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Abstract

In this paper, a new type of staggered discontinuous Galerkin methods for the three dimensional
Maxwell’s equations is developed and analyzed. The spatial discretization is based on staggered
Cartesian grids so that many good properties are obtained. First of all, our method has the advan-
tages that the numerical solution preserves the electromagnetic energy and automatically fulfills a
discrete version of the Gauss law. Moreover, the mass matrices are diagonal, thus time marching is
explicit and is very efficient. Our method is high order accurate and the optimal order of conver-
gence is rigorously proved. It is also very easy to implement due to its Cartesian structure and can
be regarded as a generalization of the classical Yee’s scheme as well as the quadrilateral edge finite
elements. Furthermore, a superconvergence result, that is the convergence rate is one order higher
at interpolation nodes, is proved. Numerical results are shown to confirm our theoretical statements,
and applications to problems in unbounded domains with the use of PML are presented.

Key words: Staggered discontinuous Galerkin method, Maxwell’s equations, energy conservation,
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1. Introduction

In this paper, we will develop and mathematically analyze a new class of staggered discontinuous
Galerkin (DG) methods for the time-dependent Maxwell’s equations in three space dimensions. We
will construct a class of methods that will provide the following advantages:

(1) high order accurate,

(2) optimal rate of convergence,

(3) conservation of the electromagnetic energy,

(4) diagonal mass matrix, and

(5) automatic fulfillment of a discrete Gauss law.

We start with a description of the problem setting. Let Ω be a bounded domain in R
3 and T > 0

be a fixed time. We consider the following Maxwell’s equations

ε
∂E

∂t
−∇×H = −J , x ∈ Ω, t ∈ (0, T ), (1)

µ
∂H

∂t
+ ∇×E = 0, x ∈ Ω, t ∈ (0, T ), (2)
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where E and H are the electric and magnetic fields to be approximated, J is the given current
density, ε and µ are the electric permittivity and the magnetic permeability respectively. Throughout
the paper, vectors are denoted by bold face. The above problem is equipped with the perfect
conductor boundary condition E × n = 0 on ∂Ω as well as initial conditions. Furthermore, the
exterior problem for the above Maxwell’s equations will be considered, for which our method coupled
with the perfectly matched layer (PML) will be used. In this case, Ω represents the computational
domain which contains the absorbing layers, see Berenger [1]. The main significance of this paper is
the spatial discretization of (1)-(2) on staggered Cartesian grids, which will give the above desirable
properties.

The study of numerical solutions of partial differential equations by the DG methods is a very
active research topic, see for example Brezzi, Marini & Süli [3] for the application of DG method
to the first order hyperbolic system, Gittelson, Hiptmair & Perugia [19] for the helmholtz equation
and Cockburn & Shu [14] for the convection-diffusion equation. DG methods for the time dependent
Maxwell’s equations are widely studied in literature. For instance, upwind type DG and central type
DG are proposed and analyzed in Hesthaven & Warburton [21] and Fezoui, Lanteri, Lohrengel &
Piperno [18] respectively. In Grote, Schneebeli & Schötzau [20], the optimal convergence and energy
conservation for the interior penalty DG are proved. Besides, many DG methods are developed
and analyzed for the time harmonic Maxwell’s equations and the Maxwell eigenvalue problem, see
for example Brenner, Li & Sung [2], Buffa, Houston & Perugia [4], Buffa & Perugia [5], Costabel
& Dauge [16], Dauge [17], Houston, Perugia, Schneebeli & Schötzau [23, 24], Houston, Perugia &
Schötzau [25], Perugia, Schötzau & Monk [30] and Chung & Lee [11].

Recently, a new class of DG methods based on a non-standard type of staggered grid is introduced
in Chung & Engquist [9, 10] for the wave equations, in Chung & Lee [11] for the curl-curl operator and
in Chung & Lee [12] for the convection-diffusion equation. Moreover, wave transmission problems in
the interface between classical material and meta-material using this kind of method is proposed and
analyzed in Chung & Ciarlet [6]. These methods have the advantages that the structures, such as
energy and density, arising from the partial differential equations are preserved. Moreover, for time-
dependent problems, the resulting mass matrices are block diagonal. The lowest order version of
these methods is also related to the co-volume method, see Chung, Du & Zou [7], Chung & Engquist
[8], and the classical Yee’s scheme, see Yee [31]. In this paper, we will develop a new numerical
method for the time-dependent Maxwell’s equations based on this new staggered grid idea. We
emphasize that, there are many methods in literature, but as far as we know, the method proposed
in this paper is the first one that all the above desirable properties are proved. We will develop
two types of staggered DG elements. For the first type, different components of the electric and
magnetic fields will be approximated by different orders of polynomials, similar to the Nedelec’s first
family, see Nedelec [28], Hiptmair [22] and Monk [27]. The second type uses the same polynomial
order for all components of electric and magnetic fields, similar to the Nedelec’s second family, see
Nedelec [29]. One of the key differences is that our element is globally discontinuous with local
tangential continuity, contrary to the global tangential continuity of Nedelec’s elements. Another
difference is that our element is defined on staggered grids. All these differences result in the above
advantages. Furthermore, a distinctive feature of our method is that we use a combination of
Gaussian points and Radau points as interpolation points which gives diagonal mass matrix as well
as energy conservation. Related work using Gauss point mass-lumping can be found in Cohen &
Monk [15].

In addition, we will prove a superconvergence result, which states that the convergence rate
is one order higher at the interpolation points. For elliptic problem, a related result is proved in
Cockburn, Kanschat, Perugia & Schötzau [13]. For Maxwell’s equations with Nedelec first type
elements, superconvergence is shown for the lowest order case in Huang, Li, Yang & Sun [26]. In
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this paper, we will prove a superconvergence result for arbitrary order of approximation polynomial.
The paper is organized as follows. In Section 2, we will introduce the new staggered DG space,

and in Section 3, we will give the method derivation. The conservation of electromagnetic energy and
discrete Gauss law will be proved in Section 4. The convergence and superconvergence of our method
are proved in Section 5. In Section 6, numerical results are presented to validate our theoretical
estimates and the use of PML for unbounded domain problem is shown.

2. Staggered DG Spaces

In this section, we will give the definitions of our staggered Cartesian grids as well as the staggered
DG finite element spaces. These spaces retain some good properties of the classical Nedelec edge
finite element spaces of the first and second types introduced in Nedelec [28, 29] and at the same time
give more advantages. Furthermore, we will give a brief review of Gaussian and Radau points which
are used as interpolation points. These are the key ingredients that give diagonal mass matrices and
energy conservation.

We consider a rectangular domain Ω = [0, L]3 on which a rectangular grid is defined with mesh
sizes h1, h2 and h3 respectively in x, y and z directions. The nodal points xi, yj , zk are defined by
xi = ih1, yj = jh2 and zk = kh3, i, j, k = 0, 1, 2, · · · . We call this rectangular grid the initial grid.
The finite element basis functions ofH and E are defined on staggered grids derived from the initial
grid. For that, we need mid-points, with coordinates defined by xi± 1

2
= (i± 1

2 )h1, yj± 1
2

= (j± 1
2 )h2,

zk± 1
2

= (k ± 1
2 )h3. We emphasize that different components of H and E are defined on different

staggered grids.
Let p, p1, p2, p3 ≥ 0 be non-negative integers. We use the notation Qp1,p2,p3

to represent the
space of polynomials of degree p1 for x-variable, degree p2 for the y-variable and degree p3 for the
z-variable. If p = p1 = p2 = p3, we write Qp,p,p = Qp. Moreover, we let h = max(h1, h2, h3).

