Numerical approximation of transmission problems with sign changing coefficients

A. -S. Bonnet-Ben Dhia ${ }^{\dagger}$, C. Carvalho ${ }^{\dagger}$, L. Chesnel ${ }^{\diamond}$, Ciarlet ${ }^{\dagger}$, L. Demkowicz ${ }^{+}$
${ }^{\dagger}$ Laboratoire POEMS, Palaiseau, France
${ }^{\diamond}$ Dept Math \& Systems Analysis, Aalto University, Finland
${ }^{+}$ICES, University of Texas at Austin, Austin, USA

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=f \text { in } \Omega .
\end{array}\right.
$$

Motivation (EM-ics): $\sigma:=\varepsilon^{-1}$ or $\sigma:=\mu^{-1}$.

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$ is a sign-changing coefficient: $\left\{\begin{array}{l}\sigma>0 \text { in } \Omega_{1}, \text { with } \operatorname{meas}\left(\Omega_{1}\right)>0 \text {; } \\ \sigma<0 \text { in } \Omega_{2}, \text { with } \operatorname{meas}\left(\Omega_{2}\right)>0 .\end{array}\right.$
- $\sigma^{-1} \in L^{\infty}(\Omega)$.

The parameter σ is discontinuous across Σ.

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.
- $\sigma^{-1} \in L^{\infty}(\Omega)$.

NB. The "generalized" Helmholtz equation - div $(\sigma \operatorname{grad} u)-\omega^{2} \eta u=f$ with $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10]. One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=f \text { in } \Omega .
\end{array}\right.
$$

- $\quad \sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.
- $\sigma^{-1} \in L^{\infty}(\Omega)$.

NB. The "generalized" Helmholtz equation - div $(\sigma \operatorname{grad} u)-\omega^{2} \eta u=f$ with $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10].

One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

- The main difficulty is that $(v, w) \mapsto \int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$ is not coercive in $H_{0}^{1}(\Omega)$.

Sign-changing coefficients

- Consider a scalar transmission problem, set in a bounded domain Ω of $\mathbb{R}^{d}, d=1,2,3$.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=f \text { in } \Omega
\end{array}\right.
$$

- $\sigma \in L^{\infty}(\Omega)$, is a sign-changing coefficient.
- $\sigma^{-1} \in L^{\infty}(\Omega)$.

NB. The "generalized" Helmholtz equation - div $(\sigma \operatorname{grad} u)-\omega^{2} \eta u=f$ with $\eta \in L^{\infty}(\Omega)$ can be analyzed similarly, cf. [BonnetBenDhia-Jr-Zwölf'10]. One can also consider a Neumann b.c., cf. [BonnetBenDhia-Chesnel-Jr'12].

- The main difficulty is that $(v, w) \mapsto \int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$ is not coercive in $H_{0}^{1}(\Omega)$.

$$
\Longrightarrow \quad \text { Solve the problem with T-coercivity! }
$$

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle \text {. }
$$

- [Banach-Necas-Babuska] Introduce the two conditions

$$
\begin{aligned}
& \left(B N B_{1}\right) \quad \exists \alpha^{\prime}>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha^{\prime}\|v\|_{V} . \\
& \left(B N B_{2}\right) \quad \forall w \in W:\{\forall v \in V, a(v, w)=0\} \Longrightarrow\{w=0\} .
\end{aligned}
$$

NB. Condition $\left(B N B_{1}\right)$ is called an inf-sup condition, or a stability condition.

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W), \text { bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle \text {. }
$$

- The form $a(\cdot, \cdot)$ is T -coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text {, bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.
(iii) the form $a(\cdot, \cdot)$ is T -coercive.

Abstract setting

- Let
- V and W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form over $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- The form $a(\cdot, \cdot)$ is T -coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W), \text { bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies conditions $\left(B N B_{1}\right)$ and $\left(B N B_{2}\right)$.
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

$$
\text { The operator } \mathrm{T} \text { realizes conditions }\left(B N B_{1}\right) \text { and }\left(B N B_{2}\right) \text { explicitly. }
$$

Abstract setting-2

$$
V=W \text {, case of a hermitian form } a
$$

The previous definition and theorem can be simplified...

Abstract setting-2

$$
V=W \text {, case of a hermitian form } a
$$

The previous definition and theorem can be simplified...

- The hermitian form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

Abstract setting-2

$$
V=W \text {, case of a hermitian form } a
$$

The previous definition and theorem can be simplified...

