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When solving numerically approximations of the Vlasov–Maxwell equations, the source
terms in Maxwell’s equations coming from the numerical solution of the Vlasov equation
do not generally satisfy the continuity equation which is required for Maxwell’s equations
to be well-posed. Hence it is necessary to introduce generalized Maxwell’s equations
which remain well-posed when there are errors in the sources. Different such formulations
have been introduced previously. The aim of this paper is to perform their mathematical
analysis and verify the existence and uniqueness of the solution.
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0. Introduction

The numerical solution of the coupled Vlasov–Maxwell equations plays a major role
in several applications involving interacting charged particles like in plasma physics
or in beam physics. The non-relativistic Vlasov–Maxwell system reads

∂f

∂t
+ v · ∇xf +

q

m
(E + v × B) · ∇vf = 0,

∂E
∂t

− c2curlB = − J
ε0

,

∂B
∂t

+ curlE = 0,

divE =
ρ

ε0
,

divB = 0,
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with ρ =
∫

f dv and J =
∫

fv dv. The function f ≡ f(x,v, t) represents the
particle density in phase space, and E ≡ E(x, t) and B ≡ B(x, t) are the electric
and magnetic fields. A fundamental property of Maxwell’s equations is that they are
well-posed only for charge and current densities ρ and J that satisfy the so-called
continuity equation

∂ρ

∂t
+ div J = 0. (0.1)

If this relation does not hold, one can verify easily that there is no solution to
Maxwell’s equations. When the sources of Maxwell’s equations are computed by
numerically solving the Vlasov equation, they do not in general verify a discrete
equivalent to the continuity equation compatible with the discrete form of Maxwell’s
equations. To address this problem, methods for deriving sources verifying a dis-
crete continuity equation have been introduced, see, for example, Ref. 14. Or, one
can choose to perform a correction on the computed electric field so that it remains
physically correct. In practice, the latter approach is usually preferred. All those
correction methods have been cast into a generic framework.12,13 The aim of this
paper is to develop a rigorous mathematical theory for these generalized formula-
tions of Maxwell’s equations.

The paper is organized as follows. First, we recall the different correction
types and introduce the generalized Maxwell equations. After that, we successively
prove the existence and uniqueness in an adequate setting of a solution for each
formulation.

1. The Different Correction Methods

1.1. Helmholtz decomposition of a field

Let us first recall the Helmholtz decomposition of a vector function in L2(Ω)3 into
the sum of a transverse (i.e. divergence free) and a longitudinal (i.e. curl free) part.
Let Ω be a bounded open set of R

3, with a Lipschitz continuous boundary Γ.
For example, the following orthogonal decompositions in L2(Ω)3 can be found

in Ref. 8:
H0(div 0, Ω)︷ ︸︸ ︷

L2(Ω)3 = ∇H1(Ω) ⊕ H1(Ω) ⊕ curlH0(curl, Ω),︸ ︷︷ ︸
H(curl 0, Ω)

H(div 0, Ω)︷ ︸︸ ︷
L2(Ω)3 = ∇H1

0 (Ω) ⊕ H2(Ω) ⊕ curlH(curl, Ω),︸ ︷︷ ︸
H0(curl 0, Ω)
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where

H1(Ω) = {u ∈ L2(Ω)3|curlu = 0, div u = 0, u · n|Γ = 0},
H2(Ω) = {u ∈ L2(Ω)3|curlu = 0, div u = 0, u× n|Γ = 0}

are finite dimensional vector spaces. The writing H(curl 0, Ω) (respectively
H(div 0, Ω)) means that curl -free (resp. div free) elements are considered, whereas
H0(curl , Ω) (respectively H0(div , Ω)) stands for elements with L2 curl (resp. L2

div ), such that the tangential (resp. normal) trace on the boundary vanishes (see
the next section for details).

To summarize, any function in L2(Ω)3 can be decomposed into the sum of a
transverse (i.e. divergence free) and longitudinal (i.e. curl free) part. Maxwell’s
equations can be decomposed in the spaces ∇H1

0 (Ω) and H(div 0, Ω) as follows:

{
∂tEL = −JL/ε0,

div EL = ρ/ε0,


∂tET − c2curlB = −JT /ε0,

∂tB + curlET = 0,
div ET = 0,
div B = 0,

where E = EL+ET , J = JL+JT with EL,JL ∈ ∇H1
0 (Ω) and ET ,JT ∈ H(div 0, Ω).

Assume that the continuity equation (0.1) does not hold. On the one hand, this
equation depends only on the longitudinal current density JL (because div JT = 0)

∂ρ

∂t
+ div JL = 0.

On the other hand, we notice that the error on the electric field E that violates
the electric Gauss’ law is localized on the longitudinal part EL of the field. Conse-
quently, the correction methods will act only on EL.

1.2. The Boris correction

The Boris correction dates back to 1970.3,5 It consists in correcting at each time
step the electric field computed with Ampère’s law by a longitudinal field deriving
from a potential which is defined so that the corrected field exactly satisfies Gauss’
law div E = ρ/ε0. Hence, the longitudinal part of E is modified as follows:

Ecorrected = E− grad φ,

where φ is defined by

divEcorrected =
ρ

ε0
⇔ ∆φ = divE− ρ

ε0

and φ|Γ = 0, where Γ is the boundary of the computational domain. The field
Ecorrected satisfies the same boundary conditions as E. This method is very efficient
and very commonly used in applications. However, it requires to compute the solu-
tion to a Laplace problem at each time step, which has two major drawbacks: it is
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non-local and propagates information at infinite velocity — which is unphysical —
and it does not parallelize as well as the explicit expression giving the fields from
Ampère’s and Faraday’s laws, unless ad hoc algorithms are used.

1.3. The Marder/Langdon correction

As an alternative to the method introduced in the previous section, Marder pro-
posed another type of correction in 1987.11 His method consists in introducing a
pseudo-current in Ampère’s equation and amounts to computing:

En+1
corrected = En+1 + ∆t grad

[
d

(
divEn − ρn

ε0

)]
,

where En+1 is the updated field, using Ampère’s law. In the case of a finite difference
discretization on a uniform Cartesian mesh, the diffusion coefficient d must satisfy

d ≤ 1
2∆t

(
∆x2∆y2

∆x2 + ∆y2

)
for the method to be stable for a given time step.

Langdon10 proposed a variation of the method which takes into account the
error on Gauss’ law at time step tn+1 instead of tn:

En+1
corrected = En+1 + ∆t grad

[
d

(
divEn+1 − ρn+1

ε0

)]
.