To begin the description of our new DG method, we will first review the definitions of Gauss-
Radau points and Gauss-Radau quadrature. Let p ≥ 0. Consider the interval [0, h]. The Gauss-
Radau quadrature points 0 = ξ0 < ξ1 < ξ2 < · · · < ξp < h and the positive weights w0, w1, w2, · · · , wp

are defined so that the following integration rule

∫ h

0

f(ξ) dξ = h

p
∑

i=0

wif(ξi)

is exact for all polynomials of degree less than or equal to 2p. The above formula is called the
Gauss-Radau quadrature. Furthermore, we will use these points as interpolation points to define
our basis functions. In particular, for a given i, i = 0, 1, · · · , p, we define by ηp,i(ξ) the unique
polynomial of degree p such that ηp,i(ξi) = 1 and ηp,i(ξi′ ) = 0 for i′ 6= i. One distinctive advantage
is that these basis functions are orthogonal since by the Gauss-Radau quadrature we have

∫ h

0

ηp,i(ξ) ηp,i′ (ξ) dξ = h

p
∑

i′′=0

wiηp,i(ξi′′ ) ηp,i′(ξi′′ ) = hwiδii′

where δii′ = 1 if i′ = i and δii′ = 0 if i′ 6= i.
Let p ≥ 1. The Gaussian quadrature points 0 < γ1 < γ2 < · · · < γp < h and the positive weights

c1, c2, · · · , cp are defined so that the following integration rule

∫ h

0

f(γ) dγ = h

p
∑

i=1

cif(γi)
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is exact for all polynomials of degree less than or equal to 2p− 1. The above formula is called the
Gaussian quadrature. Furthermore, we will use these points as interpolation points to define our
basis functions. In particular, for a given i, i = 1, · · · , p, we define by λp,i(γ) the unique polynomial
of degree p− 1 such that λp,i(γi) = 1 and λp,i(γi′) = 0 for i′ 6= i. One distinctive advantage is that
these basis functions are orthogonal since by the Gaussian quadrature we have

∫ h

0

λp,i(γ) λp,i′(γ) dγ = h

p
∑

i′′=1

ciλp,i(γi′′ ) λp,i′(γi′′ ) = hciδii′ .

Our basis functions are defined by using interpolation points obtained from some tensor products
of the above points. Consider a reference element τ̂ = [−h, h]3. In τ̂ , we define two types of
interpolation points, which are symmetric about the origin (0, 0, 0).

First type interpolation points:

We take p ≥ 1. We will define three sets of interpolation points S
(1)
1 , S

(1)
2 and S

(1)
3 . S

(1)
1 is

defined by the tensor product of

{−γp, · · · − γ1, γ1, · · · , γp} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp}.

Similarly S
(1)
2 and S

(1)
3 are defined by the tensor products of

{−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−γp, · · · − γ1, γ1, · · · , γp} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp}.

and

{−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−γp, · · · − γ1, γ1, · · · , γp}.

respectively.
Second type interpolation points:

We take p ≥ 0. We will define three sets of interpolation points S
(2)
1 , S

(2)
2 and S

(2)
3 . S

(2)
1 is

defined by the tensor product of

{−γp+1, · · · − γ1, γ1, · · · , γp+1} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp}.

Similarly S
(2)
2 and S

(2)
3 are defined by the tensor products of

{−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−γp+1, · · · − γ1, γ1, · · · , γp+1} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp}.

and

{−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−ξp, · · · ,−ξ1, 0, ξ1, · · · , ξp} × {−γp+1, · · · − γ1, γ1, · · · , γp+1}.

respectively. We remark that the superscripts in the above definitions denote the type of interpola-
tion points. The main difference between the above two types of interpolation points is that we use
one more Gaussian point in the second type for the same value of p.

With the above two types of interpolation points, we will define the finite element spaces for
H = (H1, H2, H3)

t. As they will be illustrated below, the finite element functions for H are defined
with respect to faces. Thus, we will call these high order face basis functions. These are also related
to the H(div)-conforming finite elements, see Nedelec [28, 29].

We begin by the definition of the finite element space U1 for the component H1. Consider a face
κ of the initial grid that has normal direction parallel to the x-axis. We write

κ = { x = xi, yj ≤ y ≤ yj+1, zk ≤ z ≤ zk+1}.
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Figure 1: A macro cell τ1(κ) with center point denoted by black square. This macro cell is sub-divided into 8 sub-cells.

Then, associated to the face κ, we define a cell τ1(κ) as follows:

τ1(κ) = [xi− 1
2
, xi+ 1

2
] × [yj , yj+1] × [zk, zk+1].

Correspondingly, our basis functions for H1 will have support on τ1(κ), for each face κ that has
normal direction parallel to the x-axis. Each τ1(κ) is called a macro cell and is divided into 8
rectangular subregions, called sub-cells, by using the center point (xi, yj+ 1

2
, zk+ 1

2
), and 12 internal

faces parallel to the faces of τ1(κ), see Fig 1. The space U1 is then defined as the space of functions
whose restriction to each macro cell τ1(κ) are piecewise polynomials with additional continuity
requirement on the internal faces. Note that there is no continuity requirement on the faces between
two macro cells. We will define two types of staggered DG spaces based on the two types of
interpolation points defined above.

• First type basis functions for first component

For p ≥ 1, these functions are piecewise polynomial on each macro cell τ1(κ) that belong to
Qp−1,p,p in each of the 8 sub-cells with the additional requirement that they are continuous on
the 8 (out of 12) internal faces of τ1(κ) that are parallel to the x-axis. If the macro cell τ1(κ)
is mapped to the reference element τ̂ with the center of τ1(κ) mapped to the origin of τ̂ , then

these functions can be defined via the interpolation points S
(1)
1 . Thus, inside each macro cell,

the functions are continuous with respect to the y and z variables while discontinuous with
respect to the x variable.

• Second type basis functions for first component

For p ≥ 0, these functions are piecewise polynomial on each macro cell τ1(κ) that belong to
Qp in each of the 8 sub-cells with the additional requirement that they are continuous on the
8 (out of 12) internal faces of τ1(κ) that are parallel to the x-axis. If the macro cell τ1(κ) is
mapped to the reference element τ̂ with the center of τ1(κ) mapped to the origin of τ̂ , then

these functions can be defined via the interpolation points S
(2)
1 . Thus, inside each macro cell,

the functions are continuous with respect to the y and z variables while discontinuous with
respect to the x variable.
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Next, we define the finite element space U2 for the component H2. To do so, we consider a face
κ that has normal direction parallel to the y-axis:

κ = {xi ≤ x ≤ xi+1, y = yj, zk ≤ z ≤ zk+1 },

and introduce the corresponding macro cell τ2(κ) by

τ2(κ) = [xi, xi+1] × [yj− 1
2
, yj+ 1

2
] × [zk, zk+1].

