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In this paper, we present several results concerning vector potentials and scalar
potentials with data in Sobolev spaces with negative exponents, in a not necessarily
simply-connected, three-dimensional domain. We then apply these results to Poincaré’s
theorem and to Korn’s inequality.

1. Weak versions of a classical theorem of Poincaré

In this work, (the results of which were announced in [2]), Ω is a bounded open con-

nected subset of R3 with a Lipschitz-continuous boundary Γ. The notation X′〈, 〉X
denotes the duality pairing between a topological space X and its dual X ′. The let-

ter C denotes a constant that is not necessarily the same at its various occurrences.

We begin with a weak version of a well-known theorem of Poincaré. Here as

elsewhere in this paper, “weak” means that the result to which it is attached holds

as well in Sobolev spaces with negative exponents.

Theorem 1.1. Let f ∈ H−m(Ω)3 for some integer m ≥ 0. Then the following

properties are equivalent:

1
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(i) H−m(Ω)3〈f , ϕ〉Hm
0

(Ω)3 = 0 for all ϕ ∈ Vm = {ϕ ∈ Hm
0 (Ω)3; div ϕ = 0},

(ii) H−m(Ω)3〈f , ϕ〉Hm
0

(Ω)3 = 0 for all ϕ ∈ V = {ϕ ∈ D(Ω)3; div ϕ = 0},

(iii) There exists a distribution χ ∈ H−m+1(Ω), unique up to an additive constant,

such that f = grad χ in Ω.

If in addition Ω is simply-connected, the above properties are equivalent to:

(iv) curl f = 0 in Ω.

Proof. For the equivalence between (i), (ii) and (iii), we refer to [4]. Since the

implication (iii) =⇒ (iv) clearly holds, it remains to prove that (iv) =⇒ (iii).

To begin with, let f ∈ H−m(Ω)3 be such that curl f = 0 in Ω. We then use

the same argument as in [8]: We know that there exist a unique u ∈ Hm
0 (Ω)3 and

a unique p ∈ H−m+1(Ω)/R (see [5]) such that

∆mu + grad p = f and div u = 0 in Ω. (1.1)

Hence ∆mcurl u = 0 in Ω so that the hypoellipticity (see [10]) of the polyharmonic

operator ∆m implies that curl u ∈ C∞(Ω)3. Since div u = 0, we deduce that

∆u = curl curl u ∈ C∞(Ω)3. This also implies that ∆mu belongs to C∞(Ω)3

and is an irrotational vector field. By the classical Poincaré theorem, there exists

q ∈ C∞(Ω)3 such that ∆mu = grad q. Thus, f = grad (p + q) and, thanks to [4]

proposition 2.10, the function p + q belongs to the space H−m+1(Ω).

We can give another proof of the implication (iv) =⇒ (iii) by using the following

theorem:

Theorem 1.2. Assume that both Ω and R3 \ Ω are simply-connected. Let u ∈

Hm
0 (Ω)3, m ≥ 0, be a vector field that satisfies div u = 0 in Ω. Then there exists a

vector potential ψ in Hm+1
0 (Ω)3 such that

u = curl ψ, div ∆m+1ψ = 0 in Ω, and ‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 . (1.2)

Proof. Let u ∈ Hm
0 (Ω)3 be such that div u = 0 in Ω and let ũ denote the

extension of u by 0 in R3 \ Ω. Thus ũ ∈ Hm
0 (R3)3, div ũ = 0 in R3, and there

exist an open ball B containing Ω and a vector field w ∈ Hm+1
0 (B)3 such that

ũ = curl w , div ∆m+1w = 0 in B, and

‖w ‖Hm+1(B)3 ≤ C‖u ‖Hm(B)3 .

The open set Ω′ := B \ Ω is bounded, has a Lipschitz-continuous boundary and is

simply-connected. Furthermore, the vector field w ′ := w |Ω′ belongs to Hm+1(Ω′)3

and satisfies curl w ′ = 0 in Ω′. Therefore, there exists a function χ′ ∈ H1(Ω′) such

that w ′ = grad χ′ in Ω′. Hence in fact χ′ ∈ Hm+2(Ω′) and the estimate

‖χ′‖Hm+2(Ω′) ≤ C‖w ′‖Hm+1(Ω′)3

holds. Since the function χ′ ∈ Hm+2(Ω′) can be extended to a function χ̃ in

Hm+2(R3), with

‖χ̃‖Hm+2(R3) ≤ C‖χ′‖Hm+2(Ω′) ≤ C‖w ′‖Hm+1(Ω′)3 ,
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the vector field ϕ̃ := w − grad χ̃ belongs to the space Hm+1(B)3 and satisfies

ϕ̃|Ω′ = 0. Then the restriction ϕ := ϕ̃|Ω belongs to the space Hm+1
0 (Ω)3, satisfies

the estimate (1.2), and curl ϕ̃ = curl w = ũ in B. Thus u = curl ϕ in Ω. Let

now p denote the unique solution in the space Hm+2
0 (Ω) of ∆m+2p = div ∆m+1ϕ,

so that the estimate

‖p‖Hm+2(Ω) ≤ C‖ϕ‖Hm+1(Ω)3

holds. Then the function ψ = ϕ− grad p satisfies (1.2).