He also showed that his method is equivalent to performing just one iteration of
a Jacobi solver for the Laplace equation used in Boris’ method and consequently
that his scheme can be iterated and converges asymptotically toward Boris’ when
the iteration number is increased.

More recently, Blaise et al.4 proposed to replace the Jacobi solver by a Gauss–
Seidel one. Indeed, it is well known that the initial convergence rate (over the first
iterations) improves dramatically when one uses a Gauss–Seidel solver. The appar-
ent drawback is that the Jacobi scheme is fully parallel, whereas Gauss–Seidel’s is
not. Actually, this is not a difficulty, since one recovers a completely parallel algo-
rithm, by renumbering the nodes, using, for instance, a Red/Black ordering on a
structured mesh, as demonstrated in Ref. 4.

1.4. The generalized formulation of Maxwell’s equations

Instead of correcting the longitudinal electric field a posteriori like in the Boris
method, Assous et al.2 introduced a mixed formulation of Maxwell’s equations with
a Lagrange multiplier that links the Ampère equation to Gauss’ law. This solution
of Maxwell’s equations obtained with this mixed formulation is identical to what is
obtained using the Boris correction.

It was then noticed in Refs. 12 and 13 that Marder’s formulation could also
be expressed in a modified version of Maxwell’s equations, and that the modified
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Maxwell’s equations could be further generalized to include a third kind of natural
correction method: after the elliptic correction of Boris, the parabolic correction of
Marder, a hyperbolic correction, could also be included.

Accordingly, the final generalized formulation of Maxwell’s equation reads

∂E
∂t

− c2curlB + c2gradφ = − J
ε0

,

∂B
∂t

+ curlE = 0,

g(φ) + divE =
ρ

ε0
,

divB = 0,

where g is a linear differential operator. It is straightforward to see that the corrector
φ is solution to

∂g(φ)
∂t

− c2∆φ =
1
ε0

(
∂ρ

∂t
+ divJ

)
.

In particular, φ vanishes as soon as the continuity equation is satisfied, assuming
appropriate boundary conditions have been chosen. Hence, this generalized formu-
lation of Maxwell equations is equivalent to the original Maxwell equations in the
physical cases but more robust to (numerical) perturbation of the sources. We shall
see indeed that this formulation is well-posed independently of a relation between
ρ and J.

When g(φ) = 0 and g(φ) = φ/d, the generalized formulation corresponds,
respectively, to the Boris and the Marder/Langdon corrections. In these cases φ

must satisfy vanishing Dirichlet boundary conditions.
In order to get a purely hyperbolic formulation we choose g(φ) = ∂tφ/χ2. The

corrector φ then verifies the following wave equation:

∂2φ

∂t2
− (cχ)2∆φ =

χ2

ε0

(
∂ρ

∂t
+ divJ

)
.

In order to allow the error transported by the corrector φ to leave the domain Ω,
absorbing boundary conditions must be chosen for φ. These can be, for example,
at order 1:

∂φ

∂t
+ c

∂φ

∂n
∣∣Γ = 0.

Remark 1.1. The numerical implementation of the latter correction method,
called hyperbolic correction, is delicate as a good quality absorption of the outgoing
wave is necessary in order to avoid long time amplification of the error. First-order
absorbing boundary conditions might not be sufficient, and more precise methods
like perfectly matched layers (PML) should be preferred.
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2. Notations

Let Ω be a bounded open polyhedral set of R
3 with a Lipschitz continuous

boundary Γ. We denote by n the external unit normal defined at almost every
point Γ of Ω.

The scalar products in L2(Ω)3 and H1(Ω) are, respectively, denoted by (·, ·)0
and (·, ·)1. Given a Banach space Q, we shall denote the duality product in Q′ ×Q

by 〈., .〉Q.
We recall the definition of the following spaces:

H(div, Ω) = {f ∈ L2(Ω)3|div f ∈ L2(Ω)},
H(curl, Ω) = {f ∈ L2(Ω)3|curl f ∈ L2(Ω)3},

which are Hilbert spaces, respectively, for the norms

‖f‖0,div =
(∫

Ω

(|f |2 + c2(div f)2) dx
)1/2

,

‖f‖0,curl =
(∫

Ω

(|f |2 + c2|curl f |2) dx
)1/2

.

The mappings γn (normal trace) and γτ (tangential trace) are respectively,
defined and continuous on the first and second of these spaces (see Ref. 9):

γn : H(div, Ω) → H−1/2(Γ), f �→ f · n|Γ ,

γτ : H(curl, Ω) → H−1/2(Γ)3, f �→ f × n|Γ .

Hence, we can define the following closed subspaces:

H0(div, Ω) = {f ∈ H(div , Ω) | f · n|Γ = 0},
H0(curl, Ω) = {f ∈ H(curl , Ω) | f × n|Γ = 0}.

We shall denote by

X = H(curl, Ω) ∩ H(div, Ω)

the Hilbert space endowed with the norm

‖f‖X =
(∫

Ω

(|f |2 + c2|curl f |2 + c2(div f)2)dx
)1/2

and X0 its closed subspace

X0 = H0(curl, Ω) ∩ H(div, Ω).

We shall denote by

V (curl) = {f ∈ V |curl curl f ∈ L2(Ω)3}
for a linear space V ⊂ H(curl, Ω).

Let us also recall a couple of results we shall use later on. Let H and M be two
Hilbert spaces. We consider the continuous bilinear form

b : H × M → R,
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and the variational problem: Given χ ∈ M ′, find u ∈ H such that

b(u, µ) = 〈χ, µ〉 ∀µ ∈ M.

The bilinear form b is continuous on H × M ; hence it defines a bounded linear
operator B ∈ L(H ; M ′) by

〈Bv, µ〉 = b(v, µ) ∀ v ∈ H, ∀µ ∈ M.

We denote by B′ ∈ L(M ; H ′) the dual operator of B, which is defined by

〈v,B′µ〉 = 〈Bv, µ〉 = b(v, µ) ∀ v ∈ H, ∀µ ∈ M.

The previous variational problem is then equivalent to
Find u ∈ H such that

Bu = χ in M ′.

