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SUMMARY

The aim of this paper is to study the tangential trace and tangential components of fields which belong to the
space H(curl, Q), when Q is a polyhedron with Lipschitz continuous boundary. The appropriate functional
setting is developed in order to suitably define these traces on the whole boundary and on a part of it (for
partially vanishing fields and general ones.) In both cases it is possible to define ad hoc dualities among
tangential trace and tangential components. In addition, the validity of two related integration by parts
formulae is provided. Copyright © 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION
The aim of this paper is to give a precise meaning to the following integration by parts formula
J {curlv-u — v-curlu} dQ = (uAn,v)
Q

Here, Q denotes an open subset of R® and its boundary is called I'. This formula is well known for
veH(eurl, Q) (see (1) below) and ue H! (Q)? (see for instance [14]): the brackets then stand for the
duality product between H'/?(T)® and its dual, H ~ '/?(I"); this holds for any Lipschitz domain. In
the case when both fields belong to H(curl, Q), a similar formula has been derived, with {-,-) as
the duality product Hg,'/?([) — Hg/*(T), when the boundary of the domain is sufficiently
regular (cf. [24]). In the more general case (a Lipschitz domain and both fields in H(curl, Q2)),
Sheen [21] has already proved that such a formula is valid, with brackets meaningful in Lip(I'),
the space of Lipschitz functions defined on I, and its dual.

In this paper, we introduce some Sobolev spaces defined on the boundary and we derive
another valid formula. In Section 2, we first investigate the range of the tangential trace mapping
from H'(Q)®. For that, we need to characterize precisely the space H'/?(I"). Then, in Section 3, we
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10 A. BUFFA AND P. CIARLET, JR.

introduce the tangential operators on the boundary, which allows to define the range of the
tangential trace and that of the tangential components from H(curl, Q). In Section 4, we obtain
integration by parts formulae for fields in H(curl, Q), or for fields in H(curl, ©2) which vanish on
a part of the boundary.

In a companion paper [8], we prove that Hodge decompositions can be obtained on the
boundary of such domains, these decompositions being similar to those described in [12] in the
case of regular domains. The two papers are closely related, in particular when we prove that
the space H3?(I'), which is introduced with two different definitions hereafter and in [8], is
unique (cf. Theorem 3.4).

Recall that if the domain Q is regular, all the definitions here below make sense and are correct
(see [24]).

Let us set

H(curl, Q):= {ue L*(Q)* curlue L*(Q)*}, |- [o.curs the graph norm (1)
Hgl2(D):= {AeH Y2()% 4-n = 0, divp Ae H~ VA(T)} )
= {uAn: ueH(curl, Q)}
i ?(0):={AeH '*()* 2'n =0, curlr Ae H~'*(")}
:={nA(uan) =uy: ueH(curl, Q)}

In the case in which Q is only a Lipschitz polyhedron, i.e. its boundary is not smooth, several
problems occur; namely in definition (2) neither the quantity 4-n nor the differential operator
divy are meaningful anymore. In order to give a good and useful definition of the trace space, that
is the equivalent of (2) in the case of a piecewise smooth boundary, we need some preliminaries.
Note that, for general Lipschitz domains, the characterization of traces for H(curl, Q) has been
given by Tartar in [22]. However, from this paper, it is also clear that the definition of differential
operators on Lipschitz manifolds in the context of Sobolev spaces, is, in general, an ‘ill-posed
problem’. Thus, the need for an ‘intermediate’ characterization on a class of Lipschitz domains
with piecewise smooth boundaries.

In the following we assume that Q is a Lipschitz polyhedron not necessarily convex. All the
results carry out to the case of a Lipschitz curvilinear polyhedron, that is a Lipschitz polyhedron
with curved faces (cf. [10]). Whenever the results are derived in a different way for the Lipschitz
curvilinear polyhedron case, an explicit mention is added.

2. PRELIMINARIES

The boundary I is split in N (open) faces (I'));=;. .y, = (J;T;. Let us denote by (eij)ijert, .. Ny 1S
(open) edges: when I'; and I'; are two adjacent faces, e;; is the ‘common’ edge. Additionally,
I';; stands for the open set I';uI';ue;;. Its vertices are (Spe=1, &

Let n denote the unit outward normal to Q. Finally, let t;; be a unit vector parallel to e;; and
n; = nr; t; = 1;; An;. The couple (t;, 75 is an orthonormal basis of the plane generated by I';;
(t;, Tij, ;) is an orthonormal basis of R>.

For elements ¢ of L*(T'), one adopts the notation ¢; = @r,- This notation is used whenever the
restriction to a face is considered, that is as regards to any functional space in which the
restriction to a face is allowed.

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



TRACES FOR FUNCTIONAL SPACES, PART I: INTEGRATION BY PARTS 11

In this paper, boldface characters are used for all vector fields and some vector spaces, such as
for instance L*(Q)* which is denoted by L*(Q).
Let us set:

LiT):= {@eL*(I)* @ n; =0}, (-, ), its scalar product
HY*(I):= {AeL}(): 4;e H'*(I'), 1 <j < N}

Note that in the remainder of the paper, LZ(I) is identified with the space of two dimensional,
tangential, square integrable, vector fields. The consequence of this choice is that, on the boundary
I', one deals with two-dimensional vector fields whereas, in Q, three-dimensional ones are consi-
dered. Of course, the same identification holds for all the spaces derivating from LZ(I), e.g. HY*(T").

Definition 2.1. Let us define the ‘tangential components trace’ mapping 7.: 7 (Q)* — HY?(I')
and the ‘tangential trace mapping’ 7.: 2(Q)° > HY*(I') as u—n A (u An)r and u— u A nr, respec-
tively.

On the one hand, it is surely true that 7, and y, can be extended to linear continuous mappings
from H'(Q) to HY?(I'). On the other, it is proved in what follows that these mappings are not
surjective and that their ranges are different subspaces of HY/?(I).

Without loss of generality, let us focus our attention on the mapping 7, and deduce the
properties related to the mapping y, (this rule is applied throughout the paper.)

Since one deals with polyhedrons, given a function @ e H!(Q), the definition of 7. can be
understood face by face:

T.;0:= @; — (¢;m)n;, VoeH'(Q)
One gets then that an equivalent definition of 7, is
.. H'(Q) > HY*(I), no(x) = 0((x) ae xelj, Vj

Now it is easy to see that the range of this mapping is a true subspace of HY?(I').
For that, a preliminary result is needed.

