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Abstract

In this paper we consider an intrinsic approach for the direct compu-
tation of the fluxes for problems in potential theory. We develop a general
method for the derivation of intrinsic conforming and non-conforming fi-
nite element spaces and appropriate lifting operators for the evaluation
of the right-hand side from abstract theoretical principles related to the
second Strang Lemma. This intrinsic finite element method is analyzed
and convergence with optimal order is proved.
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1 Introduction

For the numerical solution of second order elliptic boundary value problems,
Galerkin methods are nowadays among the most popular discretization meth-
ods. One can distinguish between the following types of Galerkin methods:

a) The continuous or exact variational formulation of the boundary value
problem is employed and its discretization is achieved by replacing the infinite-
dimensional energy space by either a finite dimensional subspace (conforming
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Galerkin method) or by a finite dimensional space which is not a subspace of
the energy space (non-conforming Galerking method). In the latter case, the
volume or surface integrals involved in the continuous bilinear form are broken
into a sum of local integrals. Standard examples for these finite dimensional
spaces are conforming C0 hp-finite elements, Ck spline spaces as they arise,
e.g., in isogeometric analysis, and the Crouzeix-Raviart finite element.

b) The continuous variational formulation is modified by adding terms which
enforce the continuity of the Galerkin solution in a weak way. This allows one to
use discontinuous hp-finite element spaces without imposing any essential inter-
element constraints in the definition of the spaces. The resulting methods are,
e.g., non-conforming dG methods and non-conforming least squares methods.

Non-conforming Galerkin methods have nice properties, e.g. in different
parts of the domain different discretizations can be easily used and glued to-
gether or, for certain classes of problems (Stokes problems, highly indefinite
Helmholtz and Maxwell problems, problems with “locking”, etc.), the non-
conforming discretization enjoys a better stability behavior compared to the
conforming one. But the computational cost is typically increased because
additional integrals have to be evaluated on the element interfaces of the fi-
nite element mesh and, in addition, the total number of unknowns is increased
compared to conforming methods. Moreover, the augmented discrete bilinear
forms require certain mesh-depending control parameters whose choice for cer-
tain problem classes might be a delicate issue.

In this paper, our goal is two-fold: on the one hand, we will identify all
piecewise polynomial finite element spaces which are weakly non-conforming in
the sense that they are not contained in the continuous energy space but the
(broken version of the) continuous bilinear form can still be used. In other
words, we will address the question, how far can one go in the non-conforming
direction while keeping the original forms?

On the other hand, we will develop a general method for the derivation of
intrinsic conforming and non-conforming finite elements from theoretical prin-
ciples for the discretization of elliptic partial differential equations. More pre-
cisely, we employ the stability and convergence theory for non-conforming finite
elements based on the second Strang lemma and derive from these principles
weak compatibility conditions for non-conforming finite elements. In the present
case, we show that local polynomial finite element spaces for elliptic problems in
divergence form must satisfy those compatibility conditions in order to be able
to consistently estimate the perturbation term in the second Strang lemma.

As a simple model problem for the introduction of our method, we consider
Poisson’s equation but we emphasize that this method is applicable also for
much more general (systems of) elliptic equations. We consider the intrinsic
formulation of Poisson’s equation, i.e., the minimization of the corresponding
energy functional in the space of admissible energies as defined below. The goal
is to construct element by element polynomial finite element spaces for the direct
approximation of the physical quantity of interest, i.e., the flux, the electrostatic
field, the velocity field, etc. depending on the underlying application. Further-
more, to take into account essential boundary conditions we have to construct
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a lifting operator as the left inverse of the elementwise gradient operator, that
is, an operator defined element by element – whose realization turns out to be
quite simple.

There is a vast literature on various conforming and non-conforming, primal,
dual, mixed formulations of elliptic partial differential equations and conforming
as well as non-conforming discretization. Our main focus is the development of
a concept for deriving conforming and non-conforming intrinsic finite elements
from theoretical principles and not the presentation of a specific new finite
element space. For this reason, we do not provide an extensive list of references
on the analysis of specific families of finite element spaces but refer to the
monographs [6], [19], and [5], and the references therein.

Intrinsic formulations of the Lamé equations modelling linear three-dimen-
sional elasticity have been first derived in [7]. An intrinsic finite element space
has been developed in [8] and [9] by modifying the lowest order Nédélec finite
elements (cf. [16], [17]) in such a way that the compatibility conditions which
arise from the intrinsic formulation are exactly satisfied.

For Poisson’s equation, the approach that we propose allows us to recover
the non-conforming Crouzeix-Raviart element [12], the Fortin-Soulie element
[13], the Crouzeix-Falk element [11], and the Gauss-Legendre elements [4], [21]
as well as the standard conforming hp-finite elements.

The general theory of this paper will be developed for two-dimensional as
well as for three-dimensional domains. However it turns out that the explicit
construction of all non-conforming three-dimensional shape functions requires
some further investigation of orthogonal polynomials on surfaces. So, we will
essentially focus our attention on the two-dimensional case and present a single
three-dimensional, non-conforming finite element at the end of the paper as an
example.

The paper is organized as follows.
In Section 2 we introduce our model problem, Poisson’s equation, and the

relevant function spaces for the intrinsic formulation of the continuous problem
as an energy minimization problem.

In Section 3 we derive weak continuity conditions for the characterization of
the admissible energy space when the domain is split into simplices. Using these
conditions, we derive conforming intrinsic polynomial finite element spaces and
we show that they are (necessarily) the gradients of the well-known Lagrange
hp-finite element spaces.

In Section 4 we focus on non-conforming discretizations. More precisely,
we infer from the proof of the second Strang lemma appropriate compatibility
conditions at the interfaces between elements of the mesh so that the non-
conforming perturbation of the original bilinear form is consistent with the local
error estimates. In two dimensions, we derive all types of piecewise polynomial
finite elements that satisfy this condition and also derive local bases for these
spaces. In three dimensions, we illustrate the construction by providing one
example.

Finally, in Section 5 we summarize the main results and give some conclu-
sions and some general comments on the construction of bases for the three-
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dimensional case.

2 Model problem

To formulate our model problem we first introduce some notation. Let Ω ⊂ Rd
be a bounded domain in d = 2, 3 dimensions. We denote by e(k), 1 ≤ k ≤ d,
an orthonormal basis in Rd, so that a point x ∈ Rd, can be expressed by its
coordinates (xk)

d
k=1 as x =

∑d
k=1 xke

(k). The Euclidean scalar product of
a,b ∈ Rd is denoted by a ·b. To express the curl operator we introduce d∗ := 1
if d = 2, and d∗ := 3 if d = 3. The Euclidean scalar product in Rd∗ is denoted,

for v, w ∈ Rd∗ , by v
∗· w. The vector product × maps a pair of vectors a,b ∈ Rd

into Rd∗ and is given by

a× b :=

{
a1b2 − a2b1 for d = 2,

(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T

for d = 3.

The curl of a sufficiently smooth d-valued function v is equal to the d∗-valued
function ∇ × v. The d-dimensional curl operator maps a sufficiently smooth
d∗-valued function v to a d-valued function via

curl (v) :=


∂v
∂x2

e(1) − ∂v
∂x1

e(2), d = 2,(
∂v3

∂x2
− ∂v2

∂x3

)
e(1) +

(
∂v1

∂x3
− ∂v3

∂x1

)
e(2) +

(
∂v2

∂x1
− ∂v1

∂x2

)
e(3), d = 3.

We consider the model problem of finding, for a given electric charge density
ρ ∈ H−1 (Ω), an electrostatic field e in a bounded domain Ω ⊂ Rd, d = 2, 3,
which satisfies in a weak sense

−div (εe) = ρ in Ω, (1)

where ε denotes the electrostatic permeability. In the electrostatic case, one
may further write e = ∇φ, where φ is the electrostatic potential, known up to a
constant. We consider that the potential φ is constant on each connected com-
ponent of the boundary ∂Ω. This amounts to saying that (1) is complemented
with a perfect conductor boundary condition, namely, γτe := (e× n)|∂Ω = 0,
where n is the unit outward normal vector field to ∂Ω.