We can give yet another proof of the above implication (iv) =⇒ (iii): Consider

again the solution u ∈ Hm
0 (Ω)3 to (1.1) and let v ∈ Hm+1

0 (Ω)3 denote the vector

potential of u as given by theorem 1.2. We then have ∆mcurl u = 0. If m = 2k,

for some integer k ≥ 1, then

H−m−1(Ω)3〈∆
mcurl u , v 〉Hm+1

0
(Ω)3 = H−1(Ω)3〈∆

kcurl u , ∆kv 〉H1
0
(Ω)3

=

∫

Ω

∆ku · ∆kcurl v dx

= ‖∆ku ‖2
L2(Ω)3 .

This implies that ∆ku = 0 in Ω and thus u = 0 since u ∈ Hm
0 (Ω)3. The case

m = 2k + 1 follows by a similar argument. �

2. Scalar Potentials

Let Γi, 0 ≤ i ≤ I, denote the connected components of the boundary Γ of the

domain Ω, Γ0 being the boundary of the only unbounded connected component of

R3 \ Ω. We do not assume that Ω is simply-connected, however we assume that

there exist J connected and oriented surfaces Σj, 1 ≤ j ≤ J contained in Ω, with

the following properties: each surface Σj is an open subset of a smooth manifold,

the boundary of Σj is contained in Γ for 1 ≤ j ≤ J , the intersection Σi ∩ Σj is

empty for i 6= j, and finally the open set Ω◦ = Ω\
⋃J

j=1 Σj is simply-connected and

pseudo-Lipschitz in the sense of [1]. Each such surface Σj is called a cut. Finally,

let [·]j denote the jump of a function over each cut Σj , 1 ≤ j ≤ J .

We then define the spaces

H(curl, Ω) = {v ∈ L2(Ω)3; curl v ∈ L2(Ω)3},

H(div, Ω) = {v ∈ L2(Ω)3; div v ∈ L2(Ω)},

each one being equipped with the graph norm, and their subspaces

H0(curl, Ω) = {v ∈ H(curl, Ω); v × n = 0 on Γ},

H0(div, Ω) = {v ∈ H(div, Ω); v · n = 0 on Γ}.

For any function q in H1(Ω◦), grad q denotes the gradient of q in the sense of

distributions in D ′(Ω◦). It belongs to L2(Ω◦)3 and therefore can be extended to
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L2(Ω)3. In order to distinguish this extension from the gradient of q in D ′(Ω), we

denote it by g̃rad q. Finally, we remark that the space

KT (Ω) := {w ∈ H(curl, Ω) ∩ H0(div, Ω); curl w = 0 and div w = 0 in Ω}

is of dimension equal to J : As shown in [1] Prop. 3.14, it is spanned by the vector

fields g̃rad qT
j , 1 ≤ j ≤ J , where each function qT

j ∈ H1(Ω◦), which is unique up

to an additive constant, satisfies

∆qT
j = 0 in Ω◦,

∂nqT
j = 0, on Γ,

[qT
j ]k = constant, [∂nqT

j ]k = 0, 〈∂nqT
j , 1〉Σk

= δjk for 1 ≤ k ≤ J.

(2.1)

where 〈·, ·〉Σk
denotes the duality pairing between the spaces H−1/2(Σk) and

H1/2(Σk).

Theorem 2.1. Given any function f ∈ L2(Ω)3 that satisfies

curl f = 0 in Ω and

∫

Ω

f · v dx = 0 for all v ∈ KT (Ω), (2.2)

there exists a scalar potential χ in H1(Ω) such that

f = grad χ in Ω and ‖χ‖H1(Ω) ≤ C‖f ‖L2(Ω)3 . (2.3)

Proof. It suffices to show that, given any vector field v ∈ H0(div, Ω) such that

div v = 0 in Ω, there holds
∫
Ω
f · v dx = 0. Let

z =

J∑

j=1

〈v · n , 1〉Σj g̃rad qT
j

and w = v − z . According to [1], theorem 3.17, there exists a vector potential

ψ ∈ L2(Ω)3 that satisfies w = curl ψ, div ψ = 0 in Ω and ψ × n = 0 on Γ.

Hence
∫

Ω

f · v dx =

∫

Ω

f · curl ψ dx = 0.

The result is then a consequence of theorem 1.1: there exists a function χ ∈ H1(Ω)

satisfying (2.3).

Remark 2.1. (1) Any function f ∈ L2(Ω)3 that satisfies curl f = 0 in Ω can be

decomposed as:

f = grad χ + g̃rad p, with χ ∈ H1(Ω) and g̃rad p ∈ KT (Ω).

Such a result was alluded to in [11].