- The hermitian form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

- Theorem (Well-posedness) The three assertions below are equivalent:
(i) the Problem $(V F)$ with hermitian form is well-posed;
(ii) the hermitian form $a(\cdot, \cdot)$ satisfies condition $\left(B N B_{1}\right)$.
(iii) the hermitian form $a(\cdot, \cdot)$ is T-coercive.

Practical T-coercivity

- In the case of the scalar transmission problem:
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;

Practical T-coercivity

- In the case of the scalar transmission problem:
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.

อ $0<\sigma_{1}^{-} \leq \sigma \leq \sigma_{1}^{+}<\infty$ in $\Omega_{1} \quad ; \quad 0<\sigma_{2}^{-} \leq-\sigma \leq \sigma_{2}^{+}<\infty$ in Ω_{2}.

Practical T-coercivity

- In the case of the scalar transmission problem:
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.
- $0<\sigma_{1}^{-} \leq \sigma \leq \sigma_{1}^{+}<\infty$ in $\Omega_{1} \quad ; \quad 0<\sigma_{2}^{-} \leq-\sigma \leq \sigma_{2}^{+}<\infty$ in Ω_{2}.
- Introduce $V_{k}:=\left\{v_{k} \in H^{1}\left(\Omega_{k}\right) \mid v_{k \mid \Gamma_{k}}=0\right\}, k=1,2$:

Practical T-coercivity

- In the case of the scalar transmission problem:
- Ω, Ω_{1} and Ω_{2} are domains of $\mathbb{R}^{d}, d \geq 1: \Omega_{1} \cap \Omega_{2}=\emptyset, \bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}}$;
- the interface is $\Sigma:=\overline{\Omega_{1}} \cap \overline{\Omega_{2}}$; the boundaries are $\Gamma_{k}:=\partial \Omega \cap \partial \Omega_{k}, k=1,2$;
- $V:=H_{0}^{1}(\Omega)$; the form is $a(v, w):=\int_{\Omega} \sigma \operatorname{grad} v \cdot \overline{\operatorname{grad} w} d \Omega$.
- $0<\sigma_{1}^{-} \leq \sigma \leq \sigma_{1}^{+}<\infty$ in $\Omega_{1} \quad ; \quad 0<\sigma_{2}^{-} \leq-\sigma \leq \sigma_{2}^{+}<\infty$ in Ω_{2}.
- Introduce $V_{k}:=\left\{v_{k} \in H^{1}\left(\Omega_{k}\right) \mid v_{k \mid \Gamma_{k}}=0\right\}, k=1,2$:

$$
V=\left\{v \mid v_{\mid \Omega_{k}} \in V_{k}, k=1,2, \text { Matching }_{\Sigma}\left(v_{\mid \Omega_{1}}, v_{\mid \Omega_{2}}\right)=0\right\}
$$

with $\operatorname{Matching}_{\Sigma}\left(v_{1}, v_{2}\right):=v_{1 \mid \Sigma}-v_{2 \mid \Sigma}$.

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \text { т }_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
$(-)$ But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, $\operatorname{Matching}_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{1} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, (T-) ${ }^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, Matching $_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{1} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right.
$$

$(+) \mathrm{T}_{1} \in \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$.
$(+)$ One checks easily that $\left(T_{1}\right)^{2}=I!$

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, Matching $_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{1} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Can one achieve T -coercivity with T_{1} ?

Practical T-coercivity-2

- First try:

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{-} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

(+) Obviously, ($\left.\mathrm{T}_{-}\right)^{2}=\mathrm{I}$.
(-) But $\mathrm{T}_{-} \notin \mathcal{L}\left(H_{0}^{1}(\Omega)\right)$, because the matching condition is not enforced.

- Second try: let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}$, Matching $_{\Sigma}\left(v_{1}, R_{1} v_{1}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{1} v:=\left\{\begin{array}{ll}
v_{1} & \text { in } \Omega_{1} \\
-v_{2}+2 R_{1} v_{1} & \text { in } \Omega_{2}
\end{array} .\right.
$$

To obtain T -coercivity with T_{1}, one needs $\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\| \| R_{1}\| \|^{2}$.

Practical T-coercivity-3

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, Matching $_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{2} v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

Practical T-coercivity-3

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, Matching $\Sigma_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{2} v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

To obtain T-coercivity with T_{2}, one needs $\frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\| \| R_{2}\| \|^{2}$.

