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Stationary/static problem

Let Ω be a Lipschitz, polyhedral domain with connected boundary ∂Ω.

Given source terms f ∈ L2(Ω) (div f = 0) and ϱ ∈ H−1(Ω), solve:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.
curl

(

µ−1
curlE

)

= f in Ω ;

div εE = ϱ in Ω ;

E × n = 0 on ∂Ω.

NB. With coefficients ε, µ > 0 a.e. ; ε, ε−1, µ, µ−1 ∈ L∞(Ω).

The problem is well-posed inH0(curl ;Ω):

∥E∥H(curl ;Ω) ! ∥f∥L2(Ω) + ∥ϱ∥H−1(Ω).
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Helmholtz decomposition

Let VN (Ω, ε) := {v ∈ H0(curl ,Ω) |div εv = 0}.

According to the Helmholtz decomposition ofH0(curl ,Ω) e.g. [Monk’03]:

E = E0 +∇φ, E0 ∈ VN (Ω, ε), φ ∈ H1
0 (Ω).

NB. The decomposition is orthogonal wrt (ε · |·) + (µ−1curl · |curl ·).

One may characterize E0 and ∇φ separately:
⎧

⎨

⎩

Find E0 ∈ VN (Ω, ε) s.t. curl
(

µ−1
curlE0

)

= f in Ω ;

Find φ ∈ H1
0 (Ω) s.t. div ε∇φ = ϱ in Ω.

In what follows, we focus on E0 ; ∇φ can be handled similarly [Jr-Wu-Zou’14, §§3-4].
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Regularity of the fields

E0 ∈ VN (Ω, ε) ⊂ XN (Ω, ε) := {v ∈ H0(curl ,Ω) |div εv ∈ L2(Ω)}.

µ−1curlE0 ∈ XT (Ω, µ) := {v ∈ H(curl ,Ω) |divµv ∈ L2(Ω), µv · n|∂Ω = 0}.

Theorem [Costabel-Dauge-Nicaise’99]: Consider ε, µ−1 ∈ W 1,∞(Ω).
If Ω is convex then XN (Ω, ε) ⊂ H1(Ω) and XT (Ω, µ) ⊂ H1(Ω).
If Ω is non-convex then ∃δDir

max, δ
Neu
max ∈]1/2, 1[ s.t.

XN (Ω, ε) ⊂ ∩0≤δ<δDir
max

Hδ(Ω), and XT (Ω, µ) ⊂ ∩0≤δ<δNeu
max

Hδ(Ω) .

Following [Jr-Wu-Zou’14], let ε, µ−1 ∈ W 1,∞(Ω).

To fix ideas, suppose that Ω is non-convex and define δmax := min(δDir
max, δ

Neu
max).

Choose a regularity exponent δ ∈]1/2, δmax[.

NB. If Ω is convex, then δ = 1.
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Edge element discretization

Let (Th)h be a shape regular family of tetrahedral meshes of Ω.

Define Xh := {vh ∈ H0(curl ;Ω) |vh|K = aK + bK × x, ∀K ∈ Th}.

Assume(⋆) ∀h, ∥E0 −E0,h∥H(curl ;Ω) ! infvh∈Xh
∥E0 − vh∥H(curl ;Ω).

Edge element interpolation (δ ∈]1/2, δmax[), cf. [Alonso-Valli’99], [Jr-Zou’99]:

∥E0 −E0,h∥H(curl ;Ω) ! hδ ∥f∥L2(Ω).

QUESTION: What of ∥div ε(E0 −E0,h)∥?

From the above: ∥div ε(E0 −E0,h)∥H−1(Ω) ! hδ∥f∥L2(Ω).

Define Qh := {qh ∈ H1
0 (Ω) | qh|K ∈ P1(K), ∀K ∈ Th}.
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On the divergence - 1

What of ∥div ε(E0 −E0,h)∥?

Define Vh := {vh ∈ Xh | (εvh|∇qh) = 0, ∀qh ∈ Qh}.

