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We investigate in a 2D setting the scattering of time-harmonic electromagnetic waves by a 
plasmonic device, represented as a non-dissipative bounded and penetrable obstacle with 
a negative permittivity. Using the T-coercivity approach, we first prove that the problem 
is well-posed in the classical framework H1

loc if the negative permittivity does not lie in 
some critical interval whose definition depends on the shape of the device. When the 
latter has corners, for values inside the critical interval, unusual strong singularities for the 
electromagnetic field can appear. In that case, well-posedness is obtained by imposing a 
radiation condition at the corners to select the outgoing black-hole plasmonic wave, that 
is the one which carries energy towards the corners. A simple and systematic criterion is 
given to define what is the outgoing solution. Finally, we propose an original numerical 
method based on the use of Perfectly Matched Layers at the corners. We emphasize that it 
is necessary to design an ad hoc technique because the field is too singular to be captured 
with standard finite element methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in the scattering of Transverse Magnetic (TM) time-harmonic electromagnetic waves by a metallic 
obstacle embedded in some dielectric medium, governed by the following scalar equation

div(ε−1∇u) + ω2µu = 0, (1)

where ω is the frequency, ε is the dielectric permittivity and µ is the magnetic permeability. Unlike common materials, 
metals can exhibit a permittivity with a negative real part. More precisely, following the Drude’s law (see e.g. [41]) the 
permittivity depends on the frequency:

ε(ω) = ε0εr(ω) = ε0

(

1 −
ω2

p

ω2 + iωγ

)

. (2)

Here, ε0 > 0 is the vacuum permittivity, εr(ω) is called the relative permittivity, γ > 0 characterizes the dissipative effects 
(we choose the convention of a harmonic regime in e−iωt ), and ωp > 0 is the plasma frequency. Dissipation becomes
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neglectable at frequencies ω such that ω ≫ γ , leading to the so-called dissipationless Drude’s model:

εr(ω) = 1 −
ω2

p

ω2 . (3)

Then for ω < ωp , ε(ω) = ε0εr(ω) takes negative real values. Note that, since γ ≪ ωp for metals, the regime γ ≪ ω < ωp is 
meaningful. Due to the change of sign of the dielectric constant at the interface metal-dielectric, resonances called surface 
plasmons can appear [33,40]. Over the past decades, surface plasmons revealed a great interest in guiding or confining light 
in nano-photonic devices [3,24,46].

From a mathematical point of view, the study of Equation (1) with a function ε changing sign on the physical domain
has given rise to many contributions. In particular, an abstract mathematical approach named T-coercivity and based on 
variational methods has been proposed in [13,9]. With this technique, it has been proved that Problem (1) set in a bounded 
domain supplemented with Dirichlet (or Neumann) boundary condition is of Fredholm type in the classical functional 
framework whenever the contrast (ratio of the values of ε across the interface) lies outside some interval Ic , called critical 
interval, which always contains the value −1. Moreover, this interval reduces to {−1} if and if only the interface between the 
two materials is smooth (of class C 2). Analogous results have been obtained by techniques of boundary integral equations in 
the 1980s in [21] (see also [37,30]). Note that the critical value −1 is associated through Equation (3) to the so-called surface 
plasmon frequency while the critical interval is associated to a critical range of frequencies. The numerical approximation 
of the solution of this scalar problem for a contrast outside the critical interval, based on classical finite element methods, 
has been investigated in [13,35,19]. Under some assumptions on the meshes, the discretized problem is well-posed and its 
solution converges to the solution of the continuous problem. Let us mention that the study of Maxwell’s equations has 
been carried out in [10,11,14].

For geometries with wedges and sharp corners, the solution exhibits strong singularities at these regions when the 
contrast is getting closer to the critical interval. This leads to a local energy enhancement of the light [43,6,36]. Even more, 
for a contrast inside the critical interval, the problem becomes ill-posed in the classical framework because the solution no 
longer belongs to H1. Up to now, mathematical analysis has addressed in 2D the simplified electrostatic like equation

div
(
ε−1(ω)∇u

)
= 0, (4)

which can be seen as an approximation of (1) by zooming at a corner. It is interesting to note that the critical interval also 
appears in the studies of (4) with techniques of conformal mappings [2,32,23]. Concerning the mathematical framework, 
the influence of corners at the interface between the two materials has been clarified in [12] for equation (4) set in a 
particular geometry (with one corner of particular aperture). In that case, when the contrast lies inside the critical inter-
val, Fredholm property is lost because of the existence of two strongly oscillating singularities at the corner, responsible 
for the ill-posedness in the classical framework. These singularities can be interpreted as waves propagating towards or 
outwards the corner. Then selecting the outgoing singularity by means of a limiting absorption principle allows to recover 
Fredholmness of the problem.

The first goal of the present paper is to extend the theory to a more realistic scattering problem in free space, for a con-
trast of permittivities outside or inside Ic . The second objective is to present an original numerical method to approximate 
the solution when the contrast lies inside the critical interval. The approach, based on a finite element method, consists in 
using well-suited Perfectly Matched Layers (PMLs) at the corners to capture the strongly oscillating singularities.

It is important to emphasize that considering a problem without absorption, that is using model (3) instead of model 
(2) for εr(ω), is not only of mathematical interest. Indeed, we can show a limiting absorption principle (see in particular 
the discussion of §3.4): a solution of the scattering problem with small absorption behaves like a solution of the problem 
without absorption. Therefore, it is relevant to study the limit problem with a real valued εr(ω) like in (3). For a numerical 
illustration of its relevance, see the beginning of Section 5. More precisely, in Fig. 15, we observe that the technique we 
propose based on the use of PMLs at the corner, which is essential to approximate the solution without dissipation, is also 
necessary when losses are small.