Proposition 2.2.

e HY2(T), Vie{l,...,N} and
3)
peHIA(D) < e - (
j J w do(x)da(y) < oo, Vi#jst Iin[;#0
I; JI -

Proof. This result was first stated in [17]. Let us recall from [16, 17] that ¢ is in H'/?(I) if and
only if

_ 2 1)2
pel*T) and |oli2ri= {J‘rﬁ_%da(wda()})} < 4)

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



12 A. BUFFA AND P. CIARLET, JR.

with do a measure on I'. Now, if ¢ € H'/?(T'), ¢ belongs to H'/>(I')), for ie {1, ..., N}. In addition,
owing to (4), the terms in the right-hand side of (3) are bounded. Conversely, as ¢ € H'/*(I";),
Vie{l,...,N}, one obtains in particular that ¢ € L*(T'). Next, following [3], let us write

lp(x) — @(y)I?
|</)|1/2r— Z |€0|1/2r + > J J — 35— da(x)do(y)
i#j I; HX - YH
If T;nT; =0, dist(I";, T';) = C;; > 0. Then, in this case,

_ 2 1
f f 1209 = 0O 45 x) da ) < 5 f f 009 — (W do()do(y)
r; Jr; [x =yl Cij

C3 (T lol3.r, + Tilllol6.r}
ij
Therefore, there exists a constant C(I') > 0 which depends only on the geometry of I" such that
N
lp(x) — @)
|(P|1/2 r< Z 1/2,11- + Z J J ————5—da(x)da(y) + C(I) lol3.r
= izt 20 Jr ) X =yl

which allows to conclude that ¢ belongs to H?(I). O

In the above equations, there are two types of terms, depending whether the intersection is an
edge or a vertex. In the latter case, we prove hereunder that the corresponding term in (3) is
automatically finite. Before that, let us state a very simple result which is used on several
occasions throughout this paper, the simple proof of which is omitted.

Proposition 2.3. Fix a point M of I', and then let ¥~ be a neighbourhood of M. Then there exists
a plane P and a bi-Lipschitz continuous transform IT from ¥~ to I1(¥") < P.

Now, as a Lipschitz mapping preserves H' regularity (cf. [15]), it is certainly enough for
H'/? regularity: thus it is (locally) equivalent to consider H'/? regularity on the boundary or in R?.
Then one has

Proposition 2.4. Let I'; and I'; be two adjacent faces, which share a ‘common’ vertex. Assume
¢ on T is given such that o e H'*(I';) and @ € H'*(T';). Then,

J f OO0 ot doty) < o

Ix

Proof. Owing to the above remark, in order to prove this statement it is enough to consider the
case of a scalar function ¢@:R*>—>R such that ¢y, . -n€H"*({0<x;,x, <1}) and
@i 1<y €H({ —1<y;,y, <0}) and to prove that

_ _ 2
f J o (x) — o 3y)l dxdy < 4+ o
0<x1,x<1 JO<y,y,<1 HX+yH

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



TRACES FOR FUNCTIONAL SPACES, PART I: INTEGRATION BY PARTS

Now, by triangle inequality, it is sufficient to prove that

dy >
——— | |p(x)?dx < 4+ ©
J0<x1,x2<1 <f0<)71,)72<1 HX + YH3

By direct estimation (or see [15, p. 19]) it can be shown that

1 dy 1
c— < ————<C—, ¢CeR
Xl Jo<yim <1 X+l x|

The integral bounding (5) reads then

2
J loI”
0<xp,x;<1 ”XH

13

(6)

In order to prove that the quantity (6) is bounded, some very fine imbedding theorems are
required, such as the ones recalled by Tartar in [23]. Let L™*(R*) 1 <r,q < oo be the family of
Lorentz spaces (see [4] and also [23]). In [23] it is proven that H'?(R?*)<L*?(R?) (where
< stands for continuously imbedded.) Now, let us use the easy characterization of L™ (R?) (see

[4, pp. 6-8]), which reads

feLr™ ([RZ) <o ijl{x:M(x) >u) dx < C

where C is a constant; the function y defined as /(x) = 1/./| x| belongs to L** (R?), with C > n.

Since multiplication acts on the family of Lorentz spaces in the following way:
1
feL*"(R?, geL“YR? then fge L (R*) with —=—+—, —=
q a

one directly gets that ¢/./|x| e L*?(R?) = L*(R?).
As a conclusion, one obtains

Theorem 2.5.

peH"Y* (), Vie{l,...,N} and
J‘ lp(x) — o(y)I*

Ix —ylI®

peH'"?() =
do(x)do(y) < o, Vi#jst IinT;j=e¢;

(7)

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



14 A. BUFFA AND P. CIARLET, JR.

Owing to this theorem, we are able to define a suitable subspace of H'/?(I") which contains the
range 7,(H'(Q)). For that, assume @ = n A (u A n) -, for some ue H' (Q), and let us focus on a given
term (7) for I'; and I'; such that they have a common edge e;;. ¢ is, by definition, parallel to I';
(respectively I';) when its restriction to I'; (resp. I';) is considered. Recall that (t;, 1;;) is an
orthonormal basis of the plane generated by I'; while (t;, 7;;, n;) is an orthonormal basis or R3.
One has

u=uT; + u;T; +u,n; and @ = @t + @it + @ (8)
Let o be the angle between t; and t; (c:= cosa, s:= sin a):
T, =cT; — Sl 9)
This leads to the expressions
@ = Uity + u;jt;
®; = c(cu; — su,) T; + u;;t;; — s(cu; — su,)n;

Equation (7) applied to u allows to ‘control’ quantities by [u(x) — u(y)||?, for xeT; and yeT;.
On the one hand, there holds

lpij(x) — (Pij(Y)|2 = Ju;;(x) — uij(Y)|2 < Ju(x) — “()’)H2

On the other, ¢,(x) = 0: another condition can then only be obtained with ¢;(x) = u;(x) and
a linear combination of the components of @(y), in order to provide a term in u;(y). But, as s # 0
by definition, it is easily seen that any linear combination introduces in its turn a term in u,(y):
this term cannot be controlled in any way.