Throughout the paper we assume that

Ω ⊂ Rd is a bounded Lipschitz domain with connected boundary ∂Ω. (2)

As a consequence of this assumption, φ|∂Ω is constant. Since φ is known up to
a constant, we will assume without loss of generality that φ|∂Ω = 0.
Hence, the variational formulation of (1) restricted to the domain Ω is based on
the space

E (Ω) := ∇
(
H1

0 (Ω)
)
,

where H1
0 (Ω) denotes the usual Sobolev space and ∇

(
H1

0 (Ω)
)

denotes its image
under the gradient operator ∇.
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Remark 1 If ∂Ω consists of several disjoint connected components ∂Ωk, 0 ≤

k ≤ q, where q ≥ 1, i.e., ∂Ω =

q⋃
k=0

∂Ωk, with ∂Ωk ∩ ∂Ωk′ = ∅ for k 6= k′, then

E (Ω) =
{
∇v | v ∈ H1 (Ω) , v|∂Ω0 = 0 and, for all 1 ≤ k ≤ q, v|∂Ωk

= ck
}

for arbitrary constants ck ∈ R, 1 ≤ k ≤ q.

As a rule, we use boldface characters to denote functional spaces of d-
valued functions, and typewriter characters to denote functional spaces of d∗-

valued functions. Let L2 (Ω) :=
(
L2 (Ω)

)d
, H1 (Ω) :=

(
H1 (Ω)

)d∗
, H−1 (Ω) :=((

H1
0 (Ω)

)′)d∗
, and H−1/2 (∂Ω) :=

((
H1/2 (∂Ω)

)′)d∗
. We recall a well-known

result below, whose proof can be found in, e.g., [15].

Proposition 2 Let Ω ⊂ Rd satisfy (2). The operator ∇ : H1
0 (Ω)→ E (Ω) is an

isomorphism and thus its inverse operator Λ : E (Ω)→ H1
0 (Ω) is continuous.

It holds

E (Ω) =

{
e ∈ L2 (Ω) |

∫
Ω

e · curl (v) = 0 ∀v ∈ H1 (Ω)

}
(3)

=
{

e ∈ L2 (Ω) | ∇ × e = 0 in H−1 (Ω) and γτe = 0 in H−1/2 (∂Ω)
}
.

With the help of the inverse operator Λ, which we call a lifting operator, the
variational formulation of the model problem reads: Find e ∈ E (Ω) such that∫

Ω

εe · ẽ = H−1(Ω) 〈ρ,Λẽ〉H1
0 (Ω) ∀ẽ ∈ E (Ω) , (4)

where H−1(Ω) 〈·, ·〉H1
0 (Ω) denotes the duality pairing of H−1 (Ω) and H1

0 (Ω).

Under ad hoc assumptions on the permeability ε, e.g., 0 < ε0 ≤ ε(x) ≤ ε1

for almost all x ∈ Ω for some constants ε0 and ε1, the solution e is the minimizer
on E(Ω) of the functional

j : E(Ω)→ R j (ẽ) :=
1

2

∫
Ω

εẽ · ẽ− H−1(Ω) 〈ρ,Λẽ〉H1
0 (Ω) .

In most physical applications the quantity e, or the flux εe, is the physical
quantity of interest rather than the potential u = Λe. Hence, our goal is to
derive conforming and non-conforming finite element spaces for the direct ap-
proximation of e in (4).

3 Conforming intrinsic finite element spaces

In this paper we restrict our studies to bounded, polygonal (d = 2) or polyhedral
(d = 3) domains Ω ⊂ Rd and geometrically conformal finite element meshes T
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[6] consisting of simplices τ . The local and global mesh width are denoted by
hτ := diam τ and h := maxτ∈T hτ . The boundary of a simplex τ consists of
(d− 1)-dimensional simplices (facets for d = 3 and triangle edges for d = 2)
which are denoted by F . We use in both cases the terminology “facet”. The set
of all interior facets in T is denoted F ; the set of facets lying on ∂Ω is denoted
F∂Ω. As a convention we assume that simplices and facets are closed sets. The

interior of a simplex τ is denoted by
◦
τ and we write

◦
F to denote the relative

interior of a facet F . For a facet F ∈ F∪F∂Ω, let nF denote a unit vector which
is orthogonal to F . The orientation for the inner facets is arbitrary but fixed
while the orientation for the boundary facets is such that nF points toward the
exterior of Ω.

For p ∈ N0 := {0, 1, . . .}, let Ppd denote the space of d-variate polynomials of
degree ≤ p. For ω ⊂ Ω, let Ppd (ω) denote the restriction to ω of polynomials in
Ppd. Given T , we define the finite element spaces

Sp,mT :=
{
u ∈ Hm+1 (Ω) | ∀τ ∈ T : u|◦

τ
∈ Ppd

}
,

Sp,mT := (Sp,mT )
d
,

}
for m = −1, 0,

Sp,0T ,0 := Sp,0T ∩H1
0 (Ω) ,

and

Ep
T :=

{
e ∈ Sp,−1

T |
∫

Ω

e · curl (v) = 0 ∀v ∈ H1 (Ω)

}
. (5)

For m = −1, the spaces Sp,−1
T , Sp,−1

T , Ep
T consist of simplex-wise polynomials

which are in general discontinuous across the facets. Hence the sum u =
∑
i ui

of such functions is well defined in the interior of the simplices as well as the
one-sided traces from the interior of a simplex towards its boundary.

For the inner facets F ∈ F , we define the pointwise tangential jumps [u]F :

F → R for x ∈
◦
F by

[u]F (x) = lim
ε↘0

(u (x + εnF )− u (x− εnF )) . (6)

We emphasize that the jump [u]F as the difference of the one-sided traces defines
a continuous function on F . If the two one-sided limits at a facet F coincide
we define u as this one-sided limit and thus u is well defined over F . If u is
discontinuous across F , we avoid the definition of u on F and consider F as a
set of measure zero. Note that the function u is continuous on Ω if the jumps
[u]F vanish for all inner facets.

From (3) we conclude that Ep
T ⊂ E (Ω) is a piecewise polynomial finite

element space which gives rise to the conforming Galerkin discretization of (4)
by intrinsic finite elements: Find eT ∈ Ep

T such that∫
Ω

εeT · ẽT = H−1(Ω) 〈ρ,Λẽ〉H1
0 (Ω) ∀ẽT ∈ Ep

T . (7)
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In the rest of Section 3, we will derive a local basis for Ep
T and a realization

of the lifting operator Λ. We define for later purpose the piecewise gradient
and curl operators by

∇T u (x) :=

d∑
k=1

∂u (x)

∂xk
e(k), ∇T ×e (x) := ∇×e (x) for all x ∈ Ω\

(⋃
τ∈T

∂τ

)
.

3.1 Local characterization of conforming intrinsic finite
elements

In this section, we will develop a local characterization of conforming intrin-
sic finite elements. This approach generalizes that of [8], where such finite
element approximations were considered for the first time (for the system of
two-dimensional linearized elasticity).

Lemma 3 The space Ep
T can be characterized by local conditions according to

Ep
T =

{
e ∈ Sp,−1

T | ∇T × e = 0 ,

and for all F ∈ F [e× nF ]F = 0 , (8)

and for all F ∈ F∂Ω e× nF |F = 0} .

Proof. We denote the right-hand side in (8) by Ẽp
T and prove that Ep

T = Ẽp
T .

Let e ∈ Ep
T . Consider the curl-condition (5) with test-fields v.

Part a: For τ ∈ T , let v ∈ D
(
◦
τ
)

:=
(
D
(
◦
τ
))d∗

, where D
(
◦
τ
)

:= C∞c

(
◦
τ
)

.

Then, ∫
τ

(∇× e)
∗· v =

∫
τ

e · curl (v) = 0.

Since τ ∈ T and v ∈ D
(
◦
τ
)

are arbitrary, we conclude that ∇T × e = 0 holds.

Part b: For F ∈ F , let τ1, τ2 ∈ T be such that F = τ1 ∩ τ2. We set

ωF := τ1 ∪ τ2. We choose v ∈ D
(
◦
ωF

)
. Then∫

τ1

e · curl (v) +

∫
τ2

e · curl (v) = 0.

For i = 1, 2, denote by ni the exterior normal for τi. Simplexwise integration
by parts yields∫

τi

e · curl (v) =

∫
∂τi

(
e× ni

) ∗· v +

∫
τi

(∇× e)
∗· v for d = 2, 3 and i = 1, 2.

By adding the results for i = 1, 2 and taking into account v = 0 on ∂ωF , we get

0 =

∫
F

(
e× n1

) ∗· v +

∫
F

(
e× n2

) ∗· v +

∫
ωF

(∇T × e)
∗· v.
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We already proved that ∇T × e = 0, so that

0 =

∫
F

[e× nF ]F
∗· v.

Since v ∈ D
(
◦
ωF

)
is arbitrary, we conclude [e× nF ]F = 0.

Part c: Let F ∈ F∂Ω and τ ∈ T such that F ⊂ ∂τ . Let

DF (τ) :=
{
v|τ : v ∈ D

(
Rd
)

and v = 0 in some neighborhood of Ω\τ
}
.

