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We consider the time-harmonic Maxwell equations, involving wave transmission between media with
opposite sign dielectric and/or magnetic coefficients. We prove that, in the case of sign-shifting di-
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Introduction

In recent years, a growing interest for new materials has arisen. At particular frequencies,
they behave like materials with negative electric permittivity ε or/and negative magnetic
permeabilityµ. They include superconductors, left-handed materials16, etc. As a conse-
quence, most mathematical approaches fail to resolve the corresponding electromagnetic
models. Accordingly, these ”negative” materials raise many challenging questions, from
both mathematical and numerical points of view.
We consider here the particular case of an interface between”positive” (dielectric) and
”negative” materials. Our main objective is to study those interface problems, and to pro-
vide variational settings, which can be easily discretized, for instance via finite element
methods.
In 2d configurations, they reduce to scalar problems involving terms like−div (ε∇·). Those
scalar problems have been thoroughly investigated: we refer the reader to Refs. 9, 15, 5. It
is now well understood that well-posedness depends crucially on the ratio of the values ofε
taken from both sides of the interface. On the one hand, when its value is precisely equal to
−1, the interface problem is ill-posed9. On the other hand, well-posedness in the Fredholm
sense has been obtained when its absolute value is small enough (or large enough). This
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result has been achieved under very weak assumptions (Lipschitz interface,L∞ coefficient
ε) in Ref. 3 where a variational formulation with an additional vector unknown is used (see
also Ref. 4 for an alternate proof).
The main objective of this paper is to extend these results tothe case of the 3d Maxwell
equations, especially when bothε andµ exhibit a sign-shift at the interface. With no loss
of generality, we shall focus on the electric field formulation. Here, the sign-shift ofµ in

the termcurl

(

1

µ
curl ·

)

raises similar difficulties as in the scalar case. In addition, a

new difficulty appears in the constraint on the fielddiv (εe) = 0, coming now from the
sign-shift ofε.

The outline of the paper will be as follows. In section 1, we introduce thead hocmathe-
matical framework of our study. In section 2, we specificallytarget the constraint involving
a sign-shifting electric permittivityε: we prove a new, Weber-like, compactness embed-
ding result for the space of electric fields. Then, in the nextsection, we focus instead on
Maxwell’s equations with a sign-shifting magnetic permeability µ. We build a three-field
variational formulation, thus generalizing the approach advocated in Ref. 3 for the scalar
problem. Assembling the previous results allows us to provethe well-posedness of this vari-
ational formulation, in the general case of sign-shifting electric permittivity and magnetic
permeability. Finally we give some concluding remarks, before recalling some elementary
results in the Annex.

1. Derivation of the model and mathematical framework

Let Ω be an open, bounded and connected set ofR
3 with a Lipschitz polyhedrala ∂Ω; let

n be the unit outward normal to∂Ω.
It is assumed that the domainΩ can be partitioned into two simply connected sub-domains
Ω1 andΩ2 with Lipschitz polyhedral boundaries:Ω = Ω1∪Ω2, Ω1∩Ω2 = ∅; let ni be the
unit outward normal to∂Ωi, i = 1, 2. Then, define the interfaceΣ = ∂Ω1 ∩ ∂Ω2. Finally,
we introduceΓi = ∂Ωi \ Σ; it is assumed thatΓ1 andΓ2 are connected.
Both assumptions on the geometry (Ω1 andΩ2 simply connected,Γ1 andΓ2 connected)
can be removed. We introduce them for the ease of exposition.
In the sequel, we shall introduce functional spaces with elements defined onO, or on (a
part of) its boundary∂O, whereO stands for an open, bounded and connected set with a
Lipschitz polyhedral boundary. Typically,O ∈ {Ω,Ω1,Ω2}.
Hereafter we adopt the same notations as in Ref. 3: for all quantitiesv defined onΩ, vi :=

v|Ωi (for i = 1, 2) and






If vi > 0 a. e. inΩi: vmax
i = sup

x∈Ωi

vi(x), v
min
i = inf

x∈Ωi

vi(x).

If vi < 0 a. e. inΩi: v
+
i = sup

x∈Ωi

|vi(x)|, v
−
i = inf

x∈Ωi

|vi(x)|.

aResults can be generalized to the case of an open, bounded andconnected set ofR3 with a Lipschitzcurvilinear
polyhedral boundary. For short, we simply write that the boundaries are Lipschitz polyhedral boundaries.
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Let ε andµ be respectively the dielectric permittivity and the magnetic permeability: we
assume thatε, ε−1,µ andµ−1 all belong toL∞(Ω). The time-harmonic Maxwell equations
(ω 6= 0), with perfect conductor boundary condition on∂Ω, read:























ıωεE − curlH = −J

ıωµH + curlE = 0

div (εE) = ρ

div (µH) = 0

E × n|∂Ω = 0

, (1.1)

where(E ,H) is the electromagnetic field. Quantitiesρ andJ , respectively the charge and
current densities, satisfy the relationiωρ + divJ = 0. We assume thatρ ∈ L2(Ω). Pro-
videdE , H andJ belong toL2(Ω) component by component (we shall writeE ∈ L2(Ω)

hereafter), one finds thatE andH are both inH(curl; Ω). Recall that

{

H(curl;O) := {p ∈ L2(O) | curlp ∈ L2(O)},

H(div ;O) := {p ∈ L2(O) | div p ∈ L2(O)}.

The norm onH(op;O) (for op ∈ {curl, div }) is equal to the graph norm.
We also introduce

H0(curl;O) := {p ∈ H(curl;O) | p × n|∂O = 0}.

Indeed, thanks to the boundary condition onE , the electric field belongs toH0(curl; Ω).
One can eliminate one of the two fields (below,H), to find anequivalent, second order
system of equations:















ω2εE − curl

(

1

µ
curlE

)

= ıωJ in Ω

div (εE) = ρ in Ω

E × n|∂Ω = 0

. (1.2)

Let us consider the ”electrostatic-like problem”:
Find φe ∈ H1

0 (Ω) such that

div (ε∇φe) = ρ . (1.3)

In the case whenε is a constant-sign element ofL∞(Ω), solving the problem (1.3) is clas-
sical. Whenε exhibits a sign-shift overΩ, (1.3) may be solved using the three-field vari-
ational formulation proposed in Refs. 3 (see also Refs. 4, 18for another solution). More
precisely, suppose for instance thatε1 > 0. Then, it is proven that the electrostatic prob-
lem is well-posed under the assumption that one of the two contrastsRε

1 := ε−2 /ε
max
1 or

Rε
2 := εmin

1 /ε+2 is large enough. Note that this type of condition on contrasts (for ε and/or
µ) will systematically appear throughout the paper as a sufficient condition.
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By solving problem (1.3) and settinge = E −∇φe, j = iωJ − ω2ε∇φe, it is straightfor-
ward to prove that the system of equations (1.2) may be rewritten as















ω2εe − curl

(

1

µ
curle

)

= j in Ω

div (εe) = 0 in Ω

e × n|∂Ω = 0

. (1.4)

We note that, by contruction,j ∈ L2(Ω) anddiv j = 0, and the fielde belongs to the
functional spaceX defined by

X := {p ∈ H0(curl; Ω) | div (εp) = 0 in Ω} . (1.5)

On the one hand, the ”natural” variational formulation of (1.4) is:
Find e ∈ X such that

∀v ∈ X,

(

1

µ
curle, curlv

)

0,Ω

− ω2(εe,v)0,Ω = −(j,v)0,Ω . (1.6)

This ”natural” formulation highlights the difficulties we have to cope with. The first one, if
ε exhibits a sign-shift, since in this case, there exists no result ensuring that the embedding
of the functional spaceX into L2(Ω) is compact. The second one, ifµ exhibits a sign-
shift, since

(

µ−1curlv, curlv
)

0,Ω
has no specific sign, so its coercivity does not hold.

We note that the respective roles ofε andµ can be reversed, if one chooses instead to write
the ”natural” variational formulation inh.

