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SUMMARY

The aim of this paper is to study the tangential trace and tangential components of "elds which belong to the
space H(curl, )), when ) is a polyhedron with Lipschitz continuous boundary. The appropriate functional
setting is developed in order to suitably de"ne these traces on the whole boundary and on a part of it (for
partially vanishing "elds and general ones.) In both cases it is possible to de"ne ad hoc dualities among
tangential trace and tangential components. In addition, the validity of two related integration by parts
formulae is provided. Copyright ( 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

The aim of this paper is to give a precise meaning to the following integration by parts formula

P)Mcurl v ' u!v ' curl uNd)"Su'n, vT

Here, ) denotes an open subset of R3 and its boundary is called !. This formula is well known for
v3H(curl, )) (see (1) below) and u3H1 ())3 (see for instance [14]): the brackets then stand for the
duality product between H1@2 (!)3 and its dual, H~1@2 (!)3; this holds for any Lipschitz domain. In
the case when both "elds belong to H(curl, )), a similar formula has been derived, with S ) , )T as
the duality product H~1@2div!

(!)!H~1@2curl!
(!), when the boundary of the domain is su$ciently

regular (cf. [24]). In the more general case (a Lipschitz domain and both "elds in H (curl, ))),
Sheen [21] has already proved that such a formula is valid, with brackets meaningful in Lip(!),
the space of Lipschitz functions de"ned on !, and its dual.

In this paper, we introduce some Sobolev spaces de"ned on the boundary and we derive
another valid formula. In Section 2, we "rst investigate the range of the tangential trace mapping
from H1())3. For that, we need to characterize precisely the space H1@2 (!). Then, in Section 3, we



introduce the tangential operators on the boundary, which allows to de"ne the range of the
tangential trace and that of the tangential components from H (curl, )). In Section 4, we obtain
integration by parts formulae for "elds in H(curl, )), or for "elds in H (curl, )) which vanish on
a part of the boundary.

In a companion paper [8], we prove that Hodge decompositions can be obtained on the
boundary of such domains, these decompositions being similar to those described in [12] in the
case of regular domains. The two papers are closely related, in particular when we prove that
the space H3@2 (!), which is introduced with two di!erent de"nitions hereafter and in [8], is
unique (cf. Theorem 3.4).

Recall that if the domain ) is regular, all the de"nitions here below make sense and are correct
(see [24]).

Let us set

H (curl, )) :"Mu3¸2())3: curl u3¸2 ())3N, E ) E
0,#63-

the graph norm (1)

H~1@2
$*7!

(!) :"Mk3H~1@2 (!)3: k ) n"0, div!k3H~1@2(!)N (2)

:"Mu'n: u3H(curl, ))N

H~1@2curl!
(!) :"Mk3H~1@2 (!)3: k ) n"0, curl! k3H~1@2 (!)N

:"Mn'(u'n)"u
T
: u3H (curl,))N

In the case in which ) is only a Lipschitz polyhedron, i.e. its boundary is not smooth, several
problems occur; namely in de"nition (2) neither the quantity k ' n nor the di!erential operator
div! are meaningful anymore. In order to give a good and useful de"nition of the trace space, that
is the equivalent of (2) in the case of a piecewise smooth boundary, we need some preliminaries.
Note that, for general Lipschitz domains, the characterization of traces for H(curl, )) has been
given by Tartar in [22]. However, from this paper, it is also clear that the de"nition of di!erential
operators on Lipschitz manifolds in the context of Sobolev spaces, is, in general, an &ill-posed
problem'. Thus, the need for an &intermediate' characterization on a class of Lipschitz domains
with piecewise smooth boundaries.

In the following we assume that ) is a Lipschitz polyhedron not necessarily convex. All the
results carry out to the case of a Lipschitz curvilinear polyhedron, that is a Lipschitz polyhedron
with curved faces (cf. [10]). Whenever the results are derived in a di!erent way for the Lipschitz
curvilinear polyhedron case, an explicit mention is added.

2. PRELIMINARIES

The boundary ! is split in N (open) faces (!
j
)
j/1,2 ,N

, !"Z
j
!M

j
. Let us denote by (e

ij
)
i,j|M1,2,NN its

(open) edges: when !
i
and !

j
are two adjacent faces, e

ij
is the &common' edge. Additionally,

!
ij

stands for the open set !
i
X!

j
Xe

ij
. Its vertices are (S

k
)
k/1,2,k

.
Let n denote the unit outward normal to ). Finally, let s

ij
be a unit vector parallel to e

ij
and

n
j
"nD!

j
; s

i
"s

ij
'n

i
. The couple (s

i
, s

ij
) is an orthonormal basis of the plane generated by !

i
;

(s
i
, s

ij
, n

i
) is an orthonormal basis of R3.

For elements u of ¸2 (!), one adopts the notation u
j
"uD!

j
. This notation is used whenever the

restriction to a face is considered, that is as regards to any functional space in which the
restriction to a face is allowed.
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In this paper, boldface characters are used for all vector "elds and some vector spaces, such as
for instance ¸2 ())3 which is denoted by L2 ()).

Let us set:

L2
5
(!) :"Mu3L2 (!)3: u ) nD!"0N, S ) , )T

5
its scalar product

H1@2
~

(!) :"Mk3L2
5
(!): k

j
3H1@2 (!

j
), 1)j)NN

Note that in the remainder of the paper, L2
5
(!) is identi"ed with the space of two dimensional,

tangential, square integrable, vector "elds. The consequence of this choice is that, on the boundary
!, one deals with two-dimensional vector "elds whereas, in ), three-dimensional ones are consi-
dered. Of course, the same identi"cation holds for all the spaces derivating from L2

5
(!), e.g. H1@2

~
(!).

Dexnition 2.1. Let us de"ne the &tangential components trace' mapping nq :D ()1 )3PH1@2
~

(!)
and the &tangential trace mapping' cq :D()1 )3PH1@2

~
(!) as uCn'(u'n)D! and uC u'nD! , respec-

tively.

On the one hand, it is surely true that nq and cq can be extended to linear continuous mappings
from H1 ()) to H1@2

~
(!). On the other, it is proved in what follows that these mappings are not

surjective and that their ranges are di!erent subspaces of H1@2
~

(!).
Without loss of generality, let us focus our attention on the mapping nq and deduce the

properties related to the mapping cq (this rule is applied throughout the paper.)
Since one deals with polyhedrons, given a function u3H1 ()), the de"nition of nqu can be

understood face by face:

nq,ju :"u
j
!(u

j
) n

j
)n

j
, ∀u3H1 ())

One gets then that an equivalent de"nition of nq is

nq : H1 ())PH1@2
~

(!), nqu (x)"nq,ju (x) a.e. x3!
j
, ∀j

Now it is easy to see that the range of this mapping is a true subspace of H1@2
~

(!).
For that, a preliminary result is needed.

Proposition 2.2.

u3H1@2 (!) Q G
u3H1@2 (!

i
), ∀i3M1,2,NN and

P!
i
P!

j

Du(x)!u(y)D2
Ex!yE3

dp(x) dp(y)(R, ∀iOj s.t. !1
i
W!1

j
O0

(3)

Proof. This result was "rst stated in [17]. Let us recall from [16, 17] that u is in H1@2 (!) if and
only if

u3¸2(!) and DuD
1@2,! :"GP!P!