(2) The second condition in (2.2) is trivially satisfied when Ω is simply-connected,

since KT (Ω) = {0} in this case.
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Theorem 2.2. Given any distribution f ∈ H0(div, Ω)′ that satisfies

curl f = 0 in Ω and H0(div,Ω)′〈f , v 〉H0(div,Ω) = 0 for all v ∈ KT (Ω), (2.4)

there exists a scalar potential χ in L2(Ω) such that

f = grad χ in Ω and ‖χ‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (2.5)

Proof. Let f ∈ H0(div, Ω)′ be such that curl f = 0 in Ω. Hence (see proposition

1 of [6]) there exist ψ ∈ L2(Ω)3 and χ0 ∈ L2(Ω) such that

f = ψ + grad χ0 in Ω and ‖ψ‖L2(Ω)3 + ‖χ0‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (2.6)

Observe that, thanks to the density of D(Ω)3 in H0(div, Ω),

H0(div,Ω)′〈grad χ0, v 〉H0(div,Ω) = 0 for all v ∈ KT (Ω).

Therefore, the function ψ ∈ L2(Ω)3 satisfies relations (2.2). By theorem 2.1, there

exists a function p ∈ H1(Ω) such that

ψ = grad p in Ω and ‖p‖H1(Ω) ≤ C‖ψ‖L2(Ω)3 ≤ C‖f ‖H0(div,Ω)′ .

Hence the function χ = p + χ0 satisfies the announced properties.

Remark 2.2. Note that this theorem is an extension of the equivalence (iii) ⇐⇒

(iv) in theorem 1.1 with m = 1 to the case where Ω is not simply-connected.

More generally, let us introduce, for any integer m ≥ 0, the space

Hm
0 (div, Ω):={v ∈ H0(div, Ω); div v ∈ Hm

0 (Ω)},

which coincides with H0(div, Ω) for m = 0. Its dual space, denoted by H−m(div, Ω),

can then be characterized by

H−m(div, Ω) = {ψ + grad χ; ψ ∈ H0(div, Ω)′, χ ∈ H−m(Ω)}.

One can also show that D(Ω)3 is dense in Hm
0 (div, Ω) and that the following Green

formula holds for any χ ∈ H−m(div, Ω) and v ∈ Hm
0 (div, Ω):

H−m(div,Ω)〈grad χ, v 〉Hm
0

(div,Ω) + H−m(Ω)〈χ, divv 〉Hm
0

(Ω) = 0. (2.7)

As a consequence of theorem 2.2, it is easy to prove the following theorem, which

shows that property (iv) in theorem 1.1 also holds when Ω is not simply-connected.

Theorem 2.3. For any distribution f ∈ H−m(div, Ω) that satisfies (2.4), there

exists a scalar potential χ in H−m(Ω) such that

f = grad χ in Ω and ‖χ‖H−m(Ω) ≤ C‖f ‖H−m(div,Ω). (2.8)

Proof. We give the proof when m = 1; the general case is similar. Let f ∈

H−1(div, Ω) satisfy (2.4). Then, there exist ψ ∈ H0(div, Ω)′ and χ0 ∈ H−1(Ω)

such that

f = ψ+grad χ0 in Ω and ‖ψ‖H0(div,Ω)′ + ‖χ0‖H−1(Ω) ≤ C‖f ‖H−1(div,Ω).(2.9)
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Observe that, thanks to (2.9), we have

H−1(div,Ω)〈grad χ0, v 〉H1
0
(div,Ω) = − H−1(Ω)〈χ0, div v 〉H1

0
(Ω) = 0

for all v ∈ KT (Ω). By theorem 2.2, there exists a function p ∈ L2(Ω) such that

ψ = grad p and the estimate (2.5) holds. Then the function χ = χ0 + p satisfies

the announced properties.

3. Vector potentials in Hm

0
(Ω)3

First, we recall some results concerning the existence of tangential vector potential

(see [1] for proofs).

Below, 〈·, ·〉Γi denotes the duality pairing between the spaces H−1/2(Γi) and

H1/2(Γi). Given any function u ∈ H(div, Ω) that satisfies

div u = 0 in Ω and 〈u · n , 1〉Γi = 0, 0 ≤ i ≤ I, (3.1)

there exists a vector potential ψ in L2(Ω)3 such that

u = curl ψ, div ψ = 0 in Ω, and ψ · n = 0 on Γ, (3.2)

satisfying the estimate

‖ψ‖L2(Ω)3 ≤ C‖u ‖L2(Ω)3 . (3.3)

Moreover, there exists a unique vector field ψ ∈ L2(Ω)3 satisfying (3.2) and such

that

〈ψ · n , 1〉Σj = 0, 1 ≤ j ≤ J, (3.4)

and the estimate (3.3) holds. When Ω is of class C 1,1, then ψ belongs to H1(Ω)3

and the estimate

‖ψ‖H1(Ω)3 ≤ C‖u ‖L2(Ω)3 (3.5)

holds. If moreover u ∈ Hm(Ω)3 and Ω is of class C m+1,1, for some integer m ≥ 0,

then ψ belongs to Hm+1(Ω)3 and the estimate

‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 (3.6)

holds. We also recall the result concerning the existence of normal vector potentials

(see again [1] for proofs). For any vector field u ∈ H(div, Ω) that satisfies

div u = 0 in Ω, u · n = 0 on Γ and 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J, (3.7)

there exists a vector potential ψ in L2(Ω)3 such that

u = curl ψ, div ψ = 0 in Ω and ψ × n = 0 on Γ, (3.8)

and the estimate

‖ψ‖L2(Ω)3 ≤ C‖u ‖L2(Ω)3 (3.9)
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holds. Moreover, there exists a unique vector field ψ ∈ L2(Ω)3 satisfying (3.8) and

such that

〈ψ · n , 1〉Γi = 0, 0 ≤ i ≤ I , (3.10)

and the estimate (3.9) holds. When u is more regular, then (3.5) and (3.6) are also

satisfied.