This text is organized as follows. In section 2, we define the problem and introduce an equivalent formulation set in a 
bounded domain using a classical Dirichlet-to-Neumann operator. Then for a contrast outside the critical interval, we prove 
it has a unique solution using the T-coercivity approach. In the rest of the paper, we consider the case of a contrast inside 
the critical interval. In section 3, we provide a detailed description of the singularities at corners. In particular, we give a 
systematic criterion to select the outgoing singularity which has to be taken into account through an adequate radiation 
condition at the corner. This condition yields a well-posed problem for a contrast inside the critical interval. Standard finite 
element methods fail to approximate the solution in the new framework because it is too singular. In section 4, we introduce 
an original numerical method to solve this problem. The idea is to use a coordinates transformation which maps a small 
disk around corners to semi-infinite strips. Then we implement Perfectly Matched Layers in the semi-infinite strips. We 
illustrate the method showing numerical results in the case of a triangular silver inclusion embedded in vacuum. Finally in 
section 5, we conclude the paper with further discussions.
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Fig. 1. Left: scattering problem in free space. Right: scattering problem in the artificially bounded domain D R .

2. Setting of the problem

2.1. The scattering problem with sign-changing permittivity

Propagation of time-harmonic electromagnetic waves in an inhomogeneous, isotropic, and lossless medium is described 
by Maxwell’s equations iωεE +curl H = 0 and −iωµH +curl E = 0 for all (x, z) = (x, y, z) ∈ R3. Here, E , H correspond re-
spectively to the electric and magnetic fields while ε, µ are the dielectric permittivity and magnetic permeability. Introduce 
$m a bounded open set of R2 with Lipschitz boundary % := ∂$m and define $d := R2 \ $m (see Fig. 1). In this notation, 
the subscripts m and d stand for “metal” and “dielectric” respectively. We assume that the real-valued functions ε, µ verify 
ε := εrε0, µ := µrµ0 with

εr =
{

εd > 0 in $d × R
εm(ω) < 0 in $m × R and µr =

{
µd > 0 in $d × R
µm > 0 in $m × R,

where εm(ω) follows the dissipationless Drude’s model (3), and εd, µd, µm are three positive constants. Here ε0 > 0
(resp. µ0 > 0) refers to the vacuum permittivity (resp. permeability). If an incident field uinc independent of the variable 
z illuminates the obstacle, for instance uinc(x) = eik·x with |k| = k := ω

√
ε0µ0

√
εdµd, one can classically reduce the study 

of Maxwell’s equations to the resolution of two uncoupled 2D scalar problems: one associated with (Hx, H y, Ez) called 
the Transverse Electric problem (TE), another associated with (Ex, E y, Hz) called the Transverse Magnetic problem (TM). In 
particular for the TM problem, Hz , denoted by u in the following, is a solution of the problem

∣∣∣∣∣∣∣∣∣∣∣∣

Find u = uinc + usca such that:

div
(
ε−1

r ∇u
)

+ ω2c−2µru = 0 in R2

lim
ξ→+∞

∫

|x|=ξ

∣∣∣
∂usca

∂r
− ikusca

∣∣∣
2

dσ = 0,

(5)

where c := (
√

ε0µ0)
−1 denotes the light speed. In (5), the incident field uinc is the data defined above, the total field u is the 

unknown and usca := u − uinc is the field scattered by the metallic inclusion. The second equation in (5) is the Sommerfeld 
radiation condition which ensures that usca is outgoing at infinity (r is the radial coordinate). Here and in the following, we 
use the same notation for εr , µr considered as functions defined on R2 or R3. We emphasize that the study of Problem (5)
is not standard because εr is sign-changing.

For the rest of the paper, the index r for the parameters εr , µr is omitted and we define k0 := ω/c. We fix the frequency 
ω and we write εm instead of εm(ω). Then Problem (5) can be rewritten as

∣∣∣∣∣∣∣∣∣∣∣∣

Find u = uinc + usca such that:

div
(
ε−1∇u

)
+ k2

0 µu = 0 in R2

lim
ξ→+∞

∫

|x|=ξ

∣∣∣
∂usca

∂r
− ikusca

∣∣∣
2

dσ = 0

(6)

or, equivalently, as
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Fig. 2. Examples of geometries. From left to right: a smooth inclusion (N = 0), a droplet (N = 1), a triangle (N = 3) and a more complicated inclusion 
(N = 5).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find u = uinc + usca such that:

)u + k2
0 εdµd u = 0 in $d u|$d − u|$m = 0 on %

)u + k2
0 εmµmu = 0 in $m ε−1

d ∂nu|$d − ε−1
m ∂nu|$m = 0 on %

lim
ξ→+∞

∫

|x|=ξ

∣∣∣
∂usca

∂r
− ikusca

∣∣∣
2

dσ = 0,

where n denotes the unit normal to % oriented from $d to $m.

2.2. Reduction to a bounded domain and description of the geometry

In order to study Problem (6), as it is usual in the analysis of scattering problems in free space, we first introduce an 
equivalent formulation set in a bounded domain. Let D R := {x ∈ R2 | |x| < R} denote the open disk of radius R . We take R
large enough so that $m ⊂ D R . Classically (work e.g. as in [16, Lemma 5.22]), one proves that u is a solution of (6) if and 
only if it satisfies the problem

∣∣∣∣∣∣∣

div
(
ε−1∇u

)
+ k2

0 µu = 0 in D R

∂u
∂r

= Su + ginc on ∂ D R , where ginc := ∂uinc

∂r
− Suinc.