Du (x)!u (y)D2
Ex!yE3

dp (x) dp(y)H
1@2

(R (4)
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with dp a measure on !. Now, if u3H1@2 (!), u belongs to H1@2 (!
i
), for i3M1,2, NN. In addition,

owing to (4), the terms in the right-hand side of (3) are bounded. Conversely, as u3H1@2 (!
i
),

∀i3M1,2, NN, one obtains in particular that u3¸2 (!). Next, following [3], let us write

DuD2
1@2,!"

N
+
i/1

DuD2
1@2,!i

# +
iOj
P!

i
P!

j

Du (x)!u(y)D2
Ex!yE3

dp (x) dp(y)

If !M
i
W!M

j
"0, dist (!

i
, !

j
)"C

ij
'0. Then, in this case,

P!
i
P!

j

Du(x)!u (y)D2
Ex!yE3

dp (x) dp (y))
1

C3
ij
P!

i
P!

j

Du(x)!u (y)D2 dp(x) dp(y)

)

2

C3
ij

MD!
j
D EuE2

0,!i
#D!

i
D EuE2

0,!j
N

Therefore, there exists a constant C(!)'0 which depends only on the geometry of ! such that

DuD2
1@2,!)

N
+
i/1

DuD2
1@2,!i

# +
iOj,!1

i
W!1

j
O0 P!

i
P!

j

Du (x)!u(y)D2
Ex!yE3

dp (x) dp (y)#C(!)EuE2
0,!

which allows to conclude that u belongs to H1@2 (!). h

In the above equations, there are two types of terms, depending whether the intersection is an
edge or a vertex. In the latter case, we prove hereunder that the corresponding term in (3) is
automatically "nite. Before that, let us state a very simple result which is used on several
occasions throughout this paper, the simple proof of which is omitted.

Proposition 2.3. Fix a point M of !, and then letV be a neighbourhood of M. Then there exists
a plane P and a bi-Lipschitz continuous transform % from V to %(V)LP.

Now, as a Lipschitz mapping preserves H1 regularity (cf. [15]), it is certainly enough for
H1@2 regularity: thus it is (locally) equivalent to consider H1@2 regularity on the boundary or in R2.
Then one has

Proposition 2.4. Let !
i
and !

j
be two adjacent faces, which share a &common' vertex. Assume

u on ! is given such that u3H1@2(!
i
) and u3H1@2 (!

j
). Then,

P!
i
P!

j

Du(x)!u (y)D2
Ex!yE3

dp(x) dp (y)(R

Proof. Owing to the above remark, in order to prove this statement it is enough to consider the
case of a scalar function u :R2PR such that uDM0(x

1
,x

2
(1N3H1@2 (M0(x

1
,x

2
(1N) and

uDM!1(y
1
,y

2
(0N3H1@2(M!1(y

1
, y

2
(0N) and to prove that

P0(x
1
,x

2
(1 P0(y

1
,y

2
(1

Du (x)!u (!y)D2
Ex#yE3

dxdy(#R
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Now, by triangle inequality, it is su$cient to prove that

P0(x
1
,x

2
(1 AP0(y

1
,y

2
(1

dy

Ex#yE3B Du(x)D2 dx(#R (5)

By direct estimation (or see [15, p. 19]) it can be shown that

c
1

ExE
)P0(y

1
,y

2
(1

dy

Ex#yE3
)C

1

ExE
, c,C3R

The integral bounding (5) reads then

P0(x
1
,x

2
(1

Du(x)D2
ExE

dx (6)

In order to prove that the quantity (6) is bounded, some very "ne imbedding theorems are
required, such as the ones recalled by Tartar in [23]. Let ¸r,q (R2) 1)r, q)R be the family of
Lorentz spaces (see [4] and also [23]). In [23] it is proven that H1@2 (R2)6¸4,2 (R2) (where
6 stands for continuously imbedded.) Now, let us use the easy characterization of ¸r,= (R2) (see
[4, pp. 6}8]), which reads

f3¸r,= (R2)8ar PR2

1Mx: D f (x)D'aN dx)C

where C is a constant; the function t de"ned as t(x)"1/JExE belongs to ¸4,= (R2), with C*n.
Since multiplication acts on the family of Lorentz spaces in the following way:

f3¸a,b (R2), g3¸c,d(R2) then fg3¸q,r (R2) with
1

q
"

1

a
#

1

c
,

1

r
"

1

b
#

1

d

one directly gets that u/JExE3¸2,2 (R2)"¸2 (R2). h

As a conclusion, one obtains

Theorem 2.5.

u3H1@2 (!)Q G
u3H1@2 (!

i
), ∀i3M1,2,NN and

P!
i
P!

j

Du(x)!u(y)D2
Ex!yE3

dp(x) dp(y)(R, ∀iOj s.t. !M
i
W!M

j
"e

ij

(7)
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Owing to this theorem, we are able to de"ne a suitable subspace of H1@2
~

(!) which contains the
range nq (H1())). For that, assume u"n'(u'n) D! , for some u3H1 ()), and let us focus on a given
term (7) for !

i
and !

j
such that they have a common edge e

ij
. u is, by de"nition, parallel to !

i
(respectively !

j
) when its restriction to !

i
(resp. !

j
) is considered. Recall that (s

i
, s

ij
) is an

orthonormal basis of the plane generated by !
i
while (s

i
, s

ij
, n

i
) is an orthonormal basis or R3.

One has

u"u
i
s
i
#u

ij
s
ij
#u

n
n
i

and u"u
i
s
i
#u

ij
s
ij
#u

n
n
i

(8)

Let a be the angle between s
i
and s

j
(c :"cos a, s :"sin a):

s
j
"cs

i
!sn

i
(9)

This leads to the expressions

u
i
"u

i
s
i
#u

ij
s
ij

u
j
"c(cu

i
!su

n
) s

i
#u

ij
s
ij
!s (cu

i
!su

n
)n

i

Equation (7) applied to u allows to &control' quantities by Eu(x)!u(y)E2, for x3!
i
and y3!

j
.

On the one hand, there holds

Du
ij
(x)!u

ij
(y) D2"Du

ij
(x)!u

ij
(y)D2)Eu(x)!u(y)E2

On the other, u
n
(x)"0: another condition can then only be obtained with u

i
(x)"u

i
(x) and

a linear combination of the components of u (y), in order to provide a term in u
i
(y). But, as sO0

by de"nition, it is easily seen that any linear combination introduces in its turn a term in u
n
(y):

this term cannot be controlled in any way.
Equation (7) thus implies a single condition

N
E

i,j
(u) :"P!

i
P!

j

Du
i
) s

ij
(x)!u

j
) s

ij
(y)D2

Ex!yE3
dp (x) dp (y)(R

Now, let (t
i
, t

j
)3H1@2 (!

i
)]H1@2 (!

j
). Let us adopt the notation:

t
i
1@2
" t

j
at e

ij
Q P!

i
P!

j

Dt
i
(x)!t

j
(y)D2

Ex!yE3
dp (x) dp(y)(R

Therefore, if I
j
stands for the set of indices i such that the faces !

j
and !

i
have a common edge

e
ij
, we have proved that the range of nq is included in

H1@2E (!) :"Mw3H1@2
~

(!): w
j
) s

ij

1@2
" w

i
) s

ij
at e

ij
∀j, ∀i3I

j
N

It is now clear that H1@2E (!) is not a closed subspace of H1@2
~

(!). The rest of the paragraph is now
devoted to proving that H1@2E (!) is a Hilbert space (with a suitable norm) and that it is indeed the
range of nq .