This macro cell is then divided into 8 rectangular sub-cells by using the center point (xi+ 1
2
, yj, zk+ 1

2
).

The space U2 is then defined as the space of functions whose restriction to each macro cell τ2(κ)
are piecewise polynomials with additional requirement on continuity on internal faces. Note that
there is no continuity requirement on the faces between two macro cells. We will define two types
of staggered DG spaces based on the two types of interpolation points defined above.

• First type basis functions for second component

For p ≥ 1, these functions are piecewise polynomial on each macro cell τ2(κ) that belong to
Qp,p−1,p in each of the 8 sub-cells with the additional requirement that they are continuous on
the 8 (out of 12) internal faces of τ2(κ) that are parallel to the y-axis. If the macro cell τ2(κ)
is mapped to the reference element τ̂ with the center of τ2(κ) mapped to the origin of τ̂ , then

these functions can be defined via the interpolation points S
(1)
2 . Thus, inside each macro cell,

the functions are continuous with respect to the x and z variables while discontinuous with
respect to the y variable.

• Second type basis functions for second component

For p ≥ 0, these functions are piecewise polynomial on each macro cell τ2(κ) that belong to
Qp in each of the 8 sub-cells with the additional requirement that they are continuous on the
8 (out of 12) internal faces of τ2(κ) that are parallel to the y-axis. If the macro cell τ2(κ) is
mapped to the reference element τ̂ with the center of τ2(κ) mapped to the origin of τ̂ , then

these functions can be defined via the interpolation points S
(2)
2 . Thus, inside each macro cell,

the functions are continuous with respect to the x and z variables while discontinuous with
respect to the y variable.

Finally, we define the finite element space U3 for the component H3. We consider a face κ that
has normal direction parallel to the z-axis:

κ = { xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1, z = zk },

and introduce the corresponding macro cell τ3(κ) by

τ3(κ) = [xi, xi+1] × [yj, yj+1] × [zk− 1
2
, zk+ 1

2
].

This macro cell is then divided into 8 rectangular sub-cells by using the center point (xi+ 1
2
, yj+ 1

2
, zk).

The space U3 is then defined as the space of functions whose restriction to each macro cell τ3(κ) are
piecewise polynomials with additional requirement on internal faces. Note that there is no continuity
requirement on the faces between two macro cells. We will define two types of staggered DG spaces
based on the two types of interpolation points defined above.
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• First type basis functions for third component

For p ≥ 1, these functions are piecewise polynomial on each macro cell τ3(κ) that belong to
Qp,p,p−1 in each of the 8 sub-cells with the additional requirement that they are continuous on
the 8 (out of 12) internal faces of τ3(κ) that are parallel to the z-axis. If the macro cell τ3(κ)
is mapped to the reference element τ̂ with the center of τ3(κ) mapped to the origin of τ̂ , then

these functions can be defined via the interpolation points S
(1)
3 . Thus, inside each macro cell,

the functions are continuous with respect to the x and y variables while discontinuous with
respect to the z variable.

• Second type basis functions for third component

For p ≥ 0, these functions are piecewise polynomial on each macro cell τ3(κ) that belong to
Qp in each of the 8 sub-cells with the additional requirement that they are continuous on the
8 (out of 12) internal faces of τ3(κ) that are parallel to the z-axis. If the macro cell τ3(κ) is
mapped to the reference element τ̂ with the center of τ3(κ) mapped to the origin of τ̂ , then

these functions can be defined via the interpolation points S
(2)
3 . Thus, inside each macro cell,

the functions are continuous with respect to the x and y variables while discontinuous with
respect to the z variable.

Next, we will give the definitions of the finite element spaces for E = (E1, E2, E3)
t. These spaces

are defined with respect to edges. Thus, they are called high order edge basis functions. These are
also related to the H(curl)-conforming finite elements, see Nedelec [28, 29].

We first give the definition of the finite element space W1 for the component E1. Consider an
edge σ that is parallel to the x-axis. We write

σ = { xi ≤ x ≤ xi+1, y = yj , z = zk }.

Then we define the corresponding macro cell τ1(σ):

τ1(σ) = [xi, xi+1] × [yj− 1
2
, yj+ 1

2
] × [zk− 1

2
, zk+ 1

2
].

This macro cell is then divided into 8 rectangular sub-cells by using the center point (xi+ 1
2
, yj, zk).

We also consider two types of staggered DG spaces. The space W1 is defined in the same way as U1.
To define the finite element space W2 for E2, we consider an edge σ that is parallel to the y-axis,

and write
σ = { x = xi, yj ≤ y ≤ yj+1, z = zk },

and define the corresponding macro cell τ2(σ):

τ2(σ) = [xi− 1
2
, xi+ 1

2
] × [yj , yj+1] × [zk− 1

2
, zk+ 1

2
].

The space W2 is defined in the same way as U2.
Likewise, for the finite element space W3 for E3, we take an edge σ that is parallel to the z-axis,

and write
σ = { x = xi, y = yj , zk ≤ z ≤ zk+1 },

we define the corresponding macro cell τ3(σ):

τ3(σ) = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] × [zk, zk+1].

The space W3 is defined in the same way as U3.
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3. Method derivation

In this section, we will give a detail derivation of our new staggered DG method for the Maxwell’s
equations (1)-(2).

First, we recall that τ1(κ), τ2(κ) and τ3(κ) are defined as the macro cells with respect to the faces
of the initial grid that have normal direction parallel to the x-, y- and z-axis respectively. To derive
our new staggered DG method, the key idea is to obtain an integral form of the Maxwell’s equations
on these staggered macro cells. We take a test function φ = (φ1, 0, 0)t with φ1 ∈ U1, multiply (2)
by it and integrate the resulting equation over a macro cell τ1(κ) to obtain

∫

τ1(κ)

µ
∂H1

∂t
φ1 dx+

{

∫

τ1(κ)

(E2
∂φ1

∂z
− E3

∂φ1

∂y
) dx−

∫

∂τ1(κ)

(E2n3 − E3n2)φ1 ds
}

= 0 . (3)

Replacing the exact solution H1 by the numerical approximation Hh
1 , we get

∫

τ1(κ)

µ
∂Hh

1

∂t
φ1 dx+

{

∫

τ1(κ)

(Eh
2

∂φ1

∂z
− Eh

3

∂φ1

∂y
) dx−

∫

∂τ1(κ)

(Eh
2n3 − Eh

3 n2)φ1 ds
}

= 0 . (4)

To simplify notations, we define

Bτ1(κ)(E
h,φ) =

∫

τ1(κ)

(Eh
2

∂φ1

∂z
− Eh

3

∂φ1

∂y
) dx−

∫

∂τ1(κ)

(Eh
2n3 − Eh

3n2)φ1 ds.

In the same way, we multiply (2) by a test function φ = (0, φ2, 0)t with φ2 ∈ U2, integrate the
resulting equation on a macro cell τ2(κ) and finally replace exact solutions by DG solutions to
obtain

∫

τ2(κ)

µ
∂Hh

2

∂t
φ2 dx+

{

∫

τ2(κ)

(Eh
3

∂φ2

∂x
− Eh

1

∂φ2

∂z
) dx−

∫

∂τ2(κ)

(Eh
3 n1 − Eh

1 n3)φ2 ds
}

= 0. (5)

We define

Bτ2(κ)(E
h,φ) =

∫

τ2(κ)

(Eh
3

∂φ2

∂x
− Eh

1

∂φ2

∂z
) dx−

∫

∂τ2(κ)

(Eh
3n1 − Eh

1n3)φ2 ds.

