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Abstract This paper is the second part of a threefold article, aimed at solving
numerically the Poisson problem in three-dimensional prismatic or axisymmetric
domains. In the first part of this series, the Fourier Singular Complement Method
was introduced and analysed, in prismatic domains. In this second part, the FSCM
is studied in axisymmetric domains with conical vertices, whereas, in the third part,
implementation issues, numerical tests and comparisons with other methods are
carried out. The method is based on a Fourier expansion in the direction parallel
to the reentrant edges of the domain, and on an improved variant of the Singu-
lar Complement Method in the 2D section perpendicular to those edges. Neither
refinements near the reentrant edges or vertices of the domain, nor cut-off functions
are required in the computations to achieve an optimal convergence order in terms
of the mesh size and the number of Fourier modes used.

1 Introduction

The Singular Complement Method (SCM) was originally introduced by Assous
et al. [6,7], for the 2D static or instationary Maxwell equations without charges. It
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was then extended [4,5] to the fully axisymmetric case, i.e. axisymmetric domains
and data, with or without charges. The SCM has been extended in [11] to the 2D
Poisson problem. As noted in [12], further extensions to the 2D heat or wave equa-
tions, or to similar problems with piecewise constant coefficients, can be obtained
easily. Methodologically speaking, the SCM consists in adding some singular test
functions to the usual P1 Lagrange FEM so that it recovers the optimal H 1-con-
vergence rate, even in non-convex domains. In the fully axisymmetric case, one
may simply add one singular test function per reentrant edge, and one per conical
vertex of sufficiently large aperture.

There exist a couple of numerical methods in the literature for accurately solv-
ing 2D Poisson problems in non-convex domains. The SCM is clearly different
from (anisotropic) mesh refinement techniques [20,16], and can be applied effi-
ciently to instationary problems (see Remark 4.1 of [12]), since it does not need
the refinements of the mesh and thus large time steps may be allowed. However
the anisotropic mesh refinement methods have one advantage: they require only a
partial knowledge of the most singular part of the solution.

The numerical solution of 3D singular Poisson problems is quite different from
the 2D case, and much more difficult. This is a relatively new field of research: most
approaches rely on anisotropic mesh refinement, see for instance [16,17] and Refs.
therein. To our knowledge, this series of papers is the first attempt to generalize
the SCM for three-dimensional singular Poisson problems.

The rest of the paper is organised as follows. In the next Section, we define
the geometry of the axisymmetric domain �, and the suitable framework for the
study of the Poisson problem in � using a Fourier expansion with respect to the
rotational angle θ , namely, weighted Sobolev spaces over the meridian section ω.
This suggests a framework for building the Fourier Singular Complement Method
(FSCM) for accurately solving the Poisson problem, using a Fourier expansion
in θ , and an improved variant of the Singular Complement Method [11] in ω. In
Section 3, we study theoretically this variant of the SCM, based on a regular-sin-
gular splitting of the solution uk to the 2D problem (7–8). The main feature of the
splitting is that it is chosen independently of the Fourier index k as soon as |k| ≥ 2;
this independence is important, and very helpful, from the computational point
of view. Section 4 presents a few results of finite element theory in the weighted
Sobolev spaces. In Section 5, the SCM is considered from a numerical point of
view, to approximate uk accurately, viā the discretization of the splitting. In the
Section 6, we build the numerical algorithms which define the FSCM, and we show
that it has the optimal convergence of orderO(h+N−1), where h is the 2D mesh
size and N is the number of Fourier modes used.

2 Poisson problem in axisymmetric domains

2.1 Geometric setting and notations

In this article, we consider an axisymmetric domain �, generated by the rotation
of a polygon ω around one of its sides, denoted γa . The boundary of ω is hence
∂ω = γa ∪ γb, where γb generates the boundary � of�. Thus,� can be described
as:

� = ω × S1 ∪ γa. (1)
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The natural cylindrical coordinates will be denoted by (r, θ, z). The geometrical
singularities that may occur on � are circular edges and conical vertices, which
correspond to off-axis corners of γb and to its extremities. Figure 1 precises the
various notations associated to these singularities; a more complete description of
the geometry of ω can be found in [3,4].

The problem under consideration is once more the homogeneous Dirichlet

problem: Find u ∈
◦
H 1(�) such that

−�u = f in �, u = 0 on �, (2)

with f ∈ L2(�). Non-homogeneous Dirichlet boundary conditions, or (non-)
homogeneous Neumann boundary conditions can be handled in exactly the same
manner.

As will appear in the sequel, the problem (2) will be singular, i.e. its solution
will generically not be in H 2(�)—as it would be the case in a regular or convex
domain—iff there are reentrant edges or sharp vertices in �. Sharp vertices are
defined by the condition (see Figure 1):

νc <
1

2
, where: νc

def= min

{
ν > 0 : Pν

(
cos

π

β

)
= 0

}
, (3)

and Pν denotes the Legendre function. This is satisfied iff π/β > π/β� � 130◦48′.
From now on, we shall assume that there is exactly one reentrant edge e (of aperture
π/α, with 1/2 < α < 1) and one sharp vertex c, and we shall omit the superscript
c in νc.

Other notations. We denote by rmax the supremum of the coordinate r on ω, and
by α0 and α1 two fixed numbers such that

1/2 < α0 < α and 1/2 < α1 < min(α, ν + 1/2).

ρ

ωe

γ
a

φ0

z

r

π/α

ea

M φ

Fig. 1 Notations for the geometrical singularities; e: reentrant edge; c: conical vertex
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We also introduce 2D neighbourhoods ωe and ωc of e and c respectively. They
stay away from all sides of ∂ω except the two ones that meet at the relevant corner.
To them we associate cutoff functions denoted η(ρ), which vanish outsideωe orωc
and depend only on the distance to the corner.

2.2 Fourier expansions

The functions defined on � will be characterised through their Fourier series in θ ,
the coefficients of which are functions defined on ω, viz.

f (r, θ, z) = 1√
2π

+∞∑
k=−∞

f k(r, z) eikθ ,

and the truncated Fourier expansion of f at order N is:

f [N ](r, θ, z) = 1√
2π

N∑
k=−N

f k(r, z) eikθ .

The regularity of the function f in the scale Hs(�) can be characterised by that
of the (f k)k∈Z in certain spaces of functions defined over ω [10, §§II.1 to II.3],
namely:

f ∈ Hs(�), s ≥ 0 ⇐⇒ ∀k ∈ Z, f k ∈ Hs
(k)(ω),

where theHs
(k)(ω) are defined in turn with the help of two different types of weighted

Sobolev spaces. We shall now give these definitions for the values of s and k chiefly
needed in this article. The notations for the various spaces are the same as in [10],
where the interested reader can find the proofs and the most general versions of
the subsequent statements.

First, for any τ ∈ R we consider the weighted Lebesgue space

L2
τ (ω)

def=
{
w measurable on ω :

∫∫
ω

|w(r, z)|2 rτ dr dz < ∞
}
.

This space, as well as all the spaces introduced in this article, is a Hermitian space
of functions with complex values. The scale

(
Hs
τ (ω)

)
s≥0 is the canonical Sobolev

scale built upon L2
τ (ω), defined for s ∈ N as:

Hs
τ (ω)

def= {
w ∈ L2

τ (ω) : ∂�r ∂
m
z w ∈ L2

τ (ω), ∀�,m s.t. 0 ≤ �+m ≤ s
}
,

and by interpolation for s /∈ N. We denote by ‖ · ‖s,τ and | · |s,τ the canonical norm
and semi-norm of Hs

τ (ω).
A prominent role will be played by L2

1(ω); its scalar product is denoted (·|·),
without any subscript. Upon this space, we build another, dimensionally homoge-
neous Sobolev scale

(
V s1(ω)

)
s≥0, defined as:

V s1(ω)
def= {w ∈ Hs

1(ω) : r�+m−s ∂�r ∂
m
z w ∈ L2

1(ω), ∀�,m s.t. 0 ≤ �+m ≤ �s�} ,
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where �s� denotes the integral part of s. One can check that the general definition
reduces to

V s1(ω) =
{
w ∈ Hs

1(ω) : ∂jr w
∣∣
γa

= 0, for 0 ≤ j < s − 1
}
,

when s is not an integer; while for the first values of s ∈ N, we have:

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H 1

1(ω) ∩ L2
−1(ω), V 2

1(ω) = H 2
1(ω) ∩H 1

−1(ω).

The canonical norm of V s1(ω) is denoted by ||| · |||s,1; it is equivalent to | · |s,1 except
for s ∈ N

∗.
We are now ready to define the most useful spaces of Fourier coefficients.

Lemma 2.1 The spaces Hs
(k)(ω), for s = 0, 1, 2, are characterised as follows.

H 0
(k)(ω)=L2

1(ω),∀k, H 1
(0)(ω)=H 1

1(ω), H 1
(k)(ω)=V 1

1(ω), ∀|k| ≥ 1 ;
H 2
(0)(ω)=

{
w ∈ H 2

1(ω) :∂rw ∈ L2
−1(ω)

}
, H 2

(±1)(ω)=
{
w ∈ H 2

1(ω) :w|γa =0
}
,

H 2
(k)(ω)=V 2

1(ω), ∀|k| ≥ 2.

The definition for the other values of s will be given when needed.

Remark 2.1 The scalesHs
1(ω), V

s
1(ω), andHs

(k)(ω) (for any k) can be extended to
negative values of the exponent s, by the usual duality procedure with respect to
the pivot space, which is L2

1(ω) in all cases.