Equation (7) thus implies a single condition

/VL‘J((P): J; J; |(P,~'1T,,( ) (Pﬁs lJ( )l dO'(X)dU(y)< 0

x —

Now, let (;, ;)€ H'*(I';) x H'*(T';). Let us adopt the notation:

12 J Wix) — ¥

Vi= yjate; <= BT do(x)da(y) < o

Therefore, if .#; stands for the set of indices i such that the faces I'; and I'; have a common edge
e;j, we have proved that the range of =, is included in

1/2

H‘I/Z(F)= {\|IGH1,/2(F) ‘-I!j.rij = \I’i.tij at e,-j V], Vlefj}

It is now clear that H{/?(I') is not a closed subspace of HY?(I'). The rest of the paragraph is now
devoted to proving that H|/?(I') is a Hilbert space (with a suitable norm) and that it is indeed the
range of 7.

Proposition 2.6. The space H|/?(I') is a Hilbert space when endowed with the following norm:

17 12,0 = Z ”\|/H1/2r + Z Y N} () (10)

j=1ies;

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



TRACES FOR FUNCTIONAL SPACES, PART I: INTEGRATION BY PARTS 15

Proof. Let {@"},cn = H|/>(T') be a Cauchy sequence with respect to norm (10). Let us show then
that it converges in H{/?(T'). By standard arguments one gets that there exists a limit ¢ e HY*(I').
Let us focus now the attention on two faces I'; and I'; such that ie.#;. Using the notation
introduced in (8), it is clear that @*-t;;e H'/*(I';;). By uniqueness of the limit one obtains that

-1;;€ H'*(T;;) which means, in particular, that 4" (@) < . O
[ ij ij p 1,j ()

Let us define also

N (@)= j do(x)da(y)

I

J i -t (x) — \|1j'Tj(Y)|2
r; Ix —yl*

and the related functional space:

1/2

Hi/z(r): {\l’GHI,/Z(F) \|I,-'t,- = \llj'c] at eij Vlef], V]}
which is a Hilbert space when endowed with the natural norm:

N N
H\|’Hi,1/2,r:= z H\|/H%/2,r,.+ Z Z JV‘ILJ(\Il)
i=1

j=1ieJs;

With the same argument, it is not hard to see that y,: H' (Q) — H{/*(I").

Proposition 2.7. The mapping n,:H'(Q) - H|/*(I') (resp. 7.:H'(Q) - H?*(T")) such that
u—nA @A) (resp. u—uAny) is linear continuous and surjective. As a consequence, there
exists a continuous lifting mapping %, (resp. #,) from H|/*(T') (resp. H}/*(')) to H' (Q).

Proof. By standard arguments, for every @ e H'(Q), one gets that @€ H'/*(I'). This assures
that the mapping =, is continuous from H' (Q) to HY*(I).

We prove now surjectivity by means of the construction of a compatible normal component at
every face I';. This construction yields a function of H'/?(T') and it is then extended in Q with
a standard argument.

We construct over I' a particular partition of unity. Let us consider three sets of Lipschitz
functions {ys,}x:{%e, }ijcsj>: and {xr}; such that

(1) Zszl Is. + Z?’:l Zje!;,j>i%eu + 25:1 yr,=1onT.

(2) supp{ys} = [\:=interior of the union of the closed faces T; having S, as
a vertex.

(3) supp {Xe,,-} =TIy

(4) supp {xr,} =T

By means of this partition of unity, we are left with the construction of the normal component in
three different and independent situations: in a neighbourhood of a vertex, of an edge or inside
a face.

(a) Of course, inside a face the normal component can be chosen equal to zero.
(b) In a neighbourhood of an edge e;;.

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



16 A. BUFFA AND P. CIARLET, JR.

Let usseti = 1 and j = 2. Let @ e H{/*(I';,): we want to construct a function ue H"/?(T"y,)
such that n A (u A n) = @. According to notation (8) this means that

Uy = @171 + Q12T1p + Uy, Uy = Q3T + P12T1p + UpNy

where u; and u, are the unknowns of the problem. Using now (9), the regularity of ¢, and
the equality n, = cn; + s7,, one gets that ue H?(I"y,) if and only if

1/2 1/2
— 8@y +cu, = u; and c@, +su, = @; ateq, (11)

It is immediate to see that the two conditions in (11) are compatible. It is enough to choose
u, according to the second constraint, and, afterwards, u; according to the first one.
(c) In a neighbourhood of a vertex.

By extension, we have a cone with a polygonal (convex or not) transverse section. Hereafter, let
us suppose that this section is a triangle (the general case can be treated with the same argument.)
Let S be the vertex, I'; for i = 1,2, 3 the three incoming faces, and, respectively, {e;;}; j=1.2.3
the three incoming edges (with the convention e;=e¢;) Let us set [ =
(TyulLuls)U(e;,ue 3ues;)u{S): a function @ € HY/?(I') is provided and we want to construct
a function ue HY?(I) such that n A (uAn) = @.

Using the notation introduced in (8), one gets

Ty =C1T3 — Sql3, Ty = CTy — Sply, T3 = 3T, — S30

Thus, we directly obtain the compatibility conditions:
1/2 1/2
(Cl) @1 = 202 +52u; and  (C2)u; = couy; — 5,95 at eq,

1/2 1/2
(C3) @2 = c303 +s3u; and (C4) u, = czuz — s3¢3 at ey (12)

12 172
(C5) @3 = c1py +siu; and (C6) uz = ciu; — 51y at eq;

where u; for i = 1,2, 3 are the unknowns. Let u{"e H'/?(T")), i = 1, 2, 3 be three functions which
verify (C5), (C1), (C3), respectively (which are independent conditions.) One can then obtain
another set of three functions u{* e H'*(T';), by a decoupled version of constraints (C2), (C4), (C6),
namely

1/2 )

1/2
u® = cul 2 =

1
— S2p at ey, U3 )

c3uz’ — S3¢3 at e,

1/2
2 1
“(3) = clu(l ) — S1q at eq3

Now, let &;; be a function such that (the existence of such a function is proved by direct
construction in Proposition 1.8 below), for all ¢ e H'/*(T"))

Eipe HYI (I, Sij,, = L &ijp,, =0, 0 #

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



TRACES FOR FUNCTIONAL SPACES, PART I: INTEGRATION BY PARTS 17

A sample of functions u; which verify the set of constraints (12) is then

(1) (2) (1) (2) (2) v (2)
uy = Eqauy +Epuy, Uy =Exguy + Cozuy, Uz =Eyuz + E3qu;

Now, we have proven that . is linear, continuous and surjective from H'(Q) onto H{/?(I'). Its
kernel is ker(n)) = {ue H'(Q): n A (uAn) = 0}. Thus 7, is linear, continuous and bijective from
H' (Q)/ker (r,) onto H|/*(I).