On the other hand, it is easy to prove that the system of equations (1.4) with a solution in
X is equivalent to:
Find (e1, e2) ∈ H(curl; Ω1) × H(curl; Ω2) such that































































ω2ε1e1 − curl

(

1

µ1
curle1

)

= j1 in Ω1

ω2ε2e2 − curl

(

1

µ2
curle2

)

= j2 in Ω2

div (εiei) = 0 in Ωi

ei × ni|Γi
= 0 i = 1, 2

e1 × n1|Σ = e2 × n1|Σ

ε1e1 · n1|Σ = ε2e2 · n1|Σ
1

µ1
curle1 × n1|Σ =

1

µ2
curle2 × n1|Σ

. (1.7)

In particular,ei belongs to

Xi := {p ∈ H(curl; Ωi) | div (εp) = 0 in Ωi, p × n|Γi
= 0}. (1.8)

This setting shall be used hereafter, to build some well-posed variational formulations.
In the sequel, we denote by(·, ·)0 and‖ · ‖0 respectively the canonical scalar product and
norm ofL2(Ω) andL2(Ω), whereas we denote by(·, ·)0,i and‖ · ‖0,i resp. the canonical
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scalar product and norm ofL2(Ωi) (and ofL2(Ωi)), for i = 1, 2.

In order to build equivalent variational formulations, we shall need a few results on
traces of vector fields ofH(curl;O). We follow Refs. 6, 7.

First (cf. Thms 3.9 and 3.10, and subsection 4.1 in Ref. 6), the following integration by
parts formula holds

∀f ∈ H(curl;O), ∀g ∈ H(curl;O),

(f , curlg)0,O − (curlf , g)0,O =
〈

f × n|∂O, gT |∂O

〉

∂O
,

with gT |∂O the trace of the tangential components ofg. Above,〈·, ·〉∂O is a well-defined
duality product between two differentad hocHilbert spaces of functions with support on
the boundary∂O, and endowed with the ”natural” – quotient – norm. Namely,

TL(∂O) :=
{

(p × n)|∂O | p ∈ H(curl;O)
}

,

TR(∂O) :=
{

(p)T |∂O | p ∈ H(curl;O)
}

.

In addition, the trace mappingsv 7→ v×n|∂O andv 7→ vT |∂O are onto, fromH(curl;O)

to the same trace spaces, respectivelyTL(∂O) andTR(∂O) (cf. Thm 5.4 in Ref. 7).

Second (cf. Thms 3.15 and 3.16 and subsection 4.2 in Ref. 6), given γ ⊂ ∂O (also
with a Lipschitz boundary∂γ) andγ′ = ∂O \ γ̄, considerH0,γ(curl;O) := {p ∈

H(curl;O) | p × n|γ = 0} ; this space is endowed with the usual norm ofH(curl;O).
Then, one can prove the following integration by parts formula

∀f ∈ H0,γ(curl;O), ∀g ∈ H(curl;O),

(f , curlg)0,O − (curlf , g)0,O =
〈

f × n|γ′, gT |γ′

〉

γ′
,

The duality product〈·, ·〉γ′ is again considered between appropriate Hilbert spaces:

TL(γ′) :=
{

(p × n)|γ′ | p ∈ H0,γ(curl;O)
}

,

TR(γ′) :=
{

(p)T |γ′ | p ∈ H(curl;O)
}

.

The trace mappingv 7→ f × n|γ′ is onto, fromH0,γ(curl;O) to TL(γ′) (cf. Thm 6.6
in Ref. 7).

Finally, for scalar fields that belong toH1(O), recall that

H
1/2
00 (γ) := {p ∈ H1/2(γ) | p̃ ∈ H1/2(∂O)},

wherep̃ is the continuation ofp by zero to the whole boundary, is the ”natural” space for
traces onγ, whenever the trace vanishes on∂O\γ. This Hilbert space is endowed with the
”natural” norm‖p‖

H
1/2

00
(γ)

:= ‖p̃‖H1/2(∂O).
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2. A compactness result for a sign-shiftingε: extension of the Weber
embedding Theorem

Whenε is sign-constant over the whole domainΩ, according to17,13 the embedding ofX
into L2(Ω) is compact (we call this result theWeber embedding Theorem, as a tribute to
the landmark paper of Weber17). However, whenε exhibits a sign-shift, there exists to our
knowledge no result ensuring that the embedding of the functional spaceX into L2(Ω) is
compact. We suppose in this section thatε1 > 0 andε2 < 0. In order to extend further the
range of our theory, we shall establish that, provided at least one of the twoglobal contrasts
in ε Rε

1 := ε−2 /ε
max
1 orRε

2 := εmin
1 /ε+2 is large enough, the embedding of the functional

space

XY := {p ∈ H0(curl; Ω) | div (εp) ∈ L2(Ω)}

into L2(Ω) is compact. In other words, we propose an extension of theWeber embedding
Theorem. As a particular case, the embedding ofX – which is a subset ofXY – will be
compact.

We follow the skeleton of the proof given by Hazard-Lenoir for the same result, when
ε > 0 a.e. (Appendix B of Ref. 13). For that, we study separately the case of curl-free
elements (the spaceY defined below) and the case of divergence-free elements (thespace
X).

First, let us consider the embedding of

Y := {p ∈ XY | curlp = 0 in Ω}

into L2(Ω).

Theorem 2.1. The embedding of the functional spaceY into L2(Ω) is compact if at least
one of the global contrastsRε

1 or Rε
2 is large enough.

Proof: We carry out the proof in the case of a large contrastRε
1.

NB. The proof, in the case of a large contrastRε
2, proceeds symmetrically, with the roles

of Ω1 andΩ2 reversed.

Let
(

Uk
)

k∈N

be a bounded sequence ofY . In particular, we deal with curl-free fields: as

Ω is simply connected (see page 31 in Ref. 11) and as its boundary is connected, one can
replace eachUk by ∇ϕk, with ϕk ∈ H1

0 (Ω). Our aim is to prove that a subsequence of
(∇ϕk)k converges inL2(Ω).
Note that, since finding this subsequence is an iterative process (one extracts a subsequence,
then a subsubsequence, etc.), we keep the same notation for all subsequences of a given
sequence.
By construction,ϕk solves
Findϕk ∈ H1

0 (Ω) such that

div (ε∇ϕk) = div (εUk) in Ω. (2.1)
(

According to Corollary 4.3 of Ref. 3, this problem is well-posed for a large contrastRε
1.

)

Let us considerpk
i solution to
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Find pk
i ∈ H1

0,Γi
(Ωi) such that

div (εi∇p
k
i ) = div (εiU

k
i ) in Ωi, εi

∂pk
i

∂n
|Σ = 0 in

(

H
1/2
00 (Σ)

)′

. (2.2)

The sequence(pk
i )k is bounded inH1(Ωi), thus by the Sobolev embedding Theorem we

can extract a subsequence – still called(pk
i )k – that converges inL2(Ωi). Moreover, since

there holds
∣

∣

∣

(

εi∇(pk
i − pl

i),∇(pk
i − pl

i)
)

0,i

∣

∣

∣
≤ ‖div (εi(U

k
i − U l

i))‖0,i‖(p
k
i − pl

i)‖0,i ,

the subsequence(pk
i )k actually converges inH1(Ωi). Let us introduce the auxiliary

(sub)sequences of termuk
i := ϕk

i − pk
i ; these fields belong toH1(Ωi). Moreover,(uk

1 , u
k
2)

satisfies the system of equations














div (εi∇uk
i ) = 0 in Ωi

uk
i |Γi = 0

uk
1 |Σ − uk

2 |Σ = hk
Σ

ε1∂n1
uk

1 |Σ = −|ε2|∂n1
uk

2 |Σ

, (2.3)

where the jump is equal tohk
Σ := −(pk

1 − pk
2)|Σ. By construction, the sequence(hk

Σ)k

converges inH1/2
00 (Σ).

Let us setukl = uk−ul andhkl
Σ = hk

Σ−h
l
Σ. From the definition ofuk, we have, integrating

by parts,
(

ε2∇u
kl
2 ,∇u

kl
2

)

0,2
=

〈

ε2∂n2
ukl

2 , u
kl
2

〉

Σ

= −
H

1/2

00
(Σ)′

〈ε2
∂ukl

2

∂n
, hkl

Σ 〉
H

1/2

00
(Σ)

−
(

ε1∇u
kl
1 ,∇u

kl
1

)

0,1
. (2.4)

This leads to the inequality

ε−2 ‖∇ukl
2 ‖2

0,2 ≤ ‖ε2
∂ukl

2

∂n
‖

H
1/2

00
(Σ)′

‖hkl
Σ ‖

H
1/2

00
(Σ)

+ εmax
1 ‖∇ukl

1 ‖2
0,1. (2.5)

To bound the last term of (2.5), we use (implicitly) a Dirichlet-to-Neumann operator in the
process: we go fromΩ1 to the interfaceΣ, and then fromΣ to Ω2. In other words, it is
possible to consider (2.3) as a problem where the unknown is defined onΩ1, i. e.uk

1 or ul
1.