Practical T-coercivity-3

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, Matching ${ }_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{2} v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

- Conclusion: to achieve T -coercivity with T_{1} or T_{2}, one needs

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\left(\inf _{R_{1}}\left\|\mid R_{1}\right\| \|\right)^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left(\inf _{R_{2}}| |\left|R_{2}\right| \|\right)^{2}
$$

Practical T-coercivity-3

- Third try: let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}$, Matching ${ }_{\Sigma}\left(R_{2} v_{2}, v_{2}\right)=0$.

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathrm{T}_{2} v:=\left\{\begin{array}{ll}
v_{1}-2 R_{2} v_{2} & \text { in } \Omega_{1} \\
-v_{2} & \text { in } \Omega_{2}
\end{array} .\right.
$$

- Conclusion: to achieve T-coercivity with T_{1} or T_{2}, one needs

$$
\frac{\sigma_{1}^{-}}{\sigma_{2}^{+}}>\left(\inf _{R_{1}}\left\|\left|R_{1}\right|\right\|\right)^{2} \quad \text { or } \quad \frac{\sigma_{2}^{-}}{\sigma_{1}^{+}}>\left(\inf _{R_{2}}| |\left|R_{2}\right| \|\right)^{2}
$$

- How to choose the operators R_{1}, R_{2} ?
- using traces on Σ, liftings, cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11];
- using geometrical transformations, cf. [BonnetBenDhia-Chesnel-Jr'12], [BonnetBenDhia-Carvalho-Jr].

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$;
define the contrast $\left.\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}} \in\right]-\infty, 0[$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}}$.
- $\sigma_{1} \neq-\sigma_{2}$, in a symmetric geometry.

Sample symmetric geometry:

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}}$.
- $\sigma_{1} \neq-\sigma_{2}$, in a symmetric geometry.

Let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}, R_{1} v_{1}(x, y)=v_{1}(x,-y)$, a.e. in Ω_{2}.
One finds $\left\|\mid R_{1}\right\| \|=1$.
To achieve T-coercivity, one needs $\frac{\sigma_{1}}{\left|\sigma_{2}\right|}>1$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}}$.
- $\sigma_{1} \neq-\sigma_{2}$, in a symmetric geometry.

Let $R_{1} \in \mathcal{L}\left(V_{1}, V_{2}\right)$ s.t. for all $v_{1} \in V_{1}, R_{1} v_{1}(x, y)=v_{1}(x,-y)$, a.e. in Ω_{2}.
One finds $\left\|\left|R_{1}\right|\right\|=1$.
To achieve T-coercivity, one needs $\frac{\sigma_{1}}{\left|\sigma_{2}\right|}>1$.
Let $R_{2} \in \mathcal{L}\left(V_{2}, V_{1}\right)$ s.t. for all $v_{2} \in V_{2}, R_{2} v_{2}(x, y)=v_{2}(x,-y)$, a.e. in Ω_{1}.
One finds $\left|\left|\left|R_{2}\right|\right|\right|=1$.
To achieve T-coercivity, one needs $\frac{\left|\sigma_{2}\right|}{\sigma_{1}}>1$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$;
define the contrast $\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}}$.
- $\sigma_{1} \neq-\sigma_{2}$, in a symmetric geometry.

The scalar transmission problem is well-posed when $\kappa_{\sigma} \neq-1$.

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}}$.
- $\sigma_{1} \neq-\sigma_{2}$, in a symmetric geometry.

The scalar transmission problem is well-posed when $\kappa_{\sigma} \neq-1$.

- $\sigma_{1}=-\sigma_{2}$, in a symmetric geometry.

The scalar transmission problem is ill-posed when $\kappa_{\sigma}=-1$ (Critical case.)

Optimality of T-coercivity

- Study of an elementary setting:
- piecewise constant coefficient σ;
in this case, $\sigma_{1}^{-}=\sigma_{1}^{+}=\sigma_{1}$, and $\sigma_{2}^{-}=\sigma_{2}^{+}=\left|\sigma_{2}\right|$; define the contrast $\kappa_{\sigma}:=\frac{\sigma_{2}}{\sigma_{1}}$.
- $\sigma_{1} \neq-\sigma_{2}$, in a symmetric geometry.

The scalar transmission problem is well-posed when $\kappa_{\sigma} \neq-1$.

- $\sigma_{1}=-\sigma_{2}$, in a symmetric geometry.

The scalar transmission problem is ill-posed when $\kappa_{\sigma}=-1$ (Critical case.)