Repeating the argument as in Part b by taking into account that v ∈ DF (τ) in
general does not vanish on F leads to e× nF = 0 in this case.

Thus, we have proved that Ep
T ⊂ Ẽp

T .

Part d: To prove the opposite inclusion we consider e ∈ Ẽp
T . Then, for all

v ∈ H1 (Ω) it holds by integration by parts∫
Ω

e · curl (v) =
∑
τ∈T

∫
τ

e · curl (v)

=
∑
τ∈T

∫
τ

(∇T × e)
∗· v +

∑
τ∈T

∫
∂τ

(e× nτ )
∗· v

=
∑
τ∈T

∫
τ

(∇T × e)
∗· v +

∑
F∈F

∫
F

sF [e× nF ]F
∗· v

+
∑

F∈F∂Ω

∫
F

(e× nF )
∗· v

= 0.

Above, sF = ±1 depending on the orientation of the facet F . Hence, Ẽp
T ⊂ Ep

T
and the assertion follows.

3.2 Integration

We start with a lemma on integration of curl-free polynomials. Let

Pp
curl :=

{
e ∈ (Ppd)

d | ∇ × e = 0
}

(9)

and, for τ ∈ T , let Pp
curl (τ) := {e|τ : e ∈ Pp

curl}.

Lemma 4 For any τ ∈ T and any e ∈ Pp
curl (τ), it holds

∅ 6=
{
u ∈ H1 (τ) | ∇u = e

}
⊂ Pp+1

d (τ) . (10)

Proof. Let τ ∈ T and e ∈ Pp
curl (τ). In [15, 2] it is proved that there exists

u ∈ H1 (τ), unique up to a constant, such that ∇u = e ; hence the left-hand
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side in (10) is proved. Let mτ be the center of mass for τ . Then Poincaré’s
theorem yields that the path integral

U (x) :=

∫
γx

e with γx denoting the straight path mτx (11)

defines U ∈ H1 (τ) such that ∇U = e. Since e ∈ Pp
curl (τ), there are coefficients

aµ ∈ Rd such that

e (x) =
∑
|µ|≤p

aµ (x−mτ )
µ

with the usual multi-index notation µ ∈ Nd0, |µ| := µ1 + . . . + µd, wµ :=
wµ1

1 · · ·w
µd
d . To evaluate the integral in (11) we employ the affine pullback

χx : [0, 1]→mτx, χx := mτ + t (x−mτ ) and obtain

U (x) =

∫ 1

0

e ◦ χx (t) · χ′x (t) dt

=
∑
|µ|≤p

aµ · (x−mτ )

∫ 1

0

(t (x−mτ ))
µ
dt

=
∑
|µ|≤p

(aµ · (x−mτ )) (x−mτ )
µ
∫ 1

0

t|µ|dt

=
∑
|µ|≤p

aµ · (x−mτ )
(x−mτ )

µ

|µ|+ 1
∈ Pp+1

d .

Since the functions in the set
{
u ∈ H1 (τ) | ∇u = e

}
in (10) differ only by a

constant we have proved the second inclusion in (10).
Lemma 4 motivates the definition of the local lifting operator λcτ : Pp

curl (τ)→
Pp+1
d (τ) with τ ∈ T , c ∈ R given, for e ∈ Pp

curl (τ), by

λcτ (e) := U + c with U as in (11). (12)

Note that the space in (10) satisfies{
u ∈ H1 (τ) | ∇u = e

}
= {λcτ (e) : c ∈ R} .

Corollary 5 The (restriction of the) operator Λ : Ep
T → Sp+1,0

T ,0 is an isomor-

phism with inverse ∇ : Sp+1,0
T ,0 → Ep

T .

Proof. From Lemma 4 we conclude that

ΛEp
T ⊂ S

p+1,−1
T

holds. Since Ep
T ⊂ E, the properties of the lifting operator Λ imply that

ΛEp
T ⊂ H

1
0 (Ω) .
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Hence
ΛEp
T ⊂ S

p+1,−1
T ∩H1

0 (Ω) = Sp+1,0
T ,0 .

On the other hand, we have Sp+1,0
T ,0 ⊂ H1

0 (Ω) and hence ∇Sp+1,0
T ,0 ⊂ E.

Furthermore, it is clear that

∇Sp+1,0
T ,0 ⊂ Sp,−1

T .

Hence
∇Sp+1,0
T ,0 ⊂ Sp,−1

T ∩E = Ep
T

from which we finally conclude that the inclusion

Sp+1,0
T ,0 ⊂ ΛEp

T

holds.

3.3 A Local basis for conforming intrinsic finite elements

Corollary 5 shows that a local basis for Ep
T can be easily constructed by using

the standard basis functions for hp-finite element spaces (cf. [19]). We recall
briefly their definition. Let

N̂ p :=

{
i

p
: i ∈ Nd0 with i1 + . . .+ id ≤ p

}
denote the unisolvent set of equi-spaced nodal points on the d-dimensional unit
simplex

τ̂d :=
{
x ∈ Rd≥0 | x1 + . . .+ xd ≤ 1

}
. (13)

For a simplex τ ∈ T with vertices Aτ
i , 0 ≤ i ≤ d, let χτ : τ̂d → τ denote the

affine mapping χτ (x̂) := Aτ
0 +

∑d
i=1 (Aτ

i −Aτ
0) x̂i. Then the set of interior

nodal points are given by

N p :=
{
χτ

(
N̂
)
| N̂ ∈ N̂ p, τ ∈ T

}
\∂Ω. (14)

The Lagrange basis for Sp,0T ,0 can be indexed by the nodal points N ∈ N p and
is characterized by

bTp,N ∈ S
p,0
T ,0 and ∀N ′ ∈ N p bTp,N (N ′) =

{
1 N = N ′,
0 N 6= N ′.

(15)

Recall that the simplices in T are by convention closed sets and the facets in
F ∪ F∂Ω are closed as well. Let V (respectively V∂Ω) denote the inner vertices
(resp. boundary vertices) of the mesh T . For d = 3, we let E denote the set
of all interior (d− 2)-dimensional closed simplex edges, that is, all those edges
that are not subsets of ∂Ω.
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Definition 6 For all τ ∈ T , F ∈ F , E ∈ E and for d = 3, V ∈ V, the spaces
Bp
τ , Bp

F , Bp
E and for d = 3, the space Bp

V are given as the following spans of
basis functions:

Bp
τ := span

{
∇bTp+1,N | N ∈

◦
τ ∩N p+1

}
,

Bp
F := span

{
∇bTp+1,N | N ∈

◦
F ∩N p+1

}
,

Bp
E := span

{
∇bTp+1,N | N ∈

◦
E ∩N p+1

}
(for d = 3),

Bp
V := span

{
∇bTp+1,V

}
.

The following proposition shows that these spaces give rise to a direct sum
decomposition and that these spaces are locally defined. To be more specific,
we first have to introduce some notation.

For any facet F ∈ F , vertex V ∈ V, and E ∈ E we define the sets

TF := {τ ∈ T : F ⊂ ∂τ} , ωF :=
⋃
τ∈TF

τ,

TV := {τ ∈ T : V ∈ τ} , ωV :=
⋃
τ∈TV

τ,

TE := {τ ∈ T : E ⊂ τ} , ωE :=
⋃
τ∈TE

τ for d = 3,

FV := {F ∈ F : V ∈ ∂F} , for d = 2.

(16)

Proposition 7 Let Bp
τ , Bp

F , Bp
E, Bp

V be as in Definition 6. Then the following
direct sum decomposition holds:

Ep
T =



(⊕
V ∈V

Bp
V

)
⊕

(⊕
F∈F

Bp
F

)
⊕

(⊕
τ∈T

Bp
τ

)
d = 2,(⊕

V ∈V
Bp
V

)
⊕

(⊕
E∈E

Bp
E

)
⊕

(⊕
F∈F

Bp
F

)
⊕

(⊕
τ∈T

Bp
τ

)
d = 3.

(17)

For any simplex τ , one can further identify Bp
τ with the subspace of elements of

Ep
T supported in τ , namely:

Bp
τ := {e ∈ Ep

T | supp e ⊂ τ} . (18)

For any facet F ∈ F and e ∈ Bp
F , it holds

supp e ⊂ ωF . (19)

For any vertex V ∈ V and e ∈ Bp
V , it holds

supp eV ⊂ ωV . (20)

Let d = 3. For any edge E ∈ E and e ∈ Bp
E, it holds

supp e ⊂ ωE .