The same arguments can be applied to the mapping 7.. O

Proposition 2.8. Let us identify T'; with Tp:= {x = (x;, x5): 0 <x; <1, 0 <x, < 1}. Set
Org:= {(0,x,): 0 < x, <1}, and d§:= {(xy,0): 0 < x; < 1}. Then, the function y defined by
2(X) = (1 — x4/x,) " is such that yers = 1, yer; = 0, and y¢pe H'/? (o) for all ¢pe H'/*(Ty).

Proof. As ye L*(Ty), y¢ € L*(I'y). There remains to prove that
\ _ 2
f J X =160 a0 < o
o JTo [x —yl
It is clear that

(X)) — NP < 202(x) — 2 [pX)* + 21 (¥ [d(x) — P (¥)I?
Then,

fjb“b(x)_wdxdy<2j (0P dx

”X—YH3 xel,

lx(x) — 2(y)I?
J = dy + 2|z, 1l
ver, IX—yl

Here, we want to use the same technique as is Proposition 2.4. For a given xe ', one has to
evaluate

o J 00— A9 4o
yel, HX - YH

in terms of ||x||. Basically, we would like to obtain that there exists a constant C independent of
x such that

10 <5 (13)
T

as we know that ¢/, /x| belongs to L?(I'y). To reach that goal, it is convenient to split I into
two parts, that is I'y := {xeTo: x; < x,}, and T'g := {xeT(: x; > x,}. Then I(x) is the sum of

R I L R R e

HX_yH3 yely HX—YH3

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



18 A. BUFFA AND P. CIARLET, JR.

To further take advantage of the explicit form of y(x), it is also convenient to consider the cases
xeI'§ and xeT'g separately. Therefore, one has to carry out the computations in four cases:
Case 1. I (x) for xeTI'§.
Case 2. 17 (x) for xeTI'y.
Case 3. 17(x) for xeTI'y.
Case 4. 1™ (x) for xel'y.

Case 1. In this case, one has

I (x) = J} ) J LA dy;dy,

y2=0 Jy; =0 HX_YH3

_ JYZIdy va'yl (x1/x5 _J’1/J/2)2 dy
e 2 e (51— y)? (2 —y2)?)

In the integral of variable y, (y, frozen), let us perform the change of variable T = y;/y,. Then, one

obtains
=1 =1 2
Y (x1/x2 — 1)
I"(x) = d dr
) f»~z—o y2 ﬁ—o (X1 — y20)7 + (x5 — y2)?)°? y2

T=1 2 ya=1
X1 - y2dy,
— —1 | dt 14
ﬁo <x2 > Lzo ((x1 — y21)* + (x2 — y2)*)*? 14

Let us define 0, the angle between x and x — u(t), with u(t) the vector of components (z, 1): integrating
the integral in the variable y,, one gets after some elementary computations

I*(x) = JM <ﬁ—r>2MdT =ﬁf_l (1 — cos 0,)dr

=0 \X2 (X1—X2T)2 X% =0

Now, x is in I'§, so
1 2
[x]|? < 2x3, ie — <—
x5 x|?
Case 1 is, therefore, completed as
4
I(x) <—
x|l

The other three cases can be fixed in a similar manner. One finds

I"(x) < > TXT/g (Case 2), I (x)< % (Case 3), I (x)=0 (Case 4)

Therefore, (13) holds with C = max(4 + 4,5 + /5) = 8.

In the remainder of the paper, let us call H; '/*(I') the dual space of H{/*(T') (with L(T') as the
pivot space), and <, >1,2.r the duality product between H; '/?(I') and H|/*(I'). Using the
definition of the dual norm, given A e H; V/*(I), one has

A
A~ 120 = sup L“””
@cH/2M) [l 1/2.r

(15)

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30



TRACES FOR FUNCTIONAL SPACES, PART I: INTEGRATION BY PARTS 19

3. TANGENTIAL OPERATORS AND TRACE MAPPINGS FOR H(curl, Q)

3.1. Characterization of Vr and divy for polyhedral domains

Since we deal with polyhedrons, as before, the definition of the tangential gradient operator, Vr, is
given face by face as follows:

Vru=mn, ;(Vu) Vue H*(Q)
One has Vi : H*(Q) > H'?(I';). Let us define now the operator Vr as
Vi H*(Q) > HY*(I)  Vru(x) = Vru(x), ae xel; (16)
and then, the following equality holds:
Vru =n.(Vu) (17)
In the same way, the tangential curl operator curl: can be defined. Namely, let us set
curlru = y.(Vu) (18)
Proposition 3.1. Let H>*T) be defined as
H?*(T):= {ur with ue H*(Q)}

then it is a Hilbert space endowed with the norm

o l32.r = inf [[u]
ue H(Q):up = ¢

Proof. 1t is enough to observe that the space H*(Q)nH(Q) is a closed subspace of H?(Q).
The proof is then completely standard. O

From identity (17) and the results of the previous section, one gets

Proposition 3.2. The operator V- defined in (16) is a linear continuous mapping from H>?(I')
to HY/2 (D),

Definition 3.3. Let us define divy: H; '/*(I') » H ™ **(T) the adjoint operator of — Vp so that
{divek, @320 = — b Veg) ) 120 VoeH>*(I), leH\fl/z(r)
In the companion paper [8], an alternate definition of H*?(I') is used, namely
LH?(T):= {pe H'(T'): VrpeH|*(I}
It is a Hilbert space when equipped with the graph norm
2plls2r = {lpl3r + IVeplf 120}
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Fortunately, one has

Theorem 3.4. H**(T') = ,H**) and, in addition, |- |3,.r and |- |s,.r are equivalent
norms.

Proof. This result was stated by Grisvard without proofin [17]. For the sake of completeness,
we report here a proof.

(i) H**(') = ,H**(T). By definition, p belongs to H' (') if and only if pe L*(T), V- pe LZ(I).

Thus, ,H*?(T):= {pe L*I): Vrpe H[/>(I)}, as H//*(I') is a subset of L7 (I').

Now, given ¢ € H**(I'), one has ¢ € L*(I'), and Vr¢ e H/*(T') (owing to Proposition 2.7 and
(17)). Thus, ¢ is an element of ,H>?(I).

