Numerical approximation of transmission problems with sign changing coefficients

A.-S. Bonnet-Ben Dhia[†], C. Carvalho[†], L. Chesnel^{\diamond}, P. Ciarlet[†], L. Demkowicz⁺

[†]Laboratoire POEMS, Palaiseau, France
 [◇]Dept Math & Systems Analysis, Aalto University, Finland
 ⁺ICES, University of Texas at Austin, Austin, USA

Consider a scalar *transmission* problem, set in a bounded domain Ω of \mathbb{R}^d , d = 1, 2, 3.

Consider a scalar *transmission* problem, set in a bounded domain Ω of \mathbb{R}^d , d = 1, 2, 3.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \text{ such that} \\ -\text{div} \ (\sigma \mathbf{grad} \ u) = f \text{ in } \Omega. \end{cases}$

• $\sigma \in L^{\infty}(\Omega)$ is a sign-changing coefficient:

$$\sigma > 0$$
 in Ω_1 , with meas $(\Omega_1) > 0$;
 $\sigma < 0$ in Ω_2 , with meas $(\Omega_2) > 0$.

$$\ \, { \, { \sigma}^{-1} \in L^{\infty}(\Omega) }.$$

The parameter σ is discontinuous across Σ .

Consider a scalar *transmission* problem, set in a bounded domain Ω of \mathbb{R}^d , d = 1, 2, 3.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \text{ such that} \\ -\text{div } (\sigma \mathbf{grad} \ u) = f \text{ in } \Omega. \end{cases}$

- 𝒴 σ ∈ L[∞](Ω), is a sign-changing coefficient.

NB. The "generalized" Helmholtz equation $-\operatorname{div} (\sigma \operatorname{\mathbf{grad}} u) - \omega^2 \eta u = f$ with

 $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

Consider a scalar *transmission* problem, set in a bounded domain Ω of \mathbb{R}^d , d = 1, 2, 3.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \text{ such that} \\ -\text{div } (\sigma \mathbf{grad} \ u) = f \text{ in } \Omega. \end{cases}$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.

NB. The "generalized" Helmholtz equation $-\text{div} (\sigma \mathbf{grad} u) - \omega^2 \eta u = f$ with

 $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

The main difficulty is that
$$(v, w) \mapsto \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$$
 is *not coercive* in $H_0^1(\Omega)$.

Consider a scalar *transmission* problem, set in a bounded domain Ω of \mathbb{R}^d , d = 1, 2, 3.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \text{ such that} \\ -\text{div } (\sigma \operatorname{\mathbf{grad}} u) = f \text{ in } \Omega. \end{cases}$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.

NB. The "generalized" Helmholtz equation $-\operatorname{div} (\sigma \operatorname{\mathbf{grad}} u) - \omega^2 \eta u = f$ with

 $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

The main difficulty is that $(v, w) \mapsto \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$ is *not coercive* in $H_0^1(\Omega)$.

Solve the problem with T-coercivity!

Let

- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W', the dual space of W.

Aim: solve the Variational Formulation

(VF) Find $u \in V$ s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle$.

Let

- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W', the dual space of W.

Aim: solve the Variational Formulation

$$(VF)$$
 Find $u \in V$ s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle$.

[Banach-Necas-Babuska] Introduce the two conditions

$$(BNB_1) \qquad \exists \alpha' > 0, \ \forall v \in V, \ \sup_{w \in W \setminus \{0\}} \frac{|a(v,w)|}{\|w\|_W} \ge \alpha' \|v\|_V.$$

 $(BNB_2) \qquad \forall w \in W : \{ \forall v \in V, \ a(v,w) = 0 \} \implies \{w = 0 \}.$

NB. Condition (BNB_1) is called an *inf-sup condition*, or a *stability condition*.

Let

- \checkmark V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W', the dual space of W.

Aim: solve the Variational Formulation

$$(VF)$$
 Find $u \in V$ s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle$.