In order to handle the Dirichlet condition, we introduce the subspaces
�
H 1

1(ω),◦
V 1

1(ω),
◦
H 1

−1(ω) of functions which vanish on γb. The difference in the notation is
to remind that the functions of V 1

1(ω) and H 1
−1(ω) ⊂ V 1

1(ω) automatically vanish
on γa in a weak sense [18, Prop. 4.1]. This difference is of course important when
it comes to discretisation by P1 finite elements.

Similarly to the prismatic case, we introduce the anisotropic Sobolev spaces

h1(�)
def= H 1(S1, L2

1(ω)) = {f ∈ L2(�) : ∂θf ∈ L2(�)} ;
h2(�)

def= H 2(S1, L2
1(ω)) = {f ∈ h1(�) : ∂2

θ f ∈ L2(�)} ;
they are identical to the H 0,s(�) of [10, Eq. (II.4.16)], for s = 1, 2.

The next Lemma summarises the completeness results whose proofs can be
found in [10, Chapter II] or [15].

Lemma 2.2 The following characterisations hold:

f ∈ L2(�) ⇐⇒ ∀k ∈ Z, f k ∈ L2
1(ω), and:

+∞∑
k=−∞

∥∥f k∥∥2

0,1 < ∞ ; (4)

f ∈ hs(�) ⇐⇒ ∀k ∈ Z, f k ∈ L2
1(ω), and:

+∞∑
k=−∞

k2s
∥∥f k∥∥2

0,1 < ∞ ; (5)
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and the canonical norms of L2(�) and hs(�) are equal to the square roots of

these sums. Moreover, defining V(k) = H 1
(k)(ω)∩

�
H 1

1(ω), viz.
�
H 1

1(ω) for k = 0 and
◦
V 1

1(ω) for the other cases, we have:

f ∈
◦
H 1(�) ⇐⇒ ∀k ∈ Z, f k ∈ V(k) and |f |2H 1(�) =

+∞∑
k=−∞

∥∥f k∥∥2

(k)
< ∞, (6)

where the norm ‖w‖2
(k) = |w|21,1 + k2 ‖w‖2

0,−1.

As we did in the prismatic framework, we define the relation operators �
and ≈ as follows. a � b means a ≤ C b, where C is a constant which depends
only on the geometry of the domain ω, and not on the mesh size h, the Fourier
order k, or the data f of the Poisson problem. a ≈ b denotes the conjunction of
a � b and b � a.

2.3 Singular Poisson problem in 2D

Denoting by uk and f k the Fourier coefficients of u and f in (2), we see [10, §II.4]
that for any k, uk is solution to the following singular Poisson problem in ω:
Find uk such that

Aku
k def= −�ku

k = f k in ω, where: �k
def= ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
− k2

r2
, (7)

uk = 0 on γb. (8)

A special role will be played by�0, whose values are the traces in a meridian half-
plane of the Laplacian of axisymmetric functions. We remark that the operators�k

have real coefficients, hence the real and imaginary parts of the solution to (7–8)
correspond to the real and imaginary parts of the data. So, in practice, it will be
sufficient to consider problems with real data and solutions.

The variational space associated to (7–8) is the V(k) defined in Lemma 2.2. The
variational formulation reads [10, §II.4.a]:

ak
(
uk, v

) = (
f k | v) , ∀ v ∈ V(k), (9)

where ak is now the sesquilinear form defined by the norm ‖ · ‖(k), viz.

ak(u, v) =
∫∫

ω

[
r ∇u · ∇v + k2

r
u v

]
dω.

(In this text, ∇ will always denote the 2D gradient in the (r, z) plane).
Like in the prismatic case, we have the following results.

Lemma 2.3 Let f ∈ L2(�), and u be the solution to (2). Then
(
u[K]

)
K

converges
to u in H 1(�), and

(
�u[K]

)
K

converges to −f in L2(�).

Proof Similar to [12, Corollary 3.1]. ��
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Lemma 2.4 Let f ∈ L2(�), and u be the solution to (2). Then ∂θu ∈ H 1(�).

Proof One may follow the lines of [12, Corollary 3.2], using the a priori estimates
of [15, Thm 4.2] to check that

(
∂r∂θu, r

−1 ∂θ∂θu, ∂z∂θu
) ∈ L2(�)3. ��

Besides the variational space, we shall consider, for each Fourier mode k:

• the natural space, which is the one to which uk belongs, i.e. the domain of the
operator Ak:

D(Ak)
def=
{
w ∈ V(k) = H 1

(k)(ω) ∩
�
H 1

1(ω) : Akw ∈ L2
1(ω)

}
; (10)

• the regularised space, i.e. the one to which the solution uk would belong if the

domain � were regular or convex, namely H 2
(k)(ω) ∩

�
H 1

1(ω).

In [10, Thm II.3.1], it is established that the regularised space no longer depends
on k as soon as |k| ≥ 2; in Theorem 3.2, we will show that the same occurs for
the natural space. This suggests that the mode 2 can serve as the “fundamental
mode” for the high-|k| modes, just like the mode 0 does in the prismatic case. In
contradistinction to the latter, the modes 0 and ±1 have to be treated separately,
with their own singular functions.

3 Regular-singular decompositions in the 2D domain ω: theoretical study

We now establish the regular-singular decompositions, for the various Fourier
modes k, of the solution uk to (7–8), which will be effectively used in the numerical
method. This parallels the work exposed in the companion paper [12, §4].

We shall need the following integration by parts formulae.

Theorem 3.1 For any u, v ∈ H 1
1(ω) such that �0v ∈ L2

1(ω), there holds:

∫∫
ω

{u�0v + ∇u · ∇v} r dω =
∫
γb

u
∂v

∂ν
r dγ. (11)

For any w ∈
◦
H 1

−1(ω) such that �0w ∈ L2
1(ω), there holds:

�
∫∫

ω

−
{
w

r2
�0w

}
r dω = ‖∇w‖2

0,−1 − 2 ‖w‖2
0,−3. (12)

Proof Eq. (11) is the expression, in a meridian half-plane, of the usual Green for-
mula applied to axisymmetric functions. To prove (12), we first note that there
holds, in the sense of distributions in ω:

∇w · ∇
(
w

r2

)
= |∇w|2

r2
− 2w

r3

∂w

∂r
.
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But w ∈ H 1
−1(ω) implies w ∈ L2

−3(ω) [3, Lemma 4.9], i.e. r−2w ∈ L2
1(ω); so the

above function is integrable with respect to the measure r dω, and we can apply (11)
with u = r−2w and v = w:

I1
def=
∫∫

ω

−
{
w

r2
�0w

}
r dω =

∫∫
ω

∇w · ∇
(
w

r2

)
r dω

=
∫∫

ω

|∇w|2
r2

r dω − 2
∫∫

ω

(
1

r

∂w

∂r

) (
w

r2

)
r dω

def= ‖∇w‖2
0,−1 − 2 I2.

Now, we treat I2 by the usual integration by parts formula of order one:
∫∫

ω

[
∂w

∂r

w

r2
+ w

∂

∂r

w

r2

]
dω =

∫
γ

w
w

r2
νr dω = 0

∫∫
ω

[
∂w

∂r

w

r2
+ w

r2

∂w

∂r
+ |w|2

(
− 2

r3

)]
dω = 0

2 �I2 − 2 ‖w‖2
0,−3 = 0.

Hence, �I1 = ‖∇w‖2
0,−1 − 2 ‖w‖2

0,−3. ��

3.1 Modes |k| ≥ 2.

From [10, §II.4], we know the following facts. The solution uk to (7–8) is regular
everywhere except in the neighbourhood of the reentrant edge, and it can be written
as:

uk = uk
R

+ λk S
e
k , with:

{
uk
R

∈ H 2
(k)(ω) ∩

�
H 1

1(ω) = V 2
1(ω) ∩

◦
V 1

1(ω),

Sek(ρ, φ) = η(ρ) e−|k| ρ ρα sin(αφ).
(13)

As a first consequence, we have the following

Theorem 3.2 Let w ∈ D(Ak). Then:

• w has a V 2
1 regularity near the axis, hence w ∈

◦
H 1

−1(ω) ⊂ L2
−3(ω), and both

�0w and r−2w are in L2
1(ω).• w has an H 1+α0 regularity near the reentrant edge, so its global regularity

is w ∈ V 1+α0
1 (ω); and there holds: |||w|||1+α0,1 ≤ C(k) ‖�kw‖0,1.

In close analogy to the orthogonal decomposition ofL2(ω) introduced by Gris-
vard [14, p. 45], we have:

L2
1(ω) = �2[H 2

(2)(ω) ∩
◦
V 1

1(ω)]
⊥⊕ N2, (14)

where N2 is a space of singular harmonic functions defined by

N2 = {
p ∈ L2

1(ω) : �2p = 0 in ω, p = 0 on each side of γb
}
.
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Here, as well as in the subsequent definitions of N1 and N0, the boundary condi-
tion on the sides of γb is understood in the suitable space, which is the trace in a
meridian half-plane of the space H̆ (�i) defined in [3, Definition 5.4]. Following
the same line of proof as in [4, §3], it is not difficult to establish that the dimension
of N2 is equal to the number of off-axis re-entrant corners in ω, i.e. in our case
dimN2 = 1, and N2=span{p2

s }, where p2
s can be chosen as:

p2
s = Se + p2

R
, with:

{
p2
R

∈
◦
V 1

1(ω),

Se(ρ, φ) = η(ρ) ρ−α sin(αφ).
(15)

Similarly to [12, §4], we define ϕ2
s as the element of

◦
V 1

1(ω) which solves the
Poisson problem

−�2ϕ
2
s = p2

s in ω . (16)

Then by the decomposition (14), we can split the solution uk to (7–8) as

uk = ũk + ckϕ
2
s , (17)

where ũk ∈ H 2
(2)(ω) ∩

◦
V 1

1(ω) = H 2
(k)(ω) ∩

�
H 1

1(ω), and is called the regular part
of uk . How is this decomposition related to (13) ? Applying (13) to ϕ2

s itself gives:
ϕ2
s = ϕ2

R
+ δ2 Se2; observing that all the Sek have the same principal part, we deduce

uk
R

= ũk + ck ϕ
2
R
, and λk = ck δ

2. Then, using the orthogonality relation (14) we
infer:

δ2 =
∥∥p2

s

∥∥2
0,1(−�2S
e
2 | p2

s

) .
Calculating this scalar product is rather tedious but can be done using (15) and
(11)—modified so as to avoid the singularity. We find:

λk

ck
= δ2 = 1

aπ

∥∥p2
s

∥∥2

0,1 , (18)

where a = r(e) is the distance from the reentrant edge to the axis (see Fig. 1).
The following lemma summarises some a priori estimates on uk and ck .