From Proposition A.1, we can then verify that

‖∇ukl
1 ‖0,1 ≤ Cint

ε1 ‖ukl
1 ‖

H
1/2

00
(Σ)

≤ Cint
ε1

(

‖ukl
2 ‖

H
1/2

00
(Σ)

+ ‖hkl
Σ ‖

H
1/2

00
(Σ)

)

,

where the local contrastCint
ε1 is equal to the ratioεmax

1 /εmin
1 . Next, the trace operator,

fromH1
0,Γ2

(Ω2) toH1/2
00 (Σ) is linear and continuous. LetC1/2 be its norm (see the Annex

after Proposition A.1 for a discussion): one has‖ukl
2 ‖

H
1/2

00
(Σ)

≤ C1/2‖∇u
kl
2 ‖0,2. Putting

everything back together, we obtain
(

ε−2 − (Cint
ε1 C1/2)

2εmax
1

)

‖∇ukl
2 ‖2

0,2

≤ ‖hkl
Σ ‖

H
1/2

00
(Σ)

{

εmax
1

(

Cint
ε1

)2
[

‖hkl
Σ ‖

H
1/2

00
(Σ)

+ 2‖ukl
2 ‖

H
1/2

00
(Σ)

]

+‖ε2
∂ukl

2

∂n
‖

H
1/2

00
(Σ)′

}

. (2.6)
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Recall that the subsequence(uk
2)k is bounded inH1(Ω2), so (uk

2 |Σ)k and (ε2∂nu
k
2 |Σ)k

are bounded sequences of respectivelyH
1/2
00 (Σ) andH1/2

00 (Σ)′ (cf. Proposition A.1). As a
consequence, the right-hand side of (2.6) goes to zero whenk, l → ∞. From the definition
of Rε

1, we deduce that,provided

Rε
1 > (Cint

ε1 C1/2)
2 , (2.7)

holds, the subsequence(uk
2)k actually is a Cauchy sequence inH1(Ω2), so it converges.

The same is true for(pk
2)k. Therefore, in the sub-domainΩ2, we conclude that, since

∇ϕk
2 = ∇(uk

2 + pk
2), the subsequence(∇ϕk

2)k converges inL2(Ω2).

In order to end the proof, we must show that some subsequence of (∇ϕk
1) also converges

in L2(Ω1). To this aim, let us recall the ”natural” variational formulation of (2.1):
Findϕk ∈ H1

0 (Ω) such that
(

ε∇ϕk,∇v
)

0
=

(

εUk,∇v
)

0
, ∀v ∈ H1

0 (Ω). (2.8)

Let us setUkl = Uk − U l, ϕkl = ϕk − ϕl and choose in (2.8) the test fieldv = ϕkl. We
have, after integrating by parts,

(ε1∇ϕ
kl
1 ,∇ϕ

kl
1 )0,1 − (|ε2|∇ϕ

kl
2 ,∇ϕ

kl
2 )0,2 = −(div (εUkl), ϕkl)0 .

As (ϕk)k is bounded inH1(Ω), we can extract a subsequence that converges inL2(Ω).
Since a (sub)sequence(ϕk

2)k converges inH1(Ω2) (provided (2.7) holds), the convergence
of (∇ϕk

1)k in L2(Ω1) follows.

Going back toUk = ∇ϕk, we conclude that we can extract a subsequence of(Uk)k

that converges inL2(Ω). �

Second, let us study the embedding ofX intoL2(Ω). In order to achieve a compactness
result similar to Theorem 2.1, we add two geometry-related assumptions. For that, let

W T (O) := {w ∈ H(curl;O) | div w ∈ L2(O), w · n|∂O = 0} .

We recall that, according to the Weber embedding Theorem,W T (O) is compactly embed-
ded inL2(O).

The first assumption writes

∃χ ∈ C∞(Ω̄) such that

{

χ = 1 in a neighborhood ofΣ
w 7→ χw is continuous, fromW T (Ω) to H1(Ω).

(2.9)

The second assumption writes

∃χ ∈ C∞(Ω̄) s. t.

{

χ = 1 in a neighborhood ofΣ
wi 7→ χwi is continuous, fromW T (Ωi) to H1(Ωi), i = 1, 2.

(2.10)
These two assumptions are independent of the coefficientsε andµ. On the one hand, (2.9)
is verified if, and only if, the domainΩ is locally convexor if the boundary∂Ω is smooth
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in a neighborhood of the intersection of the interfaceΣ with ∂Ω (note thatΣ∩ ∂Ω is equal
to ∂Γ1 ∩ ∂Γ2). One the other hand, (2.10) is verified if, and only if, bothΩi are locally
convex in a neighborhood∂Γ1 ∩ ∂Γ2 andif Σ is smooth. Finally, we consider that the two
functionsχ can be merged into a single one. Figure 1 pictures an example of an admissible

W1 W
2

S

Fig. 1. An admissible configuration.

geometry: both assumptions (2.9) and (2.10) hold true. Figure 2 pictures two unadmissible
geometries: on the left, assumption (2.9) is violated; on the right; assumption (2.10) is
violated.

W11

W
2

S
W1 W

2

S

Fig. 2. Two unadmissible configurations.

Proposition 2.1. Assume that (2.9) and (2.10) hold. Then, the embedding of thefunctional
spaceX into L2(Ω) is compact if at least one of the global contrastsRε

1 or Rε
2 is large

enough.

Remark 2.1. We shall explain how the first assumption (2.9) can be removedlater on. In
this way, a configuration like the one depicted on the left of Figure 2 is now admissible. We
proceed in two steps, since its removal adds another layer oftechnicalities. The final result
is established at Theorem 2.2.

Proof: We again carry out the proof in the case of a large contrastRε
1.

NB. Once again, the case of a large contrastRε
2 is handled similarly.

Let
(

W k
)

k∈N

be a bounded sequence ofX. Let us introduce and focus on the problem

below:
Find φk ∈ L2(Ω) such that







curlφk = εW k in Ω

div φk = 0 in Ω

φk · n|∂Ω = 0

. (2.11)
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It is well-known that this “magnetic”-like problem is well-posed in the simply-connected
domainΩ (see for instance Ref. 8). In particular,φk belongs toW T (Ω), and(φk)k is
bounded inW T (Ω) (and inL2(Ω)).
Our aim is to prove that a (sub)sequence of(curlφk)k converges inL2(Ω).
Note that sinceW k belongs toX, one hasε−1curlφk ×n|∂Ω = 0, soφk actually solves
Find φk ∈ H(curl; Ω) such that



























curl

(

1

ε
curlφk

)

= curlW k in Ω

div φk = 0 in Ω

φk · n|∂Ω = 0
1

ε
curlφk × n|∂Ω = 0

. (2.12)

Following a procedure analogous to the proof of the previousTheorem, we are going to
isolate the trace ofφk on the interfaceΣ, φk

|Σ, which belongs toH1/2(Σ) (cf. assumption
(2.9)).
In a first step, fori = 1, 2, let us considerpk

i solution to the regularized problem
Find pk

i ∈ H(curl; Ωi) such that



















curl

(

1

εi
curlpk

i

)

− sg(εi)∇(div pk
i ) = curlW k

i in Ωi

pk
i · ni|∂Ωi = 0

1

εi
curlpk

i × ni|∂Ωi = 0

. (2.13)

Above,sg(εi) is equal to the sign ofεi.
To begin with, let us prove a few results on the two sequences(pk

i )k, with the help of
the Annex. Seti to 1 or 2. According to Proposition A.2, the regularized problem de-
fines a uniquepk

i , theW T (Ωi)-norm of which is bounded by‖curlW k
i ‖0,i. It follows

from Corollary A.1 that there exists a subsequence, still denoted by(pk
i )k, that converges

in W T (Ωi). Furthermore, from assumption (2.10), we deduce that(pk
i |Σ)k converges in

H1/2(Σ). Finally (cf. Proposition A.2)(div pk
i )k is bounded inH1(Ωi).