(i) LH>*T) < H**(T'). Let pe ,H**(I'). Owing to Proposition 2.7, as Vrpe H|/*(I), there
exists xe H' (Q) such that n,x = Vpp. In addition, as pe H'/?(I'), there exists ue H' (Q) which is
the solution of

Au=0 inQ, ur=p
w:= Vu belongs to H(curl, Q)nH (div, Q). Thus y:= x — w also belongs to H(curl, Q)nH(div, Q).
Let us prove that y Anr = 0, which is equivalent by density (see [19, p. 22]) to
<y/\n,Z>1/2,r =0, Vzen g(rj)a
J

Let Hy (T;) and its dual Hoo/?(I;) be defined in the usual way (cf. [18, vol. I, p. 72] or [16], in
Section 1.2). Then, as w Anre H™ V2(I), w Amyr e Hoo'/?(I';) for all j, and thus

N N
WANZY o = Z <Wj/\njazj>1/2,00,l"i: Z <Vrf“/\ﬂj, Zj>1/2,oo,rj
j=1 j=1

N
=) J (Vrip/\nj)‘zjdazj (xAnj)-zdo
j=1JT;

r

owing to the boundary condition defining wu. Thus, actually y belongs to
X:= Hy(curl, Q) nH(div, Q). According to [6], if N, is the orthogonal of A(H*(Q)nH{(Q)) in
L*(Q)

JyreXnH'(Q), IseFS,:={1eH;(Q): AleN,} suchthaty=yg+ Vs

Collecting the above results, one gets V(u + s) = X — yg, i.e. u':= (u + s) is an element of H*(Q),
which, by construction, satisfies to ur = ur + s = p.

To conclude, one has to check that the norms are equivalent. Owing to the open mapping
theorem (see for instance [7]), it is enough to prove that

3C >0, Vpe,H*(I), |pllsjor <Calplsor

This can be readily achieved by following the skeleton of the proof (ii), with the help of a closure
result of [10], which states that XnH'(Q) is closed in X and that ||-||; and || ||o. curt, v aT€
equivalent norms in XnH' (Q). O
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Remark 3.5. It is not hard to see that there also holds:
LH?():= {pe H'(T): curlr pe H{*()}

Remark 3.6. This proof can be extended easily to the more general case of a
curvilinear Lipschitz polyhedron. For that, two results have to be generalized.

The first one is the decomposition y = yg + Vs. This is carried out by simply resuming the
proof of Proposition 5.1 in [6]. It uses the results of [2, 14, 20, 11] which are valid in the case of
curvilinear Lipschitz polyhedra.

The second one states that XnH'(Q) is closed in X and that |-||; and |- |o.curs. aiv ar€
equivalent norms on XnH* (Q). Corollary 2.5 of [10] can still be applied.

Corollary 3.7. H¥*(I'):= {pe H'(T'): VrpeHY*(I)}. In addition, an equivalent norm on
H? (M) is p—>{lplir+; HPH%/z,r,}l/z-

To prove this corollary, the following technical lemma is helpful.

Lemma 3.8. Let u:R* > R be a function which belongs to* H'(R?) such that ug: € H**(R2)
and uy: € H*?(R3). One gets that du/dy e H'/*(R?).

Proof. Let w=Vu; W™ 1= W23 W' i= W

According to the assumptions, one has w™ eH"?(R2), w"eH'*(R3) and w, =w, in
H™'?({x = 0}). By a standard reflection argument, we can assume that w* = 0 and prove that
w, € Hi' (R2). Indeed, if we define i as any H*/?-extension of ug: to R?, one has (u — ii)e H' (R?),
(U — ) = 0 and (u — i)y € HY? (R2),

For0<s<1,let

Vo= {zeH*(R2): curlz =0, z, = 0 at x = 0}

Note that, for any s, V* is a closed subspace of H(curl, R%) = {ue H*(R2), curlue H*(R%)}. Using
standard interpolation theory (see [9, p. 57]), one gets

[VL, V%], = V%, 0e(0,1),s=1-—0

Now, let us consider the mapping #*: V* — Hy(R2) defined as z+ z,, for some s: surely %' and
#° are linear and continuous. Owing to the classical interpolation theory, one also gets that
w2 vi2 o HEZ(R?) is linear and continuous. O

Proof of Corollary 3.7. Tt is clear that H**(T) is a subset of {pe H'(T'): Vrpe HY*(I)}.

Now, let ge {pe H'(I'): Vrpe HY/*(I')}, and let T';; a set of two adjacent faces. Owing to the
lemma, we know that Vrq-t;;€ H'/*([;): thus A7} ;(Vrqg) < co. In other words, g belongs to
,H*?(T'). The equivalence of the norms stems from the fact that 4"/ ;(Vrq) is bounded (up to
a constant) by [|q[;.r and [[Vrg|/2.r, ”Vr,qul/z,r,» U

*R? (resp. R% is the open half-plane containing all points of R* with x < 0 (resp. x > 0).
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3.2. Trace mappings for H(curl, Q)
Let us set

HJ "2 (dive, 1):= (heH (D) dive (e H (D)

Theorem 3.9. The mapping y,: H(curl,Q) - H; '/*(divr,T) is linear and continuous.

Proof. Let us work on smooth functions and then apply the density of the set Z(Q)* in
H(curl, Q). Let ue Z(Q)* and A be its tangential trace. For every ve H'(Q), the following

integration by parts holds:

J {curlv-u—v~curlu}dQ=J A( 7 (v)do (19)
Q T
Let us prove first that Ae H; '/*(I). In Proposition 2.7, the surjectivity of n.: H' (Q) - H|/*(') is

provided. Using then the integration by parts (19) in the right-hand side of (15) and by
Cauchy-Schwarz inequality, one obtains

41y, - 12,0 < Cllullo, curt (20)
Let ¢ € H*(Q); the following holds:

J curlu- Vo dQ = —J uAan-Vodo
Q r

= —uAnVrp)) 1o r = {divr(@AN),Q>35 ¢ (21)

Now, as ¢ belongs to H'?(I), there exists v in H'(Q) such that vy = ¢@r and
oIy < Cll@ll1/2,r» with a constant C independent of ¢r. By construction, vy:= v — peH(Q).
Then (21) yields