(7)

Here, (r, θ) stand for the polar coordinates centered at O , the center of D R , while S refers to the so-called Dirichlet-to-
Neumann map. The action of S can be described decomposing u in Fourier series (see [16, Theorem 5.20]):

Su(R, θ) =
+∞∑

n=−∞
un

k H (1)′
n (kR)

H (1)
n (kR)

einθ

√
2π

with un = 1√
2π

2π∫

0

u(R, θ)e−inθ dθ . (8)

In this expression, H (1)
n denotes the Hankel function of first kind and H (1)′

n its derivative.
We have already mentioned that the geometrical features of the interface % = ∂$m play a key role in the results 

of well-posedness for problems with sign-changing coefficients. In particular, one has to distinguish when the contrast 
κε := εm/εd is outside or inside the critical interval Ic . In order to define this interval, we start by describing the geometry 
precisely, introducing ad hoc notations. We assume that % is of class C 2 at any x ∈ %, except at a finite (possibly empty) set 
of vertices cn , n = 1, . . . , N . We assume that in a neighborhood of each vertex cn , $m coincides with a sector of aperture φn
(see an illustration with Fig. 2). Set

b% :=

⎧
⎨

⎩
max

n=1,...,N

(
2π − φn

φn
,

φn

2π − φn

)
if % has corners (N ≥ 1)

1 if % is smooth (N = 0).

(9)

Finally, we define the critical interval Ic by:

Ic := [−b%;−1/b%]. (10)

Details about the derivation of (10) will be given in section 3. Note that the critical interval Ic ⊂ (−∞; 0) always contains 
the value −1 (because b% ≥ 1) and that there holds Ic = {−1} if and only if % is smooth (N = 0). If N ≥ 1, denoting 
φmin := minn=1,...,N( φn , 2π −φn ), we can write b% = (2π −φmin)/φmin. This shows that the critical interval Ic is determined 
by the aperture of the sharpest angle of the interface. Observe that if φmin → 0, then Ic → (−∞; 0).
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Before studying well-posedness of Problem (7), let us finish this section by some comments. Previous studies for prob-
lems with sign-changing coefficients have shown that the adapted functional framework is H1 when the contrast κε is 
outside Ic , while the solution becomes too singular to belong to H1 when κε ∈ Ic [9,12]. This will remain true for our 
scattering problem, and it will have a significant impact on the energy balance. Indeed, when the solution u of Problem (7)
is in H1(D R), a simple integration by parts yields:

ε−1
d

∫

∂ D R

∂u
∂r

u dσ =
∫

D R

ε−1|∇u|2 dx − k2
0

∫

D R

µ |u|2 dx. (11)

Taking the imaginary part of (11), since ε and µ are real valued, we obtain the assertion:

“u ∈ H1(D R) solution of Problem (7)” =⇒ ℑm

⎛

⎜⎝
∫

∂ D R

∂u
∂r

u dσ

⎞

⎟⎠ = 0. (12)

This means that the energy flux through ∂ D R , in fact through any curve enclosing the obstacle, is equal to 0 (which seems 
natural because the medium is non-dissipative). We will see in section 3 that this property is not satisfied when κε ∈ Ic . In 
this situation, some energy is trapped by the corners.

2.3. Well-posedness in the classical framework for a contrast outside the critical interval

In this section we explain how to show that Problem (7) is well-posed in the usual functional framework H1(D R) when 
κε /∈ Ic . The variational formulation of Problem (7) is given by:

∣∣∣∣∣
Find u ∈ H1(D R) such that:

a(u, v) = l(v), ∀v ∈ H1(D R),
(13)

with a(u, v) =
∫

D R

ε−1∇u · ∇v dx − k2
0

∫

D R

µ uv dx −
+∞∑

n=−∞

k
εd

H (1)′
n (kR)

H (1)
n (kR)

un vn , l(v) =
∫

∂ D R

ginc

εd
v dσ .

If u ∈ H1
loc(R

2) is a solution of the original Problem (6), then its restriction to D R satisfies (13). Conversely if u verifies 
(13) then it can be extended as a solution of (6) in H1

loc(R
2).

Lemma 1. Problem (6) has at most one solution in H1
loc(R

2).

Proof. We proceed exactly as when ε has a constant sign. By linearity of the problem, we just have to show that a solution 
u ∈ H1

loc(R
2) of (6) with uinc = 0 vanishes. For ξ ≥ R , there holds

∫

∂ Dξ

∣∣∣∣
∂u
∂r

− iku

∣∣∣∣
2

dσ =
∫

∂ Dξ

∣∣∣∣
∂u
∂r

∣∣∣∣
2

dσ + k2
∫

∂ Dξ

|u|2 dσ − 2kℑm (

∫

∂ Dξ

∂u
∂r

u dσ ), (14)

where Dξ = {x ∈ R2 | |x| < ξ}. Then using (12) (which is also valid with R replaced by any ξ ≥ R) and the Sommerfeld 
radiation condition, we obtain

lim
ξ→+∞

∫

∂ Dξ

|u|2 dσ = 0.

Since u satisfies )u +k2
0µdεdu = 0 in R2 \ D R , Rellich’s lemma (see e.g. [16, Theorem 3.5]) guarantees that u = 0 in R2 \ D R . 

From Holmgren’s theorem [27, Theorem 8.6.5], working as in the end of the proof of [16, Lemma 5.23], successively we 
deduce that u = 0 in $d and u = 0 in $m. ✷

Lemma 1 ensures in particular that a metallic inclusion in the free space cannot trap a pure resonant wave. Now let us 
prove the main result for Problem (6) outside the critical interval.