- Conclusion: The scalar transmission problem is well-posed iff $\kappa_{\sigma} \neq-1$.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner

Operators R_{1}, R_{2} combine rotation + angle dilation:
$\left(R_{1} v_{1}\right)(\rho, \theta)=v_{1}\left(\rho, \frac{\alpha}{2 \pi-\alpha}(2 \pi-\theta)\right)$;
$\left(R_{2} v_{2}\right)(\rho, \theta)=v_{2}\left(\rho, 2 \pi-\frac{2 \pi-\alpha}{\alpha} \theta\right)$.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner

Operators R_{1}, R_{2} combine rotation + angle dilation:

$$
\begin{aligned}
& \left(R_{1} v_{1}\right)(\rho, \theta)=v_{1}\left(\rho, \frac{\alpha}{2 \pi-\alpha}(2 \pi-\theta)\right) \\
& \left(R_{2} v_{2}\right)(\rho, \theta)=v_{2}\left(\rho, 2 \pi-\frac{2 \pi-\alpha}{\alpha} \theta\right) \\
& \ell=1,2:\left\|R_{\ell}\right\| \|^{2} \leq \max \left(\frac{2 \pi-\alpha}{\alpha}, \frac{\alpha}{2 \pi-\alpha}\right)
\end{aligned}
$$

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

Operators R_{1}, R_{2} : similar to 2. (+ continuation by 0)

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

There exists an interval $\left.I_{\Sigma} \subset\right]-\infty, 0\left[\right.$ s.t. if $\kappa_{\sigma} \notin I_{\Sigma}$, one has a Garding inequality

$$
\exists C_{\sigma}, C_{\sigma}^{\prime}>0, \forall v \in H_{0}^{1}(\Omega),|a(v, \mathrm{~T} v)| \geq C_{\sigma}|v|_{1}^{2}-C_{\sigma}^{\prime}\|v\|_{0}^{2} .
$$

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

If $\kappa_{\sigma} \notin I_{\Sigma}$, then the scalar transmission problem is well-posed in the Fredholm sense.

- In this case, the associated operator is Fredholm of index 0.
- The interval I_{Σ} is optimal in the sense that if $\kappa_{\sigma} \in I_{\Sigma}$, then the scalar transmission problem is not well-posed in the Fredholm sense.
e The bounds of I_{Σ} depend on the value of the angles at the corners.

Optimality of T-coercivity-2

- Study of simple geometries (on a piecewise straight interface Σ):

1. Symmetric geometry
2. Interface with an interior corner
3. Interface with a boundary corner

- Handle general geometries by localization: use the T-coercivity results locally.

If $\kappa_{\sigma} \notin I_{\Sigma}$, then the scalar transmission problem is well-posed in the Fredholm sense.

- In this case, the associated operator is Fredholm of index 0.
- The interval I_{Σ} is optimal in the sense that if $\kappa_{\sigma} \in I_{\Sigma}$, then the scalar transmission problem is not well-posed in the Fredholm sense.
- The bounds of I_{Σ} depend on the value of the angles at the corners.
- The interval I_{Σ} always contains -1 .
- If the interface is \mathcal{C}^{1} without endpoints, $I_{\Sigma}=\{-1\}$ (cf. [Costabel-Stephan'85]).
- The "generalized" Helmholtz equation can be solved similarly.

Numerical experiments: no corners

- In a symmetric domain, made up of $\left.\Omega_{1}=\right]-1,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- An exact piecewise smooth solution is available.
- Contrast: $\kappa_{\sigma}=-1.001$.
- Conforming discretization using P_{1} Lagrange finite elements:
- $\left(\mathcal{T}_{h}\right)_{h}$ a regular family of meshes;
- $\left(V_{h}\right)_{h}$ (discrete) subspaces of $H_{0}^{1}(\Omega)$;
- Freefem++ software.

Numerical experiments: no corners

- In a symmetric domain, made up of $\left.\Omega_{1}=\right]-1,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- An exact piecewise smooth solution is available.
- Conforming discretization using P_{1} Lagrange finite elements.
- We study below the influence of the meshes (errors in L^{2}-norm; $O\left(h^{2}\right)$ is expected).

Numerical experiments: no corners

- In a symmetric domain, made up of $\left.\Omega_{1}=\right]-1,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- An exact piecewise smooth solution is available.
- Conforming discretization using P_{1} Lagrange finite elements.
- We study below the influence of the meshes (errors in L^{2}-norm; $O\left(h^{2}\right)$ is expected).