Now, letgk
Σ := (pk

2 − pk
1)|Σ: by construction,(gk

Σ)k converges inH1/2(Σ) and one has
(gk

Σ)T = gk
Σ (sincegk

Σ · n1 = 0). Next, we define the vector fielduk
i := φk

i − pk
i . This

field, which belongs toH(curl; Ωi), satisfies the system of equations























































curl

(

1

εi
curluk

i

)

− sg(εi)∇(div uk
i ) = 0 in Ωi

div uk
i = −div pk

i in Ωi

uk
i · ni|Γi

= 0

uk
1 |Σ − uk

2 |Σ = gk
Σ

1

εi
curluk

i × ni|Γi
= 0

1

ε1
curluk

1 × n1|Σ = −
1

|ε2|
curluk

2 × n1|Σ

, (2.14)
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Let us setukl
i := uk

i − ul
i, pkl

i := pk
i − pl

i andgkl
Σ := gk

Σ − gl
Σ. Our aim is to show that

(ukl
i )kl converges to zero inH(curl; Ωi) whenk, l → ∞.

Integrating by parts the first line of (2.14) for indicesk andl with the test fieldukl
i , we

find
(

1

εi
curlukl

i , curlukl
i

)

0,i

=

〈

1

εi
curlukl

i × ni, (u
kl
i )T

〉

Σ

−sg(εi)(∇(div pkl
i ),ukl

i )0,i. (2.15)

Then, we use two identities onΣ, namelyε1−1curlukl
1 ×n1 = |ε2|

−1
curlukl

2 ×n2,
and(ukl

1 )T := gkl
Σ + (ukl

2 )T , to reach:

1

εmax
1

‖curlukl
1 ‖2

0,1 ≤

〈

1

ε1
curlukl

1 × n1, g
kl
Σ

〉

Σ

+
∑

i=1,2

‖∇(div pkl
i )‖0,i‖u

kl
i ‖0,i +

1

ε−2
‖curlukl

2 ‖2
0,2. (2.16)

The next step consists in evaluating the terms in the right-hand-side.
As far as the first term on the right-hand side is concerned, note that(ε1−1curluk

1×n1|Σ)k

is bounded inTL(Σ), since(ε1−1curluk
1)k is itself bounded inH(curl; Ω1). Moreover,

as(gk
Σ)k converges inTR(Σ) this term goes to zero whenk, l → ∞.

About the second term, we recall that(∇(div pk
i ))k is a bounded sequence inL2(Ωi).

Then, one can extract a subsequence of(uk
i )k which converges inL2(Ωi). Indeed, one has

uk
i = φk

i − pk
i by construction, and

• since(pk
i )k is bounded inW T (Ωi), the Weber embedding Theorem tells us that

there exists a subsequence that converges inL2(Ωi) ;
• similarly, since(φk)k is bounded inW T (Ω), one can extract a subsequence that

converges inL2(Ω). Its restriction toΩi converges inL2(Ωi).

The third term in the right-hand side cannot be handled as straightforwardly. Let us proceed
as follows. Thanks to the system of equations (2.14) governing (uk

2)k, we infer first from
Proposition A.3 that there existsCreg > 0 independent of(uk

2)k such that

‖curlukl
2 ‖2

0,2 ≤ Creg‖u
kl
2 ‖

H1/2(Σ) ≤ Creg

(

‖ukl
1 ‖

H1/2(Σ) + ‖gkl
Σ ‖

H1/2(Σ)

)

.

Next, we infer from assumption (2.10) that there exists a constantc > 0 such that

‖curlukl
2 ‖2

0,2 ≤ c
(

‖curlukl
1 ‖2

0,1 + ‖div pkl
1 ‖2

0,1 + ‖gkl
Σ ‖

H1/2(Σ)

)

. (2.17)

From the above, we upgrade the estimate (2.16) to
(

1

εmax
1

−
c

ε−2

)

‖curlukl
1 ‖2

0,1 ≤

〈

1

ε1
curlukl

1 × n1, g
kl
Σ

〉

Σ

+
∑

i=1,2

‖∇(div pkl
i )‖0,i‖u

kl
i ‖0,i

+
c

ε−2

(

‖div pkl
1 ‖2

0,1 + ‖gkl
Σ ‖

H1/2(Σ)

)

.
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Now, the last term in the right-hand side converges to zero whenk, l → ∞. Indeed,

• since(div pk
i )k is bounded inH1(Ωi), we know from the Sobolev embedding

Theorem that there exists a subsequence that converges inL2(Ωi) ;
• gk

Σ converges inH1/2(Σ).

Therefore, we see that

Rε
1 > c (2.18)

ensures that the subsequence(curluk
1)k actually is a Cauchy sequence inL2(Ω1), so it

converges. But we already proved that a subsequence(curlpk
1)k converges inL2(Ω1). As

a consequence,(curlφk
1)k does converge too. Therefore, in the sub-domainΩ1, we con-

clude that, sinceW k
1 = ε1

−1curlφk
1 , the subsequence(W k

1)k converges inL2(Ω1).

To conclude the proof, we go back to (2.12) and we introduce the related ”natural” varia-
tional formulation (cf. Ref. 8).
Find φk ∈ W T (Ω) such that

(

1

ε
curlφk, curlw

)

0

=
(

curlW k,w
)

0
, ∀w ∈ W T (Ω).

Setφkl := φk −φl andW kl := W k −W l and choosew = φkl in the above (for indices
k andl). This yields

(

1

ε1
curlφkl

1 , curlφkl
1

)

0,1

−

(

1

|ε2|
curlφkl

2 , curlφkl
2

)

0,2

=
(

curlW kl,φkl
)

0
.

We already noted that there exists a subsequence(φk)k that converges inL2(Ω). Since
(curlφk

1)k converges inL2(Ω1), we infer that(curlφk
2)k converges inL2(Ω2). Thus

(W k
2)k converges inL2(Ω2), and so does(W k)k in L2(Ω), which ends the proof. �

Theorem 2.2. Assume that (2.10) holds. Then, the embedding of the functional spaceX
into L2(Ω) is compact if at least one of the global contrastsRε

1 or Rε
2 is large enough.

Proof: We follow step by step the proof of Proposition 2.1, bearing in mind that, on the one
hand, since assumption (2.10) still holds, all theH1(Ωi)-regularity results on(pk

i )k remain
valid. On the other hand, without assumption (2.9),φk

|Σ does not automatically belong to

H1/2(Σ). To address this difficulty, we rely on the continuous decomposition of elements
of W T (Ω) into a regular part and a gradient part, first obtained by Birman and Solomyak2.
Consider

W
reg
T (Ω) := W T (Ω) ∩ H1(Ω), Ψ :=

{

ψ ∈ H1(Ω)/R | ∆ψ ∈ L2(Ω), ∂nψ|∂Ω
= 0

}

.

The space of potentialsΨ can be endowed with the equivalent norm‖ψ‖Ψ := ‖∆ψ‖0.
According to Ref. 2, one can introduce the continuous splitting W T (Ω) = W

reg
T (Ω) +

∇Ψ, in the following sense:
{

∃CBS > 0, ∀w ∈ W T (Ω), ∃(wR, ψ) ∈ W
reg
T (Ω) × Ψ,

w = wR + ψ, ‖wR‖W T (Ω) + ‖ψ‖Ψ ≤ CBS‖w‖W T (Ω)
.
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In other words,∇Ψ contains the singular parts of elements ofW T (Ω) (if Ω is not convex).
Thus, one can write the continuous splittings, for allk,

φk = φk
R + ∇ψk, (φk

R, ψ
k) ∈ W

reg
T (Ω) × Ψ.

The regular parts are handled as before, whereas the gradient parts have to be tackled
separately. This plays a role only in the estimate of the third term in (2.16), since the
other two terms can be estimated as before. To that aim, one has to consider a variant of
Proposition A.3. More precisely, one considers a regularized problem with boundary data
made up of two parts: a regular part, which belongs to the sametrace space as in the original
Proposition A.3, plus a singular part, equal to the trace on the interface of an element of
∇Ψ. Since one has‖∆ψ‖0 = ‖∇ψ‖W T (Ω), one reaches the same conclusion as before,id
est(2.17), for anad hocconstantc. Then, provided (2.18) holds, there exists a subsequence
(curluk

1)k which converges inL2(Ω1). The end of the proof is unchanged. �

Remark 2.2. Probably, one should be able to handle the case of piecewise smooth inter-
faces, thus also removing assumption (2.10). The idea in this general case can be outlined
as follows. Consider each edge and/or corner of the interface. One field, for instancepk

1 ,
is locally regular:χ?pk

1 ∈ H1(Ω1), for an ad hoctruncation functionχ?. Whereas the
other field,pk

2 can be locally singular:χ?pk
2 6∈ H1(Ω2) is possible. Then, this behavior

is inherited byuk
1 anduk

2 . Therefore, in order to bound the third term as in (2.17), one
should probably isolate the singular and regular parts ofukl

2 , and proceed by controlling its
singular part bygkl

Σ , resp. its regular part byukl
1 .