Proposition 2.6. The space H1@2E (!) is a Hilbert space when endowed with the following norm:

EwE2E,1@2,! :"
N
+
j/1

EwE2
1@2,!j

#

N
+
j/1

+
i|Ij

N
E

i,j
(w) (10)
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Proof. Let MukN
k|NLH1@2E (!) be a Cauchy sequence with respect to norm (10). Let us show then

that it converges in H1@2E (!). By standard arguments one gets that there exists a limit u3H1@2
~

(!).
Let us focus now the attention on two faces !

i
and !

j
such that i3I

j
. Using the notation

introduced in (8), it is clear that uk ) s
ij
3H1@2 (!

ij
). By uniqueness of the limit one obtains that

u ) s
ij
3H1@2 (!

ij
) which means, in particular, that NE

i,j
(u)(R. h

Let us de"ne also

No

ij
(u) :"P!

i
P!

j

Dw
i
) s

i
(x)!w

j
) s

j
(y)D2

Ex!yE3
dp (x) dp (y)

and the related functional space:

H1@2o (!) :"Mw3H1@2
~

(!): w
i
) s

i
1@2
" w

j
) s

j
at e

ij
∀i3I

j
, ∀jN

which is a Hilbert space when endowed with the natural norm:

EwE2o,1@2,! :"
N
+
j/1

EwE2
1@2,!j

#

N
+
j/1

+
i|Ij

No

i,j
(w)

With the same argument, it is not hard to see that cq : H1 ())PH1@2o (!).

Proposition 2.7. The mapping nq :H1 ())PH1@2E (!) (resp. cq :H1 ())PH1@2o (!)) such that
uC n'(u'n)D! (resp. uC u'nD! ) is linear continuous and surjective. As a consequence, there
exists a continuous lifting mapping Rq (resp. Rc ) from H1@2E (!) (resp. H1@2o (!)) to H1 ()).

Proof. By standard arguments, for every u3H1 ()), one gets that uD!3H1@2 (!). This assures
that the mapping nq is continuous from H1 ()) to H1@2

~
(!).

We prove now surjectivity by means of the construction of a compatible normal component at
every face !

j
. This construction yields a function of H1@2 (!) and it is then extended in ) with

a standard argument.
We construct over ! a particular partition of unity. Let us consider three sets of Lipschitz

functions MsS
k
N
k
,Mse

ij
Ni, j3I

i
, j'i and Ms!

i
N
i
such that

(1) +K
k/1

sS
k
#+N

i/1
+

j|Ii, j;i
se

ij
#+N

i/1
s!

i
,1 on !.

(2) suppMsS
k
NL!K

k
:"interior of the union of the closed faces !1

i
having S

k
as

a vertex.
(3) suppMse

ij
NL!

ij
.

(4) suppMs!
i
NL!

i
.

By means of this partition of unity, we are left with the construction of the normal component in
three di!erent and independent situations: in a neighbourhood of a vertex, of an edge or inside
a face.

(a) Of course, inside a face the normal component can be chosen equal to zero.
(b) In a neighbourhood of an edge e

ij
.
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Let us set i"1 and j"2. Let u3H1@2E (!
ij
): we want to construct a function u3H1@2 (!

12
)

such that n'(u'n),u. According to notation (8) this means that

u
1
"u

1
s
1
#u

12
s
12
#u

1
n
1
, u

2
"u

2
s
2
#u

12
s
12
#u

2
n
2

where u
1

and u
2

are the unknowns of the problem. Using now (9), the regularity of u, and
the equality n

2
"cn

1
#sq

1
, one gets that u3H1@2 (!

12
) if and only if

!su
2
#cu

2
1@2
" u

1
and cu

2
#su

2
1@2
" u

1
at e

12
(11)

It is immediate to see that the two conditions in (11) are compatible. It is enough to choose
u
2

according to the second constraint, and, afterwards, u
1

according to the "rst one.
(c) In a neighbourhood of a vertex.

By extension, we have a cone with a polygonal (convex or not) transverse section. Hereafter, let
us suppose that this section is a triangle (the general case can be treated with the same argument.)
Let S be the vertex, !

i
for i"1, 2, 3 the three incoming faces, and, respectively, Me

ij
N
i,j/1,2,3

the three incoming edges (with the convention e
ij
"e

ji
.) Let us set !K "

(!
1
X!

2
X!

3
)X (e

12
Xe

23
Xe

31
)XMSN: a function u3H1@2E (!K ) is provided and we want to construct

a function u3H1@2 (!K ) such that n'(u'n),u.
Using the notation introduced in (8), one gets

s
1
"c

1
s
3
!s

1
n
3
, s

2
"c

2
s
1
!s

2
n
1
, s

3
"c

3
s
2
!s

3
n
2

Thus, we directly obtain the compatibility conditions:

(C1) u
1

1@2
" c

2
u

2
#s

2
u
2

and (C2) u
1

1@2
" c

2
u
2
!s

2
u
2

at e
12

(C3) u
2

1@2
" c

3
u
3
#s

3
u
3

and (C4) u
2

1@2
" c

3
u
3
!s

3
u
3

at e
23

(12)

(C5) u
3

1@2
" c

1
u
1
#s

1
u
1

and (C6) u
3

1@2
" c

1
u
1
!s

1
u
1

at e
13

where u
i
for i"1, 2, 3 are the unknowns. Let u(1)

i
3H1@2 (!

i
), i"1, 2, 3 be three functions which

verify (C5), (C1), (C3), respectively (which are independent conditions.) One can then obtain
another set of three functions u(2)

i
3H1@2(!

i
), by a decoupled version of constraints (C2), (C4), (C6),

namely

u(2)
1

1@2
" c

2
u(1)
2
!s

2
u

2
at e

12
, u(2)

2
1@2
" c

3
u(1)
3
!s

3
u
3

at e
23

,

u(2)
3

1@2
" c

1
u(1)
1
!s

1
u
1

at e
13

Now, let m
ij

be a function such that (the existence of such a function is proved by direct
construction in Proposition 1.8 below), for all /3H1@2 (!

i
)

m
ij
/3H1@2 (!

i
), m

ij D e
ij

"1, m
ij De

il
"0, lOj
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A sample of functions u
i
which verify the set of constraints (12) is then

u
1
"m

13
u(1)
1
#m

12
u(2)
1

, u
2
"m

21
u(1)
2
#m

23
u(2)
2

, u
3
"m

32
u(2)
3
#m

31
u(2)
3

Now, we have proven that nq is linear, continuous and surjective from H1 ()) onto H1@2E (!). Its
kernel is ker (nq)"Mu3H1 ()): n'(u'n) D!"0N. Thus nq is linear, continuous and bijective from
H1 ())/ker (nq) onto H1@2E (!).