Proposition 1. Let ω > 0 be a given frequency. Assume that the contrast κε = εm/εd verifies κε /∈ Ic = [−b%; −1/b%], where b% has 
been defined in (9). Then Problem (6) has a unique solution u in H1

loc(R
2). Moreover there exists C > 0 independent of the data ginc

such that

∥u∥H1(D R ) ≤ C∥ginc∥L2(∂ D R ).
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Proof. Let us decompose the bilinear form a(·, ·) of the variational formulation (13) as follows:

∀u, v ∈ H1(D R), a(u, v) = b(u, v) + c(u, v),

with b(u, v) =
∫

D R

ε−1∇u · ∇v dx + ε−1
d

+∞∑

n=−∞

n
R

un vn,
(15)

un , vn being defined as in (8) (one deduces c(·, ·) from above). With the Riesz representation theorem, we introduce the 
maps B : H1(D R) → H1(D R), C : H1(D R) → H1(D R) as well as the function f ∈ H1(D R) such that

(Bu, v)H1(D R ) = b(u, v), (Cu, v)H1(D R ) = c(u, v), ( f , v)H1(D R ) = l(v), ∀u, v ∈ H1(D R). (16)

With these notations, u is a solution of (13) if and only if it satisfies Bu + Cu = f . Using classical results concerning 
the Dirichlet-to-Neumann map S (following e.g. [16, Theorem 5.20]), as well as the compact embedding of H1(D R) in 
L2(D R), one can prove that C is a compact operator. Therefore it is sufficient to show that B is a Fredholm operator to 
conclude.

In the classical case of a positive ε, one obtains easily the result thanks to the Lax–Milgram theorem. Here, because 
of the change of sign of ε in D R , b(·, ·) is not of the form “coercive + compact” and this technique fails. Instead, we use 
the T-coercivity approach. More precisely, when κε /∈ Ic , we prove in Section A.1 the existence of a bounded operator 
T : H1(D R) → H1(D R) such that

B ◦ T= I + K, (17)

where I : H1(D R) → H1(D R) is an isomorphism and where K : H1(D R) → H1(D R) is compact. Since B is selfadjoint (B is 
bounded and symmetric), according to classical results of functional analysis (see [44, Theorem 12.5]), this is enough to 
conclude that it is a Fredholm operator (of index zero). ✷

Let us make some comments regarding this approach:

• The analysis developed here can be adapted to varying coefficients ε, µ. In this case, the condition [9, Theorem 4.3]
to guarantee Fredholmness for Problem (7) with the T-coercivity technique involves the ratio of local upper and lower 
bounds of εd, εm in a neighborhood (which can be chosen as small as we want) of %. In order to prove uniqueness of 
the solution, an additional smoothness assumption on ε (imposing e.g. ε to be piecewise smooth) has to be made to 
apply unique continuation results.

• In the (TE) problem, the electric field Ez satisfies the equation div
(
µ−1∇Ez

)
+k2

0εEz = 0 in R2. Thus, since µm > 0, we 
find that the (TE) problem is always well-posed: the change of sign of ε does not matter in the (TE) problem.

• One can also consider sign-changing permeabilities, for example when one wishes to model the propagation of elec-
tromagnetic fields in presence of Negative Index Metamaterials (NIM) [39,42,41]. Defining the contrast κµ := µm/µd, 
for the (TM) problem, well-posedness holds for κε /∈ Ic and for all κµ < 0. Also for the (TE) problem, well-posedness is 
guaranteed for all κε < 0 when κµ /∈ Ic .

3. Singular solutions at one corner

When the interface between the two materials presents corners, then for a contrast κε inside the critical interval Ic , 
well-posedness of Problem (6) in the usual H1 framework is lost. This is due to the appearance of strongly oscillating 
singularities at one or several corner(s). This has been already investigated in [22,12,20] for a particular geometry involving 
one corner of aperture π/2. Here we wish to study the general case of an arbitrary corner angle.

3.1. Characterization of singular exponents

For ease of exposition, we consider a metallic inclusion with only one corner, that we denote by c. Without loss of 
generality we assume that c is located at the origin O . In accordance with the setting of §2.2, $m coincides in the vicinity 
of the vertex c with a sector of aperture φ ∈ (0; 2π) \ {π} (see Fig. 7 left, page 13). In other words, there exists ρ > 0 such 
that for well-chosen Cartesian and polar coordinates (r, θ):

Dρ ∩ $d = {x = (r cos(θ), r sin(θ)) |0 < r < ρ, φ/2 < |θ | < π},
Dρ ∩ $m = {x = (r cos(θ), r sin(θ)) |0 < r < ρ, |θ | < φ/2},

where Dρ denotes the disk of radius ρ . In Dρ , the permittivity ε depends only on θ :

ε =
{

εd for φ/2 < |θ | < π ,

εm for |θ | < φ/2.
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In polar coordinates, equation of Problem (6) multiplied by r2 reads

ε−1(r∂r)
2u + ∂θ (ε

−1∂θ u) + k2
0r2µu = 0, (18)

where we use abusively the same notation for u(x) and u(r, θ). Zooming at the corner (i.e. taking ρ small enough) leads to 
neglect the term k2

0r2µu in (18) and to study the “static” equation (4). In other words, the singular behavior of a solution 
of (18) is the same as the one of a solution of (4). The main advantage of considering (4) is that separation of variables 
is now possible. In the following, we call singularities the functions s(r, θ) = χ(r)0(θ) with separated variables in polar 
coordinates which satisfy

div(ε−1∇s) = 0 in Dρ , (19)

that is ε−1(r∂r)
2s + ∂θ (ε

−1∂θ s) = 0. A direct calculation shows that this holds if and only if there exists λ ∈ C such that 
(r∂r)

2χ = λ2 χ , for 0 < r < ρ and
∣∣∣∣∣∣∣

−(∂θε−1∂θ )0 = λ2 ε−10 for − π < θ < π ,

0(−π) = 0(π),

∂θ0(−π) = ∂θ0(π).