Set V = Ker(B), which is a closed linear subspace of H , and consider its polar set
V ◦ = {g ∈ H ′; 〈g, v〉 = 0 ∀ v ∈ V }.
Lemma 2.1. (Babuska–Brezzi) The following properties are equivalent:

(i) there exists β > 0 such that

inf
µ∈M

sup
v∈H

b(v, µ)
‖v‖X‖µ‖M

≥ β;

(ii) the operator B′ is an isomorphism of M on V ◦ and

‖B′µ‖H′ ≥ β‖µ‖M ∀µ ∈ M ;

(iii) the operator B is an isomorphism of V ⊥ on M ′ and

‖Bv‖M ′ ≥ β‖v‖H ∀ v ∈ V ⊥.

Proof. See the book by Girault and Raviart,9 Chap. 1, Sec. 4.

Definition 2.1. Let H be a Hilbert space and A : D(A) ⊂ H → H a linear
operator.

(1) A is monotone if (Av, v)H ≥ 0 ∀ v ∈ D(A),
(2) A is maximal monotone if moreover there exists λ > 0 such that I + λA :

D(A) → H is onto.

Theorem 2.1. (Hille–Yosida) Let T > 0 and A a maximal monotone operator in
H. Then for all u0 ∈ D(A) and all f ∈ C1([0, T ]; H), there exists a unique function
u verifying 

u ∈ C0([0, T ]; D(A)) ∩ C1([0, T ]; H),
du

dt
+ Au = f on [0, T ],

u(0) = u0.

(2.1)

Proof. The proof is given for example in the book of Brézis,6 Chap. VII.
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Remark 2.1. Let λ ∈ R. The problem
du

dt
+ Au + λu = f on [0, T ],

u(0) = u0

can be transformed into (2.1) with the right-hand side eλtf(t), by setting v(t) =
eλtu(t). Therefore, it is equivalent to prove that A or A+λI, for λ ∈ R, is maximal
monotone, in order to apply the Hille–Yosida theorem.

Remark 2.2. Let V be a dense Hilbert subspace of H , and let a(., .) be a contin-
uous bilinear form on V × V . Then the form a defines a bounded linear operator
A ∈ L(V, V ′). In the sequel, we shall also denote by A the linear operator associated
to a and defined by

D(A) = {u ∈ V ; v �→ a(u, v) is continuous on V for the norm of H}

and, for all u ∈ D(A), 〈Au, v〉 = a(u, v) ∀ v ∈ V . By construction, Au can be
extended, thanks to the density of V in H , to a continuous linear form on H , still
denoted by Au ∈ H ′.

3. Well-Posedness for the Elliptic Correction

We want to solve the following problem (E1): Find E, B, p defined on Ω × [0, T ]
with values in R

3 for E and B, and R for p, verifying the equations

∂E
∂t

− c2curlB + c2∇p = − 1
ε0

J,

∂B
∂t

+ curlE = 0,

div E =
1
ε0

ρ,

(3.1)

with boundary conditions

E× n = 0 on Γ, p = 0 on Γ, (3.2)

and initial conditions

E(., 0) = E0, B(., 0) = B0, and p(., 0) = 0, (3.3)

satisfying

div E0 = ρ(., 0) on Ω, div B0 = 0 on Ω,

E0 × n = 0 on Γ, B0 · n = 0 on Γ.
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3.1. The second-order uncoupled equations

The equations for E and B can be decoupled by going to the second order in time.

Proposition 3.1. Problem (E1) is formally equivalent to the following problem
(E2) : Find E, B, p solutions to:

∂2E
∂t2

+ c2curl curlE + c2∇∂p

∂t
= − 1

ε0

∂J
∂t

,

∂B
∂t

+ curlE = 0,

div E =
1
ε0

ρ,

(3.4)

with boundary conditions (3.2) and initial conditions (3.3) and

∂E
∂t

(., 0) = E1, with E1 = curlB0 − 1
ε0

J(., 0). (3.5)

Proof. If (E,B, p) is a sufficiently smooth solution to problem (E1), then, taking
the time derivative of the first equation and replacing the term ∂tB by −curlE,
we obtain the first equation of (3.4). The initial condition (3.5) is obtained by
considering the first equation of (3.1) at t = 0 and (3.3). The rest is identical.

Reciprocally, let (E,B, p) be a solution to problem (E2). Consider

U =
∂E
∂t

− c2curlB + c2∇p +
1
ε0

J.

Then

∂U
∂t

=
∂2E
∂t2

− c2curl
∂B
∂t

+ c2∇∂p

∂t
+

1
ε0

∂J
∂t

= −c2curl
(

curlE +
∂B
∂t

)
= 0.

As U(., 0) = 0 according to (3.5) and (3.3), if U is sufficiently smooth in time, it
implies that U = 0, whence the first equation of (3.1).

3.2. Variational formulation in E

From now on, we assume that J ∈ H(div , Ω); hence, in particular, div J ∈ L2(Ω),
and ρ ∈ L2(Ω), for all t > 0. For the proof of the final theorem, we need to introduce
ψ ∈ H1

0 (Ω), the unique solution to ∆ψ = div J. Then J̃ = J − ∇ψ automatically
verifies div J̃ = 0.

Proposition 3.2. Problem (E2) is equivalent to problem (E3), which consists in
the mixed variational formulation in E and P = −∂tψ/ε0 − c2∂tp: Find (E, P ) ∈
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X0 × L2(Ω) such that
〈

∂2E
∂t2

,F
〉

X0

+ c2
(
curlE, curlF

)
0

+
(
P, div F

)
0

= − 1
ε0

〈
∂J̃
∂t

,F

〉
X0

, ∀F ∈ X0,(
div E, q

)
0

=
1
ε0

(
ρ, q
)
0
, ∀ q ∈ L2(Ω), (3.6)

plus ∂tB + curlE = 0, boundary conditions (3.2) and initial conditions (3.3) and
(3.5).

Proof. Assume that problem (E2) has a smooth (see the next remark) solution
(E, p). Then for all F ∈ X0, we have

− 1
ε0

〈
∂J̃
∂t

,F

〉
X0

= − 1
ε0

〈
∂J
∂t

,F
〉

X0

+
1
ε0

(
∂∇ψ

∂t
,F
)

0

=
〈

∂2E
∂t2

,F
〉

X0

+ c2 〈curl curlE,F〉X0

+ c2

〈
∇∂p

∂t
,F
〉

X0

+
1
ε0

(
∇∂ψ

∂t
,F
)

0

=
〈

∂2E
∂t2

,F
〉

X0

+ c2 〈curl curlE,F〉H0(curl, Ω)

+ c2

〈
∇∂p

∂t
,F
〉

H(div, Ω)

+
1
ε0

(
∇∂ψ

∂t
,F
)

0

=
〈

∂2E
∂t2

,F
〉

X0

+ c2
(
curlE, curlF

)
0
−
(

c2 ∂p

∂t
+

1
ε0

∂ψ

∂t
, div F

)
0

.

