Approximating the divergence of electromagnetic fields by edge elements

Patrick Ciarlet

online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, ENSTA ParisTech, France

RICAM, October 2016 - p. 1/24

Maxwell equations and a priori regularity of the fields

- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- Conclusion and perspectives

Stationary/static problem

Let Ω be a *Lipschitz, polyhedral domain* with connected boundary ∂Ω.
 Given source terms *f* ∈ *L*²(Ω) (div *f* = 0) and *ρ* ∈ *H*⁻¹(Ω), solve:

$$\begin{array}{ll} \textit{Find } \boldsymbol{E} \in \boldsymbol{L}^2(\Omega) \textit{ with } \mathbf{curl } \boldsymbol{E} \in \boldsymbol{L}^2(\Omega) \textit{ s.t.} \\ \mathbf{curl } \left(\mu^{-1}\mathbf{curl } \boldsymbol{E} \right) = \boldsymbol{f} & \text{ in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E} = \varrho & \text{ in } \Omega ; \end{array}$$

$$\boldsymbol{E} \times \boldsymbol{n} = 0$$
 on $\partial \Omega$.

NB. With coefficients $\varepsilon, \mu > 0$ a.e.; $\varepsilon, \varepsilon^{-1}, \mu, \mu^{-1} \in L^{\infty}(\Omega)$.

The problem is well-posed in $H_0(\mathbf{curl}; \Omega)$:

 $\|\boldsymbol{E}\|_{\boldsymbol{H}(\mathbf{curl}\,;\Omega)} \lesssim \|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} + \|\varrho\|_{H^{-1}(\Omega)}.$

Helmholtz decomposition

According to the Helmholtz decomposition of $H_0(\mathbf{curl}, \Omega)$ e.g. [Monk'03]:

 $\boldsymbol{E} = \boldsymbol{E}_0 + \nabla \phi, \ \boldsymbol{E}_0 \in \mathcal{V}_N(\Omega, \varepsilon), \ \phi \in H^1_0(\Omega).$

NB. The decomposition is orthogonal wrt $(\varepsilon \cdot | \cdot) + (\mu^{-1} \mathbf{curl} \cdot | \mathbf{curl} \cdot)$.

• One may characterize E_0 and $\nabla \phi$ separately:

Find
$$E_0 \in \mathcal{V}_N(\Omega, \varepsilon)$$
 s.t.curl $(\mu^{-1} \operatorname{curl} E_0) = f$ in Ω ;Find $\phi \in H_0^1(\Omega)$ s.t.div $\varepsilon \nabla \phi = \varrho$ in Ω .

In what follows, we focus on E_0 ; $\nabla \phi$ can be handled similarly [Jr-Wu-Zou'14, §§3-4].

Regularity of the fields

$$\ \, {\boldsymbol{\mathcal P}} \quad \mu^{-1} {\rm {\bf curl}} \, {\boldsymbol E}_0 \in {\mathcal X}_T(\Omega,\mu) := \{ {\boldsymbol v} \in {\boldsymbol H}({\rm {\bf curl}}\,,\Omega) \, | \, {\rm div} \, \mu {\boldsymbol v} \in {\boldsymbol L}^2(\Omega), \ \mu {\boldsymbol v} \cdot {\boldsymbol n}_{|\partial\Omega} = 0 \}.$$

 $\begin{array}{l} \blacksquare \quad \text{Theorem [Costabel-Dauge-Nicaise'99]: Consider ε, $\mu^{-1} \in W^{1,\infty}(\Omega)$.} \\ \quad \text{If Ω is convex then $\mathcal{X}_N(\Omega,\varepsilon) \subset H^1(\Omega)$ and $\mathcal{X}_T(\Omega,\mu) \subset H^1(\Omega)$.} \\ \quad \text{If Ω is non-convex then $\exists \delta_{max}^{Dir}, \delta_{max}^{Neu} \in]1/2, 1[$ s.t. $] \end{array}$

 $\mathcal{X}_N(\Omega,\varepsilon) \subset \cap_{0 \leq \delta < \delta_{max}^{Dir}} \boldsymbol{H}^{\delta}(\Omega), \quad \text{and} \quad \mathcal{X}_T(\Omega,\mu) \subset \cap_{0 \leq \delta < \delta_{max}^{Neu}} \boldsymbol{H}^{\delta}(\Omega).$