11



Proof. Corollary 5 implies that (∇bTp+1,N )N∈Np+1 is a basis of Ep
T . The as-

sertion follows simply by sorting these basis functions, according as to whether
they are associated with a single simplex, with two simplices with a facet in
common, with simplices with a vertex in common, and for d = 3 with simplices
with an edge in common.

The properties for the local supports are direct consequences of the corre-
sponding properties of standard nodal basis as defined in (15).

Remark 8 Proposition 7 shows that the intrinsic finite element formulation (7)
is equivalent to the standard Galerkin finite element formulation of (1): Find
uT ∈ Sp+1,0

T ,0 such that∫
Ω

ε∇uT · ∇vT = H−1(Ω) 〈ρ, vT 〉H1
0 (Ω) ∀vT ∈ Sp+1,0

T ,0

with eT = ∇uT . However, the derivation via the intrinsic variational formula-
tion has the advantage of providing insights on how to design non-conforming
intrinsic finite elements.

4 Non-conforming intrinsic finite elements

In order to ensure existence and uniqueness of the solution to the variational
formulation and to obtain convergence estimates for the finite element discretiza-
tion we impose from now on that ρ ∈ L2 (Ω), so that we may replace duality
products by integrals, and we make the following assumptions on the electro-
static permeability: The electrostatic permeability ε in (1) satisfies ε ∈ L∞ (Ω)
and

0 < εmin := ess inf
x∈Ω

ε (x) ≤ ess sup
x∈Ω

ε (x) =: εmax <∞. (21)

Besides, there exists a partition P := (Ωj)
J
j=1 of Ω into J polygons (polyhedra

for d = 3) such that, for some r ≥ 1,

‖ε‖PW r,∞(Ω) := max
1≤j≤J

∥∥∥ε|Ωj∥∥∥W r,∞(Ωj)
<∞. (22)

Remark 9 In practical situations, one may have to deal with a partition into
curved polygons or polyhedra, of a domain with piecewise curved boundary. In
this case one should consider isoparametric finite elements. For simplicity, we
restrict ourselves to the case of affine finite elements, and hence to piecewise
polygons or polyhedra.

4.1 Definition of non-conforming intrinsic finite elements

In this section, we will define non-conforming intrinsic finite element spaces in
order to approximate the solution of (4). As a minimal requirement we assume
that the non-conforming finite element space Ep

T ,nc satisfies

Ep
T ,nc ⊂ L2 (Ω) and Ep

T ,nc 6⊂ E (Ω) and dim Ep
T ,nc <∞. (23)

12



We further require that Ep
T ,nc is a piecewise polynomial, simplex by simplex

curl-free finite element space and that the conforming space Ep
T is a subspace

of Ep
T ,nc:

Ep
T ⊂ Ep

T ,nc ⊂
{

e ∈ Sp,−1
T | ∇T ×e = 0

}
. (24)

To be able to define a variational formulation in Ep
τ,nc, we have to extend the

lifting operator Λ to an operator ΛT whose image satisfies the following prop-
erties

ΛT :
(
Ep
T ,nc + E (Ω)

)
→ L2 (Ω) (25)

ΛT : Ep
T ,nc → Sp+1,−1

T (26)

as well as the consistency condition

ΛT e = Λe ∀e ∈ E (Ω) . (27)

The complete definitions of Ep
T ,nc and ΛT will be based on the convergence

theory for non-conforming finite elements according to the second Strang lemma
(cf. [6, Th. 4.2.2]): this will tell us how to define them and obtain in the end
an optimal order of convergence (see Theorem 15 hereafter).

In the same spirit as in Section 3, we first define the operator ΛT simplexwise
by the local lifting operators λcτ as in (12):

(ΛT e)|◦
τ

:= λcττ

(
e|◦
τ

)
∈ Pp+1

d

(
◦
τ
)

∀τ ∈ T ∀e ∈ Ep
T ,nc. (28)

Note that the coefficients (cτ )τ∈T are at our disposal.
From (28) we conclude that ∇T is a left-inverse to ΛT , i.e.,

∀e ∈ Ep
T ,nc : ∇T ΛT e = e. (29)

A compatibility assumption on Ep
T ,nc concerning the jumps of functions

across facets is formulated next. For a facet F with vertices AF
i , 0 ≤ i ≤ d− 1,

the affine mapping χF : τ̂d−1 → F (with τ̂d−1 as in (13)) is given by χF (ξ) =

AF
0 +

∑d−1
i=1

(
AF
i −AF

0

)
ξi. The space of (d− 1)-variate polynomials of degree

≤ p on F is given by

Ppd−1 (F ) :=
{
q ◦ χ−1

F | q is a polynomial of degree ≤ p on τ̂d−1

}
. (30)

On the one hand, given e ∈ Ep
T , one has [ΛT e]F = 0 for all F ∈ F , and

ΛT e = 0 on ∂Ω. On the other hand, for elements of the non-conforming finite
element space Ep

T ,nc, we require that these conditions are weakly enforced. Given

ẽ ∈ Ep
T ,nc, keeping in mind that, along every facet F ∈ F (respectively F ∈

F∂Ω), the jump [ΛT ẽ]F (resp. the value ΛT ẽ) is a polynomial of degree ≤
(p+ 1), we choose a weak facet compatibility condition that reads:∫

F

[ΛT ẽ]F q = 0 ∀q ∈ Ppd−1 (F ) , ∀F ∈ F and∫
F

ΛT ẽ q = 0 ∀q ∈ Ppd−1 (F ) , ∀F ∈ F∂Ω.
(31)
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Remark 10 One has the freedom to choose a priori the degree of the polynomi-
als q between 0 and p+ 1 so that the interelement continuity can be weakened in
a flexible way. Indeed, a degree equal to p+1 defines conforming finite elements,
because (31) then implies [ΛT ẽ]F = 0 across all interior facets F , and ΛT ẽ = 0
on ∂Ω, and Lemma 3 leads to ẽ ∈ Ep

T . On the other hand, a degree strictly lower
than p + 1 in the implicit definition (31) of Ep

T ,nc leads to a non-conforming

finite element space, such that Ep
T is a strict subset of Ep

T ,nc. The degree of the
polynomials q, which is chosen here equal to p, actually yields an optimal order
of convergence (see Theorem 15), whereas a degree strictly lower than p yields
a sub-optimal order of convergence.

These considerations are summarized in the following definition.

Definition 11 The non-conforming intrinsic finite element space Ep
T ,nc is given

by

Ep
T ,nc :=

{
e ∈ Sp,−1

T | ∇T × e = 0 and (31) is satisfied
}
.

This definition directly implies that condition (24), i.e., Ep
T ⊂ Ep

T ,nc holds.
In Section 4.2 we will prove for the two-dimensional case the following direct

sum decomposition

Ep
T ,nc =Ep

T ⊕
⊕
F∈F

span
{
∇T UFp+1,k : 1 ≤ k ≤ Nfacet

}
⊕
⊕
τ∈T

span
{
∇T Uτp+1,k : 1 ≤ k ≤ Nsimplex

}
, (32)

with suppUτp+1,k ⊂ τ and suppUFp+1,k ⊂ ωF

for some non-conforming functions UFp+1,k and Uτp+1,k which will be defined in
Section 4.2. The numbers Nfacet, Nsimplex both depend on the dimension d and
on the degree of approximation p.

Remark 12 For d = 2, we have Nfacet = 1 and Nsimplex = 0 for even p, i.e.,
only (one) facet-oriented, non-conforming basis function arises, while for odd p
it holds that, vice versa, Nfacet = 0 and Nsimplex = 1, i.e., there is only (one)
simplex-oriented, non-conforming basis function. The functions UFp+1 := UFp+1,k

and Uτp+1 := Uτp+1,k will be respectively defined in(45) and (49). The case d = 3
will be considered in the forthcoming paper [10].

As a consequence of (32), one deduces the following definition of the extended
lifting operator.

Definition 13 For a function e ∈ Ep
T ,nc written as

e = e1 +
∑
F∈F

Nfacet∑
k=1

αF,k∇T UFp+1,k +
∑
τ∈T

Nsimplex∑
k=1

ατ,k∇T Uτp+1,k (33)

14



for some e1 ∈ Ep
T and coefficients αF,k resp. ατ,k, the extended lifting operator

ΛT is defined by

ΛT e := Λe1 +
∑
F∈F

Nfacet∑
k=1

αF,kU
F
p+1,k +

∑
τ∈T

Nsimplex∑
k=1

ατ,kU
τ
p+1,k.

We now prove an important result on the locality of the lifting operator ΛT .