The form $a(\cdot, \cdot)$ is T-coercive if

```
\exists T \in \mathcal{L}(V, W), \text{ bijective}, \exists \underline{\alpha} > 0, \forall v \in V, |a(v, Tv)| \geq \underline{\alpha} ||v||_V^2.
```


Let

- \checkmark V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W', the dual space of W.

Aim: solve the Variational Formulation

(VF) Find $u \in V$ s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle$.

• The form $a(\cdot, \cdot)$ is T-coercive if

 $\exists T \in \mathcal{L}(V, W), \text{ bijective}, \exists \underline{\alpha} > 0, \forall v \in V, |a(v, Tv)| \geq \underline{\alpha} ||v||_V^2.$

Theorem (Well-posedness) The three assertions below are equivalent:

- (i) the Problem (VF) is well-posed;
- (ii) the form $a(\cdot, \cdot)$ satisfies conditions (BNB_1) and (BNB_2) .
- (iii) the form $a(\cdot, \cdot)$ is T-coercive.

Let

- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W', the dual space of W.

Aim: solve the Variational Formulation

(VF) Find $u \in V$ s.t. $\forall w \in W, a(u, w) = \langle f, w \rangle$.

• The form $a(\cdot, \cdot)$ is T-coercive if

 $\exists T \in \mathcal{L}(V, W), \text{ bijective}, \exists \underline{\alpha} > 0, \forall v \in V, |a(v, Tv)| \geq \underline{\alpha} ||v||_V^2.$

Theorem (Well-posedness) The three assertions below are equivalent:

- (i) the Problem (VF) is well-posed;
- (ii) the form $a(\cdot, \cdot)$ satisfies conditions (BNB_1) and (BNB_2) .
- (iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realizes conditions (BNB_1) and (BNB_2) explicitly.

V = W, case of a *hermitian* form a

The previous definition and theorem can be simplified...

V = W, case of a *hermitian* form a

The previous definition and theorem can be simplified...

D The hermitian form $a(\cdot, \cdot)$ is T-coercive if

 $\exists \mathsf{T} \in \mathcal{L}(V), \ \exists \underline{\alpha} > 0, \ \forall v \in V, \ |a(v, \mathsf{T}v)| \ge \underline{\alpha} \, \|v\|_V^2.$

V = W, case of a *hermitian* form a

The previous definition and theorem can be simplified...

9 The hermitian form $a(\cdot, \cdot)$ is T-coercive if

 $\exists \mathsf{T} \in \mathcal{L}(V), \ \exists \underline{\alpha} > 0, \ \forall v \in V, \ |a(v, \mathsf{T}v)| \ge \underline{\alpha} \, \|v\|_V^2.$

Theorem (Well-posedness) The three assertions below are equivalent:

- (i) the Problem (VF) with hermitian form is well-posed;
- (ii) the hermitian form $a(\cdot, \cdot)$ satisfies condition (BNB_1) .
- (iii) the hermitian form $a(\cdot, \cdot)$ is T-coercive.

In the case of the scalar transmission problem:

- If the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;

In the case of the scalar transmission problem:

- If the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;
- $V := H_0^1(\Omega)$; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.

In the case of the scalar transmission problem:

- If the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;
- $V := H_0^1(\Omega)$; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.
- $0 < \sigma_1^- \le \sigma \le \sigma_1^+ < \infty$ in Ω_1 ; $0 < \sigma_2^- \le -\sigma \le \sigma_2^+ < \infty$ in Ω_2 .

Introduce
$$V_k := \{ v_k \in H^1(\Omega_k) | v_k|_{\Gamma_k} = 0 \}$$
, $k = 1, 2$:

In the case of the scalar transmission problem:

- If the interface is $\Sigma := \overline{\Omega_1} \cap \overline{\Omega_2}$; the boundaries are $\Gamma_k := \partial \Omega \cap \partial \Omega_k$, k = 1, 2;
- $V := H_0^1(\Omega)$; the form is $a(v, w) := \int_{\Omega} \sigma \operatorname{\mathbf{grad}} v \cdot \overline{\operatorname{\mathbf{grad}} w} \, d\Omega$.
- $0 < \sigma_1^- \le \sigma \le \sigma_1^+ < \infty$ in Ω_1 ; $0 < \sigma_2^- \le -\sigma \le \sigma_2^+ < \infty$ in Ω_2 .