Theorem [Vh] [Jr-Wu-Zou’14]: Consider ε ∈ W 1,∞(Ω).
Assume that (Th)h is quasi-uniform.
Given δ ∈]1/2, δDir

max[ and s ∈]1/2, 1], it holds

∀vh ∈ Vh, ∥div εvh∥H−s(Ω) ! hs+δ−1∥curlvh∥L2(Ω).

Assume(⋆⋆) E0,h ∈ Vh.

Corollary: ∥div ε(E0 −E0,h)∥H−s(Ω) ! hs+δ−1∥f∥L2(Ω).

Comments:
Given vh ∈ Xh: div εvh ∈ ∩1/2<s≤1H

−s(Ω).
Quasi-uniformity assumption can be removed, use [Li-Melenk-Wohlmuth-Zou’10].
The assumptions(⋆) and (⋆⋆) are tied to the (discrete) variational formulations.
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On the divergence - 2

One can relax the regularity assumption...

Theorem [Bonito-Guermond-Luddens’13]: Consider ε, µ−1 ∈ PW 1,∞(Ω).
Then ∃δDir

max, δ
Neu
max > 0 s.t.

XN (Ω, ε) ⊂ ∩0≤δ<δDir
max

PHδ(Ω), and XT (Ω, µ) ⊂ ∩0≤δ<δNeu
max

PHδ(Ω) .

Define δmax := min(δDir
max, δ

Neu
max).

Interpolation (δ ∈]0, δmax[), cf. [Jr’16]: ∥E0 −E0,h∥H(curl ;Ω) ! hδ ∥f∥L2(Ω).

Divergence estimates can still be found, even though δDir
max < 1/2 is possible...

Theorem [Vh]: Consider ε ∈ PW 1,∞(Ω). Choose conforming meshes (Th)h.
Given δ ∈]0, δDir

max[ and s ∈]1− δ, 1], it holds

∀vh ∈ Vh, ∥div εvh∥H−s(Ω) ! hs+δ−1∥curlvh∥L2(Ω).

RICAM, October 2016 – p. 9/24



On the divergence - 3

The "discrete compactness property":

The family (Vh)h satisfies the discrete compactness property if:
for all sequences (vh)h ∈ (Vh)h s.t. ∥vh∥H(curl ;Ω) ! 1, there exists a subsequence
that converges in L2(Ω).

How to derive such a result when ε ∈ PW 1,∞(Ω)?

1. Choose δ ∈]0,min(1/2, δDir
max)[ and fix s ∈]1− δ, 1]. Observe that:

∀h, vh ∈ XN,−s(Ω, ε) := {v ∈ H0(curl ;Ω) |div εv ∈ H−s(Ω)} (Edge elements) ;
∥div εvh∥H−s(Ω) + ∥curlvh∥L2(Ω) ! 1 (Theorem [Vh]).

2. Theorem [Bonito-Guermond’11]+: Consider ε ∈ PW 1,∞(Ω).
Given s ∈]1/2, 1[, XN,−s(Ω, ε) is compactly imbedded into L2(Ω).
v %→ (∥curlv∥2

L2(Ω)
+ ∥div εv∥2

H−s(Ω)
)1/2 defines a norm on XN,−s(Ω, ε) ;

this norm is equivalent to the full norm.

3. One concludes that (Vh)h satisfies the discrete compactness property!
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Variational formulation: mixed
Given source terms f ∈ L2(Ω) (div f = 0) and ϱ ∈ L2(Ω), solve:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.
curl

(

µ−1
curlE

)

= f in Ω ;

div εE = ϱ in Ω ;

E × n = 0 on ∂Ω.

The discrete mixed variational formulation uses edge elements for the field and P1

elements for the multiplier (with ph = 0):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find (E′
h, ph) ∈ Xh ×Qh s.t.

∀vh ∈ Xh, (µ−1curlE′
h|curlvh) + (εvh|∇ph) = (f |vh)

∀qh ∈ Qh, (εE′
h|∇qh) = −(ϱ|qh).