Proposition 14 Assume that (32) holds. For any e ∈ Ep
T ,nc with connected

support ωe which fulfills the condition that for all disjoint connected components
(ωj)j of Ω\ωe, ωj ∩ ∂Ω has positive boundary measure, it holds

supp ΛT e ⊂ ωe.

Proof. We split e = e1 + e2 according to (33) with e1 ∈ E. Since the sum, in
(32), is direct we conclude1 that supp ei ⊂ ωe for i = 1, 2. From Proposition 2
we obtain ΛT e1 = Λe1 ∈ H1

0 (Ω). Since e1|Ω\ωe
= 0 Poincaré’s theorem implies

that Λe1|ωj = cj , i.e., Λe1 is constant on each disjoint connected component ωj
of Ω\ωe. Since ωj ∩ ∂Ω has positive boundary measure, the property Λe1 ∈
H1

0 (Ω) implies that Λe1|ωj = 0. This proves supp ΛT e1 ⊂ ωe.
According to the definition of ΛT for the non-conforming part e2, which im-

plies in particular that ΛT

(
∇T UFp+1,k

)
= UFp+1,k, one gets that supp∇T UFp+1,k =

suppUFp+1,k so that supp ΛT e2 ⊂ ωe. The proof for the functions Uτp+1,k is by
an analogous argument.

Note that, for any inner facet F ∈ F , we may choose q = 1 in the left
condition of (31) to obtain

∫
F

[ΛT ẽ]F = 0: hence, the jump [ΛT ẽ]F is always
zero-mean valued. Let hF denote the diameter of F . The combination of a
Poincaré inequality with a trace inequality then yields

‖[ΛT ẽ]F ‖L2(F )
≤ ChF ‖[∇T ΛT ẽ× nF ]F ‖L2(F )

(34)

(29)
= ChF ‖[ẽ× nF ]F ‖L2(F )

≤ C̃h1/2
F ‖ẽ‖L2(ωF ) ,

for some constants C and C̃. In a similar fashion we obtain for all boundary
facets F ∈ F∂Ω and all e ∈ Ep

T ,nc the estimate

‖ΛT ẽ‖L2(F ) ≤ C̃h
1/2
F ‖ẽ‖L2(ωF ) . (35)

Equipped with Ep
T ,nc and ΛT , the non-conforming Galerkin discretization of

(4) reads: Find eT ∈ Ep
T ,nc such that∫

Ω

εeT · ẽ =

∫
Ω

ρΛT ẽ ∀ẽ ∈ Ep
T ,nc. (36)

1Here, we use the observation that for a polynomial q ∈ Pp (ω), ω ⊂ Ω with positive
measure, it holds either q|ω = 0 or supp q = ω. In our application we choose q = e1 + e2 and
apply the argument simplex by simplex.
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We say that the exact solution e ∈ L2 (Ω) is piecewise smooth over the

partition P = (Ωj)
J
j=1, if there exists some integer s ≥ 1 such that

e|Ωj ∈ Hs(Ωj) := (Hs (Ωj))
d

for j = 1, 2, . . . , J.

We write e ∈ PHs(Ω) and refer for further properties and generalizations to
non-integer values of s, e.g., to [18, Sec. 4.1.9].

For the approximation results, the finite element meshes T are assumed to
be compatible with the partition P in the following sense: for all τ ∈ T , there

exists a single index j such that
◦
τ ∩ Ωj 6= ∅.

Theorem 15 Let the electrostatic permeability ε satisfy assumptions (21), (22)
and let ρ ∈ L2 (Ω). As an additional assumption on the regularity of the exact
solution, we require that the exact solution of (4) satisfies e ∈ PHs (Ω) for some
integer s ≥ 1. Assume that the non-conforming finite element space Ep

T ,nc and
the extended lifting operator ΛT are defined on a compatible mesh T , as in
Definitions 11 and 13. Then, the non-conforming Galerkin discretization (36)
has a unique solution which satisfies

‖e− eT ‖L2(Ω) ≤ Ch
r ‖e‖PHr(Ω) ,

with r := min {p+ 1, s}. The constant C only depends on εmin, εmax, ‖ε‖PW r,∞(Ω),
p, and the shape regularity of the mesh.

Proof. The second Strang lemma applied to the non-conforming Galerkin dis-
cretization (36) implies the existence of a unique solution which satisfies the
error estimate

‖e− eT ‖L2(Ω) ≤
(

1 +
εmax

εmin

)
inf

ẽ∈EpT ,nc

‖e− ẽ‖L2(Ω) +
1

εmin
sup

ẽ∈EpT ,nc\{0}

|Le (ẽ)|
‖ẽ‖L2(Ω)

,

where

Le (ẽ) :=

∫
Ω

εe · ẽ−
∫

Ω

ρΛT ẽ.

The approximation properties of Ep
T ,nc in the infimum are inherited from

the approximation properties of Ep
T because of the inclusion Ep

T ⊂ Ep
T ,nc ; cf.

(24). For the second term we obtain

Le (ẽ) =

∫
Ω

εe · ∇T ΛT ẽ−
∫

Ω

ρΛT ẽ. (37)

Note that ρ ∈ L2 (Ω) implies that div (εe) ∈ L2 (Ω) and, in turn, that the
jump [εe · nF ]F equals zero and the restriction (εe · nF )|F is well defined for all
F ∈ F . We may apply simplexwise integration by parts to (37) to obtain

Le (ẽ) = −
∑
F∈F

∫
F

sF ε (e · nF ) [ΛT ẽ]F +
∑

F∈F∂Ω

∫
F

ε (e · nF ) ΛT ẽ.
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Above, sF = ±1 depending on the orientation of the facet F .
Let qF ∈ Ppd−1 (F ) denote the best approximation of εe · nF |F with respect

to the L2 (F ) norm. Then, the combination of (31) with standard approximation
properties and a trace inequality (since r ≥ 1) leads to

|Le (ẽ)| =

∣∣∣∣∣−∑
F∈F

∫
F

sF (εe · nF − qF ) [ΛT ẽ]F +
∑

F∈F∂Ω

∫
F

(εe · nF − qF ) ΛT ẽ

∣∣∣∣∣
≤
∑
F∈F
‖εe · nF − qF ‖L2(F ) ‖[ΛT ẽ]F ‖L2(F )

+
∑

F∈F∂Ω

‖εe · nF − qF ‖L2(F ) ‖ΛT ẽ‖L2(F )

≤ C

(∑
F∈F

h
r−1/2
F ‖e‖Hr(τF ) ‖[ΛT ẽ]F ‖L2(F )

+
∑

F∈F∂Ω

h
r−1/2
F ‖e‖Hr(τF ) ‖ΛT ẽ‖L2(F )

)
,

where C depends only on p, s, and ‖ε‖W r(τF ), and the shape regularity of the

mesh, and τF is one simplex among those of ωF . The estimates (34),(35) along
with the shape regularity of the mesh lead to the consistency estimate

|Le (ẽ)| ≤ C

(∑
F∈F

hrF ‖e‖Hr(τF ) ‖ẽ‖L2(ωF ) +
∑

F∈F∂Ω

hrF ‖e‖Hr(τF ) ‖ẽ‖L2(ωF )

)
≤ C̃hr ‖e‖PHr(Ω) ‖ẽ‖L2(Ω) ,

which completes the proof.

Remark 16 If one chooses in (31) a degree p′ < p for the test-polynomials q,
then the order of convergence behaves like hr

′ ‖e‖Hr′ (Ω), with r′ := min {p′ + 1, s},
because the best approximation qF now belongs to Pp

′

d−1 (F ). Also, the above proof
can be easily generalized to the case where e ∈ PHs (Ω) for some s > 1/2.

4.2 A local basis for non-conforming intrinsic finite ele-
ments in two dimensions

Like in Proposition 7, we construct the space Ep
T ,nc by defining basis func-

tions whose supports are given by a single triangle τ ∈ T , facet-oriented basis
functions whose supports are given by ωF , F ∈ F , and vertex-oriented basis
functions whose supports are given by ωV , V ∈ V. The corresponding spaces
are denoted by Bp

τ,nc, Bp
F,nc, Bp

V,nc. The triangle-supported subspaces are given
by

Bp
τ,nc :=

{
e ∈ Ep

T ,nc | supp e ⊂ τ
}

∀τ ∈ T . (38)
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The definitions of TF , ωF , FV , TV , ωV are given in (16). The facet- and
vertex-oriented subspaces will satisfy the following direct sum decompositions

Bp
F,nc ⊕

⊕
τ∈TF

Bp
τ,nc =

{
e ∈ Ep

T ,nc | supp e ⊂ ωF
}
∀F ∈ F , (39)

Bp
V,nc ⊕

⊕
F∈FV

Bp
F,nc ⊕

⊕
τ∈TV

Bp
τ,nc =

{
e ∈ Ep

T ,nc | supp e ⊂ ωV
}
∀V ∈ V. (40)

In Theorem 22, we will prove that Ep
T ,nc can be decomposed into a direct sum

of these local subspaces.