Introduce
$$V_k := \{ v_k \in H^1(\Omega_k) \, | \, v_k|_{\Gamma_k} = 0 \}$$
, $k = 1, 2$:

 $V = \{ v \, | \, v_{|\Omega_k} \in V_k, \ k = 1, 2, \ \mathsf{Matching}_{\Sigma}(v_{|\Omega_1}, v_{|\Omega_2}) = 0 \} \ ,$

with $\operatorname{Matching}_{\Sigma}(v_1, v_2) := v_1|_{\Sigma} - v_2|_{\Sigma}$.

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

First try:

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

- (+) Obviously, $(T_{-})^{2} = I$.
- (-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

First try:

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

- (+) Obviously, $(T_{-})^{2} = I$.
- (-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_1 \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

First try:

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

- (+) Obviously, $(T_{-})^{2} = I$.
- (-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_1 v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 v_1 & \text{in } \Omega_2 \end{cases}$$

(+) $T_1 \in \mathcal{L}(H_0^1(\Omega)).$

(+) One checks easily that $(T_1)^2 = I!$

First try:

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

- (+) Obviously, $(T_{-})^{2} = I$.
- (-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_1 \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

Can one achieve T-coercivity with T_1 ?

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_- v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

- (+) Obviously, $(T_{-})^{2} = I$.
- (-) But $T_{-} \notin \mathcal{L}(H_{0}^{1}(\Omega))$, because the matching condition is not enforced.

Second try: let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, Matching_{Σ} $(v_1, R_1v_1) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathbf{T}_1 \, v := \begin{cases} v_1 & \text{in } \Omega_1 \\ -v_2 + 2R_1 \, v_1 & \text{in } \Omega_2 \end{cases}$$

To obtain T-coercivity with T₁, one needs $\frac{\sigma_1^-}{\sigma_2^+} > |||R_1|||^2$.

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_2 \, v := \begin{cases} v_1 - 2R_2 \, v_2 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_2 \, v := \begin{cases} v_1 - 2R_2 \, v_2 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

To obtain T-coercivity with T₂, one needs $\frac{\sigma_2^-}{\sigma_1^+} > |||R_2|||^2$.

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_2 \, v := \begin{cases} v_1 - 2R_2 \, v_2 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

<u>Conclusion</u>: to achieve T-coercivity with T_1 or T_2 , one needs

$$\frac{\sigma_1^-}{\sigma_2^+} > \left(\inf_{R_1} |||R_1|||\right)^2 \quad \text{or} \quad \frac{\sigma_2^-}{\sigma_1^+} > \left(\inf_{R_2} |||R_2|||\right)^2.$$

Third try: let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, Matching_{Σ} $(R_2v_2, v_2) = 0$.

$$\forall v \in H_0^1(\Omega), \quad \mathsf{T}_2 v := \begin{cases} v_1 - 2R_2 v_2 & \text{in } \Omega_1 \\ -v_2 & \text{in } \Omega_2 \end{cases}$$

<u>Conclusion</u>: to achieve T-coercivity with T_1 or T_2 , one needs

$$\frac{\sigma_1^-}{\sigma_2^+} > \left(\inf_{R_1} |||R_1||| \right)^2 \quad \text{ or } \quad \frac{\sigma_2^-}{\sigma_1^+} > \left(\inf_{R_2} |||R_2||| \right)^2.$$

How to choose the operators R_1 , R_2 ?

- using traces on Σ , liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12], [BonnetBenDhia-Carvalho-Jr].

Study of an elementary setting:

• piecewise constant coefficient σ ;

in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} := \frac{\sigma_2}{\sigma_1} \in]-\infty, 0[.$

- Study of an elementary setting:
 - piecewise constant coefficient σ ;
 in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$;
 define the contrast $\kappa_\sigma := \frac{\sigma_2}{\sigma_1}$.