{divr(uAn), §0r>3/2,r = J curlu- V(o + v0)dQ < [Jullo cun |0] 1
Q

< Cllullo, curt l@ll1)2, 1

This last inequality means that the functional divy-(u A n) can be extended to a linear continu-
ous functional on H'/*(T'), as H*(Q)- is dense in H'/?(I') = H'(Q)r. Moreover, one gets

dive@aneH () Vue2(®)* and |[dive@An)|-12r < Cluflo,cun (22)

By density of 2(Q)* in H(curl,Q) we conclude that (20) and (22) are true for every function
ue H(curl, Q). O

Using the above result, the following Green formula holds true:

J {curlv-u — v-curlu} dQ = (y. (), 7(v)).12.,r VueH(curl,Q), veH'(Q)
Q

(Again, {-,* ) 121 is the duality product H; '/*(I") — H!/?(I') with LZ(I") as pivot space.)
172, I I
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During the course of the proof, notice that we have rephrased one of the results of [1], i.e. that
there exists a constant C which depends only on the geometry such that

Hll A nHH‘*l,'Z(din’r) < CHu”O,curb VUEH(CUI‘I, Q)

with a slightly different definition of the space of tangential traces.
Moreover, for every ue Z(Q)* and ¢ € H*(Q) one has

—JuAn-qu)da =f curlu- Vo dQ :f curlu-npdo
T Q T

Using the definition of divy given above, and the density of H*(Q)r in H"/?(I'), one reaches
{divp(uan), @)y, r = <curlu-n, ¢, ,r Yue2(Q)P, @eH'*(I)
By density of Z(Q)* in H(curl, Q), we have
divr(uan) =curlu-n, VueH(curl, Q)

We pass now to the characterization of the range of the mapping 7. in the context of H(curl, Q)
vector fields. Let curl-: H] */?(TI") - H ™~ 3/*(T") be the adjoint operator of the vector curly- defined in
(18). Let us set

H. ' (curly, T)i= (b e HL (D) curlr (W e H ™3I},

Then, the corresponding trace theorem holds:

Theorem 3.10. The mapping n;: H(curl, Q) - H| */?(curlp, I) is linear and continuous.

2.3. On a part of the boundary

The aim of this subsection is now to extend the results stated in the previous subsections to the
case of spaces and trace mappings defined on a part of and no more on the whole boundary.

Let ', be a collection of closed faces of I" such that I, is connected. I'; is then an open subset
of I" with a piecewise regular boundary 8T ;. Let '~ = I'\T' and .7, be the set of indices j such
that I'; = I', . We denote by 0.4, < ., the set of indices j corresponding to the faces which share
at least one edge with OI" ;.. Finally, we denote by . the unit tangent vector to Oy, T+ = T, mor, »
and by v, the outward normal vector defined as g .or, =v.; for any jed.s,, with
v, ;= T4+;AN; (the orientation of t; is such that v, ; is an outward normal).

Let

HYR(T2):= {pe H'A(T,): pe HY (D))

Above, ¢ is the prolongation by zero to I'. This space is endowed with its usual norm (cf. [16] or
[18]) and we denote by Hog/*(I'y) its dual space with L*(I'y) as pivot space.
We set

H|*([y):= {ur,,ueH/*D)} (1)
H|Go(T):= {ueH|*(,): aeH/*(I)} (24)
H?(I):=H"?M)r,, H*(T.)=H"?T)nHs(I.) (25)
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Proposition 3.11. The spaces defined in (23) and (24) are Hilbert spaces endowed with the
norms

H"’H%/z,u,n:: Z H\|’H%/2,ri+ Z Z /V‘l‘j(\l/)) (26)
Jjes . jes ied nS;
W(x) 7|2
W13 2000, = W2, + f doar) % (27)

Finally, H**(T;) is closed when endowed with the norm:

”“H%/z,rﬁ: Z H“H%/Ln + Jul3 r, (28)

Jjes .

and H3'*(T'y) is a closed subspace of H*'*(T",). Moreover, for any ¢ € Hy/*(I'y), p € H**(T").

Proof. The first statement is a straightforward recalling of definition (10) and using standard
results for the space Hoi (). For what concerns the space H*?(I',), it is enough to realize that
Corollary 3.7 states precisely that the trace of a function in H?(Q) belongs to H**(T)) for any
j and it is globally H*(I'). The space H*?(I";) is then closed with respect to norm (28). The last
statement comes again using Theorem 3.4 and reminding that I';. is a collection of faces, i.e., in the
space H*?(I') there is no compatibility conditions on the normal derivatives through the edges.

O

Remark 3.12. Let HYg (T'y):= {ve HY*(T4): oe H**( F)} Here, one has H3Z (T'y):= HY*(I'L).
In the general case, when I, is not a collection of faces, Hy* (I, ) is a proper subspace of H3/*(I";).
However, the theory can be easily extended to this case.

We denote by H; V/*(T'4), Hj 04*(I'+) and H ™ */*(I';) the dual spaces (the last one is the dual
space of HY*(I )) The duality products read <-," 120> <*»*D11/2.000r, and <,* >3,
respectively.

We are now in the position to define the differential operators we do need for our theory:

Proposition 3.13. The operators
Vr, :H*?(y) - H\I/Z (Ty) Vi :HY?(Ty) - H},/ozo Is) (29)

are linear and continuous.

The operator divy, :H; ¢*(T'+) » H **(Iy) can be defined as the adjoint of — V-, by the
following:

dive, A, v)35r, = — {h VY, 0D 12,000, A E H\_,o1</)2(r+) ve Hy*(T',) (30)
Using (30), Definition 3.3 and recalling that for any ¢ e H3/*(T'}), p € H>?(I'), we have that
VAeH '"2(I), divr(@)r, = dive, (hp) in H-¥2(T,)

In the same way and with self-explanatory notations, we can define the operators
curl. : H*(,)>HY*(Ty), curly :HY*(Ty) - HY3o(Cy) and its adjoint curly :
H1 45 (T'y) —» H **('y). Accordingly, it holds

VieH[ (), curly(M), = curly (4r) in H¥*(Ty)
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The following trace theorem can now be stated:

Proposition 3.14. Let
H‘_l/z (din+, F+):: {XGHH_ 12 (F+): diV]—+)\.€H_ 1/2 (F+)} (31)
HT "?(curly, Ty):= {heHI "*(T}): curl, he H™V*(T4)} (32)

Moreover, let H! (3", ) denote the standard H' space on the Lipschitz manifold 0T, ; H™ (0T, ) is
its dual space (with L*(0I';) as pivot) and <+, >, or. is the corresponding duality pairing.