Lemma 3.1 Let uk be the solution to the Poisson problem (7–8), then we have the
following a priori estimates:

k2 ‖uk‖0,−1 ≤ rmax ‖f k‖0,1 , k |uk|1,1 ≤ rmax√
2

‖f k‖0,1 , (19)

(
k2 − 2

) ‖uk‖0,−3 ≤ ‖f k‖0,1 ,
(
k2 − 2

)1/2 |uk|1,−1 ≤ 1√
2
‖f k‖0,1 , (20)

‖�0u
k‖0,1 ≤ 2 ‖f k‖0,1 , (21)

|ck| � kα−1 ‖f k‖0,1 (22)∣∣∣∣∣∣uk∣∣∣∣∣∣1+α0,1
≈ |uk|1+α0,1 � kα0−1 ‖f k‖0,1 . (23)



592 P. Ciarlet et al.

Proof The variational formulation (9) with v = uk gives:

|uk|21,1 + k2 ‖uk‖2
0,−1 ≤ ‖f k‖0,1 ‖uk‖0,1 ≤ rmax ‖f k‖0,1 ‖uk‖0,−1 ,

this proves the first estimate in (19). Then applying theYoung inequality, we further
obtain

|uk|21,1 + k2 ‖uk‖2
0,−1 ≤ rmax

2

[
rmax

k2
‖f k‖2

0,1 + k2

rmax
‖uk‖2

0,−1

]
,

which leads to the H 1
1 semi-norm estimate in (19). Similarly, multiplying (7) by

r−2 uk and using (12) yields:

|uk|21,−1 + (
k2 − 2

) ‖uk‖2
0,−3 ≤ ‖f k‖0,1 ‖uk‖0,−3 ,

and we obtain the two estimates in (20) by a similar reasoning. Then (21) imme-
diately follows from �0u

k = f k − k2 r−2 uk .
The formula (18) implies: |ck| ≈ |λk|; thus, the estimate (22) is clearly equiv-

alent to: |λk| � kα−1. This, in turn, can be obtained by following the lines of [14,
§2.5.2] or [4, §5.1]. As a matter of fact, the latter reference shows that, away from
the axis, the weights in the Sobolev spaces and the exact form of the modified
Laplacian under consideration are of no importance.

Now, setting f k
R

def= −�k

(
uk − ck ϕ

2
s

)
, i.e.

f k
R

= −�0u
k

R
+ k2

r2
uk
R
, (24)

one concludes, like in the above references, that
∥∥f k

R

∥∥
0,1

�
∥∥f k∥∥0,1. Expanding

the squared norm of the equality (24) and using (12) then yields:
∥∥�0u

k

R

∥∥2

0,1
+ 2k2

∣∣uk
R

∣∣2
1,−1

+ (k4 − 4k2)
∥∥uk

R

∥∥2

0,−3
�
∥∥f k∥∥2

0,1 . (25)

On the other hand, there holds: uk
R

∈ H 2
(0)(ω) ∩

�
H 1

1(ω), and within this space the
canonical norm of H 2

(0)(ω) is equivalent to the norm ‖�0w‖0,1 [4, Lemma 4.7].
So, we have both

∣∣uk
R

∣∣
2,1

�
∥∥f k∥∥0,1 and

∣∣uk
R

∣∣
1,1

� k−1
∥∥f k∥∥0,1; and we obtain

by interpolating in the scale Hs
1(ω) that:

∣∣uk
R

∣∣
1+α0,1

� kα0−1
∥∥f k∥∥0,1. We then

derive (23) by adapting the proof of Lemma 4.1 of [12]. ��
Lemma 3.2 The regular part ũk and the singularity coefficient ck in (17) are given
as the unique solution of the coupled system:

ak(ũ
k, v)+ ck ak(ϕ

2
s , v) = (

f k | v) , ∀v ∈
◦
V 1

1(ω) , (26)

(‖p2
s ‖2

0,1 + µ
[|ϕ2

s |21,−1 + 2 ‖ϕ2
s ‖2

0,−3

])
ck + µ

(
ũk | p2

s

) = (
f k | p2

s

)
, (27)

where the symbolµ
def= k2 −4. And ũk and ck have the following stability estimates:

‖ũk‖(k) � k ‖f k‖0 , |ck| ≤ 2
‖f k‖0,1

‖p2
s ‖0,1

,
∣∣∣∣∣∣ũk∣∣∣∣∣∣2,1 � ‖f k‖0,1 .
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We omit the details of the proof, which is very similar to that of Lemma 4.2 of [12].

It makes use of the result:
(
r−2 ϕ2

s

∣∣∣ p2
s

)
= |ϕ2

s |21,−1 + 2 ‖ϕ2
s ‖2

0,−3, which directly

follows from (12) and (16), as p2
s and ϕ2

s are real. The representation formula for
the singularity coefficient is:

ck =
(
f k − (µ/r2) A−1

k f
k

∣∣∣ p2
s

)
‖p2

s ‖2
0,1

. (28)

The scalar product
(
r−2 A−1

k f
k | p2

s

)
in (28) is defined thanks to Theorem 3.2.

We shall see—and this will be of practical relevance—that it can be written as(
A−1
k f

k | r−2 p2
s

)
, i.e.p2

s ∈ L2
−3(ω). This is a consequence of the following lemma.

Lemma 3.3 The dual singularity p2
s is of V 2

1 regularity near the axis. It admits the
following splitting:

p2
s = p̃2 + p2

P
, p̃2 ∈ V 1

1(ω), p2
P

=
( r
a

)2
ρ−α sin(αφ). (29)

Similarly, the primal singularity ϕ2
s can be represented as:

ϕ2
s = ϕ̃2 + δ2 ϕ2

P
, ϕ̃2 ∈ V 2

1(ω), ϕ2
P

=
( r
a

)2
ρα sin(αφ). (30)

Proof Let 0 < a′′ < a′ < a; we consider a cut-off function χ such that χ(r) = 1
for r ≤ a′′ andχ(r) = 0 for r ≥ a′, as well as the domainω′ = {

x ∈ ω : r(x) < a′}.
This domain has no off-axis reentrant corner (see Figure 1), so there are no singu-
larities of �2, either primal or dual, in ω′.

As we stay away from the reentrant corner, the splitting (15) shows that p2
s ∈

V 1
1(ω

′). Thus, χ p2
s ∈ V 1

1(ω
′) and it vanishes on ∂ω′. Moreover:

�2
(
χ p2

s

) = χ �2p
2
s + ∇χ · ∇p2

s + p2
s �χ + p2

s

r

∂χ

∂r
∈ L2

1(ω
′),

since the first term is identically zero, and the other three are smooth and vanish near
the axis. We conclude from Theorem 3.2, and the absence of primal singularities,
that χ p2

s ∈ V 2
1(ω

′), i.e. p2
s is V 2

1 where χ = 1.
Now, using (see Figure 1):

( r
a

)2
− 1 = (r − a)(r + a)

a2
= 2

a
ρ cos(φ + φ0)+ h.o.t.,

we remark

Se − p2
P

= ρ1−α (g1(φ)+ h.o.t.) ∈ H 1(ωe),

Se2 − ϕ2
P

= ρ1+α (g2(φ)+ h.o.t.) ∈ H 2(ωe),

since the functions g1,2(φ) as well as the higher-order terms (h.o.t.) are smooth.
Moreover, thanks to the factor (r/a)2, p2

P
and ϕ2

P
are of V 2

1 regularity near the axis.
The smoothness of these functions in the rest of the domain yields Se−p2

P
∈ V 1

1(ω),
Se2 − ϕ2

P
∈ V 2

1(ω). This proves (29) and (30). ��
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3.2 Modes k = ±1.

As we can see from Lemma 2.1, the variational space is still
◦
V 1

1(ω); but the reg-
ularised space has changed. Once again, the only singularities are located at the
reentrant edges. Hence, the solution uk to (7–8), with k = ±1, can be split as:

uk = uk
R

+ λk S
e
±1, with:

{
uk
R

∈ H 2
(±1)(ω) ∩

◦
V 1

1(ω) = H 2
1(ω) ∩

◦
V 1

1(ω),

Se±1(ρ, φ) = η(ρ) e−ρ ρα sin(αφ).
(31)

As a consequence of Theorem 3.2, ϕ2
s ∈ D(A1), and the decomposition (17) is still

valid in this case. However, that singular function belongs to a space which appears
too constrained for the modes ±1: it is even better decaying near the axis than the

functions ofH 2
1(ω)∩

◦
V 1

1(ω); moreover, this decay is lost in the discretisation by P1
finite elements. So the representation formula (28), though valid at the continuous
level with µ = −3, is numerically hardly stable and its use would deteriorate the
convergence rate of the SCM.