Remark 3.1. Let u be a vector field in H(div, Ω) that satisfies:

div u = 0 in Ω and u · n = 0 on Γ.

Using the same arguments as those of theorem 2.1, it is easy to verify that

〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J,

if and only if
∫

Ω

u · grad qT
j dx = 0 for all 1 ≤ j ≤ J.

Another kind of less standard but useful vector potential is given by the following

theorem.

Theorem 3.1. Assume that the boundary of the domain Ω is of class C 1,1. For

any function u in H(div, Ω) satisfying (3.7), there exists a vector potential ψ in

H1
0 (Ω)3, such that

u = curl ψ and div ∆ψ = 0 in Ω, ‖ψ‖H1(Ω)3 ≤ C‖u ‖L2(Ω)3 . (3.11)

Proof. Given any vector field u ∈ H(div, Ω) satisfying (3.7), we associate the

vector potential ψ0 ∈ H1(Ω)3 satisfying (3.8) and the estimate

‖ψ0‖H1(Ω)3 ≤ C‖u ‖L2(Ω)3 .

That Γ is of class C 1,1 implies that the normal trace ψ0 · n belongs to H1/2(Γ).

Hence, the fourth-order problem

∆2χ = 0 in Ω, χ = 0 and ∂nχ = ψ0 · n on Γ

has a unique solution χ in H2(Ω) satisfying the estimate

‖χ‖H2(Ω) ≤ C‖ψ0 · n ‖H1/2(Γ) ≤ C‖u ‖L2(Ω)3 .

Then the vector field

ψ = ψ0 − grad χ

satisfies (3.11).

The vector field ψ given by the previous theorem is unique up to vector fields

belonging to the space

K1
0 (Ω):={w ∈ H1

0 (Ω)3; curl w = 0 and div (∆w ) = 0 in Ω}
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(see proposition 3.1 below).

Corollary 3.1. Assume that the boundary of the domain Ω is of class C m+1,1, for

some integer m ≥ 0. For any vector field u ∈ Hm(Ω)3 that satisfies (3.7), there

exists a vector potential ψ in (Hm+1Ω) ∩ H1
0 (Ω))3 satisfying

u = curl ψ and div ∆ψ = 0 in Ω and ‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 .

Proof. Under the given assumptions, the vector potential ψ given by the previous

theorem belongs to Hm+1(Ω)3 and its normal trace ψ · n belongs to Hm+1/2(Γ),

on the one hand. On the other hand, the solution χ to the fourth-order problem

found in the previous belongs to Hm+2(Ω)3.

We now characterize the space K1
0 (Ω).

Prop 3.1. Assume that the boundary of the domain Ω is of class C 1,1. Then the

space K1
0(Ω) is spanned by the vector fields grad q1

i , 1 ≤ i ≤ I, where each q1
i is

the unique solution in H2(Ω) to the problem

∆2q1
i = 0 in Ω,

q1
i

∣∣
Γ0

= 0 and q1
i

∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nq1
i = 0 on Γ,

〈∂n∆q1
i , 1〉Γk

= δik and 〈∂n∆q1
i , 1〉Γ0

= −1, 1 ≤ k ≤ I.

(3.13)

Proof. First, we prove that the space K1
0(Ω) and the space

G1:={grad q ∈ H1
0 (Ω)3; ∆2q = 0 in Ω}

coincide. First, it is clear that G1 is included in K1
0 (Ω). Second, given w ∈ K1

0(Ω),

let w̃ denote the extension by zero of w to an open ball B containing Ω. Since

curl w̃ = 0 in B, w̃ is the gradient of a function q ∈ H2(B). Moreover, q = 0 in

B \ Ω, so that q′ := q|Ω belongs to H2
0 (Ω). Since w = grad q′, one finds that w

belongs to G1.

Moreover, it is clear that the set of vector fields grad qi, 1 ≤ i ≤ I, where qi ∈

H2(Ω) is the unique solution to

∆2qi = 0 in Ω,

qi

∣∣
Γ0

= 0 and qi

∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nqi = 0 on Γ,

(3.14)

spans G1 (= K1
0 (Ω)).

One still has to check the last line of (3.13). Introduce now

M2:={r ∈ H2(Ω); r
∣∣
Γ0

= 0 and r
∣∣
Γk

= δik, 1 ≤ k ≤ I, ∂nr = 0 on Γ}.

