · , J}.

Theorem [Costabel-Dauge-Nicaise’99]: Assume that ε, µ are piecewise constant.
∃δDir

max, δ
Neu
max ∈]0, 1] s.t.

XN (Ω, ε) ⊂ PHδ(Ω), ∀δ ∈ [0, δDir
max[ and XT (Ω, µ) ⊂ PHδ(Ω), ∀δ ∈ [0, δNeu

max[.
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, µj := µ|Ωj

are constants for j = 1, J .

Define for r > 0: PHr(Ω) := {v ∈ L2(Ω) |v|Ωj
∈ Hr(Ωj), j = 1, · · · , J}.

Theorem [Costabel-Dauge-Nicaise’99]: Assume that ε, µ are piecewise constant.
∃δDir

max, δ
Neu
max ∈]0, 1] s.t.

XN (Ω, ε) ⊂ PHδ(Ω), ∀δ ∈ [0, δDir
max[ and XT (Ω, µ) ⊂ PHδ(Ω), ∀δ ∈ [0, δNeu

max[.

If δmax := min(δDir
max, δ

Neu
max) > 1/2 then one can use the previous results, since the

edge element interpolation results hold element-by-element.
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In the models, the coefficients ε and µ can be discontinuous.

Consider that they are piecewise constant: there exists a partition P := {Ωj}
J
j=1 of Ω

into J polyhedral subdomains s.t. εj := ε|Ωj
, µj := µ|Ωj

are constants for j = 1, J .

Define for r > 0: PHr(Ω) := {v ∈ L2(Ω) |v|Ωj
∈ Hr(Ωj), j = 1, · · · , J}.

Theorem [Costabel-Dauge-Nicaise’99]: Assume that ε, µ are piecewise constant.
∃δDir

max, δ
Neu
max ∈]0, 1] s.t.

XN (Ω, ε) ⊂ PHδ(Ω), ∀δ ∈ [0, δDir
max[ and XT (Ω, µ) ⊂ PHδ(Ω), ∀δ ∈ [0, δNeu

max[.

If δmax := min(δDir
max, δ

Neu
max) > 1/2 then one can use the previous results, since the

edge element interpolation results hold element-by-element.

For instance:

Ω is convex, and the maximal number of adjacent subdomains is equal to two ;

case of separated inclusions: ∃j s.t. ∂Ω ⊂ ∂Ωj , and the maximal number of
adjacent subdomains is equal to two.
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Numerics

Numerical example : stationary problem.
ε = µ = 1 in the unit cube Ω, with smooth solution (f 6= 0, g 6= 0):

Eex =









x1x2x3(1− x2)(1− x3)

x1x2x3(1− x3)(1− x1)

x1x2x3(1− x1)(1− x2)









.
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(Th)h based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).
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One has to solve two direct problems (one in Qh, one in Vh) instead of a mixed one.
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Pb in Vh is solved iteratively (bi-CGSTAB), with the [Hiptmair-Xu’07] preconditioner.
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One has to solve two direct problems (one in Qh, one in Vh) instead of a mixed one.

Pb in Vh is solved iteratively (bi-CGSTAB), with the [Hiptmair-Xu’07] preconditioner.

Computations have been carried out with the COMSOL Multiphysics.
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x1x2x3(1− x1)(1− x2)









.

(Th)h based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).

One has to solve two direct problems (one in Qh, one in Vh) instead of a mixed one.

Pb in Vh is solved iteratively (bi-CGSTAB), with the [Hiptmair-Xu’07] preconditioner.

Computations have been carried out with the COMSOL Multiphysics.

One can choose δ = 1 for the convergence rates. So, one expects

‖E −Eh‖H(curl ;Ω) . h

‖div (E −Eh)‖H−s(Ω) . hs for s ∈]1/2, 1].
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Numerics – results

For the ‖E −Eh‖H(curl ;Ω) error:
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dashed line: ‖E −Eh‖L2(Ω) ;
solid line: ‖curl (E −Eh)‖L2(Ω) ;
dotted lines: slope -1.
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Numerics – results

‖E −Eh‖H(curl ;Ω) . h is observed.

For the ‖div (E −Eh)‖H−s(Ω) error, we recall that:

‖div (E−Eh)‖H−s(Ω) . hs(‖f‖
L2(Ω)+‖g‖L2(Ω))+hs−1/2

(

∑

f∈Fh

‖[εEh·n]‖2
L2(f)

)1/2

.
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‖E −Eh‖H(curl ;Ω) . h is observed.

For the ‖div (E −Eh)‖H−s(Ω) error, we recall that:

‖div (E−Eh)‖H−s(Ω) . hs(‖f‖
L2(Ω)+‖g‖L2(Ω))+hs−1/2

(

∑

f∈Fh

‖[εEh·n]‖2
L2(f)

)1/2

.

So, one has to observe that ηh :=

(

∑

f∈Fh
‖[εEh · n]‖2

L2(f)

)1/2

. h1/2.
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Conclusions

Discrete ε-divergence free elements have "small" ‖div ε · ‖H−s(Ω) (s ∈]1/2, 1]).
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Conclusions

Discrete ε-divergence free elements have "small" ‖div ε · ‖H−s(Ω) (s ∈]1/2, 1]).

The time-harmonic, stationary/static and time-dependent Maxwell problems can be
analyzed for "smooth", positive coefficients ε, µ−1.

For the stationary/static problem, there is no need to solve a mixed problem.

The same results can be obtained in other configurations when the coefficients ε, µ are
piecewise constant : in particular, the case of separated inclusions is covered.
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