(20)

The problem verified by χ , for which we do not impose boundary conditions, can be easily solved. For λ = 0, we find 
χ(r) = A ln r + B whereas for λ ̸= 0, we obtain χ(r) = A rλ + B r−λ , A, B being two constants. The Problem (20) satisfied 
by 0 is an eigenvalue problem. Denote by 2 the set of values λ such that Problem (20) has a non-zero solution 0. 
This set will be referred to as the set of singular exponents associated to c. In the usual case where ε > 0, (20) is a 
self-adjoint problem with positive eigenvalues λ2 (2 ⊂ R). Here, because the sign-changing parameter ε appears in both 
sides of the equation, the study and the properties of (20) are not standard. In particular, 2 generally contains complex 
eigenvalues. Concerning the analysis, to our knowledge there is no theory for this eigenvalue problem. However since it 
is a 1D problem, we can carry out explicit computations. First we can prove that, when κε ≠ −1, 2 is discrete (proceed 
as in [18, Corollary 4.10]). Moreover, it is straightforward to see that 0 ∈ 2 and that 2 is stable by symmetry/conjugation 
(−λ, ±λ ∈ 2 for all λ ∈ 2). Using elementary symmetry arguments, one can compute singular exponents associated with 
even or odd eigenfunctions 0. The corresponding singularities s(r, θ) are either symmetric or skew-symmetric with respect 
to the bisector of the corner ℓ := {x = (r cos θ, r sin θ) ∈ R2 | θ = 0} (see Fig. 7 left). We denote by 2sym (resp. 2skew) 
the subset of 2 of singular exponents corresponding to symmetric (resp. skew-symmetric) singularities. Note that 2 =
2sym ∪ 2skew. Simple calculations reproduced in A.2 yield the following characterizations for the sets 2sym, 2skew.

Proposition 2. Set b := (2π − φ)/φ and f ±(z) = κ±1
ε tanh(z) + tanh(bz) for z ∈ C. We have

2sym := {λ ∈ C | f − (iλφ/2) = 0}, 2skew := {λ ∈ C | f + (iλφ/2) = 0}.

All singularities do not contribute to the solution of a problem such as (6). For instance, for κε /∈ Ic , the solution of 
(6) is locally in H1, so that only singularities which are in H1 near the corner should be considered. For λ = 0, A ln r + B
is locally in H1 if and only if A = 0. For λ such that ℜe λ > 0, s(r, θ) = rλ0(θ) is locally in H1 while s(r, θ) = r−λ0(θ)
is not. The singularities associated with singular exponents λ satisfying λ ̸= 0 and ℜe λ = 0 (located at the limit between 
the H1 zone and the non-H1 zone) play a special role for Problem (6). We will have to take them into account in the 
functional framework even though they do not belong to H1 (see (21)). In the next paragraph, we focus our attention on 
these particular singularities.

3.2. Oscillating singularities

Assume that 2 ∩ iR contains some λ ̸= 0. The singularities r±λ0(θ) have a curious oscillating behavior at the origin (see 
Figs. 3, 5) and do not belong to H1. Indeed, for λ = iη, η ∈ R∗ , we obtain

lim
δ→0+

π∫

−π

ρ∫

δ

|∂r(riη0(θ))|2 rdrdθ = lim
δ→0

η2

π∫

−π

|0(θ)|2 dθ

ρ∫

δ

dr
r

= +∞. (21)

Going back to Maxwell’s equations, this means that the electric field E is such that E /∈ (L2
loc(R

3))3, so that the energy is 
infinite at the corner. Now, we prove that such singularities exist.

Lemma 2. Define Ic = [−b%; −1/b%] with b% = max
(

2π−φ
φ , φ

2π−φ

)
. The following array describes the set 2 ∩ iR with respect to 

κε , φ:
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Fig. 3. Behaviour of the real part of the radial component of the singularity rλ0(θ), for λ ∈ Ri \{0}, in a neighborhood of O . To understand these oscillations, 
observe that ℜe riη = cos(η ln r) for η ∈ R∗ .

κε /∈ Ic κε ∈ (−b% ;−1) κε ∈ (−1;−1/b%)

0 < φ < π 2 ∩ iR = {0}
2 ∩ iR = {±iη}, for some η > 0

and
{

2sym ∩ iR = {0}
2skew ∩ iR = {±iη}

2 ∩ iR = {±iη}, for some η > 0

and
{

2sym ∩ iR = {±iη}
2skew ∩ iR = {0}

π < φ < 2π 2 ∩ iR = {0}
2 ∩ iR = {±iη}, for some η > 0

and
{

2sym ∩ iR = {±iη}
2skew ∩ iR = {0}

2 ∩ iR = {±iη}, for some η > 0

and
{

2sym ∩ iR = {0}
2skew ∩ iR = {±iη}

Proof. According to Proposition 2, the singular exponents are given by the zeros of the functions f ± . As the functions f ±

are odd, it is sufficient to study their zeros on (0; +∞).