For 1 ≤ i ≤ I, the problem: find q1
i in M2 such that

∀r ∈ M2,

∫

Ω

∆q1
i ∆r dx = −r

∣∣
Γi

, (3.15)
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has a unique solution. Furthermore, the following Green’s formula can be proven

by a density argument, for any functions q and r in M2 with ∆2q in L2(Ω):

∫

Ω

(∆2q)r dx =

∫

Ω

∆q ∆r dx +

I∑

i=1

r
∣∣
Γi

〈∂n(∆q), 1〉Γi .

This formula implies that the solution q1
i to (3.15) satisfies (3.13). The vector fields

grad q1
i , 1 ≤ i ≤ I, are clearly linearly independent and they belong to K1

0(Ω).

Consequently, they form a basis of K1
0(Ω).

Prop 3.2. Assume that the boundary of the domain Ω is of class C 1,1. Given any

function u in H(div, Ω) satisfying (3.7), there exists a unique vector potential ψ in

H1
0 (Ω)3 satisfying

u = curl ψ, div ∆ψ = 0 in Ω and 〈∂n(div ∆ψ) , 1〉Γi = 0, 0 ≤ i ≤ I. (3.16)

Moreover, the estimate (3.5) holds.

Proof. Let (ψ0−grad χ) be the potential vector of u given in the proof of theorem

3.1. Then the vector field

ψ = ψ0 − grad χ +

I∑

i=1

〈∂n(∆χ) , 1〉Γi grad q1
i

satisfies (3.16) (note that the quantities 〈∂n(∆χ), 1〉Γi are well defined since ∆2χ =

0).

Corollary 3.2. Assume that the boundary of the domain Ω is of class C m+1,1 for

some integer m ≥ 0. Given any function u in Hm(Ω)3 that satisfies (3.7), there

exists a unique vector potential ψ in (Hm+1Ω) ∩ H1
0 (Ω))3 satisfying

u = curl ψ, div ∆ψ = 0 in Ω and 〈∂n(div ∆ψ) , 1〉Γi = 0, 0 ≤ i ≤ I

and the estimate (3.6).

Theorem 3.2. Assume that the boundary of the domain Ω is of class C 2,1. Given

any function u in H1
0 (Ω)3 that satisfies

div u = 0 in Ω and 〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J, (3.18)

there exists a vector potential ψ in H2
0 (Ω)3 such that

u = curl ψ and div ∆2ψ = 0 in Ω and ‖ψ‖H2(Ω)3 ≤ C‖u ‖H1(Ω)3 . (3.19)

Proof. Given u in H1
0 (Ω)3 that satisfies (3.18), let ϕ ∈ (H2(Ω)∩H1

0 (Ω))3 denote

the vector potential given by corollary 3.2. The sixth-order problem

∆3χ = 0 in Ω, χ =
∂χ

∂n
= 0 and

∂2χ

∂n 2
=

∂ϕ

∂n
· n on Γ, (3.20)
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has a unique solution χ ∈ H3(Ω) that satisfies the estimate

‖χ‖H3(Ω) ≤ C‖
∂ϕ

∂n
‖H1/2(Γ)3 ≤ C‖ϕ‖H2(Ω)3 ≤ C‖u ‖H1(Ω)3 .

Note that the last boundary condition in (3.20) can be written as
(

∂

∂n
grad χ

)
· n =

∂ϕ

∂n
· n .

For any unit tangent vector τ on Γ, we have:

∂ϕ

∂n
· τ =

∂ϕi

∂xj
njτi =

∂ϕj

∂xi
τinj =

∂ϕj

∂τ
nj = 0.

Also, one can show that (∂ngrad χ) · τ = 0, which implies that the relation

∂ngrad χ = ∂nϕ holds. So, the vector field ψ = ϕ − grad χ belongs to H2(Ω)3

and satisfies (3.19).

The vector field ψ given by Theoerm 3.2 is unique up to vector fields in the

space

K2
0(Ω):={w ∈ H2

0 (Ω)3; curl w = 0 and div ∆2w = 0 in Ω},

which we now characterize.

Prop 3.3. Assume that the boundary of the domain Ω is of class C 2,1. Then the

space K2
0 (Ω) is spanned by the vector fields grad q2

i , 1 ≤ i ≤ I, where each function

q2
i is the unique solution in H3(Ω) to the problem

∆3q2
i = 0 in Ω,

q2
i

∣∣
Γ0

= 0 and q2
i

∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nq2
i = ∂2

nq2
i = 0 on Γ,

〈∂n(∆2q2
i ) , 1〉Γk

= δik and 〈∂n(∆2q2
i ) , 1〉Γ0

= −1, 1 ≤ k ≤ I.

(3.21)

Proof. First, we prove that the space K2
0(Ω) coincides with the space

G2:={grad q ∈ H2
0 (Ω)3; ∆3q = 0 in Ω},

using the same argument as in proposition 3.1. We next note that the set of vector

fields grad qi, 1 ≤ i ≤ I, where qi ∈ H3(Ω) is the unique solution to the problem

∆3qi = 0 in Ω,

qi

∣∣
Γ0

= 0 and qi

∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nqi = ∂2
nqi = 0 on Γ,

(3.22)

spans K2
0 (Ω).