Maxwell equations and a priori regularity of the fields

- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- Conclusion and perspectives

Edge element discretization

- Let $(\mathcal{T}_h)_h$ be a shape regular family of tetrahedral meshes of Ω .

$$\textbf{ Assume}^{(\star)} \forall h, \| \boldsymbol{E}_0 - \boldsymbol{E}_{0,h} \|_{\boldsymbol{H}(\boldsymbol{\mathrm{curl}}\,;\Omega)} \lesssim \inf_{\boldsymbol{v}_h \in \mathcal{X}_h} \| \boldsymbol{E}_0 - \boldsymbol{v}_h \|_{\boldsymbol{H}(\boldsymbol{\mathrm{curl}}\,;\Omega)}.$$

Edge element interpolation ($\delta \in [1/2, \delta_{max}]$), cf. [Alonso-Valli'99], [Jr-Zou'99]:

$$\|\boldsymbol{E}_0 - \boldsymbol{E}_{0,h}\|_{\boldsymbol{H}(\mathbf{curl}\,;\Omega)} \lesssim h^{\delta} \, \|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)}.$$

QUESTION: What of $\|\operatorname{div} \varepsilon(\boldsymbol{E}_0 - \boldsymbol{E}_{0,h})\|$?

From the above: $\|\operatorname{div} \varepsilon(\boldsymbol{E}_0 - \boldsymbol{E}_{0,h})\|_{H^{-1}(\Omega)} \lesssim h^{\delta} \|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)}$.

Define
$$Q_h := \{q_h \in H^1_0(\Omega) \mid q_h|_K \in P_1(K), \forall K \in \mathcal{T}_h\}.$$

On the divergence - 1

What of
$$\|\operatorname{div} \varepsilon(\boldsymbol{E}_0 - \boldsymbol{E}_{0,h})\|$$
?

Theorem $[\mathcal{V}_h]$ [Jr-Wu-Zou'14]: Consider $\varepsilon \in W^{1,\infty}(\Omega)$. Assume that $(\mathcal{T}_h)_h$ is quasi-uniform. Given $\delta \in [1/2, \delta_{max}^{Dir}[$ and $s \in [1/2, 1]$, it holds

$$\forall \boldsymbol{v}_h \in \mathcal{V}_h, \quad \|\operatorname{div} \varepsilon \boldsymbol{v}_h\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1} \|\operatorname{curl} \boldsymbol{v}_h\|_{\boldsymbol{L}^2(\Omega)}.$$

$$\begin{array}{l} \label{eq:second} \textbf{$\boldsymbol{\mathcal{S}}$} \quad \textbf{Assume}^{(\star\star)} \; \boldsymbol{E}_{0,h} \in \mathcal{V}_h. \\ \\ \text{Corollary: } \| \text{div} \, \varepsilon (\boldsymbol{E}_0 - \boldsymbol{E}_{0,h}) \|_{H^{-s}(\Omega)} \lesssim \, h^{s+\delta-1} \| \boldsymbol{f} \|_{\boldsymbol{L}^2(\Omega)}. \end{array}$$

Comments:

- Given $\boldsymbol{v}_h \in \mathcal{X}_h$: div $\varepsilon \boldsymbol{v}_h \in \cap_{1/2 < s \leq 1} H^{-s}(\Omega)$.
- Quasi-uniformity assumption can be removed, use [Li-Melenk-Wohlmuth-Zou'10].
- The assumptions^(\star) and ^($\star\star$) are tied to the (discrete) variational formulations.

On the divergence - 2

One can relax the regularity assumption...

Theorem [Bonito-Guermond-Luddens'13]: Consider $\varepsilon, \mu^{-1} \in PW^{1,\infty}(\Omega)$. Then $\exists \delta_{max}^{Dir}, \delta_{max}^{Neu} > 0$ s.t.

 $\mathcal{X}_{N}(\Omega,\varepsilon) \subset \cap_{0 \leq \delta < \delta_{max}^{Dir}} \boldsymbol{PH}^{\delta}(\Omega), \quad \text{and} \quad \mathcal{X}_{T}(\Omega,\mu) \subset \cap_{0 \leq \delta < \delta_{max}^{Neu}} \boldsymbol{PH}^{\delta}(\Omega).$

Define $\delta_{max} := \min(\delta_{max}^{Dir}, \delta_{max}^{Neu}).$

Interpolation ($\delta \in]0, \delta_{max}[$), cf. [Jr'16]: $\|E_0 - E_{0,h}\|_{H(\operatorname{curl};\Omega)} \lesssim h^{\delta} \|f\|_{L^2(\Omega)}$.