The same arguments can be applied to the mapping cq. h

Proposition 2.8. Let us identify !
i

with !
0
:"Mx"(x

1
, x

2
): 0(x

1
(1, 0(x

2
(1N. Set

R!1
0
:"M(0,x

2
): 0(x

2
(1N, and R!2

0
:"M(x

1
, 0): 0(x

1
(1N. Then, the function s de"ned by

s(x)"(1!x
1
/x

2
)` is such that sDR!1

0
"1, sDR!2

0
"0, and s/3H1@2 (!

0
) for all /3H1@2 (!

0
).

Proof. As s3¸= (!
0
), s/3¸2(!

0
). There remains to prove that

P!
0
P!

0

Ds/ (x)!s/(y)D2
Ex!yE3

dxdy(R

It is clear that

Ds(x)/ (x)!s (y)/(y)D2)2Ds(x)!s(y)D2 D/(x)D2#2Ds(y)D2 D/(x)!/(y)D2

Then,

P!
0
P!

0

Ds/(x)!s/(y)D2
Ex!yE3

dxdy)2 Px3!
0

D/(x) D2dx

Py3!
0

Ds(x)!s(y)D2
Ex!yE3

dy#2EsE2!
0,=

D/D2
1@2,!0

Here, we want to use the same technique as is Proposition 2.4. For a given x3!
0
, one has to

evaluate

I (x)"Py3!
0

(s(x)!s(y))2

Ex!yE3
dy

in terms of ExE. Basically, we would like to obtain that there exists a constant C independent of
x such that

I(x))
C

ExE
(13)

as we know that //JExE belongs to ¸2 (!
0
). To reach that goal, it is convenient to split !

0
into

two parts, that is !`
0

:"Mx3!
0
: x

1
(x

2
N, and !~

0
:"Mx3!

0
: x

1
'x

2
N. Then I(x) is the sum of

I`(x)"Py3!`
0

(s(x)!s(y))2

Ex!yE3
dy and I~ (x)"Py3!~

0

(s(x)!s(y))2

Ex!yE3
dy
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To further take advantage of the explicit form of s(x), it is also convenient to consider the cases
x3!`

0
and x3!~

0
separately. Therefore, one has to carry out the computations in four cases:

Case 1. I` (x) for x3!`
0
.

Case 2. I` (x) for x3!~
0
.

Case 3. I~(x) for x3!`
0
.

Case 4. I~(x) for x3!~
0
.

Case 1. In this case, one has

I` (x)"P
y
2
"1

y
2
"0 P

y
1
"y

2

y
1
"0

(s(x)!s(y))2

Ex!yE3
dy

1
dy

2

"P
y
2
"1

y
2
"0

dy
2 P

y
1
"y

2

y
1
"0

(x
1
/x

2
!y

1
/y

2
)2

((x
1
!y

1
)2#(x

2
!y

2
)2)3@2

dy
1

In the integral of variable y
1
(y

2
frozen), let us perform the change of variable q"y

1
/y

2
. Then, one

obtains

I` (x)"P
y"1

y
2
"0

dy
2 P

q"1

q"0

(x
1
/x

2
!q)2

((x
1
!y

2
q)2#(x

2
!y

2
)2)3@2

y
2

dq

"P
q"1

q"0 A
x
1

x
2

!qB
2

dq P
y
2
"1

y
2
"0

y
2
dy

2
((x

1
!y

2
q)2#(x

2
!y

2
)2)3@2

(14)

Let us de"ne hq the angle between x and x!u(q), with u(q) the vector of components (q, 1): integrating
the integral in the variable y

2
, one gets after some elementary computations

I` (x)"P
q/1

q/0
A
x
1

x
2

!qB
2 ExE(1!cos hq)

(x
1
!x

2
q)2

dq"
ExE
x2
2
P

q/1

q/0

(1!cos hq) dq

Now, x is in !`
0
, so

ExE2(2x2
2
, i.e.

1

x2
2

(

2

ExE2

Case 1 is, therefore, completed as

I` (x)(
4

ExE

The other three cases can be "xed in a similar manner. One "nds

I` (x)(
5#J5

ExE
(Case 2), I~ (x)(

4

ExE
(Case 3), I~ (x)"0 (Case 4)

Therefore, (13) holds with C"max(4#4, 5#J5)"8.
In the remainder of the paper, let us call H~1@2E (!) the dual space of H1@2E (!) (with L2

t
(!) as the

pivot space), and S ) , )TE,1@2,! the duality product between H~1@2E (!) and H1@2E (!). Using the
de"nition of the dual norm, given k3H~1@2E (!), one has

EkEE,~1@2,!" sup
u3H1@2

E
(!)

Sk,uTE,1@2,!
EuEE,1@2,!

. (15)
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3. TANGENTIAL OPERATORS AND TRACE MAPPINGS FOR H(curl, ))

3.1. Characterization of +! and div! for polyhedral domains

Since we deal with polyhedrons, as before, the de"nition of the tangential gradient operator, +!, is
given face by face as follows:

+!
j
u"nq, j (+u) ∀u3H2 ())

One has +!j
: H2 ())PH1@2 (!

j
). Let us de"ne now the operator +! as

+! : H2 ())PH1@2
~

(!) +!u (x)"+!
j
u(x), a.e. x3!

j
(16)

and then, the following equality holds:

+!u"nq (+u) (17)

In the same way, the tangential curl operator curl! can be de"ned. Namely, let us set

curl! u"cq (+u) (18)

Proposition 3.1. Let H3@2(!) be de"ned as

H3@2 (!) :"MuD! with u3H2 ())N

then it is a Hilbert space endowed with the norm

EuE
3@2,!" inf

u3H2()):uD!"u

EuE
2

Proof. It is enough to observe that the space H2 ())WH1
0
()) is a closed subspace of H2 ()).

The proof is then completely standard. h

From identity (17) and the results of the previous section, one gets

Proposition 3.2. The operator +! de"ned in (16) is a linear continuous mapping from H3@2 (!)
to H1@2E (!).

Dexnition 3.3. Let us de"ne div! : H~1@2E (!)PH~3@2(!) the adjoint operator of !+! so that

Sdiv!k, uT
3@2,!"!Sk, +!uTE, 1@2,! ∀u3H3@2 (!), k3H~1@2E (!)

In the companion paper [8], an alternate de"nition of H3@2 (!) is used, namely

2
H3@2 (!) :"Mp3H1 (!): +!p3H1@2E (!)N

It is a Hilbert space when equipped with the graph norm

2
EpE

3@2,!"MEpE2
1,!#E+!pE2E,1@2,!N1@2
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Fortunately, one has

Theorem 3.4. H3@2 (!)"
2
H3@2(!) and, in addition, E ) E

3@2,! and
2
E ) E

3@2,! are equivalent
norms.

Proof. This result was stated by Grisvard without proof in [17]. For the sake of completeness,
we report here a proof.

(i) H3@2 (!)L
2
H3@2 (!). By de"nition, p belongs to H1 (!) if and only if p3¸2 (!), +!p3L2

t
(!).

Thus,
2
H3@2 (!) :"Mp3¸2(!): +!p3H1@2E (!)N, as H1@2E (!) is a subset of L2

t
(!).