• $\sigma_1 \neq -\sigma_2$, in a symmetric geometry.

Study of an elementary setting:

piecewise constant coefficient σ ;
in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$;
define the contrast $\kappa_{\sigma} := \frac{\sigma_2}{\sigma_1}$.

 $\sigma_1 \neq -\sigma_2$, in a symmetric geometry.

Let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, $R_1v_1(x, y) = v_1(x, -y)$, a.e. in Ω_2 . One finds $|||R_1||| = 1$.

To achieve T-coercivity, one needs $\frac{\sigma_1}{|\sigma_2|} > 1$.

Study of an elementary setting:

piecewise constant coefficient σ ;
in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$;
define the contrast $\kappa_\sigma := \frac{\sigma_2}{\sigma_1}$.

• $\sigma_1 \neq -\sigma_2$, in a symmetric geometry.

Let $R_1 \in \mathcal{L}(V_1, V_2)$ s.t. for all $v_1 \in V_1$, $R_1v_1(x, y) = v_1(x, -y)$, a.e. in Ω_2 . One finds $|||R_1||| = 1$.

To achieve T-coercivity, one needs $\frac{\sigma_1}{|\sigma_2|} > 1$. Let $R_2 \in \mathcal{L}(V_2, V_1)$ s.t. for all $v_2 \in V_2$, $R_2v_2(x, y) = v_2(x, -y)$, a.e. in Ω_1 . One finds $|||R_2||| = 1$.

To achieve T-coercivity, one needs $\frac{|\sigma_2|}{\sigma_1} > 1$.

Study of an elementary setting:

piecewise constant coefficient σ ;
in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$;
define the contrast $\kappa_{\sigma} := \frac{\sigma_2}{\sigma_1}$.

 $\sigma_1 \neq -\sigma_2$, in a symmetric geometry.

The scalar *transmission* problem is well-posed when $\kappa_{\sigma} \neq -1$.

Study of an elementary setting:

• piecewise constant coefficient σ ; in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} := \frac{\sigma_2}{\sigma_1}$.

• $\sigma_1 \neq -\sigma_2$, in a symmetric geometry.

The scalar *transmission* problem is well-posed when $\kappa_{\sigma} \neq -1$.

 \bullet $\sigma_1 = -\sigma_2$, in a symmetric geometry.

The scalar *transmission* problem is ill-posed when $\kappa_{\sigma} = -1$ (*Critical case*.)

- Study of an elementary setting:
 - piecewise constant coefficient σ ; in this case, $\sigma_1^- = \sigma_1^+ = \sigma_1$, and $\sigma_2^- = \sigma_2^+ = |\sigma_2|$; define the *contrast* $\kappa_{\sigma} := \frac{\sigma_2}{\sigma_1}$.
- $\sigma_1 \neq -\sigma_2$, in a symmetric geometry.

The scalar *transmission* problem is well-posed when $\kappa_{\sigma} \neq -1$.

• $\sigma_1 = -\sigma_2$, in a symmetric geometry.

The scalar *transmission* problem is ill-posed when $\kappa_{\sigma} = -1$ (*Critical case*.)

<u>Conclusion</u>: The scalar *transmission* problem is well-posed iff $\kappa_{\sigma} \neq -1$.

Study of simple geometries (on a *piecewise straight* interface Σ):

1. Symmetric geometry

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner

Operators R_1 , R_2 combine rotation + angle dilation:

$$(R_1 v_1)(\rho, \theta) = v_1(\rho, \frac{\alpha}{2\pi - \alpha} (2\pi - \theta));$$

$$(R_2 v_2)(\rho, \theta) = v_2(\rho, 2\pi - \frac{2\pi - \alpha}{\alpha} \theta).$$

Study of simple geometries (on a *piecewise straight* interface Σ):