So, it is better to use singular functions that are adapted for these modes. Let
p1
s be a basis of the dual singular space

N1 = {
p ∈ L2

1(ω) : �1p = 0 in ω, p = 0 on each side of γb
}
,

and ϕ1
s = A−1

1 p1
s . These functions were defined and studied in [5, §4.1], and a

numerical method was defined. We will introduce below (§5.4) a slight modifica-
tion of that method in order to improve the convergence rate. For the moment, we
recall that the function uk admits the splitting

uk = ũk + ckϕ
1
s , (32)

where ũk ∈ H 2
(1)(ω) ∩

�
H 1

1(ω) = H 2
1(ω) ∩

◦
V 1

1(ω). As we are in the “usual” SCM
framework [11], we have the simple representation formula

ck =
(
f k|p1

s

)
‖p1

s ‖2
0,1

, (33)

and the regular part satisfies:

a1(ũ
k, v)+ ck a1(ϕ

1
s , v) = (

f k | v) ∀v ∈
◦
V 1

1(ω) , (34)

From the above considerations easily follow the estimates:

∣∣uk∣∣1,1 �
∥∥f k∥∥0,1 ,

∥∥uk∥∥0,−1 �
∥∥f k∥∥0,1 ,

∥∥�0u
k
∥∥

0,1 �
∥∥f k∥∥0,1 , (35)∣∣uk∣∣1+α0,1

�
∥∥f k∥∥0,1 ,

∣∣∣∣∣∣ũk∣∣∣∣∣∣1,1 �
∥∥f k∥∥0,1 , |ck| �

∥∥f k∥∥0,1 . (36)
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3.3 Mode k = 0.

Now, the variational space is V(0) =
�
H 1

1(ω), and the regularised space isH 2
(0)(ω)∩

V(0), with H 2
(0)(ω) given by Lemma 2.1. Moreover, there is one singularity per

reentrant edge and one per sharp vertex, see [10, §II.4] or [4, §4.4]. The splitting
of u0 with respect to regularity thus becomes:

u0 = u0
R

+ λe0 S
e
0 + λc0 S

c
0, with:



u0
R

∈ H 2
(0)(ω) ∩

�
H 1

1(ω),

Se0(ρ, φ) = η(ρ) ρα sin(αφ),
Sc0(ρ, φ) = η(ρ) ρν Pν(cosφ).

(37)

Once more, there holds: H 2
(0)(ω) ⊂ H 2

(2)(ω); yet, once more, attempting to rep-
resent the singularity at the edge with the help of the function ϕ2

s would imperil
the convergence rate of the numerical method. As a consequence, we shall use the
“natural” singular functions for this mode (see [4,5] for details). The dual singular
space is

N0 = {
p ∈ L2

1(ω) : �0p = 0 in ω, p = 0 on each side of γb
} ;

it is of dimension two, with the basis
{
p0,e
s , p0,c

s

}
given by

p0,e
s = Se + p0,e

R
,

p0,c
s = Sc + p0,c

R
,

}
with:



p0,e
R
, p0,c

R
∈

�
H 1

1(ω),

Sc(ρ, φ) = η(ρ) ρ−ν−1 Pν(cosφ),
(38)

and Se is as in (15). The primal singular functions ϕ0,j
s ∈

�
H 1

1(ω) (j = e, c) are of
course defined as: ϕ0,j

s = A−1
0 p

0,j
s .

Lemma 3.4 The primal singular function ϕ0,j
s admits the splitting

ϕ0,j
s = ϕ0,j

R
+ δ0,j S

j

0 , where: ϕ0,j
R

∈ H 2
(0)(ω) ∩

�
H 1

1(ω), and: (39)

δ0,c = ∥∥p0,c
s

∥∥2

0,1

{
(1 + 2 ν)

∫ π/β

0
Pν(cosφ)2 sin φ dφ

}−1

, (40)

δ0,e = ∥∥p0,e
s

∥∥2

0,1 /(aπ). (41)

Equivalently, p0,j
s and ϕ0,j

s can be represented as

p0,j
s = p̃0,j + p0,j

P
, p̃0,j ∈ H 1

1(ω),

{
p0,c
P

= ρ−ν−1 Pν(cosφ),
p0,e
P

= ρ−α sin(αφ),
(42)

ϕ0,j
s = ϕ̃0,j + δ0,j ϕ0,j

P
, ϕ̃0,j ∈ H 2

1(ω),

{
ϕ0,c
P

= ρν Pν(cosφ),
ϕ0,e
P

= ρα sin(αφ).
(43)

Proof Let us examine first the conical singularity: j = c. The splitting (37) applied
to ϕ0,c

s yields: ϕ0,c
s = ϕ0,c

R
+ δ0,e Se0 + δ0,c Sc0. Using the definitions of p0,c

s and ϕ0,c
s

we deduce ∥∥p0,c
s

∥∥2

0,1 = δ0,e
(−�0S

e
0 | p0,c

s

)+ δ0,c
(−�0S

c
0 | p0,c

s

)
. (44)
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Rewriting the first scalar product in (44) as:(−�0S
e
0 | p0,c

s

) = (−�0S
e
0 | p0,c

R

)+ (−�0S
e
0 | Sc

)
,

we notice that the second term is zero by a support argument. To evaluate the
first term, we remark that −�0p

0,c
R

= �0Sc vanishing near the conical point, is

smooth and belongs to L2
1(ω). So, both Sc0 and p0,c

R
are functions in

�
H 1

1(ω) with
Laplacian �0 in L2

1(ω); and we use (11) twice to obtain:
(−�0S

e
0 | p0,c

R

) = (
Se0 | −�0p

0,c
R

) = (
Se0 | �0Sc

)
,

which again vanishes by a support argument. Finally, the last scalar product in (44)
can be computed e.g. as in [19] to obtain

(−�0S
c
0 | p0,c

s

) = (1 + 2 ν)
∫ π/β

0
Pν(cosφ)2 sin φ dφ,

and (39–40) are proven. This immediately yields (42–43). Similar computations
are carried out for the edge singularity; δ0,e is computed like δ2 above. ��
Lemma 3.5 The solution to −�0u

0 = f 0 can be represented as

u0 = ũ0 + c0,e ϕ
0,e
s + c0,c ϕ

0,c
s , where: ũ0 ∈ H 2

(0)(ω) ∩
�
H 1

1(ω). (45)

The c0,j are given by the representation formulae:

c0,j =
(
f 0 | p0,j

s

)

‖p0,j
s ‖2

0,1

. (46)

Proof As the space of singularities is of dimension two, it is enough to exhibit two
linearly independent functions to have a basis. This is obviously the case of ϕ0,e

s

and ϕ0,c
s , which proves (45). Taking the Laplacian −�0 of this equality and the

scalar product by p0,c
s yields, thanks to the orthogonality property:

(
f 0 | p0,c

s

) = c0,e
(−�0ϕ

0,e
s | p0,c

s

)+ c0,c ‖p0,c
s ‖2

0,1.

Then, using the decomposition (39), we obtain:
(−�0ϕ

0,e
s |p0,c

s

)=δ0,e
(−�0S

e
0|p0,c

s

)
,

which is zero as seen in the proof of Lemma 3.4. Hence (46) for j = c; the case
j = e is treated similarly. ��

Let us state without proof the elliptic equation satisfied by ũ0:

a0
(
ũ0, v

)+ c0,e a0
(
ϕ0,e
s , v

)+ c0,c a0
(
ϕ0,c
s , v

) = (
f 0 | v) , ∀v ∈

�
H 1

1(ω), (47)

and the stability estimates on the various terms in (45):∣∣u0
∣∣
1,1 �

∥∥f 0
∥∥

0,1 ,
∣∣u0
∣∣
1+α1,1

�
∥∥f 0

∥∥
0,1 , (48)∣∣ũ0

∣∣
1,1 �

∥∥f 0
∥∥

0,1 ,
∣∣c0,j

∣∣ �
∥∥f 0

∥∥
0,1 . (49)
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4 Interpolation and projection operators

We consider a regular triangulation of the domain ω, with mesh size h. The space
spanned by P1 finite elements on this triangulation is denoted V h; the subspace of

functions which vanish on the whole of ∂ω is V h◦ = V h ∩
◦
V 1

1(ω); while V h� =
V h ∩

�
H 1

1(ω) is the subspace of functions which vanish only on γb. We introduce
the usual Lagrange interpolation operator �h as well as the weighted Clément
operator Ph. The latter—identical to the operator called �̃0

h in [8, §4]—is a local
projection operator onto P1 in the L2

1 sense, which does not take into account the

nodes of the triangulation which stand on ∂ω. Hence, it maps
◦
V 1

1(ω) onto V h◦ .
We now prove a few results on these operators, in the framework of weighted

Sobolev spaces of fractional order. We begin by a useful density lemma.

Lemma 4.1 V 2
1(ω) ∩

◦
V 1

1(ω) is dense within V 1+α0
1 (ω) ∩

◦
V 1

1(ω) = H
1+α0
1 (ω) ∩

◦
V 1

1(ω).

Proof Let w ∈ V 1+α0
1 (ω) ∩

◦
V 1

1(ω) and ε > 0. The construction of w̃ ∈ V 2
1(ω) ∩

◦
V 1

1(ω) such that ‖w−w̃‖1+α0,1 ≤ ε is decomposed into two steps. The first one will
not be effectively used in this article, since we do not consider arbitrary functions

in V 1+α0
1 (ω) ∩

◦
V 1

1(ω), but only those which belong to D(A2).