4.2.1 Triangle-supported basis functions

In this section, let τ ∈ T denote any fixed triangle in the mesh. The Lagrange
basis of Pp2 (τ) with respect to N p ∩ τ is denoted by bτp,N , N ∈ N p ∩ τ , and is
characterized by

bτN,p ∈ Pp2 (τ) and ∀N ′ ∈ N p ∩ τ bτN,p (N ′) =

{
1 if N = N ′,
0 if N 6= N ′.

(41)

We denote the (discontinuous in general) extension by zero of bτp,N to Ω\τ again
by bτp,N . From Lemma 4 and Conditions (24), (31), we deduce that

Bp
τ,nc =

{
e|τ ∈ ∇P

p+1
2 (τ) | supp e ⊂ τ and

∀F ⊂ ∂τ, ∀q ∈ Pp1 (F ) :

∫
F

ΛT e q = 0
}
. (42)

According to (42), it is clear that Bp
τ ⊂ Bp

τ,nc. In the next step, we use the
weak compatibility conditions in (42) for the explicit characterization of Bp

τ,nc.
For the construction of the non-conforming triangle-supported functions we

have to introduce scaled versions of Legendre polynomials. For F ∈ F∪F∂Ω, let
χF be the affine pullback to [−1, 1]. Let Lq : [−1, 1] → R denote the Legendre
polynomials of degree q with the normalization convention that Lq (1) = 1.
This in turn implies that Lq (−1) = (−1)

q
. We lift them to the facet F via

LFq := Lq ◦χ−1
F . It is well known that LFq+1 satisfies the orthogonality condition

(LFq+1, w)L2(F ) = 0 ∀w ∈ Pq1(F ). (43)

Lemma 17 For τ ∈ T , the non-conforming finite element space Bp
τ,nc is given

by

Bp
τ,nc =

{
Bp
τ if p is even,

Bp
τ + span

{
∇T Uτp+1

}
if p is odd,

(44)

where Uτp+1 is defined as follows. For any N ∈ N p+1 ∩ ∂τ , let FN ⊂ ∂τ denote
a fixed, but arbitrary, facet such that N ∈ FN . Then Uτp+1 is given by

Uτp+1 :=
∑

N∈Np+1∩∂τ

LFNp+1 (N) bτp+1,N (45)

and illustrated for p = 3, 5 in Figure 1.
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Figure 1: Representation of Uτp+1 for p = 3 (left) and p = 5 (right).

Proof. Pick some e ∈ Bp
τ,nc, let u := ΛT e (according to Proposition 14,

suppu ⊂ τ) and denote the restrictions to τ by eτ and uτ . The weak compati-
bility condition in (42) therefore implies that, for all F ⊂ ∂τ ,

uτ |F = cFL
F
p+1 for some cF ∈ R. (46)

The relation uτ ∈ Pp+1
2 (τ) implies that uτ |∂τ is continuous so that uτ is con-

tinuous at every vertex of τ . We distinguish two cases.
Let p be even. In this case we have Lp+1(1) = −Lp+1(−1) so that the

continuity at the vertices of τ implies cF = 0. Thus uτ |∂τ = 0 and we have
proved (44) for even p.

Let p be odd. Now we have Lp+1(1) = Lp+1(−1) so that cF = cτ for
all F ⊂ ∂τ and some fixed cτ , and we conclude that uτ = cτU

τ
p+1, with Uτp+1

given in (45). Conversely, we note that the gradient of Uτp+1 satisfies the weak
compatibility condition (31). This leads to the assertion for odd p.

Remark 18 A basis of Bp
τ,nc for even p is given by

{
∇T bTp+1,N : N ∈ N p+1 ∩ ◦τ

}
,

while a basis for odd p is given by
{
∇T bTp+1,N : N ∈ N p+1 ∩ ◦τ

}
∪
{
∇T Uτp+1

}
.

4.2.2 Facet-oriented basis functions

Lemma 19 For F ∈ F , the non-conforming finite element space Bp
F,nc that

satisfies (39) is given by

Bp
F,nc =

{
Bp
F + span

{
∇T UFp+1

}
if p is even,

Bp
F if p is odd,

(47)

where UFp+1 is defined as follows. For N ∈ N p+1 ∩ ∂ωF , let

bFp+1,N :=

{
bTp+1,N |ωF on ωF ,

0 on Ω\ωF ,
(48)
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where bTp+1,N are as in (15). Then, UFp+1 is given by

UFp+1 :=
∑

N∈Np+1∩∂ωF

LFNp+1 (N) bFp+1,N (49)

with the lifted Legendre polynomials satisfying (43) and where, for N ∈ N p+1 ∩
∂ωF , we assign some facet FN ⊂ ∂ωF such that N ∈ FN .

Proof. For F ∈ F , given e ∈ Bp
F , it follows from Definition 6 that supp e ⊂ ωF ,

without being supported on only one triangle (otherwise, e ∈ Bp
τ for some

τ ∈ TF ). Then it follows from conditions (38) and (39) that e ∈ Bp
F,nc. Hence

Bp
F ⊂ Bp

F,nc. Since any e ∈ Bp
F,nc can be expressed locally on τ ∈ TF by

e|τ = ∇vτ for some vτ ∈ Pp+1
2 (τ) (cf. Lemma 4) we have

Bp
F,nc ⊂

⊕
τ∈TF

span
{
∇T bτN,p+1 | N ∈ N p+1 ∩ τ

}
,

where we recall (cf. (41)) that bτN,p+1 are the Lagrange basis functions on τ
and extended by zero to Ω\τ . Since the functions bτN,p+1 for the inner nodes

N ∈ N p+1 ∩ ◦τ belong to the space Bp
τ ⊂ Bp

τ,nc, we conclude from (39) that

Bp
F,nc ⊂

⊕
τ∈TF

span
{
∇T bτN,p+1 | N ∈ N p+1 ∩ ∂τ

}
.

For e ∈ Bp
F,nc, let u := ΛT e (suppu ⊂ ωF , cf. Proposition 14) and uτ := u|τ ,

τ ∈ TF . Arguing as in the case of triangle-supported basis functions, we infer
from the compatibility conditions (31)

[u]F = cFL
F
p+1 and ∀F ′ ⊂ ∂ωF u|F ′ = cF ′L

F ′

p+1. (50)

Again, the relation uτ ∈ Pp+1
2 (τ) implies the continuity of uτ at the vertices

of τ . Using this property, we now split the proof into two parts. In the following
we identify a space Rp

F,nc which satisfies

Bp
F,nc = Bp

F ⊕Rp
F,nc. (51)

Let p be even. For τ ∈ TF , the continuity of uτ along ∂τ and the end-
point properties of LF

′

p+1 imply that uτ
(
AF
)

= uτ
(
BF
)
, where AF , BF de-

note the endpoints of F (cf. Figure 2). Hence, [u]F
(
AF
)

= [u]F
(
BF
)
. Since

LFp+1

(
AF
)

= −LFp+1

(
BF
)

we conclude that the first condition in (50) holds
with cF = 0: in other words, u is continuous across F .

The results obtained so far imply that

Rp
F,nc ⊂ span

{
∇T bFp+1,N | N ∈ N p+1 ∩ ∂ωF

}
.

Pick e ∈ Rp
F,nc and set u := ΛT e. The continuity property [u]F = 0 which

we already derived implies u = cUFp+1 with UFp+1 given in (49). On the other
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Figure 3: The non-conforming basis functions UFp+1 have support on two adja-
cent triangles and are depicted for p = 0 (left) and p = 2 (right).

hand, ∇T UFp+1 fulfills the weak compatibility conditions (31). Hence we may set

Rp
F,nc := span

{
∇T UFp+1

}
and the assertion follows for even p. The functions

UFp+1 for p = 0 and p = 2 are depicted in Figure 3.
Let p be odd. Pick e ∈ Rp

F,nc and set u := ΛT e. For τ ∈ TF and any facet
F ′ ⊂ ∂ωF ∩ ∂τ , the restriction of uτ to F ′ must be a multiple of a Legendre
polynomial. The continuity of uτ along ∂τ implies in particular the continuity
at Cτ (cf. Figure 2). Hence, uτ |∂ωF∩∂τ = cτU

τ
p+1|∂ωF∩∂τ for some cτ and Uτp+1

as defined in (45), and

ũ = u−
∑
τ∈TF

cτU
τ
p+1

vanishes along ∂ωF with supp ũ ⊂ ωF . So the jump of ũ across F vanishes in AF

and BF , and the expression of the first condition in (50) is written as [ũ]F = 0.
Hence ũ is continuous in ωF and vanishes on ∂ωF . From this we conclude that
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ũ ∈ Bp
F (see Definition 6). The characterization of Rp

F,nc as a direct sum in (51)

shows that u = 0 and thus Rp
F,nc = {0}.