- 1. Symmetric geometry
- 2. Interface with an interior corner

Operators R_1 , R_2 combine rotation + angle dilation:

$$(R_1 v_1)(\rho, \theta) = v_1(\rho, \frac{\alpha}{2\pi - \alpha} (2\pi - \theta));$$

$$(R_2 v_2)(\rho, \theta) = v_2(\rho, 2\pi - \frac{2\pi - \alpha}{\alpha} \theta).$$

$$\ell = 1, 2: |||R_\ell|||^2 \le \max(\frac{2\pi - \alpha}{\alpha}, \frac{\alpha}{2\pi - \alpha})$$

Study of simple geometries (on a *piecewise straight* interface Σ):

- 1. Symmetric geometry
- 2. Interface with an interior corner
- 3. Interface with a boundary corner

Operators R_1 , R_2 : similar to 2. (+ continuation by 0)

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner
 - 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

Study of simple geometries (on a *piecewise straight* interface Σ):

- 1. Symmetric geometry
- 2. Interface with an interior corner
- 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

Study of simple geometries (on a *piecewise straight* interface Σ):

- 1. Symmetric geometry
- 2. Interface with an interior corner
- 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner
 - 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner
 - 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner
 - 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

Study of simple geometries (on a *piecewise straight* interface Σ):

- 1. Symmetric geometry
- 2. Interface with an interior corner
- 3. Interface with a boundary corner

Handle general geometries by *localization*: use the T-coercivity results locally.

There exists an interval $I_{\Sigma} \subset] - \infty, 0[$ s.t. if $\kappa_{\sigma} \not\in I_{\Sigma}$, one has a Garding inequality

 $\exists C_{\sigma}, C'_{\sigma} > 0, \ \forall v \in H^1_0(\Omega), \ |a(v, \mathsf{T}v)| \ge C_{\sigma} \ |v|_1^2 - C'_{\sigma} \|v\|_0^2.$

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner
 - 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

If $\kappa_{\sigma} \notin I_{\Sigma}$, then the scalar *transmission* problem is well-posed in the Fredholm sense

- In this case, the associated operator is Fredholm of index 0.
- The interval I_{Σ} is *optimal* in the sense that if $\kappa_{\sigma} \in I_{\Sigma}$, then the scalar *transmission* problem is not well-posed in the Fredholm sense.
- The bounds of I_{Σ} depend on the value of the angles at the corners.

- Study of simple geometries (on a *piecewise straight* interface Σ):
 - 1. Symmetric geometry
 - 2. Interface with an interior corner
 - 3. Interface with a boundary corner
- Handle general geometries by *localization*: use the T-coercivity results locally.

If $\kappa_{\sigma} \notin I_{\Sigma}$, then the scalar *transmission* problem is well-posed in the Fredholm sense

- In this case, the associated operator is Fredholm of index 0.
- The interval I_{Σ} is *optimal* in the sense that if $\kappa_{\sigma} \in I_{\Sigma}$, then the scalar *transmission* problem is not well-posed in the Fredholm sense.
- The bounds of I_{Σ} depend on the value of the angles at the corners.
- The interval I_{Σ} always contains -1.
- If the interface is C^1 without endpoints, $I_{\Sigma} = \{-1\}$ (cf. [Costabel-Stephan'85]).
- The "generalized" Helmholtz equation can be solved similarly.

- In a symmetric domain, made up of $\Omega_1 =]-1, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- An exact piecewise smooth solution is available.
- **Solution** Contrast: $\kappa_{\sigma} = -1.001$.
- **Solution** Conforming discretization using P_1 Lagrange finite elements:
 - $(\mathcal{T}_h)_h$ a regular family of meshes;
 - $(V_h)_h$ (discrete) subspaces of $H_0^1(\Omega)$;
 - Freefem++ software.

- In a symmetric domain, made up of $\Omega_1 =]-1, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[$.
- An exact piecewise smooth solution is available.
- **Solution** Conforming discretization using P_1 Lagrange finite elements.
- Solution We study below the influence of the meshes (errors in L^2 -norm; $O(h^2)$ is expected).

- In a symmetric domain, made up of $\Omega_1 =]-1, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- An exact piecewise smooth solution is available.
- **Solution** Conforming discretization using P_1 Lagrange finite elements.
- Solution We study below the influence of the meshes (errors in L^2 -norm; $O(h^2)$ is expected).