- Divergence estimates can still be found, even though $\delta_{max}^{Dir} < 1/2$ is possible...
- Theorem $[\mathcal{V}_h]$: Consider $\varepsilon \in PW^{1,\infty}(\Omega)$. Choose conforming meshes $(\mathcal{T}_h)_h$. Given $\underline{\delta} \in]0, \delta_{max}^{Dir}[$ and $s \in]1 - \underline{\delta}, 1]$, it holds

$$\forall \boldsymbol{v}_h \in \mathcal{V}_h, \quad \|\operatorname{div} \varepsilon \boldsymbol{v}_h\|_{H^{-s}(\Omega)} \lesssim h^{s+\underline{\delta}-1} \|\operatorname{curl} \boldsymbol{v}_h\|_{\boldsymbol{L}^2(\Omega)}.$$

On the divergence - 3

The "discrete compactness property":

The family $(\mathcal{V}_h)_h$ satisfies the discrete compactness property if: for all sequences $(\boldsymbol{v}_h)_h \in (\mathcal{V}_h)_h$ s.t. $\|\boldsymbol{v}_h\|_{\boldsymbol{H}(\mathbf{curl}\,;\Omega)} \lesssim 1$, there exists a subsequence that converges in $L^2(\Omega)$.

How to derive such a result when $\varepsilon \in PW^{1,\infty}(\Omega)$?

1. Choose $\underline{\delta} \in]0, \min(1/2, \delta_{max}^{Dir})[$ and fix $\underline{s} \in]1 - \underline{\delta}, 1]$. Observe that:

 $\begin{aligned} \forall h, \ \boldsymbol{v}_h \in \mathcal{X}_{N,-s}(\Omega,\varepsilon) &:= \{ \boldsymbol{v} \in \boldsymbol{H}_0(\operatorname{\mathbf{curl}};\Omega) \,|\, \operatorname{div} \varepsilon \, \boldsymbol{v} \in H^{-s}(\Omega) \} & \text{ (Edge elements)} \,; \\ \|\operatorname{div} \varepsilon \boldsymbol{v}_h\|_{H^{-s}(\Omega)} + \|\operatorname{\mathbf{curl}} \boldsymbol{v}_h\|_{\boldsymbol{L}^2(\Omega)} \lesssim 1 & \text{ (Theorem } [\mathcal{V}_h] \text{)}. \end{aligned}$

- 2. Theorem [Bonito-Guermond'11]⁺: Consider $\varepsilon \in PW^{1,\infty}(\Omega)$. Given $s \in [1/2, 1[, \mathcal{X}_{N,-s}(\Omega, \varepsilon)$ is compactly imbedded into $L^2(\Omega)$. $v \mapsto (\|\operatorname{curl} v\|_{L^2(\Omega)}^2 + \|\operatorname{div} \varepsilon v\|_{H^{-s}(\Omega)}^2)^{1/2}$ defines a norm on $\mathcal{X}_{N,-s}(\Omega, \varepsilon)$; this norm is equivalent to the full norm.
- 3. One concludes that $(\mathcal{V}_h)_h$ satisfies the discrete compactness property!

Maxwell equations and a priori regularity of the fields

Discretization and error estimates on the divergence of the fields

Variational formulations

- mixed VF
- perturbed VF
- Numerical illustrations
- Conclusion and perspectives

Variational formulation: mixed

Given source terms $f \in L^2(\Omega)$ (div f = 0) and $\varrho \in L^2(\Omega)$, solve:

$$\begin{array}{ll} \textbf{Find} \ \textbf{E} \in \textbf{L}^2(\Omega) \ \textit{with} \ \textbf{curl} \ \textbf{E} \in \textbf{L}^2(\Omega) \ \textit{s.t.} \\ \textbf{curl} \ \left(\mu^{-1}\textbf{curl} \ \textbf{E}\right) = \textbf{f} & \text{in } \Omega \ ; \\ \text{div} \ \varepsilon \ \textbf{E} = \varrho & \text{in } \Omega \ ; \\ \textbf{E} \times \textbf{n} = 0 & \text{on } \partial \Omega. \end{array}$$