Theorem 2.3. Assume that (2.10) holds. The embedding of the functional spaceXY into
L2(Ω) is compact if at least one of the global contrastsRε

1 or Rε
2 is large enough.

Proof: It is based on the standard Helmholtz decomposition of vector fields, here on ele-
ments ofXY . Givenxy ∈ XY , solve
Find φ ∈ H1

0 (Ω) such that

div (ε∇φ) = div (εxy) in Ω.

This problem is well-posed3,4: its solutionφ exists (and it is unique) and moreover
‖φ‖H1(Ω) ≤ C(ε) ‖div (εxy)‖0 (with C(ε) > 0 independent ofxy).
Let y := ∇φ andx := xy − y. By construction,

{

y ∈ Y , with div (εy) = div (εxy) in Ω

x ∈ X, with curlx = curlxy in Ω
.

We note that‖y‖0 = ‖∇φ‖0 ≤ C(ε) ‖div (εxy)‖0, so it follows that‖x‖0 ≤ ‖xy‖0 +

C(ε) ‖div (εxy)‖0.
Combining the above, we deduce that, from any bounded sequence (xyk)k in XY , one
can build twoboundedsequences(yk)k (in Y ) and(xk)k (in X). From each sequence,
we extract a subsequence that converges inL2(Ω), according to Theorems 2.1 and 2.2.
Aggregating the two, we obtain a subsequence(xyk)k that converges inL2(Ω). �
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3. Recovering coerciveness in the case of a sign-shiftingµ

In this section we assume that the sign ofµ shifts fromΩ1 to Ω2, with µ1 > 0 andµ2 < 0.
We make no further assumption on the sign ofε. Recall thatj belongs toL2(Ω) and that
div j = 0. The aim is to build a three-field variational formulation, equivalent to (1.7), and
then to show that this formulation is well-posed under suitable conditions.

3.1. A three-field formulation

To begin with, keeping bothe1 ande2 leads to a reformulated – equivalent – definition
of X. According to the definition (1.8) of the spacesX1 andX2, to which e1 and e2

belong respectively, and adding the compatibility conditions on the interface, we are led to
introduce the functional space

X := {(v,w) ∈ X1 ×X2 | v × n1|Σ = w × n1|Σ, ε1v · n1|Σ = ε2w · n1|Σ}

and the auxiliary unknown

e2 :=
1

|µ2|
curle2 .

Now, let us consider the test functions(v1, v2) ∈ X andv2 ∈ H(curl; Ω2) and

• take theL2−scalar product of the first Eq. of (1.7) withv1:

ω2(ε1e1,v1)0,1 −

(

curl

(

1

µ1
curle1

)

,v1

)

0,1

= (j1,v1)0,1

and let us integrate by parts:

ω2(ε1e1,v1)0,1 −

(

1

µ1
curle1, curlv1

)

0,1

−

〈

v1 × n1,

(

1

µ1
curle1

)

T

〉

Σ

= (j1,v1)0,1.

Since, by definition,

(

1

µ1
curle1

)

T

= −(e2)T andv1 × n1 = v2 × n1 on Σ,

we obtain
(

1

µ1
curle1, curlv1

)

0,1

− ω2(ε1e1,v1)0,1 − 〈v2 × n1, (e2)T 〉Σ

= −(j1,v1)0,1 . (3.1)

• take theL2−scalar product of the second Eq. of (1.7) withcurlv2; multiply the
resulting equality by a constant factorϑ > 0:

ϑω2(ε2e2, curlv2)0,2 + ϑ(curle2, curlv2)0,2 = ϑ(j2, curlv2) . (3.2)
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• consider the identity
(

1

|µ2|
curle2, curlv2

)

0,2

=

(

curl

(

1

|µ2|
curle2

)

,v2

)

0,2

−

〈

v2 × n2,

(

1

|µ2|
curle2

)

T

〉

Σ

;

according to the definition ofe2 this last equation leads to (n2 = −n1 onΣ)
(

1

|µ2|
curle2, curlv2

)

0,2

− (curle2,v2)0,2−〈(v2 × n1, e2)T 〉Σ = 0 . (3.3)

• consider the identity

(e2, curlv2)0,2 = (curle2,v2)0,2 + 〈e2 × n2, (v2)T 〉Σ ;

sincee2 × n2|Σ = −e1 × n1|Σ, we get:

(|µ2|e2,v2)0,2 − (e2, curlv2) − 〈e1 × n1, (v2)T 〉Σ = 0 . (3.4)

Adding up the previous contributions (3.1)-(3.4), we introduce the variational formulation
(3.5):
FindU = ((e1, e2), e2) ∈ X × H(curl; Ω2) such that

∀V = ((v1,v2),v2) ∈ X × H(curl; Ω2) , A
ϑ(U, V ) = Lϑ(V ) . (3.5)

We call (3.5) thethree-field formulation.
The formsAϑ andLϑ are respectively defined by

Aϑ(U, V ) :=

(

1

µ1
curle1, curlv1

)

0,1

− ω2(ε1e1,v1)0,1 + ϑω2(ε2e2, curlv2)0,2

+ϑ(curle2, curlv2)0,2 +

(

1

|µ2|
curle2, curlv2

)

0,2

−(curle2,v2)0,2 + (|µ2|e2,v2)0,2 − (e2, curlv2)0,2

−2〈v2 × n1, (e2)T 〉Σ − 〈e1 × n1, (v2)T 〉Σ
(3.6)

and

Lϑ(V ) := −(j1,v1)0,1 + ϑ(j2, curlv2)0,2 . (3.7)

It is important to note that, in the definition of the bilinearformAϑ, the two boundary terms
〈v2 × n1, (e2)T 〉Σ and〈e1 × n1, (v2)T 〉Σ are independent of the coefficientsε andµ. In
addition, we remark that this is true for any choice of the strictly positive factorϑ (which
we will fit to some optimal value when we establish the coercivity of Aϑ).

3.2. Equivalence with the initial problem

Proposition 3.1. The three-field formulation (3.5) is equivalent to problem (1.7).

Proof: It is already known that (3.5) follows from (1.7), so let us focus on the reciprocal
assertion.
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To begin with, we note that, sinceei ∈ Xi (i = 1, 2), one hasdiv ei = 0 in Ωi.
Next, one finds thate1×n1|Σ = e2×n1|Σ, ε1e1 ·n1|Σ = ε2e2 ·n1|Σ andei ×ni|Γi = 0

(i = 1, 2), according to the definition ofX .

Let us choose in (3.5) test functionsv1 which span(D(Ω1))
3, (v2,v2) = (0, 0) and

differentiate in the sense of distributions in(D′(Ω1))
3:

〈

ω2ε1e1 − curl

(

1

µ1
curle1

)

− j1,v1

〉

= 0.

Thus the first Eq. of (1.7) is recovered.

From there, we shall establish simultaneously that|µ2|e2 = curle2 and that the second
Eq. of (1.7) is recovered.
We introduce two elements ofL2(Ω): τ := curle2−|µ2|e2, andη := ω2ε2e2+curle2−

j2, and prove that both fields vanish overΩ2. To start with, we know thatdiv η = 0 in the
whole ofΩ, since(e1, e2) ∈ X anddiv j = 0.

Choose first in (3.5)(v1,v2) = (0, 0) andv2 ∈ (D(Ω2))
3:

ϑω2(ε2e2, curlv2)0,2 + ϑ(curle2, curlv2)0,2 − ϑ(j2, curlv2)0,2

+(|µ2|e2,v2)0,2 − (e2, curlv2)0,2 = 0 .

After differentiating in the sense of distributions, this last equation leads to

ϑcurl(ω2ε2e2 + curle2 − j2) + |µ2|e2 − curle2 = 0 in (D′(Ω2))
3,

which implies

ϑcurlη = τ in L2(Ω2). (3.8)

Then, let us take in (3.5)(v1,v2) = (0, 0) andv2 ∈ (D(Ω2))
3:

(

1

|µ2|
curle2, curlv2

)

0,2

− (curle2,v2)0,2 = 0 .