Now, given u3H3@2 (!), one has u3¸2 (!), and +!u3H1@2E (!) (owing to Proposition 2.7 and
(17)). Thus, u is an element of

2
H3@2(!).

(ii)
2
H3@2(!)LH3@2 (!). Let p3

2
H3@2 (!). Owing to Proposition 2.7, as +!p3H1@2E (!), there

exists x3H1 ()) such that nqx"+!p. In addition, as p3H1@2 (!), there exists u3H1 ()) which is
the solution of

*u"0 in ), uD!"p

w :"+u belongs to H (curl,))WH (div, )). Thus y :"x!w also belongs to H (curl,))WH (div, )).
Let us prove that y'nD!"0, which is equivalent by density (see [19, p. 22]) to

Sy'n, zT
1@2,!"0, ∀z3<

j

D (!
j
)3

Let H1@2
00

(!
j
) and its dual H~1@2

00
(!

j
) be de"ned in the usual way (cf. [18, vol. I, p. 72] or [16], in

Section 1.2). Then, as w'nD!3H~1@2 (!), w'nD!
j
3H~1@2

00
(!

j
) for all j, and thus

Sw'n, zT
1@2,!"

N
+
j/1

Sw
j
'n

j
,z

j
T
1@2,00,!j

"

N
+
j/1

S+!
j
u'n

j
, z

j
T
1@2,00,!j

"

N
+
j/1
P!

j

(+!
j
p'n

j
) ) z

j
dp"P! (x'n

j
) ) zdp

owing to the boundary condition de"ning u. Thus, actually y belongs to
X :"H

0
(curl, ))WH(div, )). According to [6], if N

d
is the orthogonal of *(H2 ())WH1

0
())) in

¸2())

&y
R
3XWH1 ()), &s3S

d
:"Mj3H1

0
()): *j3N

d
N such that y"y

R
#+s

Collecting the above results, one gets + (u#s)"x!y
R
, i.e. u@ :"(u#s) is an element of H2 ()),

which, by construction, satis"es to u@D!"uD!#sD!"p.
To conclude, one has to check that the norms are equivalent. Owing to the open mapping

theorem (see for instance [7]), it is enough to prove that

&C'0, ∀p3
2
H3@2 (!), EpE

3@2,!)C
2
EpE

3@2,!
This can be readily achieved by following the skeleton of the proof (ii), with the help of a closure
result of [10], which states that XWH1 ()) is closed in X and that E ) E

1
and E ) E

0, #63-,$*7
are

equivalent norms in XWH1 ()). h
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tR2
~

(resp. R2
`

is the open half-plane containing all points of R2 with x(0 (resp. x'0).

Remark 3.5. It is not hard to see that there also holds:

2
H3@2 (!) :"Mp3H1 (!): curl! p3H1@2o (!)N

Remark 3.6. This proof can be extended easily to the more general case of a
curvilinear Lipschitz polyhedron. For that, two results have to be generalized.

The "rst one is the decomposition y"y
R
#+s. This is carried out by simply resuming the

proof of Proposition 5.1 in [6]. It uses the results of [2, 14, 20, 11] which are valid in the case of
curvilinear Lipschitz polyhedra.

The second one states that XWH1 ()) is closed in X and that E ) E
1

and E ) E
0,#63-,$*7

are
equivalent norms on XWH1 ()). Corollary 2.5 of [10] can still be applied.

Corollary 3.7. H3@2 (!) :"Mp3H1 (!): +!p3H1@2
~

(!)N. In addition, an equivalent norm on
H3@2 (!) is pCMEpE2

1,!#+
j
EpE2

3@2,!j
N1@2.

To prove this corollary, the following technical lemma is helpful.

Lemma 3.8. Let u :R2PR be a function which belongs tot H1(R2) such that uDR2
~
3H3@2 (R2

~
)

and uDR2
`
3H3@2 (R2

`
). One gets that Ru/Ry3H1@2 (R2).

Proof. Let w"+u; w~ :"wDR2
~
; w` :"wDR2

`
.

According to the assumptions, one has w~3H1@2 (R2
~
), w`3H1@2 (R2

`
) and w~

y
"w`

y
in

H~1@2 (Mx"0N). By a standard re#ection argument, we can assume that w`,0 and prove that
w~
y
3H1@2

00
(R2

~
). Indeed, if we de"ne uJ as any H3@2-extension of uDR2

`
to R2, one has (u!uJ )3H1 (R2),

(u!uJ )DR2
`
"0 and (u!uJ )DR2

~
3H3@2 (R2

~
).

For 0)s)1, let

Vs :"Mz3Hs (R2
~

): curl z"0, z
y
"0 at x"0N

Note that, for any s, Vs is a closed subspace of Hs (curl, R2
~
)"Mu3Hs (R2

~
), curl u3Hs (R2

~
)N. Using

standard interpolation theory (see [9, p. 57]), one gets

[V1, V0]h"Vs, h3(0, 1), s"1!h

Now, let us consider the mapping Ys :VsPHs
0
(R2

~
) de"ned as zC z

y
, for some s: surely Y1 and

Y0 are linear and continuous. Owing to the classical interpolation theory, one also gets that
Y1@2 : V1@2PH1@2

00
(R2

~
) is linear and continuous. h

Proof of Corollary 3.7. It is clear that H3@2 (!) is a subset of Mp3H1 (!): +!p3H1@2
~

(!)N.
Now, let q3Mp3H1(!): +!p3H1@2

~
(!)N, and let !

ij
a set of two adjacent faces. Owing to the

lemma, we know that +!q ) sij3H1@2 (!
ij
): thus NE

i,j
(+!q)(R. In other words, q belongs to

2
H3@2 (!). The equivalence of the norms stems from the fact that NE

i,j
(+!q) is bounded (up to

a constant) by EqE
1,! and E+!

i
qE

1@2,!i
, E+!

j
qE

1@2,!j
. h
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3.2. Trace mappings for H(curl,))

Let us set

H~1@2E (div!,!) :"Mk3H~1@2E (!): div! (k)3H~1@2 (!)N

Theorem 3.9. The mapping cq :H (curl,))PH~1@2E (div! , !) is linear and continuous.

Proof. Let us work on smooth functions and then apply the density of the set D ()1 )3 in
H(curl, )). Let u3D ()1 )3 and k be its tangential trace. For every v3H1 ()), the following
integration by parts holds:

P) Mcurl v ) u!v ) curl uNd)"P! k () nq (v) dp (19)

Let us prove "rst that k3H~1@2E (!). In Proposition 2.7, the surjectivity of nq: H1 ())PH1@2E (!) is
provided. Using then the integration by parts (19) in the right-hand side of (15) and by
Cauchy}Schwarz inequality, one obtains

EkEE,~1@2,!)CDDuDD
0,#63-

(20)

Let u3H2 ()); the following holds:

P) curl u )+ud)"!P! u'n )+udp

"!Su'n,+!uTE,1@2,!"Sdiv! (u'n),uT
3@2,! (21)

Now, as uD! belongs to H1@2 (!), there exists v in H1 ()) such that vD!"uD! and
EvE

1
)CEuE

1@2,!, with a constant C independent of u! . By construction, v
0
:"v!u3H1

0
()).

Then (21) yields

Sdiv! (u'n),u!T3@2,!"P) curl u )+ (u#v
0
) d))EuE

0,#63-
EvE

1

)CEuE
0, #63-

EuE
1@2,!