The discrete mixed variational formulation uses edge elements for the field and P_1 elements for the multiplier (with $p_h = 0$):

$$\begin{array}{l} \quad \textit{Find} \ (\boldsymbol{E}'_h, p_h) \in \mathcal{X}_h \times Q_h \ \textit{s.t.} \\ \\ \forall \boldsymbol{v}_h \in \mathcal{X}_h, \quad (\mu^{-1} \mathbf{curl} \, \boldsymbol{E}'_h | \mathbf{curl} \, \boldsymbol{v}_h) + (\varepsilon \, \boldsymbol{v}_h | \nabla p_h) = (\boldsymbol{f} | \boldsymbol{v}_h) \\ \\ \\ \forall q_h \in Q_h, \quad (\varepsilon \boldsymbol{E}'_h | \nabla q_h) = -(\varrho | q_h). \end{array}$$

Given $\delta \in [1/2, \delta_{max}]$, one obtains [Chen-Du-Zou'00]:

$$\|\boldsymbol{E} - \boldsymbol{E}'_h\|_{\boldsymbol{H}(\mathbf{curl}\,;\Omega)} \lesssim h^{\delta} \{\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)} \}.$$

Variational formulation: perturbed - 1

Given source terms $f \in L^2(\Omega)$ (div f = 0) and $\varrho \in L^2(\Omega)$, solve:

 $\begin{cases} \textit{Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \textit{ with } \mathbf{curl } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \textit{ s.t.} \\ \mathbf{curl } (\mu^{-1}\mathbf{curl } \boldsymbol{E}) = \boldsymbol{f} & \text{ in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E} = \varrho & \text{ in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n} = 0 & \text{ on } \partial \Omega. \end{cases}$

To take into account the condition on the divergence, choose a *perturbed variational* formulation (with $\gamma(h) > 0$ "small", see below), replacing the exact form by

 $\boldsymbol{a_h(\boldsymbol{v},\boldsymbol{v}')} := (\mu^{-1} \operatorname{curl} \boldsymbol{v} | \operatorname{curl} \boldsymbol{v}') + \boldsymbol{\gamma(h)}(\varepsilon \, \boldsymbol{v} | \boldsymbol{v}') \text{ for } \boldsymbol{v}, \boldsymbol{v}' \in \boldsymbol{H}_0(\operatorname{curl};\Omega).$

If $\rho \neq 0$, solve two discrete variational formulations

1. Find $\phi_h \in Q_h$ s.t. $\forall q_h \in Q_h$, $(\varepsilon \nabla \phi_h | \nabla q_h) = -(\varrho | q_h)$. 2. Find $\mathbf{E}_h \in \mathcal{X}_h$ s.t. $\forall \mathbf{v}_h \in \mathcal{X}_h$, $a_h(\mathbf{E}_h, \mathbf{v}_h) = (\mathbf{f} | \mathbf{v}_h) + \gamma(h)(\varepsilon \nabla \phi_h | \mathbf{v}_h)$.

By construction, $\boldsymbol{E}_h - \nabla \phi_h \in \mathcal{V}_h$.

Variational formulation: perturbed - 2

Assumption^(\star) is fulfilled. Assumption^(\star) writes:

$$orall h, \ \|oldsymbol{E}_0-oldsymbol{E}_{0,h}\|_{a_h}\lesssim \inf_{oldsymbol{v}_h\in\mathcal{X}_h}\|oldsymbol{E}_0-oldsymbol{v}_h\|_{a_h}+\sqrt{\gamma(h)}\,\|oldsymbol{E}_0\|_{oldsymbol{L}^2(\Omega)}.$$

Theorem [Jr-Wu-Zou'14]⁺: Consider $\varepsilon, \mu^{-1} \in W^{1,\infty}(\Omega)$. Let $0 < \gamma(h) \leq h^{2\delta_{max}}$. Given $\delta \in]1/2, \delta_{max}[$ and $s \in]1/2, 1]$, it holds

$$\begin{aligned} \|\boldsymbol{E} - \boldsymbol{E}_h\|_{\boldsymbol{H}(\mathbf{curl}\,;\Omega)} &\lesssim h^{\delta}\{\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)}\};\\ \|\operatorname{div}\varepsilon(\boldsymbol{E} - \boldsymbol{E}_h)\|_{H^{-s}(\Omega)} &\lesssim h^{s+\delta-1}\{\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)}\}. \end{aligned}$$