Numerical analysis

- Let $\left(\mathrm{T}_{h}\right)_{h}$ denote approximations of T .
- The meshes $\left(\mathcal{T}_{h}\right)_{h}$ are locally T_{h}-conform if there exists $h_{0}>0$ s.t. for all $h<h_{0}, \mathcal{T}_{h}$ is locally invariant by the geometrical transformations defining T_{h}, in a fixed neighborhood of the interface Σ.

Numerical analysis

- Let $\left(\mathrm{T}_{h}\right)_{h}$ denote approximations of T .
- The meshes $\left(\mathcal{T}_{h}\right)_{h}$ are locally T_{h}-conform if there exists $h_{0}>0$ s.t. for all $h<h_{0}, \mathcal{T}_{h}$ is locally invariant by the geometrical transformations defining T_{h}, in a fixed neighborhood of the interface Σ.
- Proposition (Error estimate, [Chesnel-Jr'13]) Assume that $\kappa_{\sigma} \notin I_{\Sigma}$. If the meshes $\left(\mathcal{T}_{h}\right)_{h}$ are locally T_{h}-conform, then, for h small enough, the discrete problem is well-posed in V_{h}. Moreover, the discrete solution u_{h} is such that

$$
\left\|u-u_{h}\right\|_{1} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{1}
$$

with $C>0$ independent of h.

Numerical analysis

- Let $\left(\mathrm{T}_{h}\right)_{h}$ denote approximations of T .
- The meshes $\left(\mathcal{T}_{h}\right)_{h}$ are locally T_{h}-conform if there exists $h_{0}>0$ s.t. for all $h<h_{0}, \mathcal{T}_{h}$ is locally invariant by the geometrical transformations defining T_{h}, in a fixed neighborhood of the interface Σ.
- Proposition (Error estimate, [Chesnel-Jr'13]) Assume that $\kappa_{\sigma} \notin I_{\Sigma}$. If the meshes $\left(\mathcal{T}_{h}\right)_{h}$ are locally T_{h}-conform, then, for h small enough, the discrete problem is well-posed in V_{h}. Moreover, the discrete solution u_{h} is such that

$$
\left\|u-u_{h}\right\|_{1} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{1}
$$

with $C>0$ independent of h.

- Hence, it is required that the discrete spaces V_{h} are locally invariant at the interface.

Numerical experiments: no corners-2

- In a non-symmetric domain: $\left.\Omega_{1}=\right]-2,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- Contrast: $\kappa_{\sigma}=-1.001$.
- A posteriori $h p$-adaptivity using 2Dhp software (Demkowicz).

Numerical experiments: no corners-2

- In a non-symmetric domain: $\left.\Omega_{1}=\right]-2,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- Contrast: $\kappa_{\sigma}=-1.001$.
- A posteriori hp-adaptivity using 2Dhp software (Demkowicz).
- Computed solution after 10 iterations:

Numerical experiments: no corners-2

- In a non-symmetric domain: $\left.\Omega_{1}=\right]-2,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- Contrast: $\kappa_{\sigma}=-1.001$.
- A posteriori hp-adaptivity using 2Dhp software (Demkowicz).
- Initial mesh (with degrees of approximation):

Numerical experiments: no corners-2

- In a non-symmetric domain: $\left.\Omega_{1}=\right]-2,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- Contrast: $\kappa_{\sigma}=-1.001$.
- A posteriori hp-adaptivity using 2Dhp software (Demkowicz).
- Final mesh (with degrees of approximation):

Numerical experiments: no corners-2

- In a non-symmetric domain: $\left.\Omega_{1}=\right]-2,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- Contrast: $\kappa_{\sigma}=-1.001$.
- A posteriori $h p$-adaptivity using 2Dhp software (Demkowicz).
- Final mesh (with degrees of approximation):

Using adaptivity yields locally symmetric meshes, with locally symmetric degree of the approximation: the final discrete spaces are locally invariant at the interface.

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them!

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them! Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them! Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.

Example with $\alpha=\pi / 3$: going from Ω_{2} to Ω_{1}.

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them! Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
- Provided the meshes are locally T_{h}-conform, convergence follows for h small enough.

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them! Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
- Provided the meshes are locally T_{h}-conform, convergence follows for h small enough.
- What is the impact on the condition on the contrast κ_{σ} (discrete case)?