This last inequality means that the functional div! (u'n) can be extended to a linear continu-
ous functional on H1@2 (!), as H2())D! is dense in H1@2 (!)"H1 ())D!. Moreover, one gets

div! (u'n)3H~1@2 (!) ∀u3D ()1 )3 and Ediv! (u'n)E
~1@2,!)CEuE

0,#63-
(22)

By density of D ()1 )3 in H (curl,)) we conclude that (20) and (22) are true for every function
u3H (curl,)). h

Using the above result, the following Green formula holds true:

P) Mcurl v ) u!v ) curl uNd)"Scq(u),nq (v)TE,1@2,! ∀u3H (curl,)), v3H1 ())

(Again, S ) , ) TE,1@2,! is the duality product H~1@2E (!)!H1@2E (!) with L2
t
(!) as pivot space.)

22 A. BUFFA AND P. CIARLET, JR.

Copyright ( 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:9}30



During the course of the proof, notice that we have rephrased one of the results of [1], i.e. that
there exists a constant C which depends only on the geometry such that

Eu'nEH~1@2E (div! ,! ))CEuE
0,#63-

, ∀u3H (curl,))

with a slightly di!erent de"nition of the space of tangential traces.
Moreover, for every u3D ()1 )3 and u3H2 ()) one has

!P!u'n )+!u dp"P) curl u )+ud)"P! curl u ) nudp

Using the de"nition of div! given above, and the density of H2())D! in H1@2 (!), one reaches

Sdiv! (u'n), uT
1@2,!"Scurl u ) n, uT

1@2,! ∀u3D ()1 )3, u3H1@2(!)

By density of D ()1 )3 in H (curl, )), we have

div! (u'n)"curl u ) n, ∀u3H (curl, ))

We pass now to the characterization of the range of the mapping nq in the context of H (curl, ))
vector "elds. Let curl! :H~1@2o (!)PH~3@2 (!) be the adjoint operator of the vector curl! de"ned in
(18). Let us set

H~1@2o (curl!, !) :"Mk3H~1@2o (!): curl! (k)3H~1@2 (!)N.

Then, the corresponding trace theorem holds:

Theorem 3.10. The mapping nq: H (curl,))PH~1@2o (curl!, !) is linear and continuous.

2.3. On a part of the boundary

The aim of this subsection is now to extend the results stated in the previous subsections to the
case of spaces and trace mappings de"ned on a part of and no more on the whole boundary.

Let !1
`

be a collection of closed faces of ! such that !1
`

is connected. !
`

is then an open subset
of ! with a piecewise regular boundary R!

`
. Let !

~
"!C!1

`
and I

`
be the set of indices j such

that !
j
-!̀ . We denote by RI

`
-I

`
the set of indices j corresponding to the faces which share

at least one edge with R!
`
. Finally, we denote by s

`
the unit tangent vector to R!

`
, s

`j
"sD!1

j
WR!

`
,

and by m
`

the outward normal vector de"ned as mD!1
j
WR!

`
"m

`j
for any j3RI

`
, with

m
`j

"s
`j

'n
j
(the orientation of s

`j
is such that m

`j
is an outward normal).

Let

H1@2
00

(!
`
) :"Mu3H1@2(!

`
): u8 3H1@2 (!)N

Above, uI is the prolongation by zero to !. This space is endowed with its usual norm (cf. [16] or
[18]) and we denote by H~1@2

00
(!̀ ) its dual space with ¸2 (!̀ ) as pivot space.

We set

H1@2E (!̀ ) :"MuD!
`
, u3H1@2E (!)N (21)

H1@2E,00
(!̀ ) :"Mu3H1@2E (!

`
): u8 3H1@2E (!)N (24)

H3@2 (!̀ ) :"H3@2 (!)D!
`
, H3@2

0
(!

`
)"H3@2 (!

`
)WH1

0
(!

`
) (25)
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Proposition 3.11. The spaces de"ned in (23) and (24) are Hilbert spaces endowed with the
norms

EwE2
1@2,E,!`

:" +
j|I`

EwE2
1@2,!j

# +
j|I`

+
i|I`

WI
j

NE

ij
(w)) (26)

EwE2
1@2,E,00,!`

:"EwE2
1@2, E, !

`
#P!

`

Dw (x) ) s
`
D2

d (x, L!
`

)
dp (27)

Finally, H3@2 (!̀ ) is closed when endowed with the norm:

EuE2
3@2,!`

:" +
j|I`

EuE2
3@2,!j

#EuE2
1,!`

(28)

and H3@2
0

(!̀ ) is a closed subspace of H3@2 (!̀ ). Moreover, for any u3H3@2
0

(!̀ ), uJ 3H3@2 (!).

Proof. The "rst statement is a straightforward recalling of de"nition (10) and using standard
results for the space H1@2

00
(!). For what concerns the space H3@2 (!̀ ), it is enough to realize that

Corollary 3.7 states precisely that the trace of a function in H2 ()) belongs to H3@2 (!
j
) for any

j and it is globally H1 (!). The space H3@2 (!
`
) is then closed with respect to norm (28). The last

statement comes again using Theorem 3.4 and reminding that !
`

is a collection of faces, i.e., in the
space H3@2 (!) there is no compatibility conditions on the normal derivatives through the edges.

h

Remark 3.12. Let H3@2
00

(!
`
) :"Mv3H3@2

0
(!

`
): v8 3H3@2 (!)N. Here, one has H3@2

00
(!

`
) :"H3@2

0
(!̀ ).

In the general case, when !̀ is not a collection of faces, H3@2
00

(!
`
) is a proper subspace of H3@2

0
(!

`
).

However, the theory can be easily extended to this case.

We denote by H~1@2E (!
`
), H~1@2E,00

(!
`
) and H~3@2 (!

`
) the dual spaces (the last one is the dual

space of H3@2
0

(!
`
)). The duality products read S ) , )TE,1@2,!`

, S ) , )TE,1@2,00,!`
and S ) , )T

3@2,!`
,

respectively.
We are now in the position to de"ne the di!erential operators we do need for our theory:

Proposition 3.13. The operators

+!
`
: H3@2 (!

`
)PH1@2E (!

`
) +!

`
:H3@2

0
(!

`
)PH1@2E,00

(!
`

) (29)

are linear and continuous.

The operator div!
`
:H~1@2E,00

(!
`
)PH~3@2 (!̀ ) can be de"ned as the adjoint of !+!

`
by the

following:

Sdiv!
`
k, vT

3@2,!`
"!Sk, +!

`
vTE,1@2,00,!`

k3H~1@2E,00
(!

`
), v3H3@2

0
(!

`
) (30)

Using (30), De"nition 3.3 and recalling that for any u3H3@2
0

(!
`

), u8 3H3@2 (!), we have that

∀k3H~1@2E (!), div! (k)D!
`
"div!

`
(kD!

`
) in H~3@2 (!

`
)

In the same way and with self-explanatory notations, we can de"ne the operators
curl!

`
: H3@2(!

`
)PH1@2o (!

`
), curl!

`
: H3@2

0
(!

`
)PH1@2o,00

(!
`

) and its adjoint curl!
`
:

H~1@2o,00
(!

`
)PH~3@2 (!

`
). Accordingly, it holds

∀k3H~1@2o (!), curl! (k)D!
`
"curl!

`
(kD!

`
) in H~3@2 (!

`
)
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The following trace theorem can now be stated:

Proposition 3.14. Let

H~1@2E (div!
`
, !