Step 1: From H
1+α0
1 (ω) ∩

◦
V 1

1(ω) to D(A2). From [10, Thm II.4.8], we know

that A−1
k is an isomorphism from Hs−1

(k) (ω) to Hs+1
(k) (ω) ∩

�
H 1

1(ω) for s < α. Let

C(s, k) be the norm of this operator. Setting g = −�2w ∈ Hα0−1
(2) (ω) = H

α0−1
1 (ω),

we use the density of H 0
1(ω) within Hα0−1

1 (ω) to construct g′ ∈ L2
1(ω) such

that ‖g − g′‖1−α0,1 < ε/(2C(α0, 2)). Then w′ def= A−1
2 g′ ∈ D(A2) and satisfies

‖w − w′‖1+α0,1 < ε/2.

Step 2: From D(A2) to V 2
1(ω) ∩

◦
V 1

1(ω). There remains to find w̃ ∈ V 2
1(ω) ∩

◦
V 1

1(ω) such that‖w′−w̃‖1+α0,1 < ε/2. SinceD(A2) = [V 2
1(ω)∩

◦
V 1

1(ω)]⊕ span Se2,

this is obviously equivalent to find S̃ ∈ V 2
1(ω)∩

◦
V 1

1(ω) such that ‖Se2 − S̃‖1+α0,1 ≤
ε′, for arbitrary ε′.

We claim that S̃ = Se2 − Sek does the job for k large enough. As a matter of fact,

Se2 −Sek = (|k|−2)ρ1+α sin(αφ)+h.o.t. ∈ H 2(ωe)∩
◦
H 1(ωe); thanks to the cutoff

function η, this gives Se2 − Sek ∈ V 2
1(ω) ∩

◦
V 1

1(ω). Then, it is enough to check that

Sek → 0 strongly in H 1+α0(ωe) as k → +∞.

This is done like in [14, Lemma 5.3.3], by using the Sobolev imbeddingH 1+α0(ωe)
⊂ W 2,p(ωe) with p = 2/(2 − α0); indeed, one calculates ‖Sek‖H 1+α0 (ωe)

� ‖Sek ‖W 2,p(ωe) � k2(α0−α)/(2−α0). ��
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Lemma 4.2 For any w ∈ V 1+α0
1 (ω) ∩

◦
V 1

1(ω), there holds:
∣∣∣∣∣∣w − Phw|||1,1 � hα0 |||w|||1+α0,1, ‖w − Phw‖0,1 � h1+α0 |||w|||1+α0,1. (50)

Proof Assume first that w ∈ V 2
1(ω) ∩

◦
V 1

1(ω). From [8, Thm 4.2], we know

h−1 ‖w − Phw‖0,1 + |||w − Phw|||1,1 � hs−1 |||w|||s,1 for s = 1, 2 ;
and, from [9, Prop. 1.e.1], that V 1+α0

1 (ω) is the interpolate of order α0 between
V 1

1(ω) and V 2
1(ω). Hence the two estimates in (50) by a standard interpolation

argument. Then one generalises to w ∈ V 1+α0
1 (ω) ∩

◦
V 1

1(ω) by Lemma 4.1. ��
Lemma 4.3 For w ∈ H 2

1(ω), there holds:

|||w −�hw|||1−σ,1 ≈ |w −�hw|1−σ,1 � h1+σ |w|2,1. (51)

for any σ ∈ [0, 1].

Proof It stems from [18, Prop. 6.1] or [8, Prop. 4.1] that

h−1 ‖w −�hw‖0,1 + |w −�hw|1,1 � h |w|2,1.
One concludes by interpolating in the scale Hs

1(ω). ��

5 Discrete formulation, SCM

In §§5.1 to 5.3, the superscript 2 in p2
s , ϕ

2
s , δ

2, etc. will generally be omitted.

5.1 Approximation of the dual singular function p2
s .

We start from the decomposition (29). p̃ is characterised by the three conditions

p̃ ∈ V 1
1(ω), p̃ = −p

P
on γ, −�2p̃ = �2pP

in ω.

A direct calculation shows that, denoting φ′ = φ + φ0 (see Figure 1):

�2pP
= −5r

a2
α ρ−α−1 sin(αφ + φ′).

This function is of H−1 regularity near the reentrant edge, and smooth elsewhere,

so it belongs to the dual of
◦
V 1

1(ω). However, it should be noticed that �2pP
never

belongs locally to L2(ωe). This phenomenon causes the local regularity of p̃ to be
weaker than in the prismatic case, and dramatically deteriorates the convergence
rate of the SCM.

This inconvenience can be overcome by enriching the principal part with the
next term in the expansion of ps near the reentrant corner. To do so, we look for a
function in V 1

1(ω), with a V 2
1 regularity near the axis, vanishing on ∂ωe ∩ γ , and
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whose Laplacian �2 is locally “almost equal” to �2pP
. First, we look for a local

variational solution of

−�Q = α ρ−α−1 sin(αφ + φ′) in ωe, Q = 0 on ∂ωe ∩ γ.

By separation of variables, we obtain: Q(ρ, φ) = 1
2 ρ

1−α cosφ′ sin(αφ). As the
exponent 1 − α > 0, Q does belong to H 1(ωe). To obtain the V 2

1 regularity near
the axis, we have to multiply it by (r/a)2. A simple calculation shows that:

�2

[( r
a

)2
Q

]
= −

( r
a

)2
α ρ−α−1 sin(αφ + φ′)

+ 5 r

2 a2
ρ−α [sin(αφ)− α cosφ′ sin(αφ + φ′)

]
.

Hence, the new decomposition:

ps = pp + p̂, where: pp
def= p

P
− 5

a

( r
a

)2
Q

=
( r
a

)2
[

1 − 5 ρ

2 a
cosφ′

]
ρ−α sin(αφ), (52)

enjoys the following properties. First, p̂ = p̃ + (5 r2/a3)Q ∈ V 1
1(ω) and it van-

ishes on ∂ωe ∩ γ . Then, using

( r
a

)2
− r

a
= r (r − a)

a2
= r

a2
ρ cosφ′,

we obtain

ϑp
def= �2pp = r

a3
ρ−α

[
−25

2
sin(αφ)+ 35

2
α cosφ′ sin(αφ + φ′)

]

∈ L2
1(ω). (53)

As −�2p̂ = ϑp, we infer by localisation that p̂ ∈ H 1+α0(ωe). Elsewhere, the
smoothness of ϑp implies that of p̂, so p̂ ∈ V 1+α0

1 (ω), and is V 2
1 near the axis.

Now, we are ready to derive the FE approximation of ps . The variable p̂ solves
the variational problem: Find p̂ ∈ V 1

1(ω) such that

p̂ = s on ∂ω, and a2 (p̂, v) = (
ϑp | v) ∀v ∈

◦
V 1

1(ω). (54)

Similarly to the prismatic case [12, §5.1], we introduce

• the boundary function s which is equal to the trace of −pp, hence is zero
on the two sides that meet at the reentrant corner, and smooth elsewhere;

• the smooth extension s̃ ∈ H 2
1(ω) of s into ω;

• the variable p◦ = p̂ − s̃.
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In the variable p◦, the problem (54) reads: Find p◦ ∈
◦
V 1

1(ω) such that

a2 (p
◦, v) = (

ϑp | v)− a2 (s̃, v) ∀v ∈
◦
V 1

1(ω) ; (55)

and we have p◦ ∈ V
1+α0
1 (ω) ∩

◦
V 1

1(ω). Here, too, we approximate p̂ by p̂h =
�hs̃ + p◦

h, and ps by phs = pp +�hs̃ + p◦
h, where p◦

h solves the approximate FE
problem

a2
(
p◦
h, vh

) = (
ϑhp | vh

)− a2 (�hs̃, vh) ∀vh ∈ V h◦ . (56)

The notation
(
ϑhp | vh

)
stands for an approximation by a quadrature formula of the

integral
∫∫
ω
ϑp(r, z) vh(r, z) r dr dz, with ϑp(r, z) given by (53). As ϑp ∈ L2

1(ω),
we can suppose that the error caused by this quadrature is bounded as∣∣(ϑhp−ϑp | wh

)∣∣≤C1
Q h

q1 ‖wh‖1,1, ∀wh∈V h, for some C1
Q>0 and q1 ≥1. (57)

This can be done e.g. by using a sixth-order Gauss–Hammer formula [21, p. 201],
with seven points inside each triangle, which does not require the unbounded value
of ϑp. Of course, if wh vanishes on γa , one can replace ‖wh‖1,1 with the stronger
norm ‖wh‖(2) in (57).

Lemma 5.1 Assume q1 ≥ 2; then we have:∣∣∣∣∣∣ps − phs

∣∣∣∣∣∣
1,1 � hα0 ,

∥∥ps − phs

∥∥
0,1 � h2α0 .

Proof Subtracting (56) from (55) yields:

a2
(
p◦ − p◦

h, vh
) = (

ϑp − ϑhp | vh
)− a2 (s̃ −�hs̃, vh) ∀vh ∈ V h◦ . (58)

With vh = p◦
h − wh, this implies:

‖p◦ − wh‖2
(2) ≥ ∥∥p◦ − p◦

h

∥∥2
(2) + 2 a2

(
s̃ −�hs̃, p

◦
h − wh

)
+2

(
ϑp − ϑhp | p◦

h − wh
)
.

Now, we set wh = Php
◦. Using (57), we obtain

∥∥p◦ − p◦
h

∥∥2
(2)≤‖p◦−Php◦‖2

(2)+2 ‖s̃ −�hs̃‖(2)
(∥∥p◦

h − p◦∥∥
(2)+‖p◦−Php◦‖(2)

)

+ C1
Q h

q1

(∥∥p◦
h − p◦∥∥

(2) + ‖p◦ − Php
◦‖(2)

)
.