Numerical analysis

Let $(T_h)_h$ denote approximations of T.

• The meshes $(\mathcal{T}_h)_h$ are *locally* T_h -*conform* if there exists $h_0 > 0$ s.t. for all $h < h_0$, \mathcal{T}_h is *locally invariant* by the geometrical transformations defining T_h , in a *fixed* neighborhood of the interface Σ .

Numerical analysis

- Let $(T_h)_h$ denote approximations of T.
- The meshes $(\mathcal{T}_h)_h$ are *locally* T_h -*conform* if there exists $h_0 > 0$ s.t. for all $h < h_0$, \mathcal{T}_h is *locally invariant* by the geometrical transformations defining T_h , in a *fixed* neighborhood of the interface Σ .
- Proposition (Error estimate, [Chesnel-Jr'13]) Assume that $\kappa_{\sigma} \notin I_{\Sigma}$. If the meshes $(\mathcal{T}_h)_h$ are *locally* T_h -*conform*, then, for h small enough, the discrete problem is well-posed in V_h . Moreover, the discrete solution u_h is such that

$$|u - u_h||_1 \le C \inf_{v_h \in V_h} ||u - v_h||_1$$

with C > 0 independent of h.

Numerical analysis

- Let $(T_h)_h$ denote approximations of T.
- The meshes $(\mathcal{T}_h)_h$ are *locally* T_h -*conform* if there exists $h_0 > 0$ s.t. for all $h < h_0$, \mathcal{T}_h is *locally invariant* by the geometrical transformations defining T_h , in a *fixed* neighborhood of the interface Σ .
- Proposition (Error estimate, [Chesnel-Jr'13]) Assume that $\kappa_{\sigma} \notin I_{\Sigma}$. If the meshes $(\mathcal{T}_h)_h$ are *locally* T_h -*conform*, then, for h small enough, the discrete problem is well-posed in V_h . Moreover, the discrete solution u_h is such that

$$||u - u_h||_1 \le C \inf_{v_h \in V_h} ||u - v_h||_1$$

with C > 0 independent of h.

Hence, it is required that the discrete spaces V_h are *locally invariant* at the interface.

- In a non-symmetric domain: $\Omega_1 =]-2, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- **Contrast:** $\kappa_{\sigma} = -1.001$.
- *A posteriori hp*-adaptivity using 2Dhp software (Demkowicz).

- In a non-symmetric domain: $\Omega_1 = [-2, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- **Contrast:** $\kappa_{\sigma} = -1.001$.
- *A posteriori hp*-adaptivity using 2Dhp software (Demkowicz).
- Computed solution after 10 iterations:

- In a non-symmetric domain: $\Omega_1 = [-2, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- **Contrast:** $\kappa_{\sigma} = -1.001$.
- *A posteriori hp*-adaptivity using 2Dhp software (Demkowicz).
- Initial mesh (with degrees of approximation):

- In a non-symmetric domain: $\Omega_1 = [-2, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- **Contrast:** $\kappa_{\sigma} = -1.001$.
- *A posteriori hp*-adaptivity using 2Dhp software (Demkowicz).
- Final mesh (with degrees of approximation):

- In a non-symmetric domain: $\Omega_1 = [-2, 0[\times]0, 1[, \Omega_2 =]0, 1[\times]0, 1[.$
- **Contrast:** $\kappa_{\sigma} = -1.001$.
- *A posteriori hp*-adaptivity using 2Dhp software (Demkowicz).
- Final mesh (with degrees of approximation):

Using adaptivity yields locally symmetric meshes, with locally symmetric degree of the approximation: the final discrete spaces are *locally invariant* at the interface.

When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).

- When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!

- Solution When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!
 Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

- When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!
 Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Example with $\alpha = \pi/3$: going from Ω_2 to Ω_1 .

- When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!
 Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
- Provided the meshes are *locally* T_h -conform, convergence follows for h small enough.

