Approximating the divergence of electromagnetic fields by edge elements

Patrick Ciarlet
online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, ENSTA ParisTech, France

Outline

- Maxwell equations and a priori regularity of the fields
- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- Conclusion and perspectives

Stationary/static problem

- Let Ω be a Lipschitz, polyhedral domain with connected boundary $\partial \Omega$.
- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $\varrho \in H^{-1}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

NB. With coefficients $\varepsilon, \mu>0$ a.e. ; $\varepsilon, \varepsilon^{-1}, \mu, \mu^{-1} \in L^{\infty}(\Omega)$.

- The problem is well-posed in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$:

$$
\|\boldsymbol{E}\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{H^{-1}(\Omega)} .
$$

Helmholtz decomposition

- Let $\mathcal{V}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v}=0\right\}$.
- According to the Helmholtz decomposition of $\boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega)$ e.g. [Monk'03]:

$$
\boldsymbol{E}=\boldsymbol{E}_{0}+\nabla \phi, \boldsymbol{E}_{0} \in \mathcal{V}_{N}(\Omega, \varepsilon), \phi \in H_{0}^{1}(\Omega) .
$$

NB. The decomposition is orthogonal wrt $(\varepsilon \cdot \mid \cdot)+\left(\mu^{-1}\right.$ curl $\cdot \mid$ curl $\left.\cdot\right)$.

- One may characterize \boldsymbol{E}_{0} and $\nabla \phi$ separately:

$$
\left\{\begin{array}{lll}
\text { Find } \boldsymbol{E}_{0} \in \mathcal{V}_{N}(\Omega, \varepsilon) \text { s.t. } & \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{0}\right)=\boldsymbol{f} & \text { in } \Omega ; \\
\text { Find } \phi \in H_{0}^{1}(\Omega) \text { s.t. } & \operatorname{div} \varepsilon \nabla \phi=\varrho & \text { in } \Omega
\end{array}\right.
$$

- In what follows, we focus on $\boldsymbol{E}_{0} ; \nabla \phi$ can be handled similarly [Jr-Wu-Zou'14, §§3-4].

Regularity of the fields

- $\boldsymbol{E}_{0} \in \mathcal{V}_{N}(\Omega, \varepsilon) \subset \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E}_{0} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- Theorem [Costabel-Dauge-Nicaise'99]: Consider $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$. If Ω is convex then $\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{1}(\Omega)$ and $\mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{1}(\Omega)$. If Ω is non-convex then $\left.\exists \delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u} \in\right] 1 / 2,1[$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \cap_{0 \leq \delta<\delta_{\max }^{\text {Dir }} \boldsymbol{H}^{\delta}(\Omega), \quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \cap_{0 \leq \delta<\delta_{\text {max }}^{N e u}} \boldsymbol{H}^{\delta}(\Omega) . . . ~}
$$

- Following [Jr-Wu-Zou'14], let $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

To fix ideas, suppose that Ω is non-convex and define $\delta_{\max }:=\min \left(\delta_{\max }^{D i r}, \delta_{\max }^{N e u}\right)$.
Choose a regularity exponent $\delta \in] 1 / 2, \delta_{\max }[$.
NB. If Ω is convex, then $\delta=1$.

Outline

- Maxwell equations and a priori regularity of the fields
- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- Conclusion and perspectives

Edge element discretization

- Let $\left(\mathcal{T}_{h}\right)_{h}$ be a shape regular family of tetrahedral meshes of Ω.
- Define $\mathcal{X}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v}_{h \mid K}=\mathbf{a}_{K}+\mathbf{b}_{K} \times \mathbf{x}, \forall K \in \mathcal{T}_{h}\right\}$.
- Assume $^{(\star)} \forall h,\left\|\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}_{0}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}$.
- Edge element interpolation ($\delta \in] 1 / 2, \delta_{\max }[$), cf. [Alonso-Valli'g9], [Jr-Zou'99]:

$$
\left\|\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}
$$

- Question: What of $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right)\right\|$?