Remark 20 A basis of Bp
F,nc for odd p is given by

{
∇T bTp+1,N : N ∈ N p+1 ∩

◦
F

}
while for even p we may choose

{
∇T bTp+1,N : N ∈ N p+1 ∩

◦
F

}
∪
{
∇T UFp+1

}
.

4.2.3 Vertex-oriented basis functions

In this section we now identify the vertex-oriented subspace Bp
V,nc.

Lemma 21 Let V ∈ V. It holds

Bp
V,nc =

{
{0} if p is even,
Bp
V if p is odd.

(52)

Proof. In a first step, we will prove that any subspace RTp+1,V which satisfies
the direct sum decomposition

RTp+1,V ⊕
⊕
F∈FV

Bp
F,nc ⊕

⊕
τ∈TV

Bp
τ,nc =

{
e′ ∈ Ep

T ,nc| supp e′ ⊂ ωV
}
, (53)

also satisfies
RTp+1,V ⊂ Bp

V . (54)

We recall from Definition 6 that Bp
V = span

{
∇bTp+1,V

}
.

In the second step, we will show that, for even p the inclusion

span
{
∇bTp+1,V

}
⊂
⊕
F∈FV

Bp
F,nc ⊕

⊕
τ∈TV

Bp
τ,nc (55)

holds so that the first case in (52) follows.
Instead, for odd p, we will prove that, for all V ∈ V,

∇bTp+1,V /∈
⊕
F∈FV

Bp
F,nc ⊕

⊕
τ∈TV

Bp
τ,nc. (56)

From (40) and (54), we conclude that the second case of (52) follows.

1st Step: Choose any

e ∈
{

e′ ∈ Ep
T ,nc| supp e′ ⊂ ωV

}
(57)

and set u := ΛT e. According to Proposition 14, suppu ⊂ ωV .
Let p be odd. For τ ∈ TV , the facet F τ is defined by the condition

F τ ⊂ ∂τ ∩ ∂ωV (cf. Figure 4). Since LF
τ

p+1 has even degree, the values at the
endpoints Aτ , Bτ of F τ are both equal to one.
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Figure 4: A vertex V ∈ V, a neighboring triangle τ ∈ TV , and a neighboring
facet F ∈ TV .

We set uτ := u|◦
τ

and define (cf. (45))

ũ := u−
∑
τ∈TV

uτ (Aτ )Uτp+1 with uτ (Aτ ) := lim
x→Aτ
x∈◦τ

uτ (x) ,

where the sum over the triangles is well defined in the interior of the triangles as
well as the one-sided traces from the interior of a triangle towards its boundary.

Hence, ũ = 0 on ∂ωV with supp ũ ⊂ ωV . Any facet F ∈ FV has V as one
endpoint; denote the other one by AF . According to the weak compatibility
conditions, we know that [ũ]F is proportional to LFp+1 on any facet F ∈ FV .

Then, we use the condition [ũ]F = cFL
F
p+1 at the point AF to deduce cF = 0

from ũ|∂ωV = 0. Hence ũ is continuous and vanishes on ∂ωV . Consequently, ũ
is a conforming function, i.e.,

∇

(
u−

∑
τ∈TV

uτ (Aτ )Uτp+1

)
∈ Bp

V ⊕
⊕
F∈FV

Bp
F ⊕

⊕
τ∈TV

Bp
τ

⊂ Bp
V ⊕

⊕
F∈FV

Bp
F,nc ⊕

⊕
τ∈TV

Bp
τ,nc.

Hence, (53) implies RTp+1,V ⊂ Bp
V .

Let p be even. We number the facets in FV counter-clockwise as FV =
{F1, . . . , Fq} (see Figure 5) for some q and, to simplify the notation, we set
F0 := Fq and Fq+1 := F1. The triangle which has Fi−1 and Fi as facets and V
as a vertex is denoted by τi. Each facet Fi has V as an endpoint; denote by Ai

the other one. We further set F out
i := ∂τi ∩ ∂ωV . We define recursively u0 := u

23



V

t
1F

1

A
1

F
2

F qA
2

A q

t
2

F
1

o u t

F
2

o u t

Figure 5: A vertex V ∈ V and its outgoing facets numbered counterclockwise.
The triangles τi ∈ TV contain Fi−1, Fi, F

out
i as facets and V as a vertex.

and, for k = 1, 2, . . . , q, (cf. (49))

uk = uk−1 −
(uk−1)τk (Ak)

UFkp+1 (Ak)
UFkp+1 with (uk−1)τk (Ak) := lim

x→Ak

x∈◦τk

uk−1 (x) .

Note that uq = 0 on ∂ωV \F out
1 . All functions uk are supported in ωV . Arguing

as for the case of odd p we deduce that uq is continuous on ωV \F out
1 . Next, we

define the non-conforming part of uq by u+
q := uq−

∑
N∈Np+1\{F out

1 } uq (N) bTp+1,N .

It follows that suppu+
q ⊂ τ1 and hence u+

q ∈ Bp
τ1,nc. For even p, we have proved

Bp
τ1,nc = Bp

τ1 , so that u+
q must be continuous on Ω. As

∑
N∈Np+1\{F out

1 } uq (N) bTp+1,N

is also continuous on Ω, so is uq. In particular, this yields that uq is continuous
on ωV and the assertion follows as in the case of odd p. We conclude again that
RTp+1,V ⊂ Bp

V .

2nd Step: To prove (55) and (56) we again distinguish between even and
odd values of p.

Let p be even. We employ the same notation as in the 1st step for the case
p even. Then, by using UFp+1 as in (49) and recalling that UFp+1 is continuous
across F , we define a function

w1 := bTp+1,V −
1

q

q∑
i=1

Wi with Wi :=

 lim
x→V
x∈Fi

UFip+1(x)

UFip+1. (58)

By construction, suppw1 ⊂ ωV . Let us consider a fixed facet Fi. Note that

the functions U
Fj
p+1 are continuous across Fi for j /∈ {i− 1, i+ 1}. However, the

one-sided limits for Wi−1 and Wi+1 at Fi coincide so that w1 is continuous in

ωV and vanishes at V and at all inner nodes N p+1 ∩ ◦τ , τ ∈ TV . On the other
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hand, the function w1 is determined on some outer facet F out
i by two consecutive

terms in the sum in (58), i.e.,

w1|F out
i

= (Wi−1 +Wi)|F out
i

.

Note that Wi−1 (V ) = Wi (V ) = 1 considered as limit values along the facets
Fi−1, Fi. The sign properties of a facet-oriented basis function for even p implies
that Wi−1 has value 1 at Ai−1 and value −1 at Ai. Vice versa, Wi has value
−1 at Ai−1 and value 1 at Ai. Hence, w1|F out

i
is a Legendre polynomial with

endpoints values 0 which implies w1|F out
i

= 0 and, in turn, w1 = 0 on ∂ωV . Up

to now, we have thus proved that w1 is continuous in Ω, with support contained

in ωV and value 0 at V and at all nodal points
◦
τi ∩N p+1.

Next we define

w2 = w1 −
q∑
i=1

∑
N∈Np+1∩

◦
Fi

w1 (N) bTp+1,N (59)

and observe that w2 is a conforming function which vanishes at all nodal points
in N p+1. This implies that w2 = 0 in Ω and we have established (55), or, more
precisely, that

∇bTp+1,V ∈
⊕
F∈FV

Bp
F,nc.

Let p be odd. We will prove (56) by contradiction. So, assume that

∇bTp+1,V ∈
⊕
F∈FV

Bp
F,nc ⊕

⊕
τ∈TV

Bp
τ,nc.