If Ω is *convex*: let $0 < \gamma(h) \lesssim h^2$. Given $s \in [1/2, 1]$, it holds

$$\begin{aligned} \|\boldsymbol{E} - \boldsymbol{E}_h\|_{\boldsymbol{H}(\operatorname{\mathbf{curl}};\Omega)} &\lesssim h\left\{\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)}\right\};\\ \|\operatorname{div}\varepsilon(\boldsymbol{E} - \boldsymbol{E}_h)\|_{H^{-s}(\Omega)} &\lesssim h^s\{\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)}\}. \end{aligned}$$

See the numerical illustrations for the *practical choice* of $\gamma(h) (\leq h^2)$.

Variational formulations: a comparison

• A comparison of E'_h (mixed VF) with E_h (perturbed VF):

• Given $\delta \in [1/2, \delta_{max}]$, one obtains by direct computations:

$$\|\operatorname{curl} (\boldsymbol{E}'_h - \boldsymbol{E}_h)\|_{\boldsymbol{L}^2(\Omega)} \lesssim h^{\delta_{max} + \delta/2} \left(\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)}
ight);$$

▶ By construction, $E'_h - E_h \in V_h$ so, given $s \in [1/2, 1]$, Theorem [V_h] yields:

$$\|\operatorname{div} \varepsilon(\boldsymbol{E}_h' - \boldsymbol{E}_h)\|_{H^{-s}(\Omega)} \lesssim h^{s+3\delta/2 + \delta_{max} - 1} \left(\|\boldsymbol{f}\|_{\boldsymbol{L}^2(\Omega)} + \|\varrho\|_{L^2(\Omega)} \right)$$

It follows that (Theorem [Bonito-Guermond'11]+):

$$\|m{E}_h'-m{E}_h\|_{m{H}(\mathbf{curl}\,,\Omega)}\lesssim\,h^{\delta_{max}+\delta/2}\left(\|m{f}\|_{m{L}^2(\Omega)}+\|arrho\|_{L^2(\Omega)}
ight)\,.$$

RICAM, October 2016 - p. 15/24

Maxwell equations and a priori regularity of the fields

- Discretization and error estimates on the divergence of the fields
- Variational formulations

Numerical illustrations

- estimates on $\|\operatorname{div} \varepsilon(\boldsymbol{E} \boldsymbol{E}_h)\|_{H^{-s}(\Omega)}$
- **sensitivity to** $\gamma(h)$
- mixed VF vs. perturbed VF
- Conclusion and perspectives

Numerics [1]

Numerical example [1]: stationary/static problem in 3D [Jr-Wu-Zou'14]. $\varepsilon = \mu = 1$ in the unit cube Ω , with *smooth solution*.

- $(\mathcal{T}_h)_h$ built from an initial mesh refined uniformly (5 levels).
- Solver based on the *perturbed VF*: one has to solve two *direct problems*, one in Q_h , one in \mathcal{X}_h (with $\gamma(h) = h^2$).
- Pb in \mathcal{X}_h is solved iteratively (bi-CGSTAB, with the [Hiptmair-Xu'07] preconditioner).
- Computations have been carried out with COMSOL Multiphysics.
- One can choose $\delta = 1$ for the convergence rates. So, one expects

 $\begin{aligned} \|\boldsymbol{E} - \boldsymbol{E}_h\|_{\boldsymbol{H}(\mathbf{curl}\,;\Omega)} &\lesssim h \\ \|\operatorname{div}(\boldsymbol{E} - \boldsymbol{E}_h)\|_{H^{-s}(\Omega)} &\lesssim h^s \text{ for } s \in]1/2, 1]. \end{aligned}$