From the above: $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right)\right\|_{H^{-1}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}$.

- Define $Q_{h}:=\left\{q_{h} \in H_{0}^{1}(\Omega) \mid q_{h \mid K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}\right\}$.

Snit the divergence-1

- What of $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right)\right\|$?
- Define $\mathcal{V}_{h}:=\left\{\boldsymbol{v}_{h} \in \mathcal{X}_{h} \mid\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$.
- Theorem [\mathcal{V}_{h}][Jr-Wu-Zou'14]: Consider $\varepsilon \in W^{1, \infty}(\Omega)$.

Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.
Given $\delta \in] 1 / 2, \delta_{\text {max }}^{\text {Dir }}[$ and $\left.s \in] 1 / 2,1\right]$, it holds

$$
\forall \boldsymbol{v}_{h} \in \mathcal{V}_{h}, \quad\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}
$$

- Assume ${ }^{(* *)} \boldsymbol{E}_{0, h} \in \mathcal{V}_{h}$.

Corollary: $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\|\boldsymbol{f}\|_{L^{2}(\Omega)}$.

- Comments:
- Given $\boldsymbol{v}_{h} \in \mathcal{X}_{h}: \operatorname{div} \varepsilon \boldsymbol{v}_{h} \in \cap_{1 / 2<s \leq 1} H^{-s}(\Omega)$.
- Quasi-uniformity assumption can be removed, use [Li-Melenk-Wohlmuth-Zou'10].
- The assumptions ${ }^{(\star)}$ and ${ }^{(\star \star)}$ are tied to the (discrete) variational formulations.

On the divergence - 2

- One can relax the regularity assumption...
- Theorem [Bonito-Guermond-Luddens'13]: Consider $\varepsilon, \mu^{-1} \in P W^{1, \infty}(\Omega)$.

Then $\exists \delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u}>0$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \cap_{0 \leq \delta<\delta_{\max }^{\operatorname{Dir}} \boldsymbol{P} \boldsymbol{H}^{\delta}(\Omega), \quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \cap_{0 \leq \delta<\delta_{\max }^{N e u}} \boldsymbol{P} \boldsymbol{H}^{\delta}(\Omega) . . ~}
$$

Define $\delta_{\text {max }}:=\min \left(\delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u}\right)$.

- Interpolation ($\delta \in] 0, \delta_{\max }\left[\right.$), cf. [Jr'16]: $\left\|\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{L^{2}(\Omega)}$.
- Divergence estimates can still be found, even though $\delta_{\max }^{\text {Dir }}<1 / 2$ is possible...
- Theorem $\left[\mathcal{V}_{h}\right]$: Consider $\varepsilon \in P W^{1, \infty}(\Omega)$. Choose conforming meshes $\left(\mathcal{T}_{h}\right)_{h}$. Given $\underline{\delta} \in] 0, \delta_{\text {max }}^{\operatorname{Dir}}[$ and $\left.s \in] 1-\underline{\delta}, 1\right]$, it holds

$$
\forall \boldsymbol{v}_{h} \in \mathcal{V}_{h}, \quad\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\underline{\delta}-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}
$$

On the divergence - 3

- The "discrete compactness property":

The family $\left(\mathcal{V}_{h}\right)_{h}$ satisfies the discrete compactness property if:
for all sequences $\left(\boldsymbol{v}_{h}\right)_{h} \in\left(\mathcal{V}_{h}\right)_{h}$ s.t. $\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim 1$, there exists a subsequence that converges in $\boldsymbol{L}^{2}(\Omega)$.

How to derive such a result when $\varepsilon \in P W^{1, \infty}(\Omega)$?