Given δ ∈]1/2, δmax[, one obtains [Chen-Du-Zou’00]:

∥E −E′
h∥H(curl ;Ω) ! hδ {∥f∥L2(Ω) + ∥ϱ∥L2(Ω)}.
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Variational formulation: perturbed - 1

Given source terms f ∈ L2(Ω) (div f = 0) and ϱ ∈ L2(Ω), solve:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Find E ∈ L2(Ω) with curlE ∈ L2(Ω) s.t.
curl

(

µ−1
curlE

)

= f in Ω ;

div εE = ϱ in Ω ;

E × n = 0 on ∂Ω.

To take into account the condition on the divergence, choose a perturbed variational
formulation (with γ(h) > 0 “small”, see below), replacing the exact form by

ah(v,v
′) := (µ−1

curlv|curlv′) + γ(h)(εv|v′) for v,v′ ∈ H0(curl ;Ω).

If ϱ ̸= 0, solve two discrete variational formulations

1. Find φh ∈ Qh s.t. ∀qh ∈ Qh, (ε∇φh|∇qh) = −(ϱ|qh).

2. Find Eh ∈ Xh s.t. ∀vh ∈ Xh, ah(Eh,vh) = (f |vh) + γ(h)(ε∇φh|vh).

By construction, Eh −∇φh ∈ Vh.
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Variational formulation: perturbed - 2

Assumption(⋆⋆) is fulfilled. Assumption(⋆) writes:

∀h, ∥E0 −E0,h∥ah
! inf

vh∈Xh

∥E0 − vh∥ah
+

√

γ(h) ∥E0∥L2(Ω).

Theorem [Jr-Wu-Zou’14]+: Consider ε, µ−1 ∈ W 1,∞(Ω).
Let 0 < γ(h) ! h2δmax . Given δ ∈]1/2, δmax[ and s ∈]1/2, 1], it holds

∥E −Eh∥H(curl ;Ω) ! hδ{∥f∥L2(Ω) + ∥ϱ∥L2(Ω)} ;

∥div ε(E −Eh)∥H−s(Ω) ! hs+δ−1{∥f∥L2(Ω) + ∥ϱ∥L2(Ω)}.

If Ω is convex : let 0 < γ(h) ! h2. Given s ∈]1/2, 1], it holds

∥E −Eh∥H(curl ;Ω) ! h {∥f∥L2(Ω) + ∥ϱ∥L2(Ω)} ;

∥div ε(E −Eh)∥H−s(Ω) ! hs{∥f∥L2(Ω) + ∥ϱ∥L2(Ω)}.

See the numerical illustrations for the practical choice of γ(h)(! h2).
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Variational formulations: a comparison

A comparison of E′
h (mixed VF) with Eh (perturbed VF):

Given δ ∈]1/2, δmax[, one obtains by direct computations:

∥curl (E′
h −Eh)∥L2(Ω) ! hδmax+δ/2

(

∥f∥L2(Ω) + ∥ϱ∥L2(Ω)

)

;

By construction, E′
h −Eh ∈ Vh so, given s ∈]1/2, 1], Theorem [Vh] yields:

∥div ε(E′
h −Eh)∥H−s(Ω) ! hs+3δ/2+δmax−1

(

∥f∥L2(Ω) + ∥ϱ∥L2(Ω)

)

.

It follows that (Theorem [Bonito-Guermond’11]+):

∥E′
h −Eh∥H(curl ,Ω) ! hδmax+δ/2

(

∥f∥L2(Ω) + ∥ϱ∥L2(Ω)

)

.
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Numerics [1]

Numerical example [1]: stationary/static problem in 3D [Jr-Wu-Zou’14].
ε = µ = 1 in the unit cube Ω, with smooth solution.

(Th)h built from an initial mesh refined uniformly (5 levels).

Solver based on the perturbed VF : one has to solve two direct problems, one in Qh,
one in Xh (with γ(h) = h2).

Pb in Xh is solved iteratively (bi-CGSTAB, with the [Hiptmair-Xu’07] preconditioner).