- When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!
 Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
- Provided the meshes are *locally* T_h -conform, convergence follows for h small enough.
- Solution What is the impact on the condition on the contrast κ_{σ} (discrete case)?

- When the interface Σ has corners, one needs to redefine the operators R_1 , R_2 . (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!
 Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
- Provided the meshes are *locally* T_h -conform, convergence follows for h small enough.
- \blacksquare What is the impact on the condition on the contrast κ_{σ} (discrete case)?

Consider finally an eigenproblem.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \setminus \{0\}, \ \lambda \in \mathbb{C} \text{ such that} \\ -\text{div} \ (\sigma \mathbf{grad} \ u) = \lambda \eta u \text{ in } \Omega. \end{cases}$

Consider finally an eigenproblem.

 $\begin{cases} \text{Find } u \in H_0^1(\Omega) \setminus \{0\}, \lambda \in \mathbb{C} \text{ such that} \\ -\text{div } (\sigma \mathbf{grad } u) = \lambda \eta u \text{ in } \Omega. \end{cases}$

- One can use the classical theory (cf. [Osborn'75]) to carry out the numerical analysis:
 - all eigenvalues are real;
 - there are two sequences of eigenvalues with limits $-\infty$, $+\infty$;
 - convergence theory follows from the error estimate for the direct problem.

Consider finally an eigenproblem.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \setminus \{0\}, \ \lambda \in \mathbb{C} \text{ such that} \\ -\text{div} \ (\sigma \operatorname{\mathbf{grad}} u) = \lambda \eta u \text{ in } \Omega. \end{cases}$

- One can use the classical theory (cf. [Osborn'75]) to carry out the numerical analysis.
- Droplet-shape domain Ω ($\alpha = \pi/6$); contrast $\kappa_{\sigma} = -13$, $\eta = 1$.
- **Discretization using** P_2 Lagrange finite elements; Matlab software.

Consider finally an eigenproblem.

 $\begin{cases} Find \ u \in H_0^1(\Omega) \setminus \{0\}, \ \lambda \in \mathbb{C} \text{ such that} \\ -\text{div} \ (\sigma \mathbf{grad} \ u) = \lambda \eta u \text{ in } \Omega. \end{cases}$

- One can use the classical theory (cf. [Osborn'75]) to carry out the numerical analysis.
- Droplet-shape domain Ω ($\alpha = \pi/6$); contrast $\kappa_{\sigma} = -13$, $\eta = 1$.
- **Discretization using** P_2 Lagrange finite elements; Matlab software.

Conclusion/Perspectives

T-coercivity is versatile!

- BEM for the classical Maxwell problem (cf. [Buffa-Costabel-Schwab'02]);
- FEM for the classical scalar or Maxwell problems (cf. [Jr'12]);
- Vol. Int. Eq. Methods for scattering from gratings (cf. [Lechleiter-Nguyen'13]);
- study of Interior Transmission Eigenvalue Problems:
 - scalar case (cf. [BonnetBenDhia-Chesnel-Haddar'11]);
 - Maxwell problem (cf. [Chesnel'12]);
- 🥒 etc.

Conclusion/Perspectives

- **T**-coercivity is versatile!
- Scalar problems *with sign-shifting coefficients*:
 - introduction of T-coercivity during WAVES'07;
 - numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], [Chesnel-Jr'13], DG-approach [Chung-Jr'13], etc.);
 - theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr'12]);
 - Itheoretical study of the critical cases (cf. [BonnetBenDhia-Chesnel-Claeys'13]);
 - † discretization and numerical analysis of the critical cases.
- Maxwell problem(s) with sign-shifting coefficients:
 - T-coercivity + side results during NELIA'11 (cf. [BonnetBenDhia-Chesnel-Jr'1x]);
 - † numerical analysis when T-coercivity applies.
- In the critical cases: are models derived from physics still relevant?
 - † re-visit models (homogenization, multi-scale numerics, etc.).
 - † define *ad hoc* numerical methods.
 - (A.N.R. METAMATH Project; coordinator S. Fliss (POEMS)).