1. Choose $\underline{\delta} \in] 0, \min \left(1 / 2, \delta_{\max }^{D i r}\right)[$ and fix $\left.s \in] 1-\underline{\delta}, 1\right]$. Observe that:

$$
\begin{array}{ll}
\forall h, \boldsymbol{v}_{h} \in \mathcal{X}_{N,-s}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in H^{-s}(\Omega)\right\} & \text { (Edge elements); } \\
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)}+\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)} \lesssim 1 & \text { (Theorem [V} \left.\left.\mathcal{V}_{h}\right]\right) .
\end{array}
$$

2. Theorem [Bonito-Guermond'11] ${ }^{+}$: Consider $\varepsilon \in P W^{1, \infty}(\Omega)$.

Given $s \in] 1 / 2,1\left[, \mathcal{X}_{N,-s}(\Omega, \varepsilon)\right.$ is compactly imbedded into $\boldsymbol{L}^{2}(\Omega)$. $\boldsymbol{v} \mapsto\left(\|\operatorname{curl} \boldsymbol{v}\|_{L^{2}(\Omega)}^{2}+\|\operatorname{div} \varepsilon \boldsymbol{v}\|_{H^{-s}(\Omega)}^{2}\right)^{1 / 2}$ defines a norm on $\mathcal{X}_{N,-s}(\Omega, \varepsilon)$; this norm is equivalent to the full norm.
3. One concludes that $\left(\mathcal{V}_{h}\right)_{h}$ satisfies the discrete compactness property!

Outline

- Maxwell equations and a priori regularity of the fields
- Discretization and error estimates on the divergence of the fields
- Variational formulations
- mixed VF
- perturbed VF
- Numerical illustrations
- Conclusion and perspectives

Variational formulation: mixed

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $\varrho \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- The discrete mixed variational formulation uses edge elements for the field and P_{1} elements for the multiplier (with $p_{h}=0$):

$$
\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{E}_{h}^{\prime}, p_{h}\right) \in \mathcal{X}_{h} \times Q_{h} \text { s.t. } \\
\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{h}^{\prime} \mid \mathbf{c u r l} \boldsymbol{v}_{h}\right)+\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla p_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) \\
\forall q_{h} \in Q_{h}, \quad\left(\varepsilon \boldsymbol{E}_{h}^{\prime} \mid \nabla q_{h}\right)=-\left(\varrho \mid q_{h}\right) .
\end{array}\right.
$$

- Given $\delta \in] 1 / 2, \delta_{\max }[$, one obtains [Chen-Du-Zou'00]:

$$
\left\|\boldsymbol{E}-\boldsymbol{E}_{h}^{\prime}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\delta}\left\{\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right\}
$$

Variational formulation: perturbed - 1

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $\varrho \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}=\varrho & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- To take into account the condition on the divergence, choose a perturbed variational formulation (with $\gamma(h)>0$ "small", see below), replacing the exact form by

$$
a_{h}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right):=\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \mid \operatorname{curl} \boldsymbol{v}^{\prime}\right)+\gamma(h)\left(\varepsilon \boldsymbol{v} \mid \boldsymbol{v}^{\prime}\right) \text { for } \boldsymbol{v}, \boldsymbol{v}^{\prime} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .
$$

- If $\varrho \neq 0$, solve two discrete variational formulations

$$
\begin{aligned}
& \text { 1. Find } \phi_{h} \in Q_{h} \text { s.t. } \forall q_{h} \in Q_{h}, \quad\left(\varepsilon \nabla \phi_{h} \mid \nabla q_{h}\right)=-\left(\varrho \mid q_{h}\right) . \\
& \text { 2. Find } \boldsymbol{E}_{h} \in \mathcal{X}_{h} \text { s.t. } \forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad a_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right)+\gamma(h)\left(\varepsilon \nabla \phi_{h} \mid \boldsymbol{v}_{h}\right) .
\end{aligned}
$$

By construction, $\boldsymbol{E}_{h}-\nabla \phi_{h} \in \mathcal{V}_{h}$.