Computations have been carried out with COMSOL Multiphysics.

One can choose δ = 1 for the convergence rates. So, one expects

∥E −Eh∥H(curl ;Ω) ! h

∥div (E −Eh)∥H−s(Ω) ! hs for s ∈]1/2, 1].
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Numerics [1] – results

∥E −Eh∥H(curl ;Ω) ! h is observed.

For the ∥div (E −Eh)∥H−s(Ω) error, one has, cf. [Jr-Wu-Zou’14]:

∥div (E−Eh)∥H−s(Ω) ! hs(∥f∥L2(Ω)+∥ϱ∥L2(Ω))+hs−1/2
(

∑

f∈Fh

∥[Eh·n]∥2L2(f)

)1/2

.

So, one has to observe that ηh :=

(

∑

f∈Fh
∥[Eh · n]∥2

L2(f)

)1/2

! h1/2.

100 101 102

10−1.8

10−1.6

10−1.4

10−1.2

1/h

η h solid line: ηh ;
dotted line: slope -1/2.
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Numerics [2]

Numerical example [2]: stationary/static problem in 2D by K. Brodt (2015-16).

Given a source term f⃗ ∈ L⃗2(Ω) (div f⃗ = 0), solve:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find E⃗ ∈ H⃗0(curl ,Ω) s.t.
⃗curl

(

µ−1curl E⃗
)

= f⃗ in Ω ;

div ε E⃗ = 0 in Ω.

Above, Ω is the unit square, and Ω1 :=]0, 1
2 [×]0, 1[, Ω2 :=] 12 , 1[×]0, 1[.

The parameters are set to: (ε1, µ1) = ( 53 ,
5
3 ), resp. (ε2, µ2) = ( 103 , 5).

The solution E⃗ is piecewise smooth.

The meshsize h varies from 0.1 to 0.01.

Computations have been carried out with Freefem++ (and a direct solver from
UMFPACK library), using either first order or second order edge finite elements.

For the perturbed VF, the theory suggests the use of γ(h) = h2 for first order FE, resp.
of γ(h) = h4 for second order FE.

We study the sensitivity of the perturbed VF to the value of γ.
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Numerics [2] – results

The ∥ · ∥L⃗2(Ω) relative error (with γ = 10−5 fixed):

red line: 1st order ;
blue line: 2nd order ;
dashed lines: slopes -1 and -2.
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Numerics [3]

Numerical example [3]: stationary/static problem in 3D by K. Brodt (2015-16).
ε piecewise-constant, µ = 1 in the unit cube Ω, with singular solution (δmax = 0.45).

The meshsize h varies from 0.136 to 0.024.

Computations have been carried out with Freefem++ (and a direct solver from
UMFPACK library), using first order edge finite elements.

For the perturbed VF, the theory suggests the use of γ(h) = h0.9.

However, numerical experiments suggest that it is more stable to use

γ(h) = (hmin)
0.9 ≤ h0.9, where hmin = min

k∈Th

hK .

The results are reported for this value.

We compare the mixed and perturbed VFs.
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Numerics [3] – results

CPU times, in seconds (using a 1.6GHz i5-4200U Core, with 6GB RAM):

h mixed VF perturbed VF
0.136 0.003 0.001
0.049 0.055 0.039
0.033 0.339 0.186
0.024 4.165 0.756

NB. Speed-up ! 5.5 for h = 0.024.
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Conclusions

Discrete ε-divergence free elements have "small" ∥div ε · ∥H−s(Ω) (s ∈]1/2, 1])...

The properties of the solutions to the time-harmonic/time-dependent Maxwell
problems can be analyzed similarly, cf. [Jr-Wu-Zou’14].

The perturbed approach can be applied to magnetostatics with "optimized" γ(h).

Numerical experiments suggest that one can use a posteriori/adaptive strategies with
the perturbed approach (γ(h) = (hmin)2δmax ).

Numerical experiments suggest that one can solve problems with sign-changing
coefficients with the perturbed approach.
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