We then infer from Remark 18 and Remark 20 that

bTp+1,V =
∑

N∈Np+1\V

αNb
T
p+1,N +

∑
τ∈T

ατU
τ
p+1 (60)

for some coefficients αN and ατ . Let vc :=
∑
N∈Np+1\V αNb

T
p+1,N and vnc :=∑

τ∈T ατU
τ
p+1. Since bTp+1,N and vc are continuous in Ω, the function vnc must

also be continuous. By contradiction it is easy to prove that

C0 (Ω) ∩
⊕
τ∈T

span
{
Uτp+1

}
= span {Up+1} with Up+1 :=

∑
τ∈T

Uτp+1,

so that vnc ∈ span {Up+1}. Since vc (V ) = 0 and bTp+1,V (V ) = 1, we obtain from
(60) that vnc (V ) = 1. The restriction of Up+1 to any facet F ∈ F ∪ F∂Ω is a
Legendre polynomial of even degree, which implies that vnc (V ′) = 1, for every
V ′ ∈ V ∪ V∂Ω. But the functions bTp+1,V and vc vanish on ∂Ω. This contradicts
vnc (V ′) = 1 for the boundary points V ′ ∈ V∂Ω.
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4.2.4 Properties of the non-conforming intrinsic basis functions

Theorem 22 A basis of Ep
T ,nc is given by{

∇T bTp+1,N : N ∈ N p+1\V
}
∪
⋃
F∈F

{
∇T UFp+1

}
if p is even, (61)

or by {
∇T bTp+1,N : N ∈ N p+1

}
∪
⋃
τ∈T

{
∇T Uτp+1

}
if p is odd. (62)

Remark 23 At first glance, it seems that Bp
V 6⊂ Ep

T ,nc for even p. Actually,

this subspace of Ep
T has already been taken into account; see (55).

Proof. By construction, the space Ẽp
T ,nc of the functions found in (61) as in

(62) is a subspace of Ep
T ,nc. So, it remains to prove that Ep

T ,nc ⊂ Ẽp
T ,nc.

Let p be odd. The arguments are very similar to those in the proof of
Lemma 21 for odd p. Given e ∈ Ep

τ,nc, let u := ΛT e. Pick some τ ∈ T
having at least one facet on ∂Ω. Condition (31) implies that, for all facets
F ⊂ ∂τ ∩ ∂Ω, the restrictionu|F is a multiple of the lifted Legendre polynomial
LFp+1. The continuity of u|τ on τ implies that there exists a function ũ := cUτp+1

with ∇ũ ∈ Bp
τ,nc for some c such that u1 := u− ũ satisfiesu1|∂τ∩∂Ω = 0. Since

u1 vanishes at the endpoints of all such facets F ∈ F∂Ω, the function u1 is also
continuous across the other facets F ⊂ ∂τ ∩ Ω. Let

ũ1 :=
∑

N∈Np+1∩◦τ

u1 (N) bTp+1,N +
∑

F⊂∂τ∩Ω

∑
N∈Np+1∩

◦
F

u1 (N) bTp+1,N

+
∑

V ∈∂τ∩Ω

u1 (V ) bTp+1,V

and note that ũ1 ∈ Ẽp
T ,nc, because Lemma 21 implies in particular that bTp+1,V ∈

Ẽp
T ,nc. Note that u2 := u1 − ũ1 vanishes on τ . Since Ω is connected, iterating

this construction for the remaining triangles finally results in a function that

vanishes on Ω, which yields a linear representation of u by functions in Ẽp
T ,nc.

Let p be even. Again the arguments are very similar to those in the proof
of Lemma 21 for even p. We omit the details here.

Remark 24 Let V, F, T denote respectively the number of vertices, facets and
triangles of the mesh. According to Euler’s formula, one has V − F + T = 1
because Ω has no holes (its boundary is connected). Also, if one splits V and
F respectively into V = Vint + Vbdry and F = Fint + Fbdry, with int denoting
interior vertices and facets and bdry denoting boundary vertices and facets, one
has Vbdry = Fbdry. Then the dimension of the vector space Ep

T ,nc is given by:

for even p: |N p+1| − Vint + Fint = |N p+1| − V + F = |N p+1|+ T− 1 ;
for odd p: |N p+1|+ T.

26



As an illustration, let us consider non-conforming intrinsic basis functions of
degree 0.

Proposition 25 The lowest order non-conforming intrinsic finite elements are
given by

E0
T ,nc = span

{
∇T UF1 : F ∈ F

}
,

where the functions UF1 are the standard non-conforming Crouzeix-Raviart basis
functions (cf. [12]).

Proof. Choosing p = 0 and taking into account that N 1 = V we conclude from

(61) that a basis for E0
T ,nc is given by

⋃
F∈F

{
∇T UF1

}
.

To show the connection with the Crouzeix-Raviart basis functions, we con-
sider a facet F ∈ F with neighboring triangles τ1 and τ2. From (49), we deduce
that UF1 is affine on each of the triangles τ1, τ2 with value 1 at the endpoints
of F and value −1 at the vertices of τ1, τ2 that are opposite to F . Hence, UF1
coincides with the standard Crouzeix-Raviart basis functions; see again [12].

4.3 An example of a non-conforming intrinsic finite ele-
ment in three dimensions

Although the general theory of non-conforming intrinsic finite elements in the
form of Theorem 15 holds for d = 2, 3, the construction of a local basis requires
further investigation which will be the topic of the forthcoming paper [10]. We
emphasize that our theory allows to enrich a conforming finite element space
by new, locally supported, non-conforming polynomials in a flexible way. In
addition, for a given order of approximation, the number of non-conforming
basis functions increases with the spatial dimension.

As an example we give here the definition of a non-conforming, simplex-
supported basis function for d = 3: for p ∈ N0 and 0 ≤ k ≤ p, define bp,k ∈
Pp2 (τ̂2) with τ̂2 as in (13) by

bp,k (x̂1, x̂2) := (x̂1 + x̂2)
k
P

(0,2k+1)
p−k (2 (x̂1 + x̂2)− 1)P

(0,0)
k

(
x̂1 − x̂2

x̂1 + x̂2

)
∀ (x̂1, x̂2) ∈ τ̂2,

where P
(α,β)
p are the Jacobi polynomials (see, e.g., [1, §22.3]) and let

f2D : τ̂2 → R f2D :=

3∑
k=0

αkb6,2k with α0 = 3, α1 = 7, α2 = 0, α3 = 11.

The function f2 D has symmetry of order three, i.e., is invariant under affine
bijections from τ̂2 onto τ̂2. As a consequence the function f3D ∈ C0 (∂τ̂3),
which is generated by lifting f2D to the facets of ∂τ̂3 via affine pullbacks to
τ̂2 (see Figure 6), is continuous. Then, U τ̂36 is generated by interpolating the
function f3D to the interior of τ̂3 in an analogous fashion as explained for d = 2
in (45).
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Figure 6: Surface plot of the non-conforming function U τ̂36 . The support of this
function is the unit simplex.

5 Conclusions

In this article we have developed a general method for constructing finite element
spaces from intrinsic conforming and non-conforming conditions. As a model
problem we have considered the Poisson equation, but this approach is by no
means limited to this model problem. Using theoretical conditions in the spirit
of the second Strang lemma, we have derived conforming and non-conforming
finite element spaces of arbitrary order for the fluxes. For these spaces, we have
also derived sets of local basis functions.

In two dimensions, it turns out that the lowest order non-conforming space is
spanned by the trianglewise gradients of the standard non-conforming Crouzeix-
Raviart basis functions. In general, all polynomial non-conforming spaces are
spanned by the gradients of standard hp-finite element basis functions enriched
by some facet-oriented non-conforming basis functions for even polynomial de-
gree and by some triangle-supported non-conforming basis functions for odd
polynomial degree. As a by-product, this methodology allowed us to recover
the well-known non-conforming Crouzeix-Raviart element (cf. Proposition 25).
By using a similar but more technical argument (cf. [20]), it can be shown
that our intrinsic derivation of non-conforming finite elements also allows one
to recover the second order non-conforming Fortin-Soulie element [13, 14], the
third order Crouzeix-Falk element [11], and the family of Gauss-Legendre ele-
ments [4], [21]. In three dimensions, one may also use the same method: see
Section 4.3 for an illustration. More systematic studies will be presented in the
forthcoming paper [10].

In the past, the construction of a new finite element was an “art” and came,
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typically, before the development of its theory. Here, we have considered the
construction of conforming and non-conforming finite elements and their anal-
ysis through a unified approach, and we have constructed all conforming and
non-conforming, local and polynomial finite element element spaces which can
be handled within the theory based on the second Strang lemma. In this respect
the approach is similar in its spirit to the exterior calculus for finite elements
in combination with their numerical stability analysis (see [3] and references
therein). It is a topic of future research to investigate how our approach for
non-conforming finite elements can be used for the development of an exterior
calculus for non-conforming finite elements.
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[21] G. Stoyan and Á. Baran. Crouzeix-Velte decompositions for higher-order
finite elements. Comput. Math. Appl., 51(6-7):967–986, 2006.

30