Variational formulation: perturbed - 2

- Assumption ${ }^{(* *)}$ is fulfilled. Assumption ${ }^{(\star)}$ writes:

$$
\forall h,\left\|\boldsymbol{E}_{0}-\boldsymbol{E}_{0, h}\right\|_{a_{h}} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}_{0}-\boldsymbol{v}_{h}\right\|_{a_{h}}+\sqrt{\gamma(h)}\left\|\boldsymbol{E}_{0}\right\|_{L^{2}(\Omega)}
$$

- Theorem [Jr-Wu-Zou'14] ${ }^{+}$: Consider $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

Let $0<\gamma(h) \lesssim h^{2 \delta_{\max }}$. Given $\left.\delta \in\right] 1 / 2, \delta_{\max }[$ and $\left.s \in] 1 / 2,1\right]$, it holds

$$
\begin{aligned}
& \left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\delta}\left\{\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right\} ; \\
& \| \operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h} \|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\left\{\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right\} .\right.
\end{aligned}
$$

- If Ω is convex: let $0<\gamma(h) \lesssim h^{2}$. Given $\left.\left.s \in\right] 1 / 2,1\right]$, it holds

$$
\begin{aligned}
& \left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h\left\{\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right\} ; \\
& \left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\{\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right\} .
\end{aligned}
$$

- See the numerical illustrations for the practical choice of $\gamma(h)\left(\lesssim h^{2}\right)$.

Variational formulations: a comparison

- A comparison of $\boldsymbol{E}_{h}^{\prime}$ (mixed VF) with \boldsymbol{E}_{h} (perturbed VF):
- Given $\delta \in] 1 / 2, \delta_{\max }[$, one obtains by direct computations:

$$
\left\|\operatorname{curl}\left(\boldsymbol{E}_{h}^{\prime}-\boldsymbol{E}_{h}\right)\right\|_{L^{2}(\Omega)} \lesssim h^{\delta_{\max }+\delta / 2}\left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right) ;
$$

- By construction, $\boldsymbol{E}_{h}^{\prime}-\boldsymbol{E}_{h} \in \mathcal{V}_{h}$ so, given $\left.\left.s \in\right] 1 / 2,1\right]$, Theorem [\mathcal{V}_{h}] yields:

$$
\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}_{h}^{\prime}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s+3 \delta / 2+\delta_{\max }-1}\left(\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right) .
$$

- It follows that (Theorem [Bonito-Guermond'11]+):

$$
\left\|\boldsymbol{E}_{h}^{\prime}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l}, \Omega)} \lesssim h^{\delta_{\max }+\delta / 2}\left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right) .
$$

Outline

- Maxwell equations and a priori regularity of the fields
- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- estimates on $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)}$
- sensitivity to $\gamma(h)$
- mixed VF vs. perturbed VF
- Conclusion and perspectives

Numerics [1]

- Numerical example [1]: stationary/static problem in 3D [Jr-Wu-Zou'14]. $\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution.
- $\left(\mathcal{T}_{h}\right)_{h}$ built from an initial mesh refined uniformly (5 levels).
- Solver based on the perturbed VF: one has to solve two direct problems, one in Q_{h}, one in \mathcal{X}_{h} (with $\gamma(h)=h^{2}$).
- Pb in \mathcal{X}_{h} is solved iteratively (bi-CGSTAB, with the [Hiptmair-Xu'07] preconditioner).
- Computations have been carried out with COMSOL Multiphysics.
- One can choose $\delta=1$ for the convergence rates. So, one expects

$$
\begin{aligned}
& \left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h \\
& \left.\left.\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s} \text { for } s \in\right] 1 / 2,1\right] .
\end{aligned}
$$

Numerics [1] - results

- $\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h$ is observed.
- For the $\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)}$ error, one has, cf. [Jr-Wu-Zou'14]:
$\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)}\right)+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.
So, one has to observe that $\eta_{h}:=\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{1 / 2}$.

solid line: η_{h};
dotted line: slope $-1 / 2$.