⋆ First assume that 0 < φ < π . Then, we have b = (2π − φ)/φ > 1 and b% = b. We can check that f ± do not vanish when 
κε /∈ [−b%; −1/b%]:

– if κε < −b% , then on (0; +∞), f −(t) > (1 + κ−1
ε ) tanh(t) > 0 and f +(t) < tanh(bt) − b tanh(t) < 0;

– if κε > −1/b% then on (0; +∞), f −(t) < tanh(bt) − b tanh(t) < 0 and f +(t) > (1 + κε) tanh(t) > 0.

Now, we wish to prove that

κε ∈ (−b%;−1) =⇒ ∃!η > 0 such that f + (ηφ/2) = 0 and f −(t) ≠ 0, ∀t ∈ (0;+∞),

κε ∈ (−1;−1/b%) =⇒ ∃!η > 0 such that f − (ηφ/2) = 0 and f +(t) ≠ 0, ∀t ∈ (0;+∞).

• Case κε ∈ (−b%; −1). With the same arguments as before we have f − > 0 on (0; +∞). On the other hand, a careful 
analysis of the monotony shows that f + vanishes exactly once on (0; +∞) if and only if κε ∈ (−b%; −1). More precisely, 
one checks that ( f +)′(0) = κε + b% > 0 (and f +(0) = 0), while limt→+∞ f +(t) = κε + 1 < 0. This proves that f + has 
at least one zero in (0; +∞). Then one proves that the derivative of f + changes sign once and only once on (0; +∞)
to conclude.

• Case κε ∈ (−1 : −1/b%). With analogous arguments we obtain f + > 0 on (0; +∞) and we establish that f − has exactly 
one zero on (0; +∞) if and only if κε ∈ (−1 : −1/b%).

⋆ To consider the situation π < φ < 2π , it is sufficient to note that the singularities of the operators div(ε−1∇·) and 
−div(ε−1∇·) are the same and to use the results of the case 0 < φ < π with κε replaced by 1/κε . Indeed, with this 
multiplication by −1, the roles of $m and $d are exchanged. ✷

In Fig. 4, we display the set of singular exponents 2 for contrasts outside and inside the critical interval Ic for a given 
angle φ. The results are in accordance with Lemma 2 (observe also that 2 may contain complex eigenvalues even if κε /∈ Ic). 
In the following, for a contrast κε ∈ (−b%; −1/b%) \ {−1}, we shall often refer to s± where

s±(r, θ) = r±iη0(θ).

We recall that η is chosen positive. With the results of Proposition 2 and Lemma 2 one can check that the eigenfunctions 
0 are defined as follows.

If 2skew ∩ iR ≠ {0}, 0(θ) = sinh(ηθ)

sinh(ηφ/2)
on [0;φ/2]; 0(θ) = sinh(η(π − θ))

sinh(η(π − φ/2))
on [φ/2;π ];

0(θ) = −0(−θ) on [−π ;0].
(22)

If 2sym ∩ iR ≠ {0}, 0(θ) = cosh(ηθ)

cosh(ηφ/2)
on [0;φ/2]; 0(θ) = cosh(η(π − θ))

cosh(η(π − φ/2))
on [φ/2;π ];

0(θ) = 0(−θ) on [−π ;0].
(23)
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Fig. 4. Set of singular exponents 2 for φ = 5π/12 (in this case Ic = [−3.8; −0.26315]). The singular exponents λ ∈ 2skew are represented with asterisks 
while the singular exponents λ ∈ 2sym are represented with diamonds. Left: κε = −18.684. Middle: κε = −1.1871. Right: κε = −0.4641.

Fig. 5. Real part of the skew-symmetric (left) and symmetric (right) oscillating singularity near the corner c.

Going back to the time-domain and multiplying the oscillating singularities by the harmonic term e−iωt leads us to 
consider functions which behave like

s±(r, θ)e−iωt = ei(±η ln r−ωt)0(θ) (24)

near the corner c. Let us compute the phase velocity of these waves. A point M of phase i(±η ln r − ωt) will be located 
at r + dr at t + dt with ±η ln(r + dr) − ω(t + dt) = ±η ln r − ωt . Since ln(r + dr) = ln r + dr/r + o(1/r) for dr small, one 
finds the phase velocity dr/dt = ±ωr/η for the waves (24). Note that it tends to zero when approaching the origin. The 
wave s−(r, θ)e−iωt seems to propagate to the corner but never reaches it. This is the reason why in the following, it will be 
referred to as “black-hole wave”. By extension, we will use the same denomination for the other wave s+(r, θ)e−iωt which 
seems to come from c. Finally, we point out that from time to time in this paper, the oscillating singularities will be called 
“black-hole singularities”.

3.3. Selecting the outgoing solution I: energy trapped at the corner

For a contrast κε ∈ Ic \ {−1}, looking for a solution of the scattering problem in H1
loc (i.e. with a local finite electromag-

netic energy) would lead to exclude a behavior at a corner like the one of the oscillating singularities s±(r, θ). Nonetheless 
allowing such singular behavior is necessary to obtain existence (and uniqueness) of a solution u to Problem (6). This is 
exactly as in waveguides problems for which we must look for solutions which decompose on propagative modes which 
are not in H1. Actually, there is a strong analogy between the problem considered here and waveguides problems which is 
described in §4.1. Thus, we are led to consider u which decomposes, in a neighborhood of c, as

u = a + b+s+ + b−s− + ũ, (25)

where ũ is a smooth function and a, b± are complex constants. Roughly speaking ũ is smooth means that it is a superpo-
sition of singularities with singular exponents λ such that ℜe λ > 0 (see §A.4). We recall that 0 belongs to 2 for all κε < 0, 
that the associated singularities are 1 and ln r, and that only the constant is locally in H1. In order to get uniqueness of the 
solution for (7), as shown in [12], a relation on b± has to be enforced. A priori, it is not obvious to decide which condition 
to impose that will give the “physical” solution because the singularities s± have very similar behaviors at c. In particular, 
due to the change of sign of the permittivity ε, considerations based on phase velocity are not sufficient. To identify the 



JID:YJCPH AID:6698 /FLA [m3G; v1.180; Prn:28/06/2016; 14:25] P.10 (1-24)

10 A.-S. Bonnet-Ben Dhia et al. / Journal of Computational Physics ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Table 1
Features of the outgoing singularity with respect to the configuration.