`
) :"Mk3H~1@2E (!

`
): div!

`
k3H~1@2 (!

`
)N (31)

H~1@2o (curl!
`
, !

`
) :"Mk3H~1@2o (!

`
): curl!

`
k3H~1@2 (!

`
)N (32)

Moreover, let H1 (R!
`
) denote the standard H1 space on the Lipschitz manifold R!

`
; H~1 (R!

`
) is

its dual space (with ¸2 (R!
`
) as pivot) and S ) , ) T1,R!

`
is the corresponding duality pairing.

Let the operators tl : H~1@2E (div!
`
, !

`
)WD ()1 )D!

`
PH~1 (R!

`
) and tq: H~1@2o (curl!

`
, !

`
)W

D()M )D!
`
PH~1 (R!

`
) be de"ned by the mappings kCk ) l

#DR!
`

and kCk ) s
#DR!

`
, respectively.

They can be extended to linear and continuous operators from H~1@2E (div!
`
, !

`
) and

H~1@2o (curl!
`
, !

`
), respectively.

Moreover, if k3H~1@2E (div!, !), we have that tl (kD!
`
)#t~l (kD!

`
)"0 at R!

`
, where t~l denotes

the same mapping as tl , but on the side !
~

.

Proof. We focus our attention only on the operator tl since a similar proof, carried out by
suitably replacing spaces and operators, works for tq. Let u3H~1@2E (div!

`
, !

`
)WD ()1 )D!

`
and

t3H1 (R!
`
). Its extension, which belongs to H3@2 (!

`
), is still denoted by t. The following chain

holds true:

Su, +!
`
tTE,1@2,!`

#Sdiv!
`
u, tT

1@2,!`
"P!

`

(u )+!
`
t#div!

`
ut) dp

"Stlu, tT1,R!
`

(33)

By density, since the left-hand side of (33) is bounded with respect to the norms of t in H3@2 (!
`
)

and of u in H~1@2E (div!
`
, !

`
), the continuity of tl is proved.

The last statement is nothing but a jump relation and its validity comes directly from (33).
h

Let us now set

H
0,!~

(curl, )) :"Mu3H (curl, )): u'nD!
~
"0 in H~1@2

00
(!)N

Theorem 3.15. Let us set

H~1@2E,00
(div!

`
, !

`
) :"Mk3H~1@2E,00

(!
`
): div!

`
k3H~1@2

00
(!

`
)N

H~1@2E (div0!
`
, !

`
) :"Mk3H~1@2E (div!

`
, !

`
): tl (k)"0N

The mapping c`q : H (curl, ))PH~1@2E,00
(div!

`
, !

`
) and its restriction c`,0q : H

0,!~
(curl, ))P

H~1@2E (div0!
`
,!

`
) de"ned as uCcq (u)D!

`
are linear and continuous.

Proof. Let u3H (curl, )). The fact that c`q (u)3H~1@2E,00
(!

`
) and c`,0q (v)3H~1@2E (!

`
) is straight-

forward from Theorem 3.9 and the standard results in functional analysis.
We have only to analyse the divergence operators. Applying the same reasoning as in
the proof of Theorem 3.9, and recalling de"nition (30) of div!

`
, one can prove

div!
`
(c`q (u))"curl u ) nD!

`
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Now, by a standard argument, for any u3H (curl, )), curl u ) nD!
`
3H~1@2

00
(!

`
). Moreover, if

u3H
0,!~

(curl, )), c`q (u) is replaced by c`,0q (u) and we have that

div! (
C'
c`,0q (u))"curl u ) nD! in H~1@2 (!) and

div!
`
(c`,0q` (u))"curl u ) nD!

`
in H~1@2

00
(!

`
) (34)

where )I denotes the trivial extension. Now, curl u ) nD!
`
3H~1@2 (!

`
) since curl u ) nD!

~
"0 and we

deduce that div!
`
(c`,0q (u))3H~1@2 (!

`
). Using now the last statement of Proposition 3.14, with

the "rst equality in (34), we deduce that tl (c`,0q (u))"0. h

The corresponding theorem related to the tangential components trace mapping is the
following:

Theorem 3.16. Let us set

H~1@2o,00
(curl!

`
, !

`
) :"Mk3H~1@2o,00

(!
`
): curl!

`
k3H~1@2

00
(!

`
)N

H~1@2o (curl0!
`
, !

`
) :"Mk3H~1@2o (curl!

`
, !

`
): tq (k)"0N

The mappings n`q : H (curl,))PH~1@2o,00
(curl!

`
, !

`
) and its restriction n`,0q :H

0,!`
(curl, ))P

H~1@2o (curl0!
`
,!

`
) de"ned as uCnq (u)D!

`
are linear and continuous.

4. INTEGRATION BY PARTS FORMULAE

4.1. General case

First of all, let us set

H
0
(div, )) :"Mu3L2 ()): div u3¸2 ()) u ) n D!"0N

H
0
(div 0, )) :"Mu3H

0
(div, )): div u"0N

The following Hodge decomposition holds for every function u3H(curl, ))
[2, Section 3.5]:

u"'#+p with '3H
0
(div 0, )) and curl'"curl u (35)

where p is uniquely de"ned up to a constant as the solution of the following variational problem:
Find p3H1 ())/R such that

P) +p )+qd)"P)u )+qd) ∀q3H1 ())/R

By de"nition, ' belongs to Y"H (curl, ))WH
0
(div 0, )) and we use an ad hoc regularity result.

Owing to the splitting of Y (see Remark 4.2) and a regularity result drawn from [11, Corollary
23.5], if ) is a curvilinear bounded polyhedron, one has Y6H1@2`p ()), for some p'0. p is the
maximum exponent for the regularity of the Neumann problem associated with the Laplace
equation in ).
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Let us start by considering two vector "elds, u, v3H(curl, )) such that their decompositions (35)
read

u"'#+p, v"(#+q with ', (3Y, p, q3H2 ())

At the end, we shall use a density argument to get rid of the requested extra-regularity. For these
H1@2`p-regular vector "elds, there clearly holds

P) Mcurl v ) u!v ) curl uN d)"Scq (u),nq (v)Tt
(36)

Now, analysing the term in the right-hand side of (36), using formulae (17) and (18), one has

Scq (u), nq (v)Tt
"Scq ('), nq (()T

t
#Scq ('), +!qTE,1@2,!#Snq ((), curl!pTo,1@2,! (37)

From (37), we deduce

P) Mcurl v ) u!v ) curl uNd)

"Scq ('), nq (()T
t
!Sdiv! (cq (')),qT

3@2,!#Scurl! (nq (()), pT
3@2,! (38)

Applying now Theorems 3.9 and 3.10 to the functions ' and (, respectively, one gets that both
div! (cq(')) and curl! (nq (()) belong to H~1@2 (!). This means that the H~3@2!H3@2 dualities can
be replaced by the more convenient H~1@2!H1@2 ones. Namely, (38) reads as follows:

P) Mcurl v ) u!v ) curl uNd)

"Scq('), nq (()T
t
!Sdiv! (cq(')), qT

1@2,!#Scurl! (nq(()), pT
1@2,! (39)

By the standard argument of the density of H2 ()) in H1 ()), the integration by parts formula
holds for any "elds u, v3H (curl, )).