Similarly, we multiply (2) by a test function φ = (0, 0, φ3)
t with φ3 ∈ U3, integrate the resulting

equation on a macro cell τ3(κ) and finally replace exact solutions by DG solutions to obtain

∫

τ3(κ)

µ
∂Hh

3

∂t
φ3 dx+

{

∫

τ3(κ)

(Eh
1

∂φ3

∂y
− Eh

2

∂φ3

∂x
) dx−

∫

∂τ3(κ)

(Eh
1 n2 − Eh

2 n1)φ3 ds
}

= 0. (6)

We define

Bτ3(κ)(E
h,φ) =

∫

τ3(κ)

(Eh
1

∂φ3

∂y
− Eh

2

∂φ3

∂x
) dx−

∫

∂τ3(κ)

(Eh
1n2 − Eh

2n1)φ3 ds.

We write J = (J1, J2, J3)
t. Notice that τ1(σ), τ2(σ) and τ3(σ) are macro cells that are defined

with respect to the edges of the initial grid that are parallel to the x-, y- and z-axis respectively.
Taking a test function ψ = (ψ1, 0, 0)t with ψ1 ∈W1, we multiply (1) by it and integrate the resulting
equation over a macro cell τ1(σ) to obtain

∫

τ1(σ)

ε
∂E1

∂t
ψ1 dx−

∫

τ1(σ)

(
∂H3

∂y
−
∂H2

∂z
)ψ1 dx = −

∫

τ1(σ)

J1ψ1 dx.
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Using first the Green’s identity and replacing next exact solutions by DG solutions, we have now

∫

τ1(σ)

ε
∂Eh

1

∂t
ψ1 dx−

{

∫

τ1(σ)

(Hh
2

∂ψ1

∂z
−Hh

3

∂ψ1

∂y
) dx

−

∫

∂τ1(σ)

(Hh
2 n3 −Hh

3 n2)ψ1 ds
}

= −

∫

τ1(σ)

J1ψ1 dx.

(7)

We define

Cτ1(σ)(H
h,ψ) =

∫

τ1(σ)

(Hh
2

∂ψ1

∂z
−Hh

3

∂ψ1

∂y
) dx−

∫

∂τ1(σ)

(Hh
2 n3 −Hh

3 n2)ψ1 ds.

In the same way, taking a test function ψ = (0, ψ2, 0)t, with ψ2 ∈W2, we get over a macro cell τ2(σ)

∫

τ2(σ)

ε
∂Eh

2

∂t
ψ2 dx−

{

∫

τ2(σ)

(Hh
3

∂ψ2

∂x
−Hh

1

∂ψ2

∂z
) dx

−

∫

∂τ2(σ)

(Hh
3 n1 −Hh

1 n3)ψ2 ds
}

= −

∫

τ2(σ)

J2ψ2 dx.

(8)

We define

Cτ2(σ)(H
h,ψ) =

∫

τ2(σ)

(Hh
3

∂ψ2

∂x
−Hh

1

∂ψ2

∂z
) dx−

∫

∂τ2(σ)

(Hh
3 n1 −Hh

1 n3)ψ2 ds

Similarly, taking a test function ψ = (0, 0, ψ3)
t, with ψ3 ∈ W3, we get over a macro cell τ3(σ)

∫

τ3(σ)

ε
∂Eh

3

∂t
ψ3 dx−

{

∫

τ3(σ)

(Hh
1

∂ψ3

∂y
−Hh

2

∂ψ3

∂x
) dx

−

∫

∂τ3(σ)

(Hh
1 n2 −Hh

2 n1)ψ3 ds
}

= −

∫

τ3(σ)

J3ψ3 dx.

(9)

We define

Cτ3(σ)(H
h,ψ) =

∫

τ3(σ)

(Hh
1

∂ψ3

∂y
−Hh

2

∂ψ3

∂x
) dx−

∫

∂τ3(σ)

(Hh
1 n2 −Hh

2 n1)ψ3 ds.

The above equations (4)-(9) define our new staggered DG method. One key feature of our
new method is that the solutions Hh and Eh appeared in the boundary integrals in (4)-(9) are
well-defined, and hence no numerical flux is needed. As an illustration, we consider the boundary
integrals in (7), the values of the corresponding components of Hh are continuous. For instance,

9



the first term of the boundary integral is
∫

∂τ1(σ)

Hh
2 n3 ψ1 ds

=

∫ xi+1

xi

∫ y
j+ 1

2

y
j− 1

2

Hh
2 (x, y, zk+ 1

2
)ψ1(x, y, zk+ 1

2
) dydx

−

∫ xi+1

xi

∫ y
j+ 1

2

y
j− 1

2

Hh
2 (x, y, zk− 1

2
)ψ1(x, y, zk− 1

2
) dydx

which requires continuity of Hh
2 with respect to the z-variable so that it can be well-defined. By

the definition of τ2(κ), we see that the above integral corresponds to the integration on some of the
internal faces of τ2(κ), and on these faces, Hh

2 is continuous with respect to the x and z variables.
The perfectly conducting boundary condition E × n = 0 on ∂Ω, where n is the unit outward

normal vector to ∂Ω, is imposed strongly in the finite element spaces W1,W2 and W3. We will
illustrate this forW1. Let σ be an edge that is parallel to the x-axis and let τ1(σ) be the corresponding
macro cell. Since σ lies on the domain boundary ∂Ω, part of τ1(σ) is outside Ω. Thus, the degrees
of freedom that are located outside of Ω are set to zero. To impose the boundary condition for E1,
we set the degrees of freedom that lie on the intersection of τ1(σ) and the domain boundary ∂Ω to
zero. Therefore, E1 is identically equal to zero on all inner faces of τ1(σ) that also belong to the
domain boundary ∂Ω. We use the same method respectively for W2 and W3. As a result, we have
enforced strongly the boundary condition E × n = 0 on ∂Ω.

We will use the classical leap-frog scheme for the time discretization of (4)-(6) and (7)-(9). For a
given time step ∆t > 0 and integers n = 0, 1, 2, · · · , the magnetic field Hh will be approximated at
times n∆t and are denoted by Hh,n. Similarly, the electric field Eh will be approximated at times

(n+ 1
2 )∆t and are denoted by Eh,n+ 1

2 . Equation (4) is discretized as follows:

∫

τ1(κ)

µ
Hh,n+1

1 −Hh,n
1

∆t
φ1 dx

+
{

∫

τ1(κ)

(E
h,n+ 1

2

2

∂φ1

∂z
− E

h,n+ 1
2

3

∂φ1

∂y
) dx−

∫

∂τ1(κ)

(E
h,n+ 1

2

2 n3 − E
h,n+ 1

2

3 n2)φ1 ds
}

= 0 .

(10)

Equations (5) and (6) are discretized in a similar way. For (7), we use the following discretization

∫

τ1(σ)

ε
E

h,n+ 3
2

1 − E
h,n+ 1

2

1

∆t
ψ1 dx

−
{

∫

τ1(σ)

(Hh,n+1
2

∂ψ1

∂z
−Hh,n+1

3

∂ψ1

∂y
) dx−

∫

∂τ1(σ)

(Hh,n+1
2 n3 −Hh,n+1

3 n2)ψ1 ds
}

= −

∫

τ1(σ)

J1((n+ 1)∆t)ψ1 dx.

(11)

This discretization is also used in (8) and (9). Therefore, given (Hh,n,Eh,n+ 1
2 ), we can find the nu-

merical solution at the next time level (Hh,n+1,Eh,n+ 3
2 ) by solving (10), (11) and similar equations

obtained from (5)-(6) and (8)-(9). It is well-known that this is a second order in time approxima-
tion. Notice that since our basis functions in the spaces Ui and Wi, i = 1, 2, 3, are orthogonal, the
resulting mass matrices are automatically diagonal. Hence, the above time discretization will result
in an explicit scheme.
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4. Energy conservation and discrete Gauss law

As we mentioned in the Introduction, our new staggered DG method is able to preserve the
electromagnetic energy as well as a discrete version of the Gauss law, which are desirable for the
numerical solutions of Maxwell’s equations in the time domain and are the main advantages of our
new method. In the following, we will prove these two results.

4.1. Energy conservation

In this section, we will show that our DG scheme (4)-(9) preserves the electromagnetic energy
defined by

E(H ,E) =

∫

Ω

(

µ|H|2 + ε|E|2
)

dx.

To prove the energy conservation, we will take φi = Hh
i , i = 1, 2, 3, in equations (4), (5) and (6)

respectively, and take ψi = Eh
i , i = 1, 2, 3, in equations (7), (8) and (9) respectively, and then add

all equations together to obtain

∫

Ω

{

µ
∂Hh

∂t
·Hh + ε

∂Eh

∂t
·Eh

}

dx = −

∫

Ω

J ·Eh dx. (12)

When J = 0, we obtain
d

dt
E(Hh,Eh) = 0

which says that the electromagnetic energy is conserved. We observe that in order to obtain (12),
all terms in (4)-(9) related to the curl operator (that is, all terms between brackets involving spatial
derivatives and surface integrals) have to be cancelled. This is illustrated in the following paragraphs.

Taking φ1 = Hh
1 in equation (4) yields

∫

τ1(κ)

µ
∂Hh

1

∂t
Hh

1 dx+
{

∫

τ1(κ)

(Eh
2

∂Hh
1

∂z
− Eh

3

∂Hh
1

∂y
) dx−

∫

∂τ1(κ)

(Eh
2n3 − Eh

3n2)H
h
1 ds

}

= 0. (13)

We recall that τ1(κ) is a union of 8 sub-cells. Consider one of the 8 sub-cells τ := [xi− 1
2
, xi] ×

[yj , yj+ 1
2
] × [zk, zk+ 1

2
] and only the terms between brackets. From (13), all these terms that are

defined on τ or its boundary are

I :=

∫

τ

(Eh
2

∂Hh
1

∂z
− Eh

3

∂Hh
1

∂y
) dx−

∫

κ1∪κ2∪κ3

(Eh
2n3 − Eh

3 n2)H
h
1 ds

where κ1, κ2 and κ3 are the three faces of τ defined by

κ1 = {x = xi− 1
2
} × [yj , yj+ 1

2
] × [zk, zk+ 1

2
],

κ2 = [xi− 1
2
, xi] × {y = yj} × [zk, zk+ 1

2
],

κ3 = [xi− 1
2
, xi] × [yj , yj+ 1

2
] × {z = zk}.

Remark that the approximate solutions Eh
2 , Eh

3 and Hh
1 are all smooth over τ . Then, using the

Green’s formula for I, we get

I =

∫

τ

Hh
1 (
∂Eh

3

∂y
−
∂Eh

2

∂z
) dx+

∫

κ4∪κ5∪κ6

(Eh
2 n3 − Eh

3n2)H
h
1 ds := I1 + I2 (14)

11



where κ4, κ5 and κ6 are the remaining faces of τ :

κ4 = {x = xi} × [yj , yj+ 1
2
] × [zk, zk+ 1

2
],

κ5 = [xi− 1
2
, xi] × {y = yj+ 1

2
} × [zk, zk+ 1

2
],

κ6 = [xi− 1
2
, xi] × [yj , yj+ 1

2
] × {z = zk+ 1

2
}.

For I2, we have both n2 = n3 = 0 on κ4 and therefore there is no contribution on κ4. On κ5, we
have n2 = 1, n3 = 0, while on κ6, we have n2 = 0, n3 = 1. Thus,

I2 =

∫

κ5

(−Eh
3 )Hh

1 ds+

∫

κ6

(Eh
2 )Hh

1 ds.

Similar results hold for the other seven sub-cells. Summarizing, (13) becomes

∫

τ1(κ)

µ
∂Hh

1

∂t
Hh

1 dx+
{

∫

τ1(κ)

Hh
1 (
∂Eh

3

∂y
−
∂Eh

2

∂z
) dx+

∫

{y=y
j+1

2

}∩τ1(κ)

[Eh
3 ]Hh

1 ds−

∫

{z=z
k+ 1

2

}∩τ1(κ)

[Eh
2 ]Hh

1 ds
}

= 0

where {y = yj+ 1
2
} denotes the union of all faces with y-coordinate equals yj+ 1

2
and {z = zk+ 1

2
}

denotes the union of all faces with z-coordinate equals zk+ 1
2
. Summing over all τ1(κ), we obtain

∫

Ω

µ
∂Hh

1

∂t
Hh

1 dx+
{

∫

Ω

Hh
1 (
∂Eh

3

∂y
−
∂Eh

2

∂z
) dx+

∑

j

∫

{y=y
j+1

2

}

[Eh
3 ]Hh

1 ds−
∑

k

∫

{z=z
k+1

2

}

[Eh
2 ]Hh

1 ds
}

= 0.

(15)
By the same arguments, one can show that (5) with φ2 = Hh

2 can be written as

∫

Ω

µ
∂Hh

2

∂t
Hh

2 dx+
{

∫

Ω

Hh
2 (
∂Eh

1

∂z
−
∂Eh

3

∂x
) dx+

∑

k

∫

{z=z
k+1

2

}

[Eh
1 ]Hh

2 ds−
∑

i

∫

{x=x
i+1

2

}

[Eh
1 ]Hh

2 ds
}

= 0

(16)
and (6) with φ3 = Hh

3 can be written as

∫

Ω

µ
∂Hh

3

∂t
Hh

3 dx+
{

∫

Ω

Hh
3 (
∂Eh

2

∂x
−
∂Eh

1

∂y
) dx+

∑

i

∫

{x=x
i+1

2

}

[Eh
2 ]Hh

3 ds−
∑

j

∫

{y=y
j+ 1

2

}

[Eh
1 ]Hh

3 ds
}

= 0

(17)
where {x = xi+ 1

2
} denotes the union of all faces with x-coordinate equals xi+ 1

2
. Next, we take

ψ1 = Eh
1 in (7) to get

∫

τ1(σ)

ε
∂Eh

1

∂t
Eh

1 dx−
{

∫

τ1(σ)

(Hh
2

∂Eh
1

∂z
−Hh

3

∂Eh
1

∂y
) dx

−

∫

∂τ1(σ)

(Hh
2 n3 −Hh

3 n2)E
h
1 ds

}

= −

∫

τ1(σ)

J1E
h
1 dx.

(18)
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Summing over all τ1(σ), we have

∫

Ω

ε
∂Eh

1

∂t
Eh

1 dx−
{

∫

Ω

(Hh
2

∂Eh
1

∂z
−Hh

3

∂Eh
1

∂y
) dx

+
∑

k

∫

{z=z
k+ 1

2

}

Hh
2 [Eh

1 ] ds−
∑

j

∫

{y=y
j+ 1

2

}

Hh
3 [Eh

1 ] ds
}

= −

∫

Ω

J1E
h
1 dx.

(19)

Similarly, taking ψ2 = Eh
2 in (8) and summing over all τ2(σ), we get

∫

Ω

ε
∂Eh

2

∂t
Eh

2 dx−
{

∫

Ω

(Hh
3

∂Eh
2

∂x
−Hh

1

∂Eh
2

∂z
) dx

+
∑

i

∫

{x=x
i+1

2

}

Hh
3 [Eh

2 ] ds−
∑

k

∫

{z=z
k+1

2

}

Hh
1 [Eh

2 ] ds
}

= −

∫

Ω

J2E
h
2 dx

(20)

while taking ψ3 = Eh
3 in (9) and summing over all τ3(σ), we get

∫

Ω

ε
∂Eh

3

∂t
Eh

3 dx−
{

∫

Ω

(Hh
1

∂Eh
3

∂y
−Hh

2

∂Eh
3

∂x
) dx

+
∑

j

∫

{y=y
j+1

2

}

Hh
1 [Eh

3 ] ds−
∑

i

∫

{x=x
i+1

2

}

Hh
2 [Eh

3 ] ds
}

= −

∫

Ω

J3E
h
3 dx.

(21)

Finally, adding (15)-(17) and (19)-(21), we obtain (12).
From the above calculation, we see that

∑

κ

{

Bτ1(κ)(Ẽ,φ) +Bτ2(κ)(Ẽ,φ) +Bτ3(κ)(Ẽ,φ)
}

+
∑

σ

{

Cτ1(σ)(H̃,ψ) + Cτ2(σ)(H̃ ,ψ) + Cτ3(σ)(H̃ ,ψ)
}

= 0
(22)

for all H̃ ,φ ∈ U1 × U2 × U3 and Ẽ,ψ ∈W1 ×W2 ×W3.

4.2. Discrete Gauss law

In this section, we will prove a discrete version of Gauss law for the first type element with
polynomial order p ≥ 0. We recall that our initial grid is defined by using the nodal points xi, yj , zk

where i, j, k = 0, 1, 2, · · · . Using this initial grid, we define the refined grid by using the nodal points
xi, xi+ 1

2
, yj , yj+ 1

2
, zk, zk+ 1

2
where i, j, k = 0, 1, 2, · · · . Thus, the refined grid is obtained by uniformly

subdividing each cell in the initial grid into eight cells. Let Qc
p+1 be the space of globally continuous

piecewise polynomials with degree p + 1 in each variable with respect to the refined grid. That
is, Qc

p+1 is the quadrilateral conforming finite element space with respect to the refined grid. Let
q ∈ Qc

p+1 with the condition that q = 0 on ∂Ω. Then it is easy to see that the first component of ∇q
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is continuous in the y, z variables, the second component of ∇q is continuous in the x, z variables
and the third component of ∇q is continuous in the x, y variables. Moreover, in each cell of the
refined grid, we have ∇q ∈ Qp,p+1,p+1 ×Qp+1,p,p+1 ×Qp+1,p+1,p. Thus, ∇q belongs to the first type
staggered DG space W1 ×W2 ×W3. Taking the first component of ∇q as test function in (7) and
by following the same steps in the derivation of (19), we have

∫

Ω

ε
∂Eh

1

∂t
(∇q)1 dx−

{

∫

Ω

(Hh
2

∂(∇q)1
∂z

−Hh
3

∂(∇q)1
∂y

) dx

+
∑

k

∫

{z=z
k+ 1

2

}

Hh
2 [(∇q)1] ds−

∑

j

∫

{y=y
j+ 1

2

}

Hh
3 [(∇q)1] ds

}

= −

∫

Ω

J1(∇q)1 dx.

(23)

Similarly, taking the second component of ∇q as test function in (8) and by following the same steps
in the derivation of (20), we have

∫

Ω

ε
∂Eh

2

∂t
(∇q)2 dx−

{

∫

Ω

(Hh
3

∂(∇q)2
∂x

−Hh
1

∂(∇q)2
∂z

) dx

+
∑

i

∫

{x=x
i+1

2

}

Hh
3 [(∇q)2] ds−

∑

k

∫

{z=z
k+1

2

}

Hh
1 [(∇q)2] ds

}

= −

∫

Ω

J2(∇q)2 dx

(24)

In the same way, for the third component, we have
∫

Ω

ε
∂Eh

3

∂t
(∇q)3 dx−

{

∫

Ω

(Hh
1

∂(∇q)3
∂y

−Hh
2

∂(∇q)3
∂x

) dx

+
∑

j

∫

{y=y
j+ 1

2

}

Hh
1 [(∇q)3] ds−

∑

i

∫

{x=x
i+1

2

}

Hh
2 [(∇q)3] ds

}

= −

∫

Ω

J3(∇q)3 dx.

(25)

Adding (23)-(25) and using the continuity properties of ∇q, we obtain the following discrete version
of the Gauss law for the electric field

∫

Ω

ε
∂Eh

∂t
· ∇q dx = −

∫

Ω

J · ∇q dx.

Similarly, by taking q ∈ Qc
p+1, we get

∫

Ω

µ
∂Hh

∂t
· ∇q dx = 0

which is a discrete version of the Gauss law for the magnetic field.

5. Error analysis

In this section, we will prove the optimal convergence and superconvergence of our new staggered
DG method, defined by (4)-(9).
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From (3) and (4), we obtain the error relation
∫

τ1(κ)

µ
∂(H1 −Hh

1 )

∂t
φ1 dx+Bτ1(κ)(E −Eh,φ) = 0 . (26)

Let Ẽ be the interpolant of E, that is, Ẽ belongs to our staggered DG spaces and has the same
value as E at the interpolation points. Then

∫

τ1(κ)

µ
∂(H1 −Hh

1 )

∂t
φ1 dx+Bτ1(κ)(Ẽ −Eh,φ) = −Bτ1(κ)(E − Ẽ,φ) .

Similar relations hold for (5)-(6) and (7)-(9). Adding these results and using (22), we have

1

2

d

dt

∫

Ω

(

µ|H̃ −Hh|2 + ε|Ẽ −Eh|2
)

dx

= −

∫

Ω

µ
∂(H − H̃)

∂t
(H̃ −Hh) dx−

∫

Ω

ε
∂(E − Ẽ)

∂t
(Ẽ −Eh) dx

−
∑

κ

3
∑

i=1

Bτi(κ)(E − Ẽ, H̃ −Hh) −
∑

σ

3
∑

i=1

Cτi(σ)(H − H̃ , Ẽ −Eh)

(27)

where the last two summations are taken over all faces and edges in the initial grid respectively.
Let τ be a generic cell in the refined grid. We first observe that, for the second type elements with
polynomial order p ≥ 0, by definition,

∫

τ

µ
∂(H − H̃)

∂t
(H̃ −Hh) dx

vanishes for functions H in (Qp)
3, since in this case H = H̃ everywhere in τ . For the first type

element with polynomial order p ≥ 1, the above functional also vanishes for any H ∈ (Qp)
3 by the

Gaussian and Radau quadrature rules since H = H̃ at the interpolation nodes and the quadrature
rules exactly integrate polynomials of degrees 2p − 1 and 2p respectively. Hence, by the Bramble-
Hilbert lemma, we obtain

∫

τ

µ
∂(H − H̃)

∂t
(H̃ −Hh) dx ≤ Chp+1|Ht|Hp+1(τ)3‖H̃ −Hh‖L2(τ)3

where the subscript t represents time derivative. Summing over all cells, we obtain
∫

Ω

µ
∂(H − H̃)

∂t
(H̃ −Hh) dx ≤ Chp+1|Ht|Hp+1(Ω)3‖H̃ −Hh‖L2(Ω)3 .

Similarly, we have
∫

Ω

ε
∂(E − Ẽ)

∂t
(Ẽ −Eh) dx ≤ Chp+1|Et|Hp+1(Ω)3‖Ẽ −Eh‖L2(Ω)3 .

In the following, we will estimate the remaining two terms in (27).
To find an upper bound for the last two terms of (27), it suffices to consider the following

R :=

∫

τ1(κ)

(

(E2 − Ẽ2)
∂φ1

∂z
− (E3 − Ẽ3)

∂φ1

∂y

)

dx

−

∫

∂τ1(κ)

(

(E2 − Ẽ2)n3 − (E3 − Ẽ3)n2

)

φ1 ds.
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Other terms can be estimated in a similar fashion. Notice that, in the definition of R, we use φ1 to
replace the first component of H̃ −Hh. By definition,

τ1(κ) = [xi− 1
2
, xi+ 1

2
] × [yj , yj+1] × [zk, zk+1]

which is subdivided into 8 pieces by the center point (xi, yj+ 1
2
, zk+ 1

2
). Using integration by parts,

we have

R :=

∫

τ1(κ)

(

φ1
∂

∂z
(E2 − Ẽ2) − φ1

∂

∂y
(E3 − Ẽ3)

)

dx

−

∫

κ1

[E2 − Ẽ2]φ1 ds+

∫

κ2

[E3 − Ẽ3]φ1 ds

(28)

where κ1 := [xi− 1
2
, xi+ 1

2
]× [yj , yj+1]×{z = zk+ 1

2
} and κ2 := [xi− 1

2
, xi+ 1

2
]×{y = yj+ 1

2
}× [zk, zk+1].

Now, we consider one of the 8 pieces τ ′ := [xi, xi+ 1
2
] × [yj+ 1

2
, yj+1] × [zk+ 1

2
, zk+1]. Collecting the

terms involving this piece, we get

R′ :=

∫

τ ′

(

(E2 − Ẽ2)
∂φ1

∂z
− (E3 − Ẽ3)

∂φ1

∂y

)

dx

−

∫

κ′

1
∪κ′

2
∪κ′

3

(

(E2 − Ẽ2)n3 − (E3 − Ẽ3)n2

)

φ1 ds

where

κ′1 := {x = xi+ 1
2
} × [yj+ 1

2
, yj+1] × [zk+ 1

2
, zk+1],

κ′2 := [xi, xi+ 1
2
] × {y = yj+1} × [zk+ 1

2
, zk+1],

κ′3 := [xi, xi+ 1
2
] × [yj+ 1

2
, yj+1] × {z = zk+1}.

We note that κ′1, κ
′
2 and κ′3 are normal to the x, y and z axis respectively. Consequently, n2 = n3 = 0

on κ′1, n1 = n3 = 0 on κ′2 and n1 = n2 = 0 on κ′3. Then R′ becomes

R′ :=

∫

τ ′

(

(E2 − Ẽ2)
∂φ1

∂z
− (E3 − Ẽ3)

∂φ1

∂y

)

dx

−

∫

κ′

2

(E3 − Ẽ3)n2φ1 ds−

∫

κ′

3

(E2 − Ẽ2)n3φ1 ds.

In the following, we will estimate R′ for both the first and the second type elements.
For the first type element:
We first consider the integral

∫

τ ′
(E2 − Ẽ2)

∂φ1

∂z
. We recall that ∂φ1

∂z
∈ Qp−1,p,p−1 and Ẽ2 ∈

Qp,p−1,p. Moreover, the x and z coordinates of Ẽ2 are defined using Radau points and the y coordi-

nate of Ẽ2 are defined using Gaussian points. Then, by using Radau and Gaussian quadrature rules,
the integral vanishes for all functions E2 in Qp+1,p−1,p+1, since, in this case, the integrand belongs to

Q2p,2p−1,2p. Similarly, we have
∫

τ ′
(E3 − Ẽ3)

∂φ1

∂y
vanishes for all functions E3 in Qp+1,p+1,p−1. Now

we consider the two surface integrals in R′. Using the Radau quadrature for the x variable and the
Gaussian quadrature for the z variable, we see that the integral

∫

κ′

3

(E2 − Ẽ2)n3φ1 ds vanishes when

E2 ∈ Qp+1,p−1,p+1. Similarly, the integral
∫

κ′

2

(E3 − Ẽ3)n2φ1 ds vanishes for all E3 in Qp+1,p+1,p−1.

Notice that, similar result hold for the other 7 pieces in R. Moreover, from (28), we see that R = 0

16



when E2 = ym and E3 = zm with m = p, p + 1. Consequently, R vanishes for all polynomials of
degree less than or equal to p+ 1. Hence, by the Bramble-Hilbert lemma, we obtain

R ≤ Chp+1|E|Hp+2(τ1(κ))3‖φ1‖L2(τ1(κ)).

For the second type element:
The proof for this case is essentially the same as the first type element. The main difference is

that, for Ẽ2, one more Gaussian point is used for the y variable and for Ẽ3, one more Gaussian point
is used for the z variable. By the same techniques, we see that R′ = 0 for all functions E2 and E3 in
Qp+1,p,p+1 and Qp+1,p+1,p respectively. This is also true for the other 7 pieces. Moreover, from (28),
we see that R = 0 when E2 = yp+1 and E3 = zp+1. Consequently, R vanishes for all polynomials of
degree less than or equal to p+ 1. Hence, by the Bramble-Hilbert lemma, we obtain

R ≤ Chp+1|E|Hp+2(τ1(κ))3‖φ1‖L2(τ1(κ)).

Combining the above results, we obtain the following theorem.

Theorem 1. Let (Hh,Eh) be the solution of the staggered DG method and let (H̃, Ẽ) be the inter-
polant of the exact solution into the staggered DG space. Then we have

‖µ
1
2 (H̃ −Hh)‖ + ‖ε

1
2 (Ẽ −Eh)‖ ≤ Chp+1.

In the above theorem, the norms on the left hand side are discrete L2 norms measured at the
interpolation points. Thus, for the first type element, this is a superconvergence result since the
convergence rate is one order higher than that of the interpolation error. In the following theorem,
we state the error estimates with respect to L2 norm. The proof is based on the use of classical
interpolation error estimates.

Theorem 2. Let (Hh,Eh) be the solution of the staggered DG method and let (H,E) be the exact
solution. Then we have

‖µ
1
2 (H −Hh)‖ + ‖ε

1
2 (E −Eh)‖ ≤ Chp

for the first type element with p ≥ 1 and

‖µ
1
2 (H −Hh)‖ + ‖ε

1
2 (E −Eh)‖ ≤ Chp+1

for the second type element with p ≥ 0.

6. Numerical examples

In this section, we will present numerical examples to validate the high order of convergence
of our new DG method. Furthermore, we will provide results on simulation of wave diffraction by
perfectly conducting objects. We will also present an example with an unbounded domain with the
use of PML. For all examples below, we take the domain Ω to be [0, 1]d, (d = 2, 3), and a uniform
grid with h = h1 = h2 = h3.
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6.1. Convergence tests

In this section, we present a convergence rate test for a 3D problem to validate our estimates in
Theorem 1 and Theorem 2. The exact solution of the problem is chosen as

E1(x, y, z, t) = sin(πt) sin(πy) sin(πz)

E2(x, y, z, t) = sin(πt) sin(πy) sin(πz)

E3(x, y, z, t) = sin(πt) sin(πx) sin(πy)

H1(x, y, z, t) = sin(πx) cos(πt)(cos(πy) − cos(πz))

H2(x, y, z, t) = − sin(πy) cos(πt)(− cos(πz) + cos(πx))

H3(x, y, z, t) = sin(πz) cos(πt)(cos(πx) − cos(πy))

J1(x, y, z, t) = −π cos(πt) sin(πy) sin(πz)

J2(x, y, z, t) = −π cos(πt) sin(πx) sin(πz)

J3(x, y, z, t) = −π cos(πt) sin(πx) sin(πy)

We will compute the errors in L2 and discrete L2 norms using both types of elements with polynomial
order p = 1, 2 and 3 at the time T = 1.1. The log-log plots of these errors against various mesh sizes
are shown in Figure 2 and Figure 3, in which the dash lines represent the method with p = 1, the
dash-dot lines represent the method with p = 2 and the solid lines represent the method with p = 3.
In Figure 2 , the errors measured in L2 norm (left) and discrete L2 norm (right) are presented. We
see that the order of convergence measured in the discrete L2 norm is one order higher than the
order measured in the L2 norm. From Figure 3, we see that the order of convergence measured in
both the L2 and the discrete L2 norms are the same. These confirm our estimates in Theorem 1
and Theorem 2.
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Figure 2: Rate of convergence in L2 and discrete L2 norms for the first type element.

6.2. Diffraction by a perfectly conducting object

In this section, we will present simulation results for wave diffraction problems by perfectly
conducting objects. We will consider the TE mode in the domain [0, 1]2 with perfectly conductor

18



10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rate of convergence in L2 norm for the second type element

 L
2
 e

rr
o

r

 h

 

 

p = 2.01

p = 3.00

p = 3.99

Q1 elements
Q2 elements
Q3 elements

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rate of convergence in discrete L2 norm for the second type element

 L
2
 e

rr
o

r

 h

 

 

p = 2.01

p = 3.01

p = 3.99

Q1 elements
Q2 elements
Q3 elements

Figure 3: Rate of convergence in L2 and discrete L2 norms for the second type element.

boundary condition. The initial pulses are taken as E1(0) = E2(0) = 0 and

H3(x, y, 0) =

{

sin(16πx), 0 ≤ x ≤ 1
8 ,

0, otherwise.

The first example is the wave diffraction problem by a perfectly conducting object which is a square
centered at (0.5, 0.5) with width equal to 0.25, shown in Figure 4. In the following, we present the be-
havior of H3(x, y, t) as a function of t at three reference points defined respectively by (0.125, 0.875),
(0.5, 0.875) and (0.875, 0.875), shown again by black dots in Figure 4. The numerical simulations
are computed by using our two types of DG methods with p = 3 and using a mesh size h = 1/128.

Figure 4: Wave diffraction problems. Left: square obstacle. Right: L-shaped obstacle.

In order to verify the accuracy of our method, we compare the numerical solution and the
reference solution obtained by the FDTD method. The reference solution is computed by using a
fine grid with mesh size h = 1/2048. In Figure 5, we present the numerical solutions obtained by
our two types of DG methods and the reference solution at the three reference points. In these
figures, we use solid line to represent the reference solution, dash-dot line to represent the numerical
solution using the first type DG space and dash line to represent the numerical solution using the
second type DG space It is clear that our method gives the correct behavior.
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Figure 5: Square obstacle: comparision of our solution and the reference solution at the 3 reference points. Left:
(0.125, 0.875). Middle: (0.5, 0.875). Right: (0.875, 0.875).

Next, we perform a similar simulation by using a L-shaped perfectly conducting obstacle defined
by [0.25, 0.75]2\([0.25, 0.5] × [0.5, 0.75]) (see Figure 4). We again consider both the first and the
second type elements with p = 3 and mesh size h = 1/256. The numerical and reference solutions
are shown in Figure 6. We again see that our method gives the correct behavior.
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Figure 6: L-shaped obstacle: comparision of our solution and the reference solution at the 3 reference points. Left:
(0.125, 0.875). Middle: (0.5, 0.875). Right: (0.875, 0.875).

6.3. Perfectly matched layers

In this section, we will consider the wave propagation problem in an unbounded domain. The
initial pulses are chosen as

E1(x, y, 0) = E2(x, y, 0) = 0 and H3(x, y, 0) = e−100((x−0.5)2+(y−0.5)2).

We will apply PML (see Berenger [1]) in conjunction with our new DG method with p = 1. In
order to test the accuracy of our method, we will compute a reference solution on a larger domain
[−0.5, 1.5]2 with only the perfectly conductor boundary condition. We then compute the difference
between our solution and the reference solution in the original computational domain [0, 1]2 at a
time so that the wave does not hit the boundary of the enlarged domain [−0.5, 1.5]2. In Figure 7,
we present the errors computed by using the two types of DG methods. As we can see from these
figures, the errors for both type of methods are very small (having magnitude of about 10−3).
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Figure 7: Errors for the unbounded domain example. Left: first type element. Right: second type element.

7. Conclusion

In this paper, we have developed and analyzed a new class of staggered DG method for the
time-dependent Maxwell’s equations. Two types of staggered DG spaces are proposed which gen-
eralize the classical Nedelec first and second family of finite elements. The new method has many
advantages, namely, diagonal mass matrices, energy conservation as well as automatic fulfillment
of Gauss law. Moreover, the method is high order accurate and the optimal error estimates are
proved. A superconvergence result, stating the convergence rate at the interpolation nodes is one
order higher, is also proved. Due to its Cartesian structure, the method is very easy to implement.
Hence, our method gives an attractive alternative to existing technologies. In the future, we plan to
develop and analyze these kind of staggered spaces for tetrahedral meshes.
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