κε ∈ (−b% ;−1) κε ∈ (−1;−1/b%)

sout(r, θ) = s−(r, θ) = r−iη0(θ) sout(r, θ) = s+(r, θ) = r+iη0(θ)

0 < φ < π 0 given by (22) skew-symmetric 0 given by (23) symmetric
π < φ < 2π 0 given by (23) symmetric 0 given by (22) skew-symmetric

relevant condition, we study in this paragraph the energy carried by s± . Let us consider a function u of the form (25) which 
satisfies the equation div(ε−1∇u) + k2

0µu = 0 in the vicinity of the corner c. Proceeding like at the end of §2.2, one can 
easily verify that the quantity

J := ℑm

⎛

⎜⎝
∫

∂ Dρ

ε−1∂ruu dσ

⎞

⎟⎠ (26)

defined for ρ small enough, is independent of ρ . It represents the energy flux through ∂ Dρ coming from the corner. 
Plugging (25) in the left-hand side of (26) yields

J = η(|b+|2 − |b−|2)
π∫

−π

ε−102 dθ . (27)

Indeed, on the one hand, using that 0, given by (22) or (23), is real-valued, one can check that

∫

∂ Dρ

ε−1 ∂s±

∂r
s± dσ = ±iη

π∫

−π

ε−102 dθ . (28)

On the other hand, one can prove that all the other cross-terms tend to 0 as ρ → 0 (proceed as in §A.4). Then identity (27)
follows by noting that s+ = s− . The sign of the integral appearing in (27), which is not obvious because of the presence 
of the parameter ε, plays an important role to compute energy balances. Explicit calculations detailed in Appendix A (see 
Lemma A) show that

π∫

−π

ε−102 dθ > 0 if κε ∈ (−b%;−1) and

π∫

−π

ε−102 dθ < 0 if κε ∈ (−1;−1/b%). (29)

We see that the sign of the integral depends only on the contrast of the physical parameters of the two materials. If 
ε−1

d > |εm|−1, then the integral is positive, and vice versa.
Now, consider for instance the case κε ∈ (−b%; −1). Since by definition η is positive, we observe with (27) that the sin-

gularity s+ adds a positive contribution to the energy flux J . It means that s+ carries some energy produced by the corner. 
We say that s+ is the “incoming” singularity (sin = s+) because it brings energy into the system. On the contrary, s− adds 
a negative contribution to J : it carries some energy absorbed by the corner. We say that s− is the “outgoing” singularity 
(sout = s−). When κε ∈ (−1; −1/b%), according to (29), we take sout = s+ and sin = s− . The results are summarized in Ta-
ble 1 above. To conclude, in the following, we impose that the solution of Problem (6) decomposes only on the outgoing 
singularity sout and not on sin because sin carries some energy produced by the corner which is not physical.

Remark 1. The terminology “incoming/outgoing”, inspired by the scattering theory, is mainly related to the point of view 
developed in section 4, where sout (resp. sin) corresponds to an outgoing (resp. incoming) propagative mode in a waveg-
uide.

Remark 2. Note that when κε ∈ (−1; −1/b%), the wave soute−iωt (see (24)) has a positive phase velocity and seems to 
come from the corner. However, sout propagates energy towards the corner. We stress that we select the physical solution 
according to the group velocity and not according to the phase velocity.

Let us briefly present another approach, which has been used in [12] (see also [34] in a slightly different context), to 
define the “physical” singularity. We emphasize that it leads to select the same solution.
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3.4. Selecting the outgoing solution II: limiting absorption principle

We recall that the original Drude’s model (2) includes a small parameter γ which takes into account classical dissipation 
Joule effects. We point out that we choose γ ≥ 0 so that, with the convention of a harmonic term equal to e−iωt , energy 
is indeed lost by the structure (the alternative convention eiωt leads to take γ ≤ 0 in order to model dissipation). We 
denote by εγ

m the permittivity obtained with this model and we define εγ the function such that εγ = εd in $d, εγ = ε
γ
m

in $m. The smallness of γ compared to the considered range of frequencies has led us to neglect it in the analysis and 
this is the reason of the difficulties we have encountered. Indeed, when γ > 0, κεγ := ε

γ
m/εd /∈ R and one can easily check 

that the functions f ± defined in Proposition 2 with κε replaced by κεγ do not vanish on (0; +∞). In other words, purely 
oscillating singularities do not occur with dissipation. More mathematically, when ε is changed to εγ , the new sesquilinear 
form associated with Problem (13) becomes coercive in H1(D R). Therefore, the dissipative problem always admits a unique 
solution, denoted uγ , in this space. The function uγ decomposes near the corner as

uγ = aγ + bγ sγ + ũγ ,

where aγ , bγ are constants, ũγ is a smooth function and sγ (r, θ) = rλγ
0γ (θ). Here, λγ is the singular exponent of smallest 

positive real part of 2γ , the set of values of λ such that (20), with ε replaced by εγ , has a non-zero solution. The following 
result confirms the relevance of choosing the outgoing singularity sout according to Table 1.