It is then possible to de"ne the following duality for any u, v3H (curl, )):

cScq(u), nq(v)Tn"Scq('),nq (()T
t
!Sdiv! (cq (')),qT

1@2,!#Scurl! (nq(()), pT
1@2,! (40)

The three dualities on the right-hand side are well de"ned and continuous with respect to the
H(curl, )) norms.

Remark 4.1. The duality

(H~1@2E (div!,!))@"H~1@2o (curl!,!)

where L2
5
(!) is the pivot space is proven in the companion paper [8].

Remark 4.2. The de"nition of duality (40) between the tangential trace and tangential compo-
nents of vectors "elds which belong to H (curl, )) relies on decomposition (35). Let us mention
that the orthogonality of this decomposition does not play a key role in the de"nition of (40).

Let us consider, for example, the decomposition in &regular' and &singular' part inferred from
[6]. Starting from (35), ' belongs to the space Y. According to Proposition 6.1 of [6], in the
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AOne simply has to resume the proof given in [6] for a Lipschitz polyhedron, and use in particular the theory developed in
[5] which is valid in the curvilinear case.

general case of a curvilinear Lipschitz polyhedron,u if N
n

is the orthogonal of * (Mk3H2());
Rk/RnD!"0N) in ¸2 ()) (cf. [11, p. 198] and S

n
:"Mj3H1()): *j3N

n
, Rj/RnD!"0N, one has

Y"(YWH1 ()))=+S
n
. Therefore,

&'
R
3YWH1 ()), &s3S

n
such that '"'

R
#+s

Thus, if p@ :"p#s, one can write

∀u3H (curl, )), &'
R
3YWH1 ()), p@3H1 ()) such that u"'

R
#+p@ (41)

Let then u"'
R
#+p@ and v"(

R
#+q@ with '

R
, (

R
3YWH1 ()) and p@, q@3H1 ()), duality (40)

can be equivalently de"ned as

cScq (u), nq(v)Tn"Snq ((R
), cq ('R

)T
t
!Sdiv! (cq ('R

)), q@T
1@2,!#Scurl! (nq((R

)), p@T
1@2,!

4.2. Partially vanishing xelds

Let us split the boundary ! in !
`

an open arbitrary connected subset with a piecewise smooth
boundary, and !

~
"!C!M

`
. Let

H1
0,!~

()) :"Mu3H1 ()): uD!
~
"0N

H
0,!`

(div, )) :"Mu3H (div, )): u ) nD!
`
"0 in H~1@2

00
(!

`
)N

H
0,!`

(div 0, )) :"H (div 0, ))WH
0,!`

(div, ))

Then, the following Green formulae associated with the spaces H(div, )) and H1 ()) are valid

P) Mdiv uu#u )+uNd)"Su ) n, uT
1@2,00,!`

∀u3H (div, )), u3H1
0,!~

())

P) Mdiv uu#u )+uNd)"Su ) n, uT
1@2,!~

∀u3H
0,!`

(div, )), u3H1 ())

By analogy, we look for the same integration by parts formulae which generalize the Green
formula (39).

As in the previous subsection, we need to introduce Hodge decompositions of the vector "elds
involved. Let u3H(curl, )) and v3H

0,!~
(curl, )). Regarding the "eld u, we consider the decompo-

sition given in (41). For what concerns now the vector "eld v we use another ad hoc Hodge
decomposition. Namely, let Y

m
"H

0,!~
(curl, ))WH

0,!`
(div 0, )). Recall that the following de-

composition holds (see [13, p. 968]): L2 ())"+H1
0,!~

())=H
0,!`

(div 0, )). Therefore,

∀v3H
0,!~

(curl, )), &(3Y
m
, q3H1

0,!~
()) such that v"(#+q (42)

We want now to decompose again the function ( as

("(
R
#+q@, (

R
3H1 ())WH

0,!~
(curl, )), p@3H1

0,!~
())

It is well known that there exist a f3H1 ()) and a p3H1 ()) such that ("f#+p. Since
('n"0 on !

~
, we deduce that f'nD!

~
"!(curl!p)D!

~
. As a consequence, (curl!p)D!

~
3H1@2o (!

~
)
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and, by means of Theorem 3.4, we deduce that actually p3H3@2 (!
~
). It is not hard to see that

there exists a function p
R
3H2 ()) such that pRD!

~
"p. Now, it is enough to take (

R
"f#+p

R
and

p@"p!p
R
.

As a consequence, we have that v3H
0,!~

(curl, )) can be decomposed as
v"(

R
#+q@, (

R
3H1())WH

0,!~
(curl, )) and q@3H1

0,!~
()). Of course, this decomposition is not

orthogonal nor direct but it is the one we need in what follows.
Let us concentrate now on the integration by parts formula and, as in the case of the whole

boundary, let us "rst consider some regularized functions before the application, at the end, of
a suitable density argument.

Let u3H(curl, )) and v3H
0,!~

(curl, )) be two functions such that the following &regularized'
decompositions hold:

u"'
R
#+p@, '

R
3YWH1 ()), p@3H2 ())

v"(
R
#+q@, (

R
3H1 ())WH

0,!~
(curl, )), q@3H2 ())WH1

0,!~
())(43)

Let us denote S ) , )T
t,!`

the scalar product in L2
t
(!

`
). Then one has

P) Mcurl v ) u!v ) curl uNd)"Sc`q (u), n`,0q (v)T
t,!`

(44)

Now, analysing the term in the right-hand side of (44), using decomposition (43), similarly as in
the case of the whole boundary, one has

Sc`q (u), n`,0q (v)T
t,!`

"Sc`q ('
R
), n`,0q ((

R
)T

t,!`

#Sc`q ('
R
), +!

`
q@TE,1@2,00,!`

#Sn`,0q ((
R
), curl!

`
p@To,1@2,!`

In particular, passing now to the adjoint operators in the last two duality pairings, using
Theorems 3.15 and 3.16 for c`q ('

R
) and n`,0q ((

R
), and by standard manipulations, the following

duality can be de"ned:

c,00,!`
Sc`q (u), n`,0q (v)Tn,!`

:"Sc`q ('
R
), n`,0q ((

R
)T

t,!`

!Sdiv!
`
(c`q ('

R
)), q@T

1@2,00,!`
#Scurl!

`
(n`,0q ((

R
)), p@T

1@2,!`
(45)

Of course, the following integration by parts holds ∀u3H(curl, )), v3H
0,!~

(curl, )):

P) Mcurl v ) u!v ) curl uNd)"c,00,!`
Sc`q (u), n`,0q (v)Tn,!`

(46)

Remark 4.3. As in the previous subsection, we would like to de"ne the duality also by means of
the orthogonal, standard Hodge decomposition. Let again u3H(curl,)), v3H

0,!~
(curl,)). u is

decomposed by means of (35) and v by means of (42).
Unfortunately, the de"nition of duality (45) by means of the above decompositions can be given

in the case of regular domains but not in the case of a (curvilinear) Lipschitz polyhedron. In the
latter case, the regularity results associated with the space Y

m
is only Y

m
6H1@4`g ()) for some

positive g (see [13, 11]). In particular, this means that the L2
t
(!

`
) scalar product between c`q (')

and n`,0q (()*or any other duality product*is not allowed anymore.
However, a &mixed' formulation involving (41) and (42) still works.
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