Let us differentiate again in the sense of distributions to obtain

curl

(

1

|µ2|
curle2 − e2

)

= 0 in (D′(Ω2))
3 (3.9)

that we may rewrite as

curl

(

1

|µ2|
τ

)

= 0 . (3.10)

Now, let us prove that the tangential trace ofη vanishes over∂Ω2. For that, choose in (3.5)
(v1,v2) = (0, 0) andv2 ∈ H(curl,Ω2):

ϑω2(ε2e2, curlv2)0,2 + ϑ(curle2, curlv2)0,2 + (|µ2|e2,v2)0,2

−(e2, curlv2)0,2 − 〈e1 × n1, (v2)T 〉Σ − ϑ(j2, curlv2)0,2 = 0 .

In terms ofη, this reads:

ϑ(η, curlv2)0,2 + (|µ2|e2,v2)0,2 − (e2, curlv2)0,2 − 〈e1 × n1, (v2)T 〉Σ = 0 .
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Sinceη ande2 belong toH(curl; Ω2), we can integrate by parts to find

ϑ(curlη,v2)0,2 − ϑ
〈

η × n2, (v2)T

〉

∂Ω2

+ (|µ2|e2,v2)0,2

−(curle2,v2)0,2 − 〈e2 × n2, (v2)T 〉∂Ω2
− 〈e1 × n1, (v2)T 〉Σ = 0 .

Then, we can remove a number of terms.

• We already proved that0 = ϑcurlη − τ = ϑcurlη + |µ2|e2 − curle2 in Ω2.
• In addition, there holds〈e2 × n2, (v2)T 〉∂Ω2

= 〈e2 × n2, (v2)T 〉Σ, sincee2 ∈

H0,Γ2
(curl,Ω2).

• Finally,e2 × n2|Σ = −e1 × n1|Σ, since(e1, e2) ∈ X .

The conclusion is:〈η × n2, (v2)T 〉∂Ω2
= 0, for all v2 ∈ H(curl,Ω2). Sincev2 7→

(v2)T |∂Ω2
is onto, this finally leads to

η × n2|∂Ω2
= 0 . (3.11)

Recalling first (3.10) and then (3.8) and finally (3.11), we reach

0=
1

ϑ

(

curl
1

|µ2|
τ ,η

)

0,2

=

(

curl
1

|µ2|
curlη,η

)

0,2

=

(

1

|µ2|
curlη, curlη

)

0,2

.

Thuscurlη = 0 and using (3.8) once again yieldsτ = 0. Moreover, sinceη belongs to
L2(Ω2) and satisfiesdiv η = 0 andcurlη = 0 with a vanishing tangential trace overΩ2,
η vanishes overΩ2 (see for instance Ref. 8). The second Eq. of (1.7) is thus recovered.
In order to conclude the proof, we must also recover the last Eq. of (1.7). To this aim, let
us take in (3.5)v2 = 0

(

1

µ1
curle1, curlv1

)

0,1

− ω2(ε1e1,v1)0,1 − 2〈v1 × n1, (e2)T 〉Σ+
(

1

|µ2|
curle2, curlv2

)

0,2

− (curle2,v2)0,2 = −(j1,v1)0,1 ,

and let us integrate by parts to get
(

curl

(

1

µ1
curle1

)

− ω2ε1e1 + j1,v1

)

0,1

+

(

curl

(

1

|µ2|
curle2 − e2

)

,v2

)

0,2

−
〈

v1 × n1,

(

1

|µ2|
curle2 +

1

µ1
curle1

)

T

〉

Σ

= 0 .

From this last equation, using the first Eq. of (1.7) togetherwith (3.9), it is straightforward
to recover the last Eq. of (1.7). �

3.3. Finding a well-posed variational setting for the three-field formulation

Below, we build a splitting of the bilinear formAϑ in a two term sum, so that the first term
is coercive overX × H(curl; Ω2), and the second is a compact perturbation of the first
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one. Let us writeAϑ = Aϑ
coer +Aϑ

comp, with

Aϑ
coer(U, V ) :=

(

1

µ1
curle1, curlv1

)

0,1

+
1

µmax
1

(e1,v1)0,1 +

(

1

|µ2|
curle2, curlv2

)

0,2

+(e2,v2)0,2 + ϑ(curle2, curlv2)0,2 + (|µ2|e2,v2)0,2

−2〈v1 × n1, (e2)T 〉Σ − 〈e1 × n1, (v2)T 〉Σ
(3.12)

Aϑ
comp(U, V ) := −

((

ω2ε1 + 1
µmax

1

)

e1,v1

)

0,1
− (e2 + curle2,v2)0,2

−((1 − ϑω2ε2)e2, curlv2)0,2 ,
(3.13)

whereU = (e1, e2, e2) andV = (v1,v2,v2) both belong toX × H(curl; Ω2).
Let us prove thatAϑ

coer is coercive under some suitable conditions.
Sinceµ2 andµ−1

2 both belong toL∞(Ω2), the two norms

‖ · ‖fH(curl;Ω2)
:= [(|µ2|·, ·)0,2 + (curl ·, curl ·)0,2]

1/2

‖ · ‖cH(curl;Ω2)
:=

[

(·, ·)0,2 + (
1

|µ2|
curl ·, curl ·)0,2

]1/2

are equivalent to theX2 usual norm. Then the term|〈v2 × n1, (v2)T 〉Σ| can be bounded
from above by

|〈v2 × n1, (v2)T 〉Σ| ≤ ‖v2‖cH(curl;Ω2)
‖v2‖fH(curl;Ω2)

. (3.14)

On the other hand, for interface terms involving fields defined onΩ1 and onΩ2, we intro-
duce some constant. Letc ∈ R

+
? be defined as

c := sup

{

∣

∣〈v1 × n1, (v2)T 〉Σ
∣

∣

‖v1‖H(curl;Ω1)‖v2‖H(curl;Ω2)
, v1 ∈ X1 \ {0},v2 ∈ H(curl; Ω2) \ {0}

}

.

(3.15)
Note that we have

∀(v1,v2) ∈ X1 × H(curl; Ω2) ,
∣

∣〈v1 × n1, (v2)T 〉Σ
∣

∣ ≤ c‖v1‖H(curl;Ω1)‖v2‖H(curl;Ω2)
(3.16)

with an optimalc.
Let us introduce now the firstglobal contrast inµ Rµ

1 equal to the ratioµ−
2 /µ

max
1 .

Proposition 3.2. Assume that

Rµ
1 > (5/4)c2 (3.17)

holds withc defined by (3.16). Then, for anyϑ ≥ max(1, µ−
2 ), Aϑ

coer is coercive over
{X × H(curl; Ω2)}.
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Proof: Let us first compute the value ofAϑ
coer(V, V ), with V = ((v1,v2),v2):

Aϑ
coer(V, V ) =

(

1

µ1
curlv1, curlv1

)

0,1

+
1

µmax
1

(v1,v1)0,1+
(

1

|µ2|
curlv2, curlv2

)

0,2

+ (v2,v2)0,2+

ϑ(curlv2, curlv2)0,2 + (|µ2|v2,v2)0,2−

3〈v2 × n1, (v2)T 〉Σ .

Thus, introducing the real parameterη ∈ [0, 3], Aϑ
coer(V, V ) may be bounded from below

by

Aϑ
coer(V, V ) ≥

(

1

µ1
curlv1, curlv1

)

0,1

+
1

µmax
1

(v1,v1)0,1+
(

1

|µ2|
curlv2, curlv2

)

0,2

+ (v2,v2)0,2+

ϑ(curlv2, curlv2)0,2 + (|µ2|v2,v2)0,2−

(3 − η)
∣

∣〈v1 × n1, (v2)T 〉Σ
∣

∣ − η
∣

∣〈v2 × n1, (v2)T 〉Σ
∣

∣ .

Then, the term
∣

∣〈v2 × n1, (v2)T 〉Σ
∣

∣ is bounded by (3.14), whereas
∣

∣〈v1 × n1, (v2)T 〉Σ
∣

∣ is
bounded as in (3.16). Let us introduceβ1 andβ2, two real and strictly positive parameters
such thatβ1 + β2 = 1; we deduce

Aϑ
coer(V, V ) ≥

1

µmax
1

‖v1‖
2
H(curl;Ω1)

+ ‖v2‖
2
cH(curl;Ω2)

+(β1 + β2)
[

(|µ2|v2,v2)0,2 + ϑ‖curlv2‖
2
0,2

]

−(3 − η)c‖v1‖H(curl;Ω1)‖v2‖H(curl;Ω2)

−η‖v2‖cH(curl;Ω2)
‖v2‖fH(curl;Ω2)

.