With the Young inequality, the above estimate becomes:
∥∥p◦ − p◦

h

∥∥2
(2) ≤ ‖p◦ − Php

◦‖2
(2) + 5 ‖s̃ −�hs̃‖2

(2)

+1

4

∥∥p◦
h − p◦∥∥2

(2) + ‖p◦ − Php
◦‖2
(2)

+ C1
Q

2


(2C1

Q + 1
)
h2q1 +

∥∥p◦
h − p◦∥∥2

(2)

2C1
Q

+ ‖p◦ − Php
◦‖2
(2)


 .
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Thanks to the equivalence of norms ‖ · ‖(2) ≈ ||| · |||1,1, we are left with the estimate:

∣∣∣∣∣∣p◦ − p◦
h

∣∣∣∣∣∣2
1,1 �

∣∣∣∣∣∣p◦ − Php
◦∣∣∣∣∣∣2

1,1 + ∣∣∣∣∣∣s̃ −�hs̃
∣∣∣∣∣∣2

1,1 + h2q1 .

By [18, Prop. 6.1], there holds:
∣∣∣∣∣∣s̃ −�hs̃

∣∣∣∣∣∣
1,1 � h |s|2,1; by Lemma 4.2, we have∣∣∣∣∣∣p◦ − Php

◦∣∣∣∣∣∣
1,1 � hα0

∣∣∣∣∣∣p◦∣∣∣∣∣∣
1+α0,1

. s and p◦ depend only on the geometry of ω
so all their norms can be seen as constants. Hence, as soon as q1 ≥ 1, there holds:∣∣∣∣∣∣p◦ − p◦

h

∣∣∣∣∣∣2
1,1 � h2α0 . Finally:

∣∣∣∣∣∣ps − phs

∣∣∣∣∣∣
1,1 = ∣∣∣∣∣∣p◦ + s̃ − p◦

h −�hs̃
∣∣∣∣∣∣

1,1

≤ ∣∣∣∣∣∣p◦ − p◦
h

∣∣∣∣∣∣
1,1 + ∣∣∣∣∣∣s̃ −�hs̃

∣∣∣∣∣∣
1,1 � hα0 . (59)

The obtention of the L2
1 norm estimate also follows the prismatic case closely.

Here, we define w as the variational solution in
◦
V 1

1(ω) to

a2 (w, v) = (
p◦ − p◦

h | v) , ∀v ∈
◦
V 1

1(ω).

By elliptic theory [10, Thm II.4.8] we know w ∈ H
1+α0
(2) (ω) = V

1+α0
1 (ω) and

|||w|||1+α0,1 �
∥∥p◦ − p◦

h

∥∥
0,1. Its FE approximation wh solves

a2 (wh, vh) = (
p◦ − p◦

h | vh
)
, ∀v ∈ V h◦ , (60)

so ‖wh‖(2) �
∥∥p◦ − p◦

h

∥∥
0,1; by using Céa’s lemma and Lemma 4.2, we infer:

‖w − wh‖(2) � hα0 |||w|||1+α0,1 � hα0
∥∥p◦ − p◦

h

∥∥
0,1 .

Then, using successively (60) and (58), we obtain

∥∥p◦ − p◦
h

∥∥2
0,1 = a2

(
w − wh, p

◦ − p◦
h

)+ (
ϑp − ϑhp | wh

)
+a2 (s̃ −�hs̃, w − wh)− a2(s̃ −�hs̃, w).

This is bounded by the Cauchy inequality and (57), as well as the duality argument
in the scale V s1(ω):

∥∥p◦ − p◦
h

∥∥2
0,1 �

∥∥p◦ − p◦
h

∥∥
(2)

‖w − wh‖(2) + hq1 ‖wh‖(2)
+ ‖s̃ −�hs̃‖(2) ‖w − wh‖(2) + |||s̃ −�hs̃|||1−α0,1 |||w|||1+α0,1

�
∥∥p◦ − p◦

h

∥∥
0,1

{
hα0 hα0 +hq1 +h |s̃|2,1×hα0 +h1+α0 |s̃|2,1 × h0

}
,

where we have made use of [18, Prop. 6.1] and our Lemma 4.3. In order to get the
h2α0 estimate, we have to suppose q1 ≥ 2. Using once more (51), we obtain:

∥∥ps − phs

∥∥
0,1 ≤ ∥∥p◦ − p◦

h

∥∥
0,1 + ‖s̃ −�hs̃‖0,1 � h2α0 . (61)

��
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We are also confronted with the task of approximating qs
def= ps/r

2. The scalar
product

(
zk | qs

)
(see (74) below) is needed to compute the singularity coefficient.

However, since phs is just element-wise linear, it is locally proportional to r in the

triangles which have one or two vertices on the axis; so qhs
def= r−2 phs /∈ L2

1(ω).
This is why we cannot hope to control any such thing as

∥∥qs − qhs

∥∥
0,1.

Yet, thanks to the bounds (59) and (61) for phs − ps , we do have the weak
estimates:

∣∣(qs − qhs | v)∣∣ � h2α0 ‖v‖0,−3, ∀v ∈ L2
−3(ω), (62)

resp.
∣∣(qs − qhs | v)∣∣ � hα0 ‖v‖0,−1, ∀v ∈ L2

−1(ω). (63)

5.2 Approximation of the primal singular function ϕ2
s .

We start from (30), which is sufficient for obtaining error estimates similar to those
of the prismatic case. Using (16), we see that ϕ̃, satisfying ϕ̃ = −δϕ

P
on ∂ω, solves

the variational problem:

a2 (ϕ̃, v) = (ps | v)+ δ
(
ψ
P

| v) , ∀ v ∈
◦
V 1

1(ω), (64)

where: ψ
P

def= �2ϕP = 5 r

a2
α ρα−1 sin [(α − 1) φ − φ0] . (65)

We propose the following finite element approximation of ϕ̃ in V h:

ϕ̃h = −δh πhϕP + ϕ0
h,

where:πhϕP is a simple lifting of the boundary condition, cf. [12, Eq. (40)]; the sin-

gularity coefficient δh is computed using δh = 1

aπ

∫∫
ω

(
phs
)2
r dω; and ϕ0

h ∈ V h◦
is such that ϕ̃h is solution to the problem:

a2 (ϕ̃h, vh) = (
phs | vh

)+ δh
(
ψh

P
| vh

)
, ∀ vh ∈ V h◦ . (66)

Like above, we assume that the quadrature formula denoted by
(
ψh
P

| vh
)

satisfies:

∣∣(ψh

P
− ψ

P
| wh

)∣∣ ≤ C2
Q h

q2 ‖wh‖1,1, ∀wh ∈ V h,
for some C2

Q > 0 and q2 ≥ 1, (67)

where one can replace ‖wh‖1,1 with ‖wh‖(2) if wh|γa = 0. Then, we propose to
compute the finite element approximation of ϕs as:

ϕhs = ϕ̃h + δhϕP .

Lemma 5.2 The following error estimates hold:

|||ϕs − ϕhs |||1,1 � h , ‖ϕs − ϕhs ‖(k) � k h .
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Proof We follow the lines of the proof of Lemma 5.2 of the companion pa-
per [12], taking care of the extra error generated by the quadrature. Subtracting (66)
from (64), we obtain

a2 (ϕ̃ − ϕ̃h, vh) = (
ps − phs | vh

)
+(δ − δh)

(
ψ
P

| vh
)

+δh
(
ψ

P
− ψh

P
| vh

)
,∀ vh ∈ V h◦ .

So, for any wh ∈ V h satisfying wh − ϕ̃h ∈ V h◦ :

‖ϕ̃ − ϕ̃h‖2
(2) ≤ ‖ϕ̃ − wh‖2

(2) + 2
{∥∥ps − phs

∥∥
0,1 + |δ − δh|

∥∥ψ
P

∥∥
0,1

+ |δh| C2
Q h

q2
(‖ϕ̃ − ϕ̃h‖(2) + ‖ϕ̃ − wh‖(2)

)}

≤ 2 ‖ϕ̃ − wh‖2
(2) +

1

2
‖ϕ̃ − ϕ̃h‖2

(2)

+ C
(∥∥ps − phs

∥∥2

0,1 + |δ − δh|2
∥∥ψ

P

∥∥2
0,1 + |δh|2 h2q2

)
. (68)

But
∥∥ψ

P

∥∥
0,1 is a constant of the domain, and the error on the singularity coefficient

is bounded as

|δ − δh| = 1

aπ

∣∣∣‖ps‖2
0,1 − ∥∥phs ∥∥2

0,1

∣∣∣ �
∥∥ps − phs

∥∥
0,1 � h2α0 , (69)

hence |δh| ≈ 1. With Lemma 5.1, (68) becomes

‖ϕ̃ − ϕ̃h‖2
(2) � ‖ϕ̃ − wh‖2

(2) + h4α0 + h2q2 . (70)

To obtain an h1 estimate, it is thus sufficient to assume q2 ≥ 1. We then derive
from (70) that, with wh = δh�hϕ̃/δ

‖ϕ̃ − ϕ̃h‖2
(2) � h4α0 + |δ|−2

{
|δ − δh|2 |ϕ̃|21 + |δh|2 ‖ϕ̃ −�hϕ̃‖2

(2)

}
. (71)

As ϕ̃ ∈ H 2
1(ω), we have from [18, Prop. 6.1]: ‖ϕ̃ −�hϕ̃‖(2) ≈ ∣∣∣∣∣∣ϕ̃ −�hϕ̃

∣∣∣∣∣∣
1,1 �

h |ϕ̃|2,1, which with (69) gives:
∣∣∣∣∣∣ϕ̃ − ϕ̃h

∣∣∣∣∣∣
1,1 ≈ ‖ϕ̃ − ϕ̃h‖(2) � h, and finally:

∣∣∣∣∣∣ϕs − ϕhs

∣∣∣∣∣∣
1,1 ≤ ∣∣∣∣∣∣ϕ̃ − ϕ̃h

∣∣∣∣∣∣
1,1 + |δ − δh|

∣∣∣∣∣∣ϕ
P

∣∣∣∣∣∣
1,1 � h.