Let the operators t,: H '?(divy ,T+)nZ Q). > H '(0I'y) and t: HI'? (curly, [y )n
PD(Q)r. > H ' (0T'4) be defined by the mappings A—A- v, or, and A—>k" T g, , respectively.
They can be extended to linear and continuous operators from H; '*(divy,T';) and
HI '?(curly, T'y), respectively.

Moreover, if A e H| "/?(divr, I'), we have that ¢,(hr,) + £, (Ar,) = 0 at Oy, where ¢, denotes
the same mapping as t,, but on the side I'_.

Proof. We focus our attention only on the operator t, since a similar proof, carried out by
suitably replacing spaces and operators, works for t.. Let ueH; '*(divy,, ['1)n2(Q), and
W e H' (@I',). Its extension, which belongs to H*'*(T", ), is still denoted by . The following chain
holds true:

w, Ve Yo or, +divew, 3 1, = J (u-Vr ¢ + divr uy)do
r.

= 6w, Y D or, (33)

By density, since the left-hand side of (33) is bounded with respect to the norms of ¥ in H*/*(T"})
and of u in H; "?(divr-, I';), the continuity of ¢, is proved.
The last statement is nothing but a jump relation and its validity comes directly from (33).
d
Let us now set

Ho - (curl, Q):= {ueH(curl, Q): uan; =0 in Hoo*(I)}

Theorem 3.15. Let us set
H 482 (divr,, Ts) = {(he H] (T, ): dive, he Hoo 2 (T)}
H; '2(divR, Ty):= {heH] 2 (divy,, T1): t,(0) = 0}
1/2

The mapping 7,: H(curl, Q) - H; 0)*(divy, ['y) and its restriction y;°:Hy - (curl, Q) —
H; '*(divp ., I';) defined as ur—y,(u)r, are linear and continuous.

Proof. Let ue H(curl, Q). The fact that y;" (wye H 06*(I's) and y;"°(v)e H] /*(T';) is straight-
forward from Theorem 39 and the standard results in functional analysis.
We have only to analyse the divergence operators. Applying the same reasoning as in
the proof of Theorem 3.9, and recalling definition (30) of divy , one can prove

divr, (7. (w) = curlu-n,
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Now, by a standard argument, for any ueH(curl, Q), curlu~n,r+eH501/2(l"+). Moreover, if
ueH, - (curl, Q), y; (u) is replaced by y;°(u) and we have that

divr(y;%(w)) = curlu-npin H~'*(T') and

divr (%) = curlu-n, in Hoo2(T'y) (34)

where ~ denotes the trivial extension. Now, curlu-n, € H ~12(T,) since curlu-nr =0 and we
deduce that divy (y;°(u))e H™'/*(T";). Using now the last statement of Proposition 3.14, with
the first equality in (34), we deduce that t,(y,"*°(u)) = 0. O

The corresponding theorem related to the tangential components trace mapping is the
following:
Theorem 3.16. Let us set
HI,%)/oz (curly, I'y):= {)‘-EHI,%)/OZ () Curlr+keH<)_01/2(F+)}
H; " (curl , T'y):= {heH'?(curly, T}): t.(h) = 0}

The mappings =,: H(curl,Q) > HI §§ (curl- ,T';) and its restriction n; % Hgr (curl, Q) —

H[ '?(curl?,T.) defined as ur>r,(u), are linear and continuous.

4. INTEGRATION BY PARTS FORMULAE

4.1. General case
First of all, let us set
H,(div, Q):= {ueL*(Q): divue L*(Q) u-ny=0}
H, (div 0, Q):= {ue H, (div, Q):divu = 0}

The following Hodge decomposition holds for every function ueH(curl, Q)
[2, Section 3.5]:

u=®+Vp with ®eH((div0,Q) and curl® = curlu (35)
where p is uniquely defined up to a constant as the solution of the following variational problem:

Find pe H' (Q)/R such that

J Vp-quQ:JqudQ Vqe H'(Q)/R
Q Q

By definition, ® belongs to Y = H(curl, Q)nH, (div 0, Q) and we use an ad hoc regularity result.
Owing to the splitting of Y (see Remark 4.2) and a regularity result drawn from [11, Corollary
23.5],if Q is a curvilinear bounded polyhedron, one has Y&SHY277(Q), for some ¢ > 0. ¢ is the
maximum exponent for the regularity of the Neumann problem associated with the Laplace
equation in Q.
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Let us start by considering two vector fields, u, ve H(curl, Q) such that their decompositions (35)
read

u=0+Vp, v=¥ +Vqg with® ¥YeY, p,qe H*(Q)
At the end, we shall use a density argument to get rid of the requested extra-regularity. For these

H'?*°_regular vector fields, there clearly holds

J {curlv-u — v-curlu} dQ = {y,(u), 7. (v)), (36)

Now, analysing the term in the right-hand side of (36), using formulae (17) and (18), one has

<yt(u)» nr(v)>t = <yr((I))a Tcr(lP)>t + <"/1¢((I)), VFQ>H,1/2,F + <7Tr(lP)a c“rer>L,1/2,r (37)
From (37), we deduce

J {curlv-u — v-curlu} dQ
Q

= 0e(@), T (¥))r — <dive (7:(P)), 4D 32,0 + {curlp (n(¥)), p)3j2r (38)

Applying now Theorems 3.9 and 3.10 to the functions ® and WV, respectively, one gets that both
divr(y(®)) and curly(rr, (¥)) belong to H ™ /(I"). This means that the H~*? — H*? dualities can
be replaced by the more convenient H ™ '/* — H'/? ones. Namely, (38) reads as follows:

J {curlv-u — v-curlu} dQ
Q

= (@), 7 (F))r — {dive (7:(D)), D12, + Lcurlp (), po1j2r (39)

By the standard argument of the density of H*(Q) in H'(Q), the integration by parts formula
holds for any fields u, ve H(curl, Q).
It is then possible to define the following duality for any u, ve H(curl, Q):

ZX0e), (V) = 9l @), 1 (F))e — <dive (7:(P)), 4D 12,0 + Ccurlp (7w (V). pP1j2.r (40)

The three dualities on the right-hand side are well defined and continuous with respect to the
H(curl, Q) norms.