Set P = −∂tψ/ε0 − c2∂tp. We then get the mixed variational formulation (3.6).
The reciprocal assertion is simple:

• One derives the first equation of (3.4) in X ′
0 provided the solution (E, P ) is

smooth enough if one sets

p(·, t) = − 1
c2

(∫ t

0

P (·, s)ds +
1
ε0

(ψ(·, t) − ψ(·, 0))
)

.

• The second one is evidently true.
• The third equation holds in L2(Ω) by construction.

Remark 3.1. In the previous proof, we evidently assumed that ∂tJ̃ belongs to X ′
0.

Now, since X0 is a subset of both H0(curl , Ω) and H(div , Ω), the converse inclusions
hold for the dual spaces. Let us explain here in a few words, what we meant by a
smooth solution (E, p):
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• For E, we assumed that curlE ∈ L2(Ω)3, which implies curl curlE ∈
(H0(curl, Ω))′.

• For ∂tp, we assumed that

(i) ∇(∂tp) ∈ (H(div, Ω))′;
(ii)

〈∇(∂tp),F
〉

H(div,Ω)
= −(∂tp, divF

)
0
∀ F ∈ H(div, Ω).

Actually, (ii) corresponds to the boundary condition p = 0 in (3.2) in some sense.
As soon as ∂tp belongs to H1(Ω), there holds for F ∈ H(div , Ω)〈∇(∂tp),F

〉
H(div,Ω)

= (∇(∂tp),F
)
0

= −(∂tp, divF
)
0

+
〈
F · n, p

〉
H1/2(Γ)

so that p|Γ vanishes.
The same considerations apply for (E, P ).

Let b be the continuous bilinear form defined on X0 × L2(Ω) by

b(u, λ) = (div u, λ)0 ∀ (u, λ) ∈ X0 × L2(Ω).

Let A : X0 → X ′
0, B : X0 → L2(Ω)′, and B′ : L2(Ω) → X ′

0 be the linear operators
defined by

〈AF,G〉 = c2(curlF, curlG)0, 〈BF, q〉 = (div F, q)0, 〈B′q,F〉 = 〈q,BF〉
for F,G ∈ X0 and q ∈ L2(Ω). In the sequel, we identify L2(Ω)′ with L2(Ω). It is
easy to see that A, B, and B′ are continuous.

The mixed variational formuation (3.6) can be written equivalently: Find (E, P )
∈ X0 × L2(Ω) such that

∂2E
∂t2

+ AE + B′P = − 1
ε0

∂J̃
∂t

in X ′
0,

BE =
1
ε0

ρ in L2(Ω)′.
(3.7)

We shall adapt the proof of Girault and Raviart9 to show that this time-
dependent mixed problem has a unique solution. Set

V = Ker B = {v ∈ X0 | div v = 0},
Vρ = {v ∈ X0 | div v = ρ/ε0},
V ◦ = {g ∈ X ′

0 | 〈g, v〉 = 0 ∀ v ∈ V },
V ⊥ = {u ∈ X0 | (u, v)X = 0 ∀ v ∈ V }.

We note that given any element ϕ of H1
0 (Ω) such that ∆ϕ ∈ L2(Ω), one has

∇ϕ ∈ X0. In addition, there holds by integration by parts

(∇ϕ, v)X = (∇ϕ, v)0 = 0 ∀ϕ ∈ H1
0 (Ω) s.t. ∆ϕ ∈ L2(Ω), v ∈ V. (3.8)

In other words, ∇ϕ belongs to V ⊥. This property will be used hereafter.
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Lemma 3.1. The bilinear form b verifies the inf–sup condition in the space X0 ×
L2(Ω):

inf
λ∈L2(Ω)

sup
v∈X0

b(v, λ)
‖v‖X‖λ‖0

≥ β.

Proof. We need to prove that there exists β > 0 such that

∀λ ∈ L2(Ω), sup
v∈X0

b(v, λ)
‖v‖X

≥ β‖λ‖0.

Let λ ∈ L2(Ω). There exists ξ ∈ H1
0 (Ω) such that ∆ξ = λ in Ω. Moreover, ‖ξ‖1 ≤

C‖λ‖0 with C > 0 independent of λ. Then u = ∇ξ verifies

u ∈ L2(Ω)3,

div u = λ ∈ L2(Ω),

curlu = 0 ∈ L2(Ω)3,

u × n|Γ = ∇ξ × n|Γ = 0 as ξ ∈ H1
0 (Ω).

Hence u belongs to X0. On the other hand, b(u, λ) = (div u, λ)0 = ‖λ‖2
0, and

‖u‖2
X = ‖u‖2

0 + ‖div u‖2
0

= ‖∇ξ‖2
0 + ‖λ‖2

0

≤ ‖ξ‖2
1 + ‖λ‖2

0

≤ (1 + C2)‖λ‖2
0.

Therefore,

b(u, λ)
‖u‖X

= ‖λ‖0
‖λ‖0

‖u‖X
≥ ‖λ‖0(1 + C2)−1/2,

and so

sup
v∈X0

b(v, λ)
‖v‖X

≥ b(u, λ)
‖u‖X

≥ β‖λ‖0,

with β = (1 + C2)−1/2 independent of λ.

Theorem 3.1. Assume that the initial data verify

(E0,E1) ∈ X0(curl) × X0 (3.9)

and that the sources ρ and J satisfy

J ∈ C2([0, T ]; H(div, Ω)), ρ ∈ C2([0, T ]; L2(Ω)),
(

∂ρ

∂t
+ div J

)
(., 0) = 0.

(3.10)

Then the mixed variational formulation (3.6) has a unique solution (E, P ), verifying

E ∈ C0([0, T ]; X0(curl)) ∩ C1([0, T ]; X0) ∩ C2([0, T ]; H(div, Ω)),

P ∈ C0([0, T ]; L2(Ω)).
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Proof. 1. On the one hand, the bilinear form b verifies the inf–sup condition in
the space X0 × L2(Ω). Then, according to Lemma 2.1, B is an isomorphism from
V ⊥ onto L2(Ω)′. Hence there exists a unique E⊥ ∈ V ⊥ such that

BE⊥ = ρ/ε0.

Moreover, due to inequality (iii) in Lemma 2.1 and as ρ ∈ C2([0, T ]; L2(Ω)),

E⊥ ∈ C2([0, T ]; V ⊥).

On the other hand, let ϕ ∈ H1
0 (Ω) be a solution to ∆ϕ = ρ/ε0. According to (3.8),

∇ϕ ∈ V ⊥. By uniqueness (B is an isomorphism on V ⊥), E⊥ = ∇ϕ. This implies
that

AE⊥ = 0, and
(
E⊥,F

)
X

=
(
E⊥,F

)
0

= 0 for all F ∈ V.

2. Denote by AV the linear operator defined by AV : X0 → V ′, F �→ AV F such
that

〈AV F,G〉 = c2(curlF, curlG)0 ∀ (F,G) ∈ X0 × V.

If (E, P ) is a solution to the mixed problem (3.7), it implies that E is a solution to
the following problem restricted to V : Find E ∈ Vρ such that

∂2E
∂t2

+ AV E = − 1
ε0

∂J̃
∂t

in V ′.

According to (3.8), this problem is equivalent to: Find W = E−E⊥ ∈ V such that

∂2W
∂t2

+ AV W = − 1
ε0

∂J̃
∂t

in V ′. (3.11)

Setting

u =
(

W
∂tW

)
, A =

(
0 −I

AV 0

)
, f =

(
0

−∂tJ/ε0

)
, u0 =

(
E0 − E⊥(., 0)

E1 − ∂tE⊥(., 0)

)
,

this problem becomes

d

dt
u + Au = f, u(0) = u0. (3.12)

Introduce

H = V × H(div 0, Ω),

D(A) = {u ∈ H | Au ∈ H} = V (curl) × V.

Let us admit for the moment the following lemma.

Lemma 3.2. The operator I + A : D(A) → H is maximal monotone on H.

According to Remark 2.1, we can apply the Hille–Yosida theorem: assuming
that u0 ∈ D(A) and f ∈ C1([0, T ], H), problem (3.12) has a unique solution u ∈
C0([0, T ], D(A)) ∩ C1([0, T ], H).
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The hypotheses of the Hille–Yosida theorem correspond to

• f ∈ C1([0, T ], H) ⇔ ∂tJ̃ ∈ C1([0, T ], H(div 0, Ω)).
The right-hand side holds when J ∈ C2([0, T ]; H(div, Ω)) and ρ ∈ C2([0, T ];
L2(Ω)).

• u0 ∈ D(A) ⇔ E0 − E⊥(., 0) ∈ V (curl) and E1 − ∂tE⊥(., 0) ∈ V .

Because of the hypotheses and as curlE⊥ = 0, one has E0 − E⊥(., 0) ∈ X0(curl).
Moreover,

div (E0 − E⊥(., 0)) = div E0 − ρ(., 0)/ε0 = 0;

hence E0−E⊥(., 0) belongs to V (curl). In the same way, E1−∂tE⊥(., 0) ∈ X0, and
because of (3.5)

div
(
E1 − ∂E⊥

∂t
(., 0)

)
= div E1 − 1

ε0

∂ρ

∂t
(., 0)

= div (c2curlB0 − J(., 0)/ε0) − 1
ε0

∂ρ

∂t
(., 0)

= − 1
ε0

(
div J +

∂ρ

∂t

)
(., 0) = 0.

Hence E1 − ∂tE⊥(., 0) belongs to V .
Therefore, the hypotheses of the Hille–Yosida theorem are all verified, and we

get the existence and uniqueness of

u ∈ C0([0, T ], D(A)) ∩ C1([0, T ], H),

which is equivalent to

W ∈ C0([0, T ], V (curl)) ∩ C1([0, T ], V ) ∩ C2([0, T ], H(div 0, Ω)),

unique solution to (3.11). Since X0 = V ⊕V ⊥, we have the existence and uniqueness
of the solution E to (3.7), according to the splitting

E = W + E⊥ ∈ C0([0, T ], X0(curl)) ∩ C1([0, T ], X0) ∩ C2([0, T ], H(div, Ω)).

3. It remains to find P . Because of the inf–sup condition (Lemma 2.1), B′ is an
isomorphism from L2(Ω) on V ◦. But

− 1
ε0

∂J̃
∂t

− ∂2E
∂t2

−AE =

(
− 1

ε0

∂J̃
∂t

− ∂2W
∂t2

−AW

)
+
(
−∂2E⊥

∂t2
−AE⊥

)
∈ V ◦.

Hence there exists a unique P in L2(Ω) such that

B′P = − 1
ε0

∂J̃
∂t

− ∂2E
∂t2

−AE ∈ V ◦.

Now using inequality (ii) of Lemma 2.1, and the fact that

−∂J̃
∂t

− ∂2E
∂t2

−AE ∈ C0([0, T ], L2(Ω)3),
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we obtain that

P ∈ C0([0, T ]; L2(Ω)).

To complete the proof, we need to prove Lemma 3.2.

Proof. (Proof of Lemma 3.2) Let us show that I + A is maximal monotone on H .
Consider u ∈ D(A).

((I + A)u, u)H = (u1 − u2, u1)V + (u2 + AV u1, u2)0,div 0

=
∫

Ω

(|u1|2 + c2|curlu1|2 − u1 · u2 − c2curlu1 · curlu2

+ |u2|2 + c2curlu1 · curlu2)dx

=
∫

Ω

(
c2|curlu1|2 + |u1|2 + |u2|2 − u2 · u1

)
dx ≥ 0.

Hence the operator I + A is monotone.
Consider now f ∈ H . We look for u ∈ D(A) such that (2I + A)u = f , that is,

we look for u1 ∈ V (curl) and u2 ∈ V such that{
2u1 − u2 = f1 ∈ V,

2u2 + AV u1 = f2 ∈ H(div 0, Ω).

This system is equivalent to{
u2 = 2u1 − f1,

4u1 + AV u1 = f2 + 2f1.

The bilinear form (u1, v1) �→ (4u1, v1)0 + c2(curlu1, curl v1)0 is continuous and
coercive on the closed subspace V of X0. f2 + 2f1 ∈ H(div 0, Ω) defines a linear
continuous form on V . Due to the Lax–Milgram theorem, there exists a unique
u1 ∈ V such that

〈4u1 + AV u1, v1〉V = (f2 + 2f1, v1) for all v1 ∈ V.

We now prove that c2curl curlu1 = f2 + 2f1 − 4u1 in the sense of distributions. Let
ϕ be any function in D(Ω). There exists a unique λ ∈ H1

0 (Ω) such that ∆λ = div ϕ.
Set ψ = ϕ − ∇λ: we verify easily that (∇λ, ψ) ∈ H0(curl, Ω) × V . One has, by
definition of u1,

〈c2curl curlu1, ψ〉V = 〈AV u1, ψ〉V = (f2 + 2f1 − 4u1, ψ)0.

Moreover,

〈c2curl curlu1,∇λ〉H0(curl,Ω) = 0.

Therefore, c2curl curlu1 = f2 + 2f1 − 4u1 follows in D(Ω)′, and so u1 ∈ V (curl).

We deduce the existence of u2 = 2u1 − f1 ∈ V . The operator 2I + A is onto on
H , whence I + A is maximal monotone on H .

The initial problem can finally be solved.
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Theorem 3.2. Under hypotheses (3.9), (3.10) and

B0 ∈ H0(div 0, Ω) ∩ H(curl, Ω),

problem (E2) has a unique solution (E,B, p) verifying

E ∈ C0([0, T ], X0(curl)) ∩ C1([0, T ], X0) ∩ C2([0, T ], L2(Ω)3),

B ∈ C1([0, T ], H0(div 0, Ω) ∩ H(curl , Ω)) ∩ C2([0, T ], H0(div 0, Ω)),

p ∈ C1([0, T ], H1
0 (Ω)).

Proof. Starting from the weak solution (E, P ) obtained from Theorem 3.1, we
build B and p; then we prove that (E,B, p) is a strong solution to problem (E2).

Due to (3.6), div E = ρ/ε0 in L2(Ω) for all t. The boundary condition E × n|Γ =
0 follows from the fact that E is in the space X0. For all φ ∈ D(Ω)3, we have(

∂2E
∂t2

+ c2curl curlE −∇P, φ

)
0

= − 1
ε0

(
∂J̃
∂t

, φ

)
0

,

hence

∇P =
1
ε0

∂J̃
∂t

+
∂2E
∂t2

+ c2curl curlE in L2(Ω)3.

We deduce that P ∈ C0([0, T ], H1(Ω)). Thus, P|Γ has a meaning in L2(Γ). To prove
that it is equal to zero, let us take sufficiently many test functions. Recall that Ω is
a polyhedron so that its boundary is composed of faces (Γk)k. The union ∪kD(Γk)
is dense in L2(Γ). So, for a given face Γk0 , let λ ∈ D(Γk0). According to Proposition
3.2 of Ref. 1, there exists v ∈ X0 such that v ·n|Γ = λ. Using this v as a test function
in (3.6), we find that

0 =
∫

Γ

Pv · n dΓ =
∫

Γk0

Pλ dΓ.

In other words, P|Γ = 0 and P ∈ C0([0, T ], H1
0 (Ω)).

On the other hand, J ∈ C2([0, T ], H(div , Ω)), whence ψ ∈ C2([0, T ], H1
0 (Ω)).

From the equality

∂p

∂t
=

1
c2

(
− 1

ε0

∂ψ

∂t
− P

)
and from p(., 0) = 0, we finally get p ∈ C1([0, T ], H1

0(Ω)). Let now B be a solution
to

∂B
∂t

= −curlE, B(., 0) = B0.

We know that curlE ∈ C0([0, T ], H0(div 0, Ω)∩H(curl, Ω))∩C1([0, T ], H0(div 0, Ω)),
since

curlE · n|Γ = div p(E× n)|Γ = 0.

As B0 ∈ H0(div 0, Ω) ∩ H(curl, Ω), we finally get B ∈ C1([0, T ], H0(div 0, Ω) ∩
H(curl, Ω)) ∩ C2([0, T ], H0(div 0, Ω)).
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4. Well-Posedness for the Parabolic Correction

Problem (P1) consists in finding E,B : Ω× [0, T ] → R
3 and p : Ω× [0, T ] → R such

that



∂E
∂t

− c2curlB + c2∇p = − 1
ε0

J,

∂B
∂t

+ curlE = 0,

p + div E =
ρ

ε0

(4.1)

along with the initial conditions (3.3) and the boundary conditions (3.2).
The main difference when compared with the previous section (elliptic cor-

rection) is that, since one can replace p by ρ/ε0 − div E, there is no need for
a mixed (or saddle-point) formulation involving both E and p. Proofs will then
be technically simpler here. To simplify the setting further, we can consider that
ρ = 0. Indeed, if ρ ∈ Ck([0, T ], L2(Ω)), there exists ϕ ∈ Ck([0, T ], H1

0 (Ω)) such that
∆ϕ = ρ/ε0, i.e. ∇ϕ roughly plays the role of E⊥ of Sec. 3.2. Setting W = E−∇ϕ

and J̃ = J+ε0∂t(∇ϕ), the previous problem can be written with a vanishing source
term in the last equation. We thus consider that ρ = 0 in the sequel.

4.1. The second-order uncoupled equations

Proposition 4.1. Problem (P1) is equivalent to problem (P2) : Find E,B, p solu-
tions to


∂2E
∂t2

+ c2curl curlE− c2∇div
∂E
∂t

= − 1
ε0

∂J
∂t

,

∂B
∂t

= −curlE,

p = −divE,

(4.2)

with boundary conditions (3.2) and initial conditions (3.3) and (3.5).

The proof is omitted, since it is very similar to the proof of Proposition 3.1.

4.2. Variational formulation in E

To build a variational formulation, let us assume that there exists a smooth solution
(E,B, p) to problem (P2). As to the required smoothness, we refer the reader to
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Remark 3.1, with p replaced by ∂tp = −∂tdiv E. Given F in X0, we have

− 1
ε0

〈
∂J
∂t

,F
〉

X0

=
〈

∂2E
∂t2

,F
〉

X0

+ c2
〈
curl curlE,F

〉
X0

− c2

〈
∇div

∂E
∂t

,F
〉

X0

=
〈

∂2E
∂t2

,F
〉

X0

+ c2
〈
curl curlE,F

〉
H0(curl,Ω)

− c2

〈
∇div

∂E
∂t

,F
〉

H(div,Ω)

=
〈

∂2E
∂t2

,F
〉

X0

+ c2
(
curlE, curlF

)
0

+ c2

(
div

∂E
∂t

, div F
)

0

.

In the above, we are looking for E ∈ X0. This variational formulation can be written
equivalently: find E ∈ X0 such that

∂2E
∂t2

+ AE + B∂E
∂t

= − 1
ε0

∂J
∂t

in X ′
0, (4.3)

where the linear forms are now defined by

〈AF,G〉 = c2
(
curlF, curlG

)
0
, 〈BF,G〉 = c2

(
div F, div G

)
0

for F,G ∈ X0. From problem (4.3), one can simply rebuild the first equation of
(4.2) in X ′

0, provided again E is smooth enough.
The boundary condition on E follows from the definition of the space X0 =
H0(curl , Ω) ∩ H(div , Ω). Finally, the one on p = −div E is contained in the varia-
tional formulation.

Set u =
(

E
∂tE

)
, A =

(
0 −I
A B

)
, f =

(
0

−∂tJ/ε0

)
, and u0 =

(
E0

E1

)
.

Problem (4.3) with initial conditions (3.3) and (3.5) then reads

du

dt
+ Au = f in X ′

0 × X ′
0, u(., 0) = u0. (4.4)

Set H = X0 × L2(Ω)3 and D(A) = {u ∈ X0 × X0;Au1 + Bu2 ∈ L2(Ω)3}.

Lemma 4.1. The operator I + A : D(A) → H is maximal monotone.

Proof. Let u ∈ D(A). Then

((I + A)u, u)H = (u1 − u2, u1)X0 + (u2 + Au1 + Bu2, u2)0

=
∫

Ω

(|u1|2 + c2|curlu1|2 + c2(div u1)2 − u1 · u2 − c2curlu1 · curlu2

− c2div u1div u2 + |u2|2 + c2curlu1 · curlu2 + c2(div u2)2) dx
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=
∫

Ω

(c2|curlu1|2 + c2(div u1)2 + c2(div u2)2 − c2div u2 div u1

+ |u1|2 + |u2|2 − u2 · u1) dx

≥ 0.

Hence I+A is monotone. Let f ∈ H . We look for u ∈ D(A) such that (2I+A)u = f ,
that is {

2u1 − u2 = f1 ∈ X0,

2u2 + Au1 + Bu2 = f2 ∈ L2(Ω)3.

This system is equivalent tou1 =
1
2
(u2 + f1),

4u2 + Au2 + 2Bu2 = 2f2 −Af1.

As f1 ∈ X0 and f2 ∈ L2(Ω)3, 2f2 − Af1 is a continuous linear form on X0. The
bilinear form (u2, v2) �→ 〈4u2 + Au2 + 2Bu2, v2〉X0 is continuous and coercive
on X0 × X0. Due to the Lax–Milgram theorem, there exists u2 ∈ X0 such that
(4I +A + 2B)u2 = 2f2−Af1 in X ′

0. Then u1 = 1
2 (u2 + f1) ∈ X0 and Au1 + Bu2 =

f2 − 2u2 ∈ L2(Ω)3. Hence, 2I + A is onto, and the operator I + A is maximal
monotone.

Theorem 4.1. If the sources satisfy

J ∈ C2([0, T ], L2(Ω)3) (and ρ ∈ C1([0, T ], L2(Ω))),

and if the initial data verify

(E0,B0) ∈ X0 × H0(div 0, Ω), E1 ∈ X0, AE0 + BE1 ∈ L2(Ω)3,

then problem (P1) has a unique solution verifying

E ∈ C1([0, T ], X0) ∩ C2([0, T ], L2(Ω)3),

B ∈ C2([0, T ], H0(div 0, Ω)),

p ∈ C1([0, T ], L2(Ω)).
Proof. According to Lemma 4.1, we can apply the Hille–Yosida theorem to the
equivalent problem (4.4). The hypotheses on the source terms and on the data mean
that u0 ∈ D(A) and f ∈ C1([0, T ], H). Then problem (4.4) has a unique solution u

verifying

u ∈ C0([0, T ], D(A)) ∩ C1([0, T ], H).

The regularity results on E, p, and B follow readily.
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676 R. Barthelmé, P. Ciarlet, Jr. & E. Sonnendrücker

5. Well-Posedness for the Hyperbolic Correction

Problem (H1) consists in finding E,B : Ω× [0, T ] → R
3 and p : Ω× [0, T ] → R such

that 

∂E
∂t

− c2curlB + c2∇p = − 1
ε0

J,

∂B
∂t

+ curlE = 0,

∂p

∂t
+ div E =

ρ

ε0

(5.1)

along with the initial conditions (3.3) and the boundary conditions

E× n = 0 on Γ,
∂p

∂t
+ c

∂p

∂n
= 0 on Γ.

Then if p is a sufficiently smooth solution, it satisfies the following system

∂2p

∂t2
− c2∆p =

1
ε0

(
∂ρ

∂t
+ div J

)
on Ω × [0, T ],

∂p

∂t
+ c

∂p

∂n
= 0 on Γ × [0, T ],

p(., 0) = 0,
∂p

∂t
(., 0) = 0 on Ω.

(5.2)

Proposition 5.1. The variational formulation of problem (5.2) is: Find p(t) ∈
H1(Ω) such that for all q ∈ H1(Ω) we have

d2

dt2
(p, q)0 + c2(∇p,∇q)0 + c

d

dt

∫
Γ

pq dΓ =
1
ε0

(
∂ρ

∂t
+ div J, q

)
0

. (5.3)

We set, for p, q ∈ H1(Ω),

〈Ap, q〉 = c2(∇p,∇q)0, 〈Cp, q〉 = c

∫
Γ

pq dΓ.

We thus define bounded linear operators A, C ∈ L(H1(Ω), H1(Ω)′). The variational
problem (5.3) can be rewritten: Find p(t) ∈ H1(Ω) such that

∂2p

∂t2
+ Ap + C ∂p

∂t
=

1
ε0

(
∂ρ

∂t
+ div J

)
on H1(Ω)′.

This is finally equivalent to finding u = (p, ∂tp) ∈ H such that

du

dt
+ Au = f,

where we set

A =
(

0 −I

A C
)

, f =
(

0
(∂tρ + div J)/ε0

)
,
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H = H1(Ω) × L2(Ω),

D(A) = {v ∈ H1(Ω) × H1(Ω) | Av1 + Cv2 ∈ L2(Ω)}.

Lemma 5.1. The operator I + A : D(A) → H is maximal monotone.

Proof. We consider the scaled scalar product on H1(Ω):

(u, v)1,� =
∫

Ω

(c2∇u · ∇v + u v) dx for u, v ∈ H1(Ω).

Let u = (u1, u2) ∈ D(A).

((I + A)u, u)H =
∫

Ω

(c2|∇u1|2 + u2
1 + u2

2) dx + (−u2, u1)1,� + (Au1 + Cu2, u2)0

=
∫

Ω

(c2|∇u1|2 + u2
1 + u2

2 − u2u1) dx + c

∫
Γ

u2
2 dΓ

≥ 0.

Hence I+A is monotone. Let f ∈ H . We look for u ∈ D(A) such that (2I+A)u = f ,
that is, {

2u1 − u2 = f1 ∈ H1(Ω),
2u2 + Au1 + Cu2 = f2 ∈ L2(Ω),

which is equivalent tou1 =
1
2
(u2 + f1),

4u2 + Au2 + 2Cu2 = 2f2 −Af1 ∈ H1(Ω)′.

The bilinear form defined from the operator 4u2 + Au2 + 2Cu2 ∈ H1(Ω)′ is clearly
continuous and coercive on H1(Ω)×H1(Ω). The linear form 2f2−Af1 is continuous
on H1(Ω). Applying the Lax–Milgram theorem, there exists a unique u2 ∈ H1(Ω)
such that 4u2 + Au2 + 2Cu2 = 2f2 −Af1.

Let u1 = 1
2 (u2 + f1); then u1 ∈ H1(Ω) and Au1 + Cu2 = f2 − 2u2 ∈ L2(Ω);

hence u ∈ D(A). The operator 2I +A : D(A) → H is onto; hence I +A is maximal
monotone.

Define the functional set

E(∆, H1(Ω)) = {q ∈ H1(Ω) | ∆q ∈ L2(Ω)}.
Proposition 5.2. If p(., 0) = 0, ∂tp(., 0) = 0, and (∂tρ+div J) ∈ C1([0, T ], L2(Ω)),
then problem (5.3) admits a unique solution p such thatp ∈ C0([0, T ], E(∆, H1(Ω))) ∩ C1([0, T ], H1(Ω)) ∩ C2([0, T ], L2(Ω)), and

c
∂p

∂n
+

∂p

∂t
= 0 on Γ.

(5.4)

Proof. Applying the Hille–Yosida theorem, the problem has a unique weak solution

p ∈ C1([0, T ], H1(Ω)) ∩ C2([0, T ], L2(Ω)).
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For any test function ϕ ∈ D(Ω), the variational formulation reads(
∂2p

∂t2
, ϕ

)
0

+ c2(∇p,∇ϕ)0 =
1
ε0

(
∂ρ

∂t
+ div J, ϕ

)
0

,

whence

∂2p

∂t2
− ∆p =

1
ε0

(
∂ρ

∂t
+ div J

)
, (5.5)

and so ∆p ∈ C0([0, T ], L2(Ω)). In other words, p ∈ C0([0, T ], E(∆, H1(Ω))). In
particular, there holds, according to the above, ∂tp|Γ in H1/2(Γ), and ∂np|Γ in
H−1/2(Γ).

For any test function ϕ ∈ C∞(Ω), the variational formulation yields(
∂2p

∂t2
− c2∆p, ϕ

)
0

+ c

〈
c
∂p

∂n
+

∂p

∂t
, ϕ

〉
H1/2(Γ)

=
1
ε0

(
∂ρ

∂t
+ div J, ϕ

)
0

.

According to equality (5.5) which is valid in L2(Ω), we have〈
c
∂p

∂n
+

∂p

∂t
, ϕ

〉
H1/2(Γ)

= 0, ∀ϕ ∈ C∞(Ω).

In other words,

c
∂p

∂n
+

∂p

∂t
= 0 in H−1/2(Γ).

Since ∂tp|Γ belongs to C0([0, T ], H1/2(Γ)), the above equality holds in the classical
sense.

This result can be improved when the domain Ω is convex.

Corollary 5.1. Assume the domain Ω is convex; then

p ∈ C0([0, T ], H2(Ω)).

Proof. This is a straightforward consequence of the fact that, since ∂np|Γ belongs
to C0([0, T ], H1/2(Γ)), ∇p is a continuous function of t in the space

{f ∈ H(curl, Ω) ∩ H(div, Ω) | f · n|Γ ∈ H1/2(Γ)}.
According to Ref. 7, Chap. IX, pp. 247–248, this functional space is actually imbed-
ded in H1(Ω)3 when Ω is convex.

We then conclude by solving the hyperbolically corrected problem (H1).

Corollary 5.2. Assume that the sources verify

ρ ∈ C2([0, T ], L2(Ω)), J ∈ C1([0, T ], H(div, Ω)),
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and that the initial conditions verify

p(., 0) = 0,
∂p

∂t
(., 0) = 0, (E0,B0) ∈ X0 × X.

Then problem (H1) has a unique solution with p as in (5.4) and

E ∈ C0([0, T ], X0) ∩ C1([0, T ], H(div, Ω)),

B ∈ C0([0, T ], X) ∩ C1([0, T ], H0(div, Ω)).

Proof. As (∂tρ+divJ) ∈ C1([0, T ], L2(Ω)), we can apply the previous Proposition
whence the existence and uniqueness of

p ∈ C0([0, T ], E(∆, H1(Ω))) ∩ C1([0, T ], H1(Ω)) ∩ C2([0, T ], L2(Ω)),

solution to (5.2). This implies in turn(
J
ε0

+ c2∇p

)
∈ C0([0, T ], H(div, Ω)) and

(
ρ

ε0
− ∂p

∂t

)
∈ C1([0, T ], L2(Ω)).

Moreover, p being solution to (5.2), we have

∂

∂t

(
ρ

ε0
− ∂p

∂t

)
+ div

(
J
ε0

+ c2∇p

)
=

1
ε0

(
∂ρ

∂t
+ div J

)
− ∂2p

∂t2
+ c2∆p = 0.

As expected, p accounts for the targeted hyperbolic correction on the continuity
equation (0.1). We can then apply Theorem 2.1 to conclude. Indeed, use the classical
setting

u =
(

E
cB

)
, A =

(
0 −c curl

c curl 0

)
, f =

(
J/ε0 + c2∇p

0

)
, u0 =

(
E0

cB0

)
,

with H = L2(Ω)3×L2(Ω)3 and D(A) = H0(curl, Ω) × H(curl, Ω). The assumptions
of Theorem 2.1 are easily checked. The additional regularity on the divergence of
the electromagnetic field and the vanishing normal trace of the magnetic field stem
from the relationships

div E =
ρ

ε0
− ∂p

∂t
and

∂B
∂t

= −curlE.
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4. P. Blaise, P. Ciarlet, Jr. and R. Sentis, Développements récents dans le code de
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6. H. Brézis, Analyse Fonctionnelle (Dunod, 1999).
7. R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Pour les
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