Finally, the estimate on
∥∥ϕs − ϕhs

∥∥
(k)

follows from

∥∥ϕs − ϕhs

∥∥2

(k)
= ∥∥ϕs − ϕhs

∥∥2

(2) + µ
∥∥ϕs − ϕhs

∥∥2

0,−1

≤
(

1 + µ

4

) ∥∥ϕs − ϕhs

∥∥2

(2) � k2 h2.

�
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5.3 Approximation of ũk and ck in decomposition (17), for |k| ≥ 2.

Noting that ũk and ck solve the coupled system (26–27), it seems natural to formu-
late their finite element approximations as follows:
Find ũkh ∈ V h◦ and chk ∈ R

1 such that:

ak(ũ
k
h, vh)+ chk ak(ϕ

h
s , vh) = (

f k | vh
) ∀vh ∈ V h◦ , (72)

(‖phs ‖2
0,1 + µ

[|ϕhs |21,−1 + 2 ‖ϕhs ‖2
0,−3

])
chk + µ

(
ũkh | phs

) = (
f k | phs

)
. (73)

However, like any function in V h◦ , ϕhs does not necessarily belong to H 1
−1(ω) or

L2
−3(ω). This is no serious problem: like in the prismatic case [12, §5.3], we shall

rather discretise the representation formula (28), which we rewrite as follows:

ck = 1

‖ps‖2
0,1

[(
f k | ps

)− µ
(
zk | qs

)]
, (74)

where qs = ps/r
2 and zk = A−1

k f
k ∈

◦
V 1

1(ω) solves

ak
(
zk, v

) = (
f k | v) , ∀v ∈

◦
V 1

1(ω). (75)

So, we state the
SCM Algorithm for finding ũkh ∈ V h◦ and chk ∈ R

1.

Step 1. Find zkh ∈ V h◦ such that

ak(z
k
h, v) = (

f k | v) ∀ v ∈ V h◦ . (76)

Compute chk as follows:

chk = 1

‖phs ‖2
0,1

[(
f k | phs

)− µ
(
zkh | qhs

)]
, if k < C� h

− 1
2−α0 ; (77)

for some fixed constant C�, and

chk = 0 if k ≥ C� h
− 1

2−α0 . (78)

Step 2. Find ũkh ∈ V h◦ such that

ak
(
ũkh, v

)+ chk ak
(
ϕhs , v

) = (
f k | v) ∀v ∈ V h◦ . (79)

Lemma 5.3 For the solution zk to the problem (75) and its piecewise linear finite
element approximation zkh in (76), we have the following error estimates∥∥zk − zkh

∥∥
0,−1 � k−2 ‖f k‖0,1 , (80)

∥∥zk − zkh

∥∥
0,−1 � k−1

[
hα0 kα0−1 + h

] ‖f k‖0,1 , (81)

∥∥zk − zkh

∥∥
0,1 �

[
h2α0 k2(α0−1) + h2

] ‖f k‖0,1 , (82)

while for the coefficient ck in (74) and its approximation chk in (77), we have∣∣ck − chk

∣∣ � (h2α0 k2α0 + h2 k2) ‖f k‖0,1 . (83)
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Proof It follows from (75) and (76) that

ak
(
zk − zkh, z

k − zkh
) = ak

(
zk, zk − zkh

) = (
f k | zk − zkh

)
.

This implies∣∣zk − zkh

∣∣2
1,1 + k2

∥∥zk − zkh

∥∥2

0,−1 ≤ ∥∥f k∥∥0,1

∥∥zk − zkh

∥∥
0,1

≤ rmax

∥∥f k∥∥0,1

∥∥zk − zkh

∥∥
0,−1 ,

hence (80). Then, using Céa’s lemma, Lemma 4.2, Thm 7.1 of [18], and the bounds
(20) and (23), we obtain another estimate:∥∥zk − zkh

∥∥2

(k)
≤ ∥∥zk − Phz

k
∥∥2

(k)

= ∣∣∣∣∣∣zk − Phz
k
∣∣∣∣∣∣2

1,1 + (k2 − 1)
∥∥zk − Phz

k
∥∥2

0,−1

� h2α0
∣∣zk∣∣21+α0,1

+ (k2 − 1) h2
∣∣zk∣∣21,−1 ,

�
[
h2α0 k2(α0−1) + h2

] ∥∥f k∥∥2

0,1 .

Of course, a similar bound holds for any g ∈ L2
1(ω),w = A−1

k g andPhw. Thus, the
estimate (82) follows from a duality argument like in [12, Lemma 5.3]. Moreover,
we obtain (81) thanks to the bound: ‖ · ‖2

0,−1 ≤ k−2 ‖ · ‖2
(k).

To obtain the estimate (83), we subtract (74) from (77) to obtain

ck − chk =
{(f k | ps

)
‖ps‖2

0,1

−
(
f k | phs

)
‖phs ‖2

0,1

}
+ µ

{(zkh | qhs
)

‖phs ‖2
0,1

−
(
zk | qs

)
‖ps‖2

0,1

}
def= I1 + I2.

We bound I1 by Lemma 5.1: |I1| � h2α0
∥∥f k∥∥0,1. As for I2, it is zero when µ = 0;

otherwise we rewrite it as follows:
I2

µ
= 1∥∥phs ∥∥2

0,1

{(
zkh − zk | qs

)+ (
zkh − zk | qhs − qs

)+ (
zk | qhs − qs

)}

+ (
zk | qs

) { 1

‖phs ‖2
0,1

− 1

‖ps‖2
0,1

}

def= J 1
2 + J 2

2 + J 3
2 + J 4

2 .

Then, recalling that ‖qs‖ is constant, we estimate:

• |J 1
2 | �

∥∥zkh − zk
∥∥

0,1 �
[
h2α0 k2(α0−1) + h2

] ∥∥f k∥∥0,1 by (82).

• |J 2
2 | � hα0

∥∥zkh − zk
∥∥

0,−1 �
[
h2α0 kα0−2 + h1+α0 k−1

] ‖f k‖0,1 by (63) and (81).

• |J 3
2 | � h2α0

∥∥zk∥∥0,−3 � h2α0 k−2
∥∥f k∥∥0,1 by (62) and (20).

• |J 4
2 | � h2α0

∥∥zk∥∥0,1 ≤ h2α0 rmax

∥∥zk∥∥0,−1 � h2α0 k−2
∥∥f k∥∥0,1 by (61) and (19).

Summarising, we obtain∣∣ck − chk

∣∣ ≤ |I1| + µ
{∣∣J 1

2

∣∣+ ∣∣J 2
2

∣∣+ ∣∣J 3
2

∣∣+ ∣∣J 4
2

∣∣}
�
(
h2α0 + h2α0 kα0 + h2α0 k2α0 + h1+α0 k + h2 k2

) ∥∥f k∥∥0,1 .

The estimate (83) then follows by remarking that the first, second and fourth terms
in the bracket are negligible with respect to the third. ��
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Now, we observe that the formula (79) for computing ũkh, as well as the SCM
reconstruction formula for ukh

ukh = ũkh + chk ϕ
h
s = ũkh + chk (ϕ̃h + δhϕP ). (84)

are formally identical to their prismatic counterparts (cf. the SCM algorithm of [12,
§5.3]); and the “building blocks” chk and ϕhs also satisfy estimates similar to those of

the prismatic case. Indeed, under the assumption k < C� h
− 1

2−α0 , both terms within
the bracket in (83) are negligible with respect to h k. Hence the following two
results, whose proofs closely parallel that of Lemma 5.4 and Theorem 5.1 in [12],
with the same kind of adaptations (use of weighted norms, Ph and Lemma 4.2) as
usual.

Lemma 5.4 The following error estimate holds:

∥∥ũk − ũkh

∥∥2

(k)
� k

(
h2 (1 + k2 h2)

∥∥f k∥∥2

0,1 + ∣∣ck − chk

∣∣2) .
Theorem 5.1 Let uk be the solution to the equation (7–8) and ukh be its finite
element approximation given in (84). Then the following error estimate holds:

∥∥uk − ukh

∥∥
(k)

� k2 h
∥∥f k∥∥0,1 (85)

5.4 Approximation of the singular functions for the modes |k| = 0, 1.

The FE approximation of these functions has been exposed in [5, §§4.1 and 4.2].
(In that work, the Laplacians �0 and �1 are respectively called � and �′). We
keep this method, with the following modification. The dual singular functions
associated to the reentrant edge undergo the same inconvenience as p2

s , namely,
the Laplacian of the principal parts as defined in [5] do not belong toL2

1(ω). Hence
we must enrich them, just as we did for p2

P
, in order to preserve the convergence

rate. Calculating like in §5.1, we obtain the following decompositions:

p1
s =p1

p + p̂1, p1
p

def= ρ−α sin(αφ)
r

a

[
1 − 3ρ

2a
cosφ′

]
, p̂1 ∈ V 1

1(ω) ; (86)

p0,e
s =p0,e

p + p̂0,e, p0,e
p

def= ρ−α sin(αφ)
[
1 − ρ

2a
cosφ′

]
, p̂0,e ∈ H 1

1(ω). (87)

The Laplacians of the principal parts are:

ϑ1
p

def= �1p
1
p = 1

a2
ρ−α

[
−9

2
sin(αφ)+ 15

2
α cosφ′ sin(αφ + φ′)

]
∈ L2

1(ω);
(88)

ϑ0,e
p

def= �0p
0,e
p = 1

a r
ρ−α

[
−1

2
sin(αφ)+ 3

2
α cosφ′ sin(αφ + φ′)

]
∈ L2

1(ω).