Numerics [2]

O Numerical example [2]: stationary/static problem in 2D by K. Brodt (2015-16).
Given a source term $\vec{f} \in \vec{L}^{2}(\Omega)$ (div $\vec{f}=0$), solve:

$$
\begin{cases}\text { Find } \vec{E} \in \vec{H}_{0}(\operatorname{curl}, \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \vec{E}\right)=\vec{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \vec{E}=0 & \text { in } \Omega\end{cases}
$$

Above, Ω is the unit square, and $\left.\Omega_{1}:=\right] 0, \frac{1}{2}[\times] 0,1\left[, \Omega_{2}:=\right] \frac{1}{2}, 1[\times] 0,1[$. The parameters are set to: $\left(\varepsilon_{1}, \mu_{1}\right)=\left(\frac{5}{3}, \frac{5}{3}\right)$, resp. $\left(\varepsilon_{2}, \mu_{2}\right)=\left(\frac{10}{3}, 5\right)$. The solution \vec{E} is piecewise smooth.

- The meshsize h varies from 0.1 to 0.01 .
- Computations have been carried out with Freefem++ (and a direct solver from UMFPACK library), using either first order or second order edge finite elements.
- For the perturbed VF, the theory suggests the use of $\gamma(h)=h^{2}$ for first order FE, resp. of $\gamma(h)=h^{4}$ for second order FE.
? We study the sensitivity of the perturbed VF to the value of γ.

Numerics [2] - results

- The $\|\cdot\|_{\vec{L}^{2}(\Omega)}$ relative error (with $\gamma=10^{-5}$ fixed):

red line: 1st order;
blue line: 2nd order;
dashed lines: slopes -1 and -2.

Numerics [3]

- Numerical example [3]: stationary/static problem in 3D by K. Brodt (2015-16). ε piecewise-constant, $\mu=1$ in the unit cube Ω, with singular solution ($\delta_{\max }=0.45$).
- The meshsize h varies from 0.136 to 0.024 .
- Computations have been carried out with Freefem++ (and a direct solver from UMFPACK library), using first order edge finite elements.
- For the perturbed VF, the theory suggests the use of $\gamma(h)=h^{0.9}$.
- However, numerical experiments suggest that it is more stable to use

$$
\gamma(h)=\left(h_{\min }\right)^{0.9} \leq h^{0.9}, \text { where } h_{\min }=\min _{k \in \mathcal{T}_{h}} h_{K} .
$$

The results are reported for this value.

- We compare the mixed and perturbed VFs.

Numerics [3] - results

- CPU times, in seconds (using a 1.6 GHz i5-4200U Core, with 6GB RAM):

h	mixed VF	perturbed VF
0.136	0.003	0.001
0.049	0.055	0.039
0.033	0.339	0.186
0.024	4.165	0.756

NB. Speed-up ≈ 5.5 for $h=0.024$.

Outline

- Maxwell equations and a priori regularity of the fields
- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- Conclusion and perspectives

Conclusions

- Discrete ε-divergence free elements have "small" $\left.\left.\|\operatorname{div} \varepsilon \cdot\|_{H^{-s}(\Omega)}(s \in] 1 / 2,1\right]\right) \ldots$
- The properties of the solutions to the time-harmonic/time-dependent Maxwell problems can be analyzed similarly, cf. [Jr-Wu-Zou'14].
- The perturbed approach can be applied to magnetostatics with "optimized" $\gamma(h)$.
- Numerical experiments suggest that one can use a posteriori/adaptive strategies with the perturbed approach $\left(\gamma(h)=\left(h_{\min }\right)^{2 \delta_{\max }}\right)$.
- Numerical experiments suggest that one can solve problems with sign-changing coefficients with the perturbed approach.