Sinceϑ ≥ max(1, µ−
2 ), one actually has

Aϑ
coer(V, V ) ≥

1

µmax
1

‖v1‖
2
H(curl;Ω1) + β1µ

−
2 ‖v2‖

2
H(curl;Ω2)

+‖v2‖
2
cH(curl;Ω2)

+ β2‖v2‖
2
fH(curl;Ω2)

−(3 − η)c‖v1‖H(curl;Ω1)‖v2‖H(curl;Ω2)

−η‖v2‖cH(curl;Ω2)
‖v2‖fH(curl;Ω2)

.

(3.18)

Now, the idea is to control the negative terms with (a fraction of) the positive ones. Let us
recall the standard result

givenm, p ∈ R
+
? such thatm > p2 ,

∃λ ∈ R
+
? , ∀x, y ∈ R, mx2 + y2 − 2pxy ≥ λ(x2 + y2).

(3.19)

Then, let us set

x1 = ‖v1‖H(curl;Ω1) , y1 = ‖v2‖H(curl;Ω2)

x2 = ‖v2‖fH(curl;Ω2)
, y2 = ‖v2‖cH(curl;Ω2)
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and

m1 :=
1

µmax
1 µ−

2 β1

, p1 :=
c(3 − η)

2β1µ
−
2

m2 = β2 , p2 = η/2 .

With this new notations, the inequality (3.18) can be rewritten as

Aϑ
coer(V, V ) ≥ β1µ

−
2

(

m1x
2
1 + y2

1 − 2p1x1y1
)

+
(

m2x
2
2 + y2

2 − 2p2x2y2
)

. (3.20)

According to (3.19), the formAϑ
coer(V, V ) is coercive if both conditionm1 > p2

1 and
m2 > p2

2 are satisfied. In other words, provided both

µ−
2

µmax
1

>
c2(3 − η)2

4β1
and β2 > (η/2)2 hold. (3.21)

Sinceβ2 < 1, we consider from now onη ∈ [0, 2[. Moreover, sinceβ1 + β2 = 1, the
second condition in (3.21) is equivalent toβ−1

1 > (1 − η2/4)−1. Then the first condition
in (3.21) is satisfied for some suitableβ1(η) (depending here onη) if

µ−
2

µmax
1

> c2
(3 − η)2

4 − η2
. (3.22)

Now, f : η 7→ (3 − η2)/(4 − η2) takes his minimal value atη = 4/3, andf(4/3) = 5/4.
For this optimal value, condition (3.22) reduces to (3.17) for some suitableβ1(4/3). �

Theorem 3.1. The variational formulation (3.5) fits into the coercive plus compact frame-
work, forϑ ≥ max(1, µ−

2 ), if the following conditions are met:

(1) for a constant-signε, if the global contrastRµ
1 is large enough.

(2) for a sign-shiftingε, if the global contrastRµ
1 is large enough, if assumption (2.10)

holds, and if one of the global contrastsRε
1 or Rε

2 is large enough.

Proof: Whenε is sign-constant over the whole domainΩ, we already noted that the em-
bedding ofX into L2(Ω) is compact. Due to this result,Aϑ

comp is a compact perturbation
of Aϑ

coer, which is coercive provided that the condition (3.17) onRµ
1 holds.

In the case of a sign-shiftingε, condition (3.17) has to be supplemented with a condition
like (2.18) onRε

1, to ensure that the embedding ofX into L2(Ω) is compact. �

Remark 3.1. The constantc depends only on the geometry, so the lower bound in (3.17)
is fixed by the geometrical configuration.
To derive a similar result in the case of a big value of the second global contrast inµ
Rµ

2 := µmin
1 /µ+

2 , one simply builds an alternate three-field formulation by choosinge1 :=

µ−1
1 curle1 as the auxiliary unknown.
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4. Concluding remarks

According to the previous results, one can solve problem














ω2εe − curl

(

1

µ
curle

)

= j in Ω

div (εe) = 0 in Ω

e × n|∂Ω = 0

.

under very weak assumptions on the coefficients, which covermany challenging config-
urations of practical interest. Recall that whenε andµ are constant-sign coefficients, the
problem is well-posed under the assumption thatε, ε−1, µ, µ−1 all belong toL∞(Ω). These
assumptions are always implicit below.

• If only ε exhibits a sign-shift at an interface: there are two possible ways to achieve
well-posedness, under the condition that at least one of thetwo global contrastsRε

1 or
Rε

2 is large enough:

– According to the compactness result of theorem 2.2, the variational formulation
(1.6) fits into the coercive plus compact framework, provided the interface is
”smooth” in the sense of assumption (2.10).

– Or, one can choose a three-field formulation for themagnetic field(like (3.5)),
along the same lines as those of section 3, under the weaker assumption that the
interface is Lipschitz.

• If only µ exhibits a sign-shift at an interface: one can proceed as in the previous case
by reversingthe roles of the electric and magnetic fields.

• If both ε andµ exhibit a sign-shift at interfaces that can be different: one can use a
three-field formulation ((3.5), or in the magnetic field) together with the compactness
result. In this case, it is required that one of the two globalcontrastsRε

1 orRε
2 is large

enough,and alsothat one of the two global contrastsRµ
1 orRµ

2 is large enough. In this
configuration, one interface must be ”smooth” in the sense ofassumption (2.10), while
the other one is Lipschitz.

ε sign-constants ε sign-shifts
µ sign-constants NF NF or 3F
µ sign-shifts NF or 3F 3F

The above table summarizes, for all possible transitions between media, which formula-
tion(s) can be chosen for solving the problem. There, the acronyms ”NF” and ”3F” denote
respectively the ”natural” variational formulation and a three-field variational formulation.
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A. Annex

We recall or prove here a series of elementary results, set inan open, bounded and con-
nected setO with a Lipschitz polyhedral boundary∂O. Let γ ⊂ ∂O be connected (also
with a Lipschitz boundary∂γ), andγ′ := ∂O \ γ. Let α ∈ L∞(O) be positive, with
α−1 ∈ L∞(O).
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A.1. Results on scalar fields

The first result deals with the lifting of some scalar data that is prescribed on a part of a
boundary: for the sake of completeness, we report the proof.We define thelocal contrast
Cint

α equal to the ratioαmax/αmin. Recall that

H
1/2
00 (γ) := {p ∈ H1/2(γ) | p̃ ∈ H1/2(∂O)},

where p̃ is the continuation ofp by zero to the whole boundary. This Hilbert space is
endowed with the ”natural” norm‖p‖

H
1/2

00
(γ)

:= ‖p̃‖H1/2(∂O).

Proposition A.1. Leth ∈ H
1/2
00 (γ) and defineu as the solution to

Findu ∈ H1(O) such that






div (α∇u) = 0 in O

u|γ = h

u|γ′ = 0

. (A)

Then the inequality‖∇u‖0,O ≤ Cint
α ‖h‖

H
1/2

00
(γ)

holds.

Proof: Integrating by parts, one finds:

(α∇u,∇u)0 = 〈α∇u · n, u〉 =
(H

1/2

00
(γ))′

〈α∇u · n, h〉
H

1/2

00
(γ)
.

The normal trace mappingγn : H(div ;O) → (H1/2(∂O))′, v 7→ v · n|∂O, is such that
‖γn‖ = 1, according to page 28 of Ref. 11. Moreover, givenv ∈ H(div ;O):

‖v · n|γ‖(H
1/2

00
(γ))′

= sup
p∈H

1/2

00
(γ)

(H
1/2

00
(γ))′

〈v · n|γ , p〉H1/2

00
(γ)

‖p‖
H

1/2

00
(γ)

= sup
p∈H

1/2

00
(γ)

〈v · n|∂O, p̃〉

‖p̃‖H1/2(∂O)

≤ ‖v · n|∂O‖(H1/2(∂O))′ .