Remark 4.1. The duality
(H; ?(dive,T)) = H] "?(curly, T)
where LZ(I) is the pivot space is proven in the companion paper [8].
Remark 4.2. The definition of duality (40) between the tangential trace and tangential compo-
nents of vectors fields which belong to H(curl, Q) relies on decomposition (35). Let us mention
that the orthogonality of this decomposition does not play a key role in the definition of (40).

Let us consider, for example, the decomposition in ‘regular’ and ‘singular’ part inferred from
[6]. Starting from (35), @ belongs to the space Y. According to Proposition 6.1 of [6], in the
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general case of a curvilinear Lipschitz polyhedron,} if N, is the orthogonal of A({ue H*(Q);
ou/onr = 0}) in L*(Q) (cf. [11, p. 198] and &,:= {Ae H'(Q): AAeN,, d4/dn = 0}, one has
Y = (YnH"(Q)®V.Y,. Therefore,

IDre YNH'(Q), Ise¥, such that ® = Oy + Vs
Thus, if p':= p + s, one can write
VueH(curl, Q), 30zeYNH'(Q), p'e H'(Q) such that u = &y + Vp’ 41)

Let thenu = @y + Vp' and v = Wy + Vg with O, Yre YNH! (Q) and p’, ¢' € H' (Q), duality (40)
can be equivalently defined as

v<?r(u)9 TEI(V)>7! = <nr(\PR): yt(q)R)>t - <din(“/r(q)R)), q/>1/2,1" + <Curll"(7rr(\PR))r P/>1/2,r

4.2. Partially vanishing fields

Let us split the boundary I'" in I';. an open arbitrary connected subset with a piecewise smooth
boundary, and I'_ = I'\T',.. Let

Hor ()= {peH Q) oy =0}
Ho r, (div, Q):= {ueH(div, Q):u'nr, =0 in Hoe?(I'1)}
Hy -, (div 0, Q):= H(div 0, Q) nH, -, (div, Q)
Then, the following Green formulae associated with the spaces H(div, Q) and H'(Q) are valid

J {divugp +u-Ve}dQ = <u'n,0>500r. YueH(div,Q), pe Hj (Q)
Q

J {leu(p + u V([)} dQ B <ll ll, ([)>1/2’r7 VUEHO,R (le, Q), (pC—‘Hl (Q)
Q

By analogy, we look for the same integration by parts formulae which generalize the Green
formula (39).

As in the previous subsection, we need to introduce Hodge decompositions of the vector fields
involved. Letue H(curl, Q) and ve Hy 1-_(curl, Q). Regarding the field u, we consider the decompo-
sition given in (41). For what concerns now the vector field v we use another ad hoc Hodge
decomposition. Namely, let Y,, = Ho r (curl, Q) nHy 1, (div0, Q). Recall that the following de-
composition holds (see [13, p. 968]): L*(Q) = VH{ r (Q) @ Hy 1, (div 0, Q). Therefore,

VveHor (curl,Q), I¥eY,, qeHjr (Q) such thatv="Y + Vg 42)
We want now to decompose again the function ¥ as
¥ =W+ Vg, YreH (Q)nHy (curl,Q), p'eH{r (Q)

It is well known that there exist a (e H'(Q) and a pe H'(Q) such that ¥ = { + Vp. Since
W Aan=0onT_,wededuce that { Any = — (curlrp)r . As a consequence, (curlyp) e H}/*(T'-)

$One simply has to resume the proof given in [6] for a Lipschitz polyhedron, and use in particular the theory developed in
[5] which is valid in the curvilinear case.
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and, by means of Theorem 3.4, we deduce that actually pe H¥?(I"_). It is not hard to see that
there exists a function pg € H*(Q) such that pgr = p. Now, it is enough to take W = { + Vpg and
p'=p—Dpr

As a consequence, we have that veHgr (curl, Q) can be decomposed as
v=Y+ Vg, YreH (Q)nHy (curl, Q) and ¢’ € Hj 1 (Q). Of course, this decomposition is not
orthogonal nor direct but it is the one we need in what follows.

Let us concentrate now on the integration by parts formula and, as in the case of the whole
boundary, let us first consider some regularized functions before the application, at the end, of
a suitable density argument.

Let ue H(curl, Q) and veHy 1 (curl, Q) be two functions such that the following ‘regularized’
decompositions hold:

u==0; +Vp, OreYnH'(Q), p'eH*(Q)
v=Y;+ Vg, YreH' (QnHr (curl,Q), ¢ eH*(Q)nH{ - (Q)43)

Let us denote <, Y, r, the scalar product in L?(I';). Then one has

J {curlv-u — v-curlu} dQ = {y;" (), 7, °(V)>, 1. (44)
Q

Now, analysing the term in the right-hand side of (44), using decomposition (43), similarly as in
the case of the whole boundary, one has

e (), 0 (), = <0 (@r), 1 (WR)Der
+ 7 (@), Vr.4' 112,000, + (r 0 (Pr), curlr p'>1 121,

In particular, passing now to the adjoint operators in the last two duality pairings, using
Theorems 3.15 and 3.16 for y." (@) and 7, *°(¥y), and by standard manipulations, the following
duality can be defined:

poor, < (@), (W) er, 1= 9 (Pr) w1 (Pr)ur,

— (divr, (v (Dg)), q'>1)2,00,r. + {curly, (ﬂ:’o(‘PR))»P,%/z,n (45)

Of course, the following integration by parts holds Yue H(curl, Q), ve Hy _(curl, Q):

J {curlv-u — v-curlu} dQ =, oo.r, <y (), 7. (V) D, (46)
Q

Remark 4.3. As in the previous subsection, we would like to define the duality also by means of
the orthogonal, standard Hodge decomposition. Let again ue H(curl, ), ve Hy _(curl, Q). u is
decomposed by means of (35) and v by means of (42).

Unfortunately, the definition of duality (45) by means of the above decompositions can be given
in the case of regular domains but not in the case of a (curvilinear) Lipschitz polyhedron. In the
latter case, the regularity results associated with the space Y,, is only Y,, <> HY**"(Q) for some
positive i (see [13, 11]). In particular, this means that the L3I, ) scalar product between 7, (®)
and n;°(W)—or any other duality product—is not allowed anymore.

However, a ‘mixed’ formulation involving (41) and (42) still works.

Copyright © 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9-30
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