Let now

M3:={r ∈ H3(Ω); r
∣∣
Γ0

= 0, r
∣∣
Γk

= δik, 1 ≤ k ≤ I , ∂nr = ∂2
nr = 0 on Γ}.
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For 1 ≤ i ≤ I, the problem: find q2
i in M3 such that

∀r ∈ M3,

∫

Ω

grad ∆q2
i · grad ∆r dx = r

∣∣
Γi

, (3.23)

has a unique solution. Furthermore, the following Green’s formula can be proved

by a density argument, for any functions q and r in M3 with ∆3q in L2(Ω):

∫

Ω

(∆3q)r dx = −

∫

Ω

grad ∆q · grad ∆r dx +
I∑

i=1

r
∣∣
Γi

〈∂n(∆2q), 〉Γi .

This formula shows that the solution q2
i of (3.23) satisfies (3.21). The vector fields

grad q2
i , 1 ≤ i ≤ I, are clearly linearly independent and they belong to K2

0(Ω).

Consequently, they form a basis of K2
0(Ω).

Corollary 3.3. Assume that the boundary of the domain Ω is of class C 2,1. Given

any function u in H1
0 (Ω)3 such that (3.18) holds, there exists a unique vector

potential ψ in H2
0 (Ω)3 satisfying

u = curl ψ, div ∆2ψ = 0 in Ω and 〈∂n(div ∆ψ) , 1〉Γi = 0, 0 ≤ i ≤ I,

with the corresponding estimate.

More generally, we can prove using the same arguments:

Theorem 3.3. Assume that boundary of the domain Ω is of class C m+1,1 for some

integer m ≥ 1. Given any vector field u in Hm
0 (Ω)3 that satisfies (3.18), there exists

a vector potential ψ in Hm+1
0 (Ω)3 such that

u = curl ψ and div ∆m+1ψ = 0 in Ω and ‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 . (3.25)

Moreover, there exists a unique vector potential ψ in Hm+1
0 (Ω)3, satisfying (3.25)

and

〈∂ndiv ∆ψm+1 , 1〉Γi = 0, 0 ≤ i ≤ I. (3.26)

Remark 3.2. Similar results are found in Borchers & Sohr [7], but with different

proof.

Let Ω be a domain with a boundary of class C m+1,1 for some integer m ≥ 1 and

let u in Hm
0 (Ω)3 be such that div u = 0. If Ω is simply-connected (J = 0), and Γ

is connected (I = 0), then there exists a unique vector potential ψ in Hm+1
0 (Ω)3

satisfying (3.25).

4. Weak vector potentials

First, we note that the continuous embeddings H0(curl, Ω)′ ↪→ H−1(Ω)3 and

H0(div, Ω)′ ↪→ H−1(Ω)3 hold. Besides, given any f ∈ H−1(Ω)3, we know that

there exist a unique u ∈ H1
0 (Ω)3 and χ ∈ L2(Ω) such that

f = −∆u + grad χ and div u = 0 in Ω, (4.1)
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and satisfying the estimate

‖u ‖H1(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖f ‖H−1(Ω)3 .

Letting ξ = curl u , we obtain the decomposition f = curl ξ + grad χ with

div ξ = 0 in Ω and ξ ·n = 0 on Γ. Since ξ ∈ L2(Ω)3 and χ ∈ L2(Ω), it follows that

curl ξ ∈ H0(curl, Ω)′ and grad χ ∈ H0(div, Ω)′, so that

H−1(Ω)3 = H0(curl, Ω)′ + H0(div, Ω)′. (4.2)

Prop 4.1. Assume that the boundary of the domain Ω is of class C 1,1. Then, for

any f in the dual space H0(div, Ω)′, there exist a unique u ∈ (H2(Ω) ∩ H1
0 (Ω))3

and χ ∈ L2(Ω) solution to (4.1) and satisfying the estimate

‖u‖H2(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖f ‖H0(div,Ω)′ .

Proof. Let f be in the dual space of H0(div, Ω). We know (see proposition 1 of

[6]) that there exist ψ ∈ L2(Ω)3 and χ0 ∈ L2(Ω) such that

f = ψ + grad χ0 and ‖ψ‖L2(Ω)3 + ‖χ0‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (4.3)

Thanks to the regularity of Γ, there exist u ∈ (H2(Ω)∩H1
0 (Ω))3 and p ∈ H1(Ω)

satisfying

ψ = −∆u + grad p and div u = 0 in Ω, (4.4)

with

‖u ‖H2(Ω)3 + ‖p‖H1(Ω)/R ≤ C‖ψ‖L2(Ω)3 .

Then u and χ = p + χ0 satisfy the announced properties.

We next consider the space

KN (Ω):={w ∈ H0(curl, Ω) ∩ H(div, Ω); curl w = 0 and div w = 0 in Ω}

which is of dimension I. As shown in proposition 3.18 of [1], this space is spanned

by the vector fields grad qN
i , 1 ≤ i ≤ N , where each function qN

i ∈ H1(Ω) is the

unique solution to the problem

∆qN
i = 0 in Ω,

qN
i = 0 on Γ0, 〈∂nqN

i , 1〉Γ0
= −1,

qN
i = constant on Γk, 〈∂nqN

i , 1〉Γk
= δik, for 1 ≤ k ≤ I.

(4.5)

Theorem 4.1. Given any distribution f in the dual space H0(curl, Ω)′ that satis-

fies

div f = 0 in Ω and H0(curl,Ω)′〈f , v 〉H0(curl,Ω) = 0 for all v ∈ KN (Ω), (4.6)

there exists a vector potential ξ in L2(Ω)3 such that

f = curl ξ, with div ξ = 0 in Ω and ξ · n = 0 on Γ, (4.7)
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and such that the following estimate holds:

‖ξ‖L2(Ω)3 ≤ C‖f ‖H0(curl,Ω)′ . (4.8)

Proof. Let f be in the dual space H0(curl, Ω)′. According to corollary 5 of [6],

there exist ψ ∈ L2(Ω)3 and ξ0 ∈ L2(Ω)3 with div ξ0 = 0 in Ω and ξ0 · n = 0 on Γ,

such that f = ψ + curl ξ0 and such that the estimate

‖ψ‖L2(Ω)3 + ‖ξ0‖L2(Ω)3 ≤ C‖f ‖H0(curl,Ω)′

holds. Thanks to the density of D(Ω)3 in H0(curl, Ω), we deduce that for all v ∈

KN (Ω), we have

H0(curl,Ω)′〈curl ξ0 , v 〉H0(curl,Ω) = 0.

Since div f = 0, it follows that div ψ = 0. Then, thanks to the orthogonality

relations

H0(curl,Ω)′〈f , grad qN
i 〉H0(curl,Ω) = 0 for all i = 1, . . . , I,

the relations 〈ψ · n , 1〉Γi = 0 are satisfied for all i = 1, . . . , I. There thus exists a

vector potential ϕ ∈ L2(Ω)3 (see theorem 3.12 of [1]) such that ψ = curl ϕ, with

div ϕ = 0 in Ω and ϕ · n = 0 on Γ, and such that

‖ϕ‖L2(Ω)3 ≤ C‖ψ‖L2(Ω)3 .

Hence, the vector field ξ = ξ0 +ϕ possesses the announced properties.

Remark 4.1. The previous theorem has been established in [6] when Γ is con-

nected, in which case KN = {0}.

For any integer m ≥ 0, let us introduce the space

Hm
0 (curl, Ω) := {v ∈ H0(curl, Ω); curl v ∈ Hm

0 (Ω)3}.

We can easily characterize its dual space, as:

H−m(curl, Ω) = {ψ + curl ξ; ψ ∈ H0(curl, Ω)′, ξ ∈ H−m(Ω)3}.

We can prove that D(Ω)3 is dense in Hm
0 (curl, Ω) and that the following Green

formula holds: for any ξ ∈ H−m(curl, Ω) and v ∈ Hm
0 (curl, Ω)

H−m(curl,Ω)〈curlξ, v 〉Hm
0

(curl,Ω) + H−m(Ω)3〈ξ, curlv 〉Hm
0

(Ω)3 = 0. (4.9)

By using the decomposition (1.1) with (m + 1) instead of m, it is easy to prove (as

in Section 2) that

H−m−1(Ω)3 = H−m(curl, Ω) + H−m(div , Ω), for m ≥ 1.
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Theorem 4.2. For any distribution f in the dual space H−1(curl, Ω) that satisfies

div f = 0 in Ω and 〈f , v 〉 = 0, for all v ∈ KN (Ω) (4.10)

there exists a vector potential ξ in H−1(Ω)3 such that

f = curl ξ, div ξ = 0 in Ω, and ‖ξ‖H−1(Ω)3 ≤ C‖f ‖H−1(curl,Ω). (4.11)

Proof. Given f in the dual space H−1(curl, Ω), there exist f 0 ∈ H0(curl, Ω)′ and

ξ0 ∈ H−1(Ω)3 such that f = f 0 + curl ξ0, and satisfying the estimate

‖f 0‖H0(curl,Ω)′ + ‖ξ0‖H−1(Ω)3 ≤ C‖f ‖H−1(curl,Ω).

Since ξ0 ∈ H−1(Ω)3, there exists θ0 ∈ L2(Ω)3 satisfying div θ0 = 0 in Ω, θ0 ·n = 0

on Γ, and there exists χ ∈ L2(Ω) such that ξ0 = curl θ0 + grad χ and

‖θ0‖L2(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖ξ0‖H−1(Ω)3 .

Since f 0 ∈ H0(curl, Ω)′, then f 0 = ψ0 + curl ϕ0, with ψ0 ∈ L2(Ω)3, ϕ0 ∈ L2(Ω)3,

div ϕ0 = 0 in Ω, ϕ0 · n = 0 on Γ and

‖ψ0‖L2(Ω)3 + ‖ϕ0‖L2(Ω)3 ≤ C‖f 0‖H0(curl,Ω)′ .