Combining the above yields:

αmin‖∇u‖2
0 ≤ ‖α∇u‖H(div ;O) ‖h‖H

1/2

00
(γ)

≤ αmax‖∇u‖0 ‖h‖H
1/2

00
(γ)
,

i. e. the expected result. �

Remark A.1. This result typically allows us to study the Dirichlet-to-Neumann operator
S : h 7→ α∂nu|γ , defined fromH1/2

00 (γ) to (H
1/2
00 (γ))′, since one finds

‖Sh‖
(H

1/2

00
(γ))′

≤ αmaxCint
α ‖h‖

H
1/2

00
(γ)
, ∀h ∈ H

1/2
00 (γ).

Now, assume that the domainO can be partitioned intoO = O1 ∪ O2, O1 ∩ O2 = ∅,
with Lipschitz polyhedral boundaries∂Oi. We letΣ = ∂O1 ∩ ∂O2 be the interface with
a Lipschitz boundary∂Σ, andBi = ∂Oi \ Σ. On the interface, let us choose to measure
elements ofH1/2

00 (Σ) thanks to the norm1‖p‖ := ‖p̃‖H1/2(∂O1), with a continuation by
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zero to∂O1. It is well-known (cf. for instance page 19 of Ref. 12) that anequivalent (and
more intrinsic) norm onH1/2

00 (Σ) is

0‖p‖ :=:

(

‖p‖2
H1/2(Σ) +

∫

Σ

p(σ)2

d(σ, ∂Σ)
dσ

)1/2

,

whereσ 7→ d(σ, ∂Σ) is the distance to the boundary ofΣ. The equivalence constants
between the two norms are completely determined by the geometry of ∂O1 nearΣ. On the
other hand, the trace mappingv2 7→ v2|Σ is also continuous fromH1

0,B2
(O2) toH1/2

00 (Σ).

According to the above, if we measure elements ofH
1/2
00 (Σ) with 1‖ · ‖, the norm of the

trace mapping depends onboth geometrical configurations of∂O1 and of∂O2 near the
interface. So, the continuity modulus should be written asC1/2:

1‖v2|Σ‖ ≤ C1/2‖∇v2‖0,O2
, ∀v2 ∈ H1

0,B2
(O2).

A.2. Elementary result on vector fields

The proposed results deal with the well-posedness of regularized problems.
We recall a result on norms inW T (O), as proven in Proposition 7.4 of Ref. 10 and Corol-

lary 3.16 of Ref. 1. The semi-norm‖ · ‖W T (O) : w 7→
(

‖curlu‖2
0,O + ‖div u‖2

0,O

)1/2

defines a norm, which is equivalent to the full norm ofW T (O), provided that the domain
O is simply-connected.

Proposition A.2. Assume thatO is simply-connected.
Letf ∈ L2(O). Then, the regularized problem below admits one, and only one, solution:
Findu ∈ W T (O) such that







curl (αcurlu) −∇(div u) = f in O

u · n|∂O = 0

αcurlu × n|∂O = 0

. (B)

Moreover, one hasdiv u ∈ H1(O).
Finally, the norms‖u‖W T (O) and‖div u‖1,O depend continuously on‖f‖0,O.

Proof: Classically, an equivalent variational formulation of (B)is
Find u ∈ W T (O) such that

(αcurlu, curlw)0,O + (div u, div w)0,O = (f ,w)0,O, ∀w ∈ W T (O). (C)

Well-posedness follows. In addition, takingw = u in (C) yields

αmin‖curlu‖2
0,O + ‖div u‖2

0,O ≤ ‖f‖0,O‖u‖0,O ,

so‖u‖W T (O) depend continuously on‖f‖0,O.
To prove that one hasdiv u ∈ H1(O), let us introduce the scalar Neumann problem
Find d ∈ H1(O) ∩ L2

0(O) such that

(∇d,∇w)0,O = −(f ,∇w)0,O , ∀w ∈ H1(O) ∩ L2
0(O). (D)
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NB. We recall thatL2
0(O) := {v ∈ L2(O) | (v, 1)0,O = 0}.

According to the Poincaré-Wirtinger inequality, this problem is well-posed, and‖d‖1,O

depends continuously on‖f‖0,O.
Now, let us compared to div u. To that aim, we introduce a second scalar Neumann prob-
lem. Letδ ∈ R be such that(δ, 1)0,O = (div u, 1)0,O. According to the above,δ depends
continuously on‖f‖0,O. The second scalar problem reads
Find v ∈ H1(O) ∩ L2

0(O) such that

(∇v,∇w)0,O = (d+ δ − div u, w)0,O, ∀w ∈ H1(O) ∩ L2
0(O). (E)

Since by constructiond+ δ − div u is orthogonal to constants, the right-hand side defines
a linear form onH1(O) ∩ L2

0(O). This problem is also well-posed. One finds easily that
v ∈ H1(O)∩L2

0(O) can be characterized by the relations∆v = div u− (d+ δ) in O, and
∂nv|∂O = 0, so that∇v belongs toW T (O). Taking successivelyw = ∇v in (C),w = v

in (D) and integrating by parts, we find

(div u, div u − (d+ δ))0,O = (f ,∇v)0,O = −(∇d,∇v)0,O = (d, div u − (d+ δ))0,O.

In other words,(div u − d, div u − (d + δ))0,O = 0. But div u − (d + δ) is orthogonal
to constants:(δ, div u − (d + δ))0,O = 0. It follows ‖div u − (d + δ)‖0,O = 0, id est
div u = d+ δ in O. We conclude that‖div u‖1,O depends continuously on‖f‖0,O. �

Corollary A.1. Let (fk)k be a bounded sequence inL2(O), and let(uk)k be the corre-
sponding sequence of solutions to the regularized problems(B) with f = fk. Then, there
exists a subsequence of(uk)k that converges inW T (O).

Proof: According to Proposition A.2, the sequence(uk)k is bounded inW T (O). Thanks
to the Weber embedding Theorem, there exists a subsequence,still denoted by(uk)k, that
converges inL2(O). Taking the difference of Eq. (C) for two indicesk andl with the same
test fieldw = uk − ul, one finds

αmin‖curl(uk − ul)‖2
0,O + ‖div (uk − ul)‖2

0,O ≤ ‖fk − f l‖0,O‖u
k − ul‖0,O.

In other words, the subsequence(uk)k is a Cauchy subsequence inW T (O), so it con-
verges. �

Let us carry on with a final result on regularized problems with data on the boundary.
Let us introduce first

H
1/2
00n(γ′) := {ϕ ∈ H1/2(γ′) | ∃φ ∈ H1(O), φ · n|γ = 0, ϕ = φ|γ′}.

Using standard results, we know that
{

∃Clift > 0, ∀ϕ ∈ H
1/2
00n(γ′), ∃φ ∈ H1(O),

φ · n|γ = 0,ϕ = φ|γ′ and‖φ‖H1(O) ≤ Clift‖ϕ‖
H1/2(γ′)

. (F)

Proposition A.3. Assume thatO is simply-connected.
Let ϕ ∈ H

1/2
00n(γ′). Then, the regularized problem below admits one, and only one, solu-

tion:
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Findu ∈ H(curl;O) ∩ H(div ;O) such that














curl (αcurlu) −∇(div u) = 0 in O

u · n|γ = 0

αcurlu × n|γ = 0

u|γ′ = ϕ

. (G)

Moreover, the norms‖curlu‖0,O and‖div u‖0,O depend continuously on‖ϕ‖
H1/2(γ′).

Proof: Let us considerφ satisfying (F). We remark thatu − φ belongs to

W T−(O) := {w ∈ W T (O) | w|γ′ = 0},

which is a closed subspace ofW T (O).
Introduceu′ := u − φ. Then one can reformulate the system of equations inu′ as the
equivalent variational formulation
Find u′ ∈ W T−(O) such that

(αcurlu′, curlw)0,O + (div u′, div w)0,O

= −(αcurlφ, curlw)0,O − (div φ, div w)0,O, ∀w ∈ W T−(O).

SinceW T−(O) can be endowed with the norm ofW T (O), well-posedness of the vari-
ational formulation inu′ follows. Existence ofu is achieved. To obtain uniqueness and
continuity with respect to the data, we proceed as follows.
We know that‖u′‖W T (O) depends continuously on‖φ‖W T (O), which is itself bounded by
‖φ‖H1(O), and so by‖ϕ‖

H1/2(γ′) according to (F). Then,‖u′ + φ‖W T (O) depends con-
tinuously on‖ϕ‖

H1/2(γ′). We conclude thatu is unique and that the norms‖curlu‖0,O

and‖div u‖0,O depend continuously on‖ϕ‖
H1/2(γ′). �


