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Abstract— We study a 2D dielectric cavity with a metal inclusion and we assume that, in a
given frequency range, the metal permittivity ε = ε(ω) is a negative real number. We look for the
plasmonic cavity resonances by studying the linearized eigenvalue problem (dependence in ω of ε
frozen). When the inclusion is smooth, the linearized problem operator has a discrete spectrum
which can be computed numerically with a good approximation e.g. by a classical Finite Element
Method. However, when the inclusion has corners, due to very singular phenomena, we loose
the operator properties and numerical approximations are not stable. Paradoxically there is a
theoretical and a numerical need to take into account these singularities in order to compute
the modes, even the regular ones. Then we propose an original use of PMLs (Perfectly Matched
Layers) at the corners to capture these plasmonic waves.

1. INTRODUCTION

Consider a cavity Ω made of a dielectric material Ω1 with a metal inclusion Ω2, which are separated
by an interface Σ. We consider the time-harmonic Maxwell equations for the Transverse Magnetic
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Figure 1: Example of a cavity with a smooth inter-
face.
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Figure 2: Example of a cavity where the interface has
corners.

polarization. In the metal the permittivity ε depends on the frequency ω but for simplicity we
study the linearized eigenvalue problem:∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω), u 6= 0, ω ∈ C such that:

− div

(
1

ε
∇u
)

= ω2µu in Ω

u = 0 on ∂Ω

⇔

∣∣∣∣∣∣
Find u ∈ H1

0 (Ω), u 6= 0, ω ∈ C such that:∫
Ω

1

ε
∇u · ∇v dΩ = ω2

∫
Ω
uv dΩ ∀v ∈ H1

0 (Ω)
(1)

where µ denotes the magnetic permeability. We take ε and µ piecewise constant functions, µ > 0
almost everywhere and ε sign changing through the interface Σ. Let’s define the operator:
A : D(A) ⊂ L2(Ω) −→ L2(Ω)

u 7−→ − 1
µdiv

(
1
ε∇u

) with D(A) = {u ∈ H1
0 (Ω)/ − 1

µdiv
(

1
ε∇u

)
∈ L2(Ω)}.

Our goal is to find the eigenvalues of A. When ε is not sign changing, one can easily prove that A is
symmetric, self-adjoint and has a compact resolvent (called SC. properties in the rest of the paper).
When ε changes sign at the interface, these properties can still be satisfied under some conditions on
ε and the geometry of Σ [1]. These conditions lead to the existence of an isomorphism T of H1

0 (Ω)
such that the sesquilinear form is T-coercive :

∫
Ω

1
ε∇u · ∇Tu dΩ ≥ α‖u‖2H1

0 (Ω) with α > 0, α inde-

pendent of u. Then the operator is self-adjoint and with compact resolvent. When these conditions
are not satisfied, the operator A is no longer self-adjoint and neither has compact resolvent. Due
to singular phenomena occuring at the corners, a new functional framework is required. In [2, 3] an
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extension of the operator A is given which recovers the resolvent’s compactness property. It takes
into account singular functions whose gradient is not square integrable at the corners. Numerically,
a specific treatment is required at the corners to capture these singularities. The first section is
dedicated to solving the self-adjoint case, the next one to solving the non self-adjoint case, and the
last one handles the non linear eigenvalue problem by taking into account the dependence in ω of
the permittivity.

2. THE SELF-ADJOINT CASE

When ε changes sign, one can still have SC. properties for A if and only if [1] the ratio κε of
permittivities between the dielectric and the metal (called the contrast) is such that:

• κε 6= −1 for a smooth interface Σ (see fig.1)

• κε doesn’t belong to a critical interval Ic containing {−1} when the interface Σ has corners
(see fig.2)

Ic is a function of the sharpest corner θ (θ < π) given by Ic = [ θ−2π
θ , θ

θ−2π ]. Notice that when

θ → π, Ic → {−1} and when θ → 0, Ic → R−. Having a sign changing permittivity yieldsthe
existence of both positive and negative eigenvalues. More precisely, the eigenvalues (ω2

i )i have
finite multiplicity and consist in two sequences of real numbers tending respectively to ±∞ (see
fig.7).

Approximation of the eigenvalues outside the critical interval

In order to approximate the problem (1), we use standard conforming Lagrange Finite Elements
of order 2. Under some conditions on the mesh [4], we can prove the convergence toward the exact
eigenvalues without spurious modes [5]. We have made computations for the geometry of fig.2. We
observe stability of the results with respect to the mesh size (see fig.3). The bigger in modulus
the eigenvalue becomes, the more confined are the associated modes: in the metal for a negative
eigenvalue, respectivilty in the dielectric for a positive one (see fig.4).

Figure 3: Approximation of the first eigenvalues
log(|λfiner mesh − λcoarser mesh|) for several mesh sizes.
The numerical illustrations are realized with the fol-
lowing parameters: the metal’s shape is a droplet
with a sharp angle of π

6 , and permittivities ε1 = 1,
ε2 = −13.

Figure 4: First modes of the SC. operator, associated
to the first eigenvalues (the smallest in modulus): the
two on the left are associated to a negative eigenvalue,
and the two on the right to a positive one. The nu-
merical illustrations are realized on the finer mesh
with the same parameters as fig.3.

3. THE NON SELF-ADJOINT CASE: AN ORIGINAL USE OF PMLS

For a contrast κε chosen in the critical interval (excluding −1), since the problem (1) is ill-posed,
there is no convergence of the Finite Element Method (see fig.5), and particular phenomena occur
at the corner.
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Figure 5: Approximation of the first eigenvalues
log(|λfiner mesh − λcoarser mesh|) for several mesh sizes
inside the critical interval. The numerical illustra-
tions are realized with a contrast κε = − 1

0.7 ∈ Ic.

Dρ ∂Ω

Ω1

Ω2

Figure 6: Scheme of the whole domain minus a small
disk Dρ at the corner.

Near the corner, an asymptotic analysis [2] let us know that, for κε in the critical interval, the
magnetic field is a combination of separated variables functions plus a regular part:

u(r, θ) ' ucst + ureg + c+s+ + c−s−, c+, c− ∈ C (2)

where ucst is a constant number and s±(r, θ) = φ(θ)r±iη (η ∈ R) can be interpreted as propagative
waves propagating towards the corner, or from the corner: s± are called black-hole waves. These
singularities are responsible for the ill-posedness of the problem and their existence characterizes the
critical interval. In [2, 3] extensions of the operator A are given that take into account the singular-
ities s±. We define an extension family Aγ of A such that D(Aγ) = D(A)⊕ span{sγ = s+ + γs−}.
Then ∀u ∈ D(Aγ), u = uA + βsγ , with uA ∈ D(A) and β ∈ C. All extensions have compact
resolvent, thus the extended operator spectrum will be discrete. If |γ| = 1, Aγ is a self-adjoint
extension according to [3]. Here we’re going to choose a non self-adjoint extension in order to have
an efficient numerical method. Let’s motivate our choice by calculating the energy flux. In order to
estimate the energy that goes towards the corner, let’s take the whole domain minus a small disk
Dρ centered at the corner (see fig.6). In particul ar the magnetic field satisfies the following equation:

−div

(
1

ε
∇u
)

= ω2µu in Ω/Dρ

u = 0 on ∂Ω

(3)

By multiplying the equation by u and integrating, after applying the Green’s formula we obtain:∫
Ω

1

ε
|∇u|2 dΩ−

∫
∂Dρ

1

ε

∂u

∂n
u dΓ = ω2

∫
Ω
|u|2 dΩ (4)

Since u ∈ D(Aγ), when ρ → 0, one can assimilate the magnetic field to its asymptotic behaviour
near the corner given by (2). After some calculus, one can check that the boundary term tends to

−iη|β|2(1− |γ|2)
∫ 2π
θ=0

1
ε |φ(θ)|2 dθ. By taking the imaginary part of (4) we obtain for ρ→ 0:

−η|β|2(1− |γ|2)

∫ 2π

θ=0

1

ε
|φ(θ)|2 dθ = Im(ω2)

∫
Ω
|u|2 dΩ (5)

Despite the change of sign of ε, one can prove the non trivial result: η
∫ 2π
θ=0

1
ε |φ(θ)|2 dθ ≥ 0 [2].

Then Im(ω2) has the same sign as −|β|2(1− |γ|2). The equation (5) gives us lots of informations.
Indeed, if we choose |γ| = 1, we see that ω2 is real, which is coherent with the self-adjointness
mentioned above. Let’s take |γ| 6= 1. If ω2 is real, then the left-hand side is equal to zero which
implies that β = 0 and u = uA ∈ D(A). It means that no real eigenvalue (ω2

i ) is exciting the
singularity sγ , so they correspond to the eigenvalues of the initial operator A. This wouldn’t be the
case for self-adjoint extensions. All the complex eigenvalues have the same sign for their imaginary
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part: if |γ| > 1 then Im(ω2) ≥ 0, whereas if |γ| < 1 then Im(ω2) ≤ 0. For simplicity we choose
here γ = 0 such that the extended operator A0 takes only one singularity into account, and also
Im(ω2

i ) ≤ 0 ∀i. This singularity can be captured numerically using Perfectly Matched Layers
(PMLs).

An efficient numerical method to capture the black-hole waves

Usually, PMLs are used to bound infinite domains, for instance to truncate waveguides. Here we
operate an original use of PMLs by putting them at the corners in order to capture the black-
hole waves. Indeed, for each disk Dρ centered at a corner, by the Euler change of variables
(r, θ) 7−→ (log(r), θ) we transform the disk into a semi-infinite waveguide:

−div

(
1

ε
∇u
)

= ω2µu in Dρ (x, y)

m

−1

ε

(
∂u

∂r

)2

− ∂

∂θ

(
1

ε

∂u

∂θ

)
= ω2µr2u in Dρ (r, θ)

m z = log(
r

ρ
)

−div

(
1

ε
∇u
)

= ω2µe2zu in ]−∞, 0]× [0, 2π] (z, θ)

Then we use PMLs in a standard way. Basically, it consists in streching the propagation direction
z by a complex number α, Re(α) > 0:

−div

(
1

ε
∇u
)

= ω2µe2zu in ]−∞, 0]× [0, 2π] (z, θ)

⇓ z → z

α

−α
2

ε

∂2u

∂z2
− ∂

∂θ

(
1

ε

∂u

∂θ

)
= ω2µe2z/αu in ]−∞, 0]× [0, 2π] (z, θ)

When α is suitably chosen, the asymptotic behaviour (2) leads to a sum of evanescent modes,
even s+ (and a constant mode) such that we can truncate the waveguide at z = −L: we put a
Neumann condition at z = −L to avoid reflexion of the constant mode. For an implementation
point of view, we split the problem in two: the problem in the whole domain minus Dρ, and the
problem at the corner transformed into a strip. It requires matching conditions between the two
solutions. Computations confirm that the PMLs’ method is efficient to ensure the stability of the
Finite Elements approximation. Note that the A0 spectrum contains complex eigenvalues which
clearly proves its non self-adjointness. All the eigenvalues belong to {z ∈ C s.t. Im(z) ≤ 0}, which
is numerically almost satisfied (see fig.8).

Figure 7: Spectrum of the SC. operator in the com-
plex plane.

Figure 8: Spectrum of operator A0 in the complex
plane.
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4. TOWARDS THE NON LINEAR EIGENVALUE PROBLEM

Considering the dispersionless Drude’s model permittivity, one can rewrite the time-harmonic
Maxwell equations for the Transverse Magnetic polarization as a non linear eigenproblem:

−div

(
1

ε(ω)
∇u
)

= ω2µu in Ω

u = 0 on ∂Ω

(6)

with ε(ω) =

{
ε1 > 0 in Ω1

ε2(ω) = ε∞

(
1− ω2

p

ω2

)
in Ω2

where ωp is the plasma frequency, ε∞ > 0 the limit

behaviour of the metal at high frequencies: for ω < ωp, ε2(ω) < 0. Let’s write the variational
formulation:

Find u ∈ H1
0 (Ω) such that:

1

ε1

∫
Ω1

∇u · ∇v dΩ +
1

ε∞

ω2

ω2 − ω2
p

∫
Ω2

∇u · ∇v dΩ = ω2

∫
Ω
uv dΩ ∀v ∈ H1

0 (Ω)
(7)

We multiply (7) by ω2 − ω2
p [6] and sort the terms. This leads to a polynomial equation in ω:

ω4M2(u, v) + ω2M1(u, v) +M0(u, v) = 0

with

M0(u, v) =

∫
Ω
ω̃∇u · ∇v dΩ, ω̃ =

{
ω2
p

ε1
in Ω1

0 in Ω2

M1(u, v) =

∫
Ω

1

ε̃
∇u · ∇v dΩ + ω2

p

∫
Ω
uv dΩ, ε̃ =

{
ε1 in Ω1

ε∞ in Ω2

M2(u, v) =

∫
Ω
uv dΩ

One can reformulate this problem into a system with the two unknowns (u,w), w = ω2u. After
discretization, we obtain a linear eigenvalue problem:(M0 0

0 I

)(
u

w

)
= ω2

(−M1 −M2

I 0

)(
u

w

)
(8)

which we can solve as the previous one. Recent works on computations with Finite Elements shows
an accumulation point of the eigenvalues at 0 which seems coherent with [6].
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