Numerical experiments: with corners

- When the interface Σ has corners, one needs to redefine the operators R_{1}, R_{2}. (at the corners, the operators rely on rotation + angle dilation).
- Idea: finite elements are compatible with affine mappings, so one can use them! Affine-based geometric operator [BonnetBenDhia-Carvalho-Jr]: use of tilings.
- Provided the meshes are locally T_{h}-conform, convergence follows for h small enough.
- What is the impact on the condition on the contrast κ_{σ} (discrete case)?

Numerical experiments: with corners-2

- Consider finally an eigenproblem.

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \backslash\{0\}, \lambda \in \mathbb{C} \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=\lambda \eta u \text { in } \Omega .
\end{array}\right. \\
& \left(\eta \in L^{\infty}(\Omega), 0<\eta_{-} \leq \eta \text { in } \Omega\right) .
\end{aligned}
$$

Numerical experiments: with corners-2

- Consider finally an eigenproblem.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \backslash\{0\}, \lambda \in \mathbb{C} \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=\lambda \eta u \text { in } \Omega .
\end{array}\right.
$$

$\left(\eta \in L^{\infty}(\Omega), 0<\eta_{-} \leq \eta\right.$ in $\left.\Omega\right)$.

- One can use the classical theory (cf. [Osborn'75]) to carry out the numerical analysis:
- all eigenvalues are real;
- there are two sequences of eigenvalues with limits $-\infty,+\infty$;
- convergence theory follows from the error estimate for the direct problem.

Numerical experiments: with corners-2

- Consider finally an eigenproblem.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \backslash\{0\}, \lambda \in \mathbb{C} \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=\lambda \eta u \text { in } \Omega .
\end{array}\right.
$$

$\left(\eta \in L^{\infty}(\Omega), 0<\eta_{-} \leq \eta\right.$ in $\left.\Omega\right)$.

- One can use the classical theory (cf. [Osborn'75]) to carry out the numerical analysis.
- Droplet-shape domain $\Omega(\alpha=\pi / 6)$; contrast $\kappa_{\sigma}=-13, \eta=1$.
- Discretization using P_{2} Lagrange finite elements; Mat lab software.

Numerical experiments: with corners-2

- Consider finally an eigenproblem.

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \backslash\{0\}, \lambda \in \mathbb{C} \text { such that } \\
-\operatorname{div}(\sigma \operatorname{grad} u)=\lambda \eta u \text { in } \Omega .
\end{array}\right.
$$

$\left(\eta \in L^{\infty}(\Omega), 0<\eta_{-} \leq \eta\right.$ in $\left.\Omega\right)$.

- One can use the classical theory (cf. [Osborn'75]) to carry out the numerical analysis.
- Droplet-shape domain $\Omega(\alpha=\pi / 6)$; contrast $\kappa_{\sigma}=-13, \eta=1$.
- Discretization using P_{2} Lagrange finite elements; Mat lab software.

Conclusion/Perspectives

- T-coercivity is versatile!
- BEM for the classical Maxwell problem (cf. [Buffa-Costabel-Schwab'02]);
- FEM for the classical scalar or Maxwell problems (cf. [Jr'12]);
- Vol. Int. Eq. Methods for scattering from gratings (cf. [Lechleiter-Nguyen'13]);
- study of Interior Transmission Eigenvalue Problems:
- scalar case (cf. [BonnetBenDhia-Chesnel-Haddar'11]);
- Maxwell problem (cf. [Chesnel'12]);
- etc.

Conclusion/Perspectives

- T-coercivity is versatile!
- Scalar problems with sign-shifting coefficients:
- introduction of T-coercivity during WAVES'07;
- numerical analysis when T-coercivity applies (cf. [BonnetBenDhia-Jr-Zwölf'10], [Nicaise-Venel'11], [Chesnel-Jr'13], DG-approach [Chung-Jr'13], etc.) ;
- theoretical study of well-posedness (cf. [BonnetBenDhia-Chesnel-Jr'12]);
- theoretical study of the critical cases (cf. [BonnetBenDhia-Chesnel-Claeys'13]);
\dagger discretization and numerical analysis of the critical cases.
- Maxwell problem(s) with sign-shifting coefficients:
- T-coercivity + side results during NELIA'11 (cf. [BonnetBenDhia-Chesnel-Jr'1x]);
\dagger numerical analysis when T-coercivity applies.
- In the critical cases: are models derived from physics still relevant?
\dagger re-visit models (homogenization, multi-scale numerics, etc.).
\dagger define ad hoc numerical methods.
(A.N.R. METAMATH Project ; coordinator S. Fliss (POEMS)).