Then f = ψ0 + curl ϕ0 + curl curl θ0 = ψ0 + curl µ, with µ = ϕ0 + curl θ0,

div µ = 0 in Ω, and the estimate

‖ψ0‖L2(Ω)3 + ‖µ‖H−1(Ω)3 ≤ C‖f ‖H−1(curl,Ω)

holds.

Thanks to the density of D(Ω)3 in H1
0 (curl, Ω), we infer that

H−1(curl,Ω)〈curl µ , v 〉H1
0
(curl,Ω) = 0, for all v ∈ KN (Ω).

Since div f = 0, div ψ0 = 0 and therefore the condition 〈ψ0 · n , 1〉Γi = 0 is

automatically satisfied for any i = 0, . . . , I. Then by (3.1), there exists a vector

potential ϕ ∈ L2(Ω)3 such that

ψ0 = curl ϕ, div ϕ = 0 in Ω and ϕ · n = 0 on Γ,

and

‖ϕ‖L2(Ω)3 ≤ C‖ψ0‖L2(Ω)3 .

Hence, the vector field ξ = µ+ϕ satisfies the announced properties.

More generally, we can prove:

Theorem 4.3. Given any integer m ≥ 0 and any distribution f in the dual space

H−m(curl, Ω) that satisfies (4.10), there exists a vector potential ξ in H−m(Ω)3

such that

f = curl ξ, with div ξ = 0 in Ω, and ‖ξ‖H−m(Ω)3 ≤ C‖f ‖H−m(curl,Ω).
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5. Weak versions of Korn’s inequality

Finally, we consider tensor fields. The next theorem generalizes theorem 3.2 of [8]

and theorem 7 of [3] to Sobolev spaces with negative exponents.

In what follows, the subscript s denotes a space of symmetrix matrix fields.

Theorem 5.1. Assume that Ω is simply-connected. Given an integer m ≥ 0, let

e = (eij) ∈ H−m
s (Ω)3×3 be a symmetric matrix field that satisfies the following

compatibility conditions for all i, j, k, l ∈ {1, 2, 3}:

Rijkl :=
∂2eik

∂xl∂xj
+

∂2ejl

∂xk∂xi
−

∂2ejk

∂xl∂xi
−

∂2eil

∂xk∂xj
= 0 in H−m−2(Ω). (5.1)

Then there exists a vector field v ∈ H−m+1(Ω)3 such that eij = 1
2 (∂jvi + ∂ivj) and

v is unique up to vector fields in the space R(Ω) = {a + b ∧ idΩ; a , b ∈ R3}.

Proof. Given e = (eij) ∈ H−m
s (Ω)3×3, let fijk := ∂jeik − ∂iejk. Then fijk ∈

H−m−1(Ω) and, thanks to the compatibility conditions (5.1), we have

∂

∂xl
fijk =

∂

∂xk
fijl.

Hence the implication (iii) =⇒ (iv) in theorem 1.1 shows that there exist distribu-

tions pij ∈ H−m(Ω), unique up to additive constants, such that ∂kpij = fijk.

Besides, since ∂kpij = −∂kpji, we can choose the distributions pij in such a way

that pij + pji = 0. Noting that the distributions qij := eij + pij belong to H−m(Ω)

and satisfy ∂kqij = ∂jqik, we again resort to theorem 1.1 to assert the existence of

distributions vi ∈ H−m+1(Ω), unique up to additive constants, such that ∂jvi = qij .

For any integer m ≥ 0, let

E(Ω) := {e ∈ H−m
s (Ω)3×3, Rijkl(e ) = 0}

and

Ḣ−m+1(Ω)3 := H−m+1(Ω)3/R(Ω).

By the previous theorem, given any e = (eij) ∈ E(Ω), there exists a unique v̇ =

(v̇i) ∈ Ḣ−m+1(Ω)3 such that eij = 1
2 (∂jvi + ∂ivj). We may thus define a linear

mapping F : E(Ω) → Ḣ−m+1(Ω)3 by F(e ) = v̇ . Using the same method as in [8],

we can then prove the following Korn’s inequality in Sobolev spaces with negative

exponents:

Theorem 5.2. The linear mapping F : E(Ω) → Ḣ−m+1(Ω)3 is an isomorphism.

Besides, there exists a constant C ≥ 0 such that

infr∈R(Ω)‖v + r‖H−m+1(Ω)3 ≤ C
∑

i,j

‖εij(v )‖H−m(Ω) for all v ∈ H−m+1(Ω)3,
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and

‖v ‖H−m+1(Ω)3 ≤ C(‖v ‖H−m(Ω)3 +
∑

i,j

‖εij(v )‖H−m(Ω)) for all v ∈ H−m+1(Ω)3

where εij(v ) = 1
2 (∂jvi + ∂ivj).

Remark 5.1. Analogous techniques would likewise extend to Sobolev spaces with

negative exponents the results obtained for non-simply connected domains in [9],

[12] and [13].
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