(89)



The Fourier Singular Complement Method for the Poisson problem 607

Then we proceed like in §5.1 to obtain:∣∣∣∣∣∣∣∣∣p1
s − p1;h

s

∣∣∣∣∣∣∣∣∣
1,1

� hα0 ,
∥∥p1

s − p1;h
s

∥∥
0,1 � h2α0 , (90)

∣∣p0,e
s − p0,e;h

s

∣∣
1,1 � hα1 ,

∥∥p0,e
s − p0,e;h

s

∥∥
0,1 � h2α1 . (91)

However, for the primal edge singular functions, the method of [5] yields the desired
convergence rate. We just recall the decompositions:

ϕks = ϕ̃k + δk ϕk
P
, ϕ̃k ∈ H 2

1(ω) ∩H 1
(k)(ω), ϕk

P
=
( r
a

)k
ρα sin(αφ), (92)

as well as the Laplacians of the principal parts:

ψk

P

def= �kϕ
k

P
= (k + 1)(k + 2)

2 ak r1−k α ρα−1 sin [(α − 1) φ − φ0] . (93)

The line of proof already exposed in §5.2 then easily leads to the error estimates:∣∣∣∣∣∣ϕ1
s − ϕ1;h

s

∣∣∣∣∣∣
1,1 � h and

∣∣ϕ0,e
s − ϕ0,e;h

s

∣∣
1,1 � h. (94)

Now, as far as the conical point singularities are concerned, the method appears
very similar to that of [12, §§5.1 and 5.2] since the principal parts p0,c

P
and ϕ0,c

P

have a vanishing Laplacian �0. So, mutatis mutandis, we get the error estimates:∣∣p0,c
s − p0,c;h

s

∣∣
1,1 � hα1,

∥∥p0,c
s − p0,c;h

s

∥∥
0,1 � h2α1,

∣∣ϕ0,c
s − ϕ0,c;h

s

∣∣
1,1 � h. (95)

Remark 5.1 Thanks to the asympotic expansion [1, Eq. 8.7.1] of the Legendre func-
tion, it is possible to compute the function Pν(cosφ) with an arbitrary precision.
Thus, one can compute once and for all the singularity exponent ν and the integral
in (40) with an accuracy equal to the machine precision. All this guarantees that the
errors due to the approximation of the conical singular functions will be negligible
before the FE discretisation error.

5.5 Approximation of ũk and ck , for |k| ≤ 1.

As the representation formulae (33) and (46) for the singularity coefficients of these
modes are rather standard, one can use the simple discrete versions:

ch±1 =
(
f ±1|p1;h

s

)
‖p1;h

s ‖2
0,1

, ch0,j =
(
f 0 | p0,j ;h

s

)

‖p0,j ;h
s ‖2

0,1

. (96)

Similarly, we will approximate the regular parts ũk, |k| ≤ 1, by ũ1
h, ũ

−1
h ∈ V h◦ ,

and ũ0
h ∈ V h� such that

k = ±1: a1
(
ũkh, vh

)+ chk a1
(
ϕ1,h
s , vh

) = (
f k | vh

)
, ∀vh ∈ V h◦ , (97)

k = 0: a0
(
ũ0
h, vh

)+ ch0,e a0
(
ϕ0,e;h
s , vh

)+ ch0,c a0
(
ϕ0,c;h
s , vh

)
= (

f 0 | vh
)
, ∀vh ∈ V h� . (98)
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Of course, we have the SCM reconstruction formulae:

k = ±1 : ukh = ũkh + chk ϕ
1;h
s = ũkh + chk (ϕ̃

1
h + δ1

hϕ
1
P
) ; (99)

k = 0 : u0
h = ũ0

h + ch0,e ϕ
0,e;h
s + ch0,c ϕ

0,c;h
s

= ũ0
h + ch0,e (ϕ̃

0,e
h + δ

0,e
h ϕ

0,e
P
)+ ch0,c (ϕ̃

0,c
h + δ

0,c
h ϕ

0,c
P
). (100)

The results of §5.4 then allow to conclude that:

k = ±1 :
∣∣ck − chk

∣∣ � h
∥∥f k∥∥0,1 ,

∣∣∣∣∣∣ũk − ũkh

∣∣∣∣∣∣
1,1 � h

∥∥f k∥∥0,1 ,∣∣∣∣∣∣uk − ukh

∣∣∣∣∣∣
1,1 � h

∥∥f k∥∥0,1 ; (101)

k = 0 :
∣∣ch0,j − c0,j

∣∣ � h
∥∥f 0

∥∥
0,1 ,

∣∣ũ0 − ũ0
h

∣∣
1,1 � h

∥∥f 0
∥∥

0,1 ,∣∣u0 − u0
h

∣∣
1,1 � h

∥∥f 0
∥∥

0,1 . (102)

6 Fourier Singular Complement Method

Let u be the solution to the 3D problem (2), and uk its Fourier coefficients. From
the previous Sections, we know that uk(r, z) solves the 2D problem (9), the weak
formulation of the elliptic problem (7–8). And, according to the mode k, one can
decompose uk as (17), (32) or (45).

The result of Heinrich [15, Thm 5.2] can be straightforwardly extended to our
domain with a sharp vertex.

Theorem 6.1 Let f ∈ h2(�), and u ∈
◦
H 1(�) be the solution to (2). Then:

u(r, θ, z) = ũ(r, θ, z)+ γ (θ) ϕ2
s (r, z)+ c0,c ϕ

0,c
s (r, z), (103)

with: ũ ∈ H 2(�) ∩
◦
H 1(�), and γ ∈ H 2(S1) is given by the formula:

γ (θ) = δ0,e

δ2
c0,e + δ1

δ2

∑
k=±1

ck eikθ +
∑
|k|≥2

ck eikθ .

Like in the prismatic case (cf. [12], Remark 6.1), the hypothesis f ∈ h2(�) is
crucial: the lack of its satisfaction would prevent the convergence of γ in a regular
enough space, and hence that of the singular part of the solution in the natural
space.

We define the Fourier–SCM (FSCM) solution to (2) as follows:

u
[N ]
h =

N∑
k=−N

ukh(r, z) eikθ ,

where ukh is the SCM solution to (9) algorithmically defined in §5. The main result
on this method is the following

Theorem 6.2 Assume f ∈ h2(�). Then the following error estimate holds:
∣∣∣u− u

[N ]
h

∣∣∣
H 1(�)

� (h+N−1)
{∥∥∥f ∥∥∥

L2(�)
+
∥∥∥∂2f

∂θ2

∥∥∥
L2(�)

}
.
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Proof Using the definition of u[N ]
h and (6) we have

∣∣∣u− u
[N ]
h

∣∣∣2
H 1(�)

=
∑
|k|≤N

∥∥uk − ukh

∥∥2

(k)
+
∑

|k|>N

∥∥uk∥∥2

(k)

def= E1 + E2.

Using (19), we estimate E2 as:

E2 ≤ N−2
∑

|k|>N
k2
(∣∣uk∣∣21,1 + k2

∥∥uk∥∥2

0,−1

)

� N−2
∑

|k|>N

∥∥f k∥∥2

0,1 ≤ N−2 ‖f ‖2
L2(�) .

As for E1, we cut it into three parts, corresponding to k = 0, |k| = 1, and 2 ≤
|k| ≤ N , which we bound respectively by (102) and (101) and (85):

E1 � h2
∥∥f 0

∥∥2

0,1 + h2
(∥∥f 1

∥∥2

0,1 + ∥∥f −1
∥∥2

0,1

)
+ h2

∑
2≤|k|≤N

k4
∥∥f k∥∥2

0,1

� h2

{
‖f ‖2

L2(�) +
∥∥∥∥∂

2f

∂θ2

∥∥∥∥
2

L2(�)

}
,

where we have used Lemma 2.2 to bound the sum. Hence the result. ��

7 Conclusion

In this paper, we have proven that the FSCM for the Poisson equation achieves the
optimal convergence rate for P1 finite elements and a datum of L2-style regular-
ity in the meridian directions. The same result also holds for the discretization of
the Poisson problem with a homogeneous Neumann boundary condition, or with
non-homogeneous boundary conditions, provided there exist sufficiently smooth
liftings.

This result closely parallels that of the companion paper [12]. The specificities
of the axisymmetric geometry (namely, that the 2D problems are set in weighted
Sobolev spaces, which moreover vary for the low-order Fourier modes before sta-
bilising, and involve differential operators with non-constant coefficients) only
cause technical difficulties. As far as the presence of conical vertices is concerned,
its effect is no more than a finite-dimensional perturbation. Furthermore, it is no
difficulty to consider the case of an axisymmetric domain� with several reentrant
edges (i.e. ω with several off-axis reentrant corners) and/or several sharp vertices.

As already mentioned, this paper is the second part of a three-part article [12,
13]. In [13], the FSCM is analysed from a numerical point of view (complexity,
implementation issues, numerical experiments, etc.), and it is compared to other
methods—in the axisymmetric case, to anisotropic mesh refinement techniques.

One can apply the same theoretical and numerical techniques to the fully axi-
symmetric heat or wave equations, with any L2-smooth (in space) right-hand side.
For these PDEs, the singular functions ps and ϕs do not depend on the time-step.
Finally, the results can also be viewed as the first effort towards the discretization
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of electromagnetic fields in axisymmetric domains, with continuous numerical
approximations, the importance of which is well-known, cf. [2]. As a matter of
fact, the SCM developed in [3–5] for fully axisymmetric electromagnetic compu-
tations can be generalized to arbitrary data, with the help of the results obtained
here.
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PhD Thesis, Rennes University, France (1978)

21. Zienkiewicz, O.C.: The Finite Element Method. McGraw–Hill, London (1977)