Numerics [1] – results

$$|| E - E_h ||_{H(\mathbf{curl}\,;\Omega)} \lesssim h \text{ is observed.}$$

For the $\|\operatorname{div} (\boldsymbol{E} - \boldsymbol{E}_h)\|_{H^{-s}(\Omega)}$ error, one has, cf. [Jr-Wu-Zou'14]:

$$\|\operatorname{div}(\boldsymbol{E}-\boldsymbol{E}_{h})\|_{H^{-s}(\Omega)} \lesssim h^{s}(\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\varrho\|_{L^{2}(\Omega)})+h^{s-1/2}\left(\sum_{f\in\mathcal{F}_{h}}\|[\boldsymbol{E}_{h}\cdot\boldsymbol{n}]\|_{L^{2}(f)}^{2}\right)^{1/2}.$$

So, one has to observe that
$$\pmb{\eta_h} := igg(\sum_{f\in\mathcal{F}_h}\|[m{E}_h\cdotm{n}]\|^2_{L^2(f)}igg)^{1/2} \lesssim h^{1/2}.$$

solid line: η_h ; dotted line: slope -1/2.

Numerics [2]

Numerical example [2]: stationary/static problem in 2D by K. Brodt (2015-16). Given a source term $\vec{f} \in \vec{L}^2(\Omega)$ (div $\vec{f} = 0$), solve:

$$\begin{cases} Find \vec{E} \in \vec{H}_0(\operatorname{curl}, \Omega) \ s.t. \\ \operatorname{curl} \left(\mu^{-1} \operatorname{curl} \vec{E} \right) = \vec{f} & \text{in } \Omega ; \\ \operatorname{div} \varepsilon \vec{E} = 0 & \text{in } \Omega. \end{cases}$$

Above, Ω is the unit square, and $\Omega_1 :=]0, \frac{1}{2}[\times]0, 1[, \Omega_2 :=]\frac{1}{2}, 1[\times]0, 1[.$ The parameters are set to: $(\varepsilon_1, \mu_1) = (\frac{5}{3}, \frac{5}{3})$, resp. $(\varepsilon_2, \mu_2) = (\frac{10}{3}, 5)$. The solution \vec{E} is *piecewise smooth*.

- Computations have been carried out with Freefem++ (and a direct solver from UMFPACK library), using either first order or <u>second order</u> edge finite elements.
- For the perturbed VF, the theory suggests the use of $\gamma(h) = h^2$ for first order FE, resp. of $\gamma(h) = h^4$ for second order FE.
 - We study the sensitivity of the perturbed VF to the value of γ .

Numerics [2] – results

red line: 1st order; blue line: 2nd order; dashed lines: slopes -1 and -2.

Numerics [3]

Numerical example [3]: stationary/static problem in 3D by K. Brodt (2015-16). ε piecewise-constant, $\mu = 1$ in the unit cube Ω , with singular solution ($\delta_{max} = 0.45$).

- **D** The meshsize h varies from 0.136 to 0.024.
- Computations have been carried out with Freefem++ (and a direct solver from UMFPACK library), using first order edge finite elements.
- For the perturbed VF, the theory suggests the use of $\gamma(h) = h^{0.9}$.
- However, numerical experiments suggest that it is more stable to use

$$\gamma(h) = (h_{min})^{0.9} \le h^{0.9}$$
, where $h_{min} = \min_{k \in \mathcal{T}_h} h_K$.

The results are reported for this value.

We compare the *mixed and perturbed VFs*.

Numerics [3] – results

CPU times, in seconds (using a 1.6GHz i5-4200U Core, with 6GB RAM):

h	mixed VF	perturbed VF
0.136	0.003	0.001
0.049	0.055	0.039
0.033	0.339	0.186
0.024	4.165	0.756

NB. Speed-up ≈ 5.5 for h = 0.024.

Maxwell equations and a priori regularity of the fields

- Discretization and error estimates on the divergence of the fields
- Variational formulations
- Numerical illustrations
- Conclusion and perspectives

Conclusions

- Discrete ε -divergence free elements have "small" $\|\operatorname{div} \varepsilon \cdot \|_{H^{-s}(\Omega)}$ $(s \in [1/2, 1])...$
- The properties of the solutions to the time-harmonic/time-dependent Maxwell problems can be analyzed similarly, cf. [Jr-Wu-Zou'14].
- The perturbed approach can be applied to magnetostatics with "optimized" $\gamma(h)$.
- Numerical experiments suggest that one can use a posteriori/adaptive strategies with the perturbed approach ($\gamma(h) = (h_{min})^{2\delta_{max}}$).
- Numerical experiments suggest that one can solve problems with sign-changing coefficients with the perturbed approach.