Proposition 3. Assume that κε ∈ (−b%; −1/b%) \ {−1}. Then sout = limγ →0 sγ , where sout is defined according to Table 1.

Let us sketch the proof. Denote λγ
± ∈ 2γ the singular exponent which tends to ±iη as γ goes to zero. Introduce λ̂±

the first order term appearing in the Taylor expansion λγ
± = ±iη + γ λ̂± + . . . . Using the implicit functions theorem, one 

can prove that λ̂± are real valued, λ̂+ = −λ̂− and λ̂+
∫ π
−π ε−1|0|2 dθ < 0. Assume that κε ∈ (−b%; −1). Then, according 

to (29), we have 
∫ π
−π ε−1|0|2 dθ > 0. Since by definition ℜe λγ > 0, we deduce that λγ coincides with λγ

− and therefore, 
tends to −iη as γ → 0. This implies limγ →0 sγ = s− . But Table 1 ensures that s− = sout when κε ∈ (−b%; −1). The case 
κε ∈ (−1; −1/b%) can be handled in a similar way.

In Fig. 8 (middle), we represent the set 2γ for a small value of γ > 0. One observes that the numerical results are in 
accordance with Proposition 3.

3.5. A well-posed formulation of the scattering problem for a contrast inside the critical interval

At this point, we have provided the ingredients to obtain a well-posed formulation for the scattering Problem (6) with 
a contrast lying in the critical interval. When κε ∈ Ic \ {−1}, we look for solutions u in the sense of distributions of R2

(denoted D ′(R2)) which admit the expansion

u = bsout + ũ in R2, with b ∈ C, ũ ∈ H1
loc(R

2), (30)

where the outgoing singularity sout is defined according to Table 1. In particular, a solution u satisfies

a(u, w) = l(w), ∀w ∈ C ∞(D R),

where C ∞(D R) = {ϕ|D R , ϕ ∈ C ∞
0 (R2)} and where a(·, ·), l(·) are defined in (13).

Remark 3. Note that ε−1∇sout is an element of L1
loc(R

2)2 ⊂ D ′(R2)2. Therefore, div(ε−1∇sout) is well-defined in the sense 
of distributions of R2. Moreover, one can check that div(ε−1∇sout) = 0 in D ′(Dr) for r small enough, so that div(ε−1∇u) =
div(ε−1∇ũ) in D ′(Dr).

Imposing the specific behavior (30) for the solution is like imposing a radiation condition at the corner. As nicely writ-
ten in [5] for another problem sharing analogous properties, this boils down to allow a “leak” at c. Now, we prove the 
well-posedness of the problem in this setting. We start with a uniqueness result whose proof relies again on energy con-
siderations.

Lemma 3. Problem (6) has at most one solution admitting decomposition (30).

Proof. Consider some u admitting decomposition (30) and satisfying Problem (6) with uinc = 0. Multiplying the volume 
equation of (6) by u, integrating by parts in D R \ Dρ and taking the imaginary part, we get the energy balance

ℑm

⎛

⎜⎝
∫

∂ D R

ε−1
d ∂ru u dσ

⎞

⎟⎠ = ℑm

⎛

⎜⎝
∫

∂ Dρ

ε−1∂ru u dσ

⎞

⎟⎠ . (31)
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Denote Jext (resp. J ) the left-hand side (resp. right-hand side) of (31). We have selected sout so that

J = −η |b|2
∣∣∣∣∣∣

π∫

−π

ε−102 dθ

∣∣∣∣∣∣
≤ 0

(see the discussion after (29)). Therefore, from (31) we deduce that Jext ≤ 0. This is true also with R replaced by ξ ≥ R . 
Then using identity (14) and working as in the proof of Lemma 1 with Rellich’s lemma, we obtain u = 0 in R2. ✷

The proof of existence of a solution requires more involved arguments based on the Kondratiev theory [29] and is beyond 
the scope of the present article. We refer the reader to [12,8] where a detailed explanation of the technique is presented in 
a simple geometry. Finally we can state the

Proposition 4. Let ω > 0 be a given frequency. Assume that the contrast κε = εm/εd verifies κε ∈ (−b%; −1/b%) \ {−1}, where 
b% has been defined in (9). Then Problem (6) has a unique solution u admitting decomposition (30). Moreover there exists C > 0
independent of the data ginc such that

|b| + ∥ũ∥H1(D R ) ≤ C∥ginc∥L2(∂ D R ).

Remark 4. The results of Proposition 4 can be extended to consider Problem (6) with a volume equation replaced by 
div(ε−1∇u) + k2

0µu = f , f being a given source term. Well-posedness is ensured if f has a compact support and if f is 
such that r1−ν f ∈ L2(R2) for some ν > 0. In particular f ∈ L2(R2) with a compact support is allowed.

Let us make some comments to conclude this section:

• In the recent paper [31], the author suggests that the good way to formulate the scattering problem for a contrast inside 
the critical interval is to choose u in the vicinity of the corner such that J defined in (26) vanishes. This is attractive 
because in this case, the metallic scatterer neither absorbs nor produces energy (like in (12)). To get such a solution, one 
must keep both incoming and outgoing singularities, with the balancing condition |b+| = |b−|. In other words, u must 
decompose as

u = b(s+ + eit s−) + ũ, (32)

where b ∈ C, t ∈ [0, 2π) and where ũ is a smooth function. In the present article, we did not use this criterion for 
the following reasons. First, there is still an undetermined parameter to set, namely the phase t . Second, the limiting 
absorption principle, which can be rigorously proven working as in [12, Theorem 4.3], is satisfied in the setting (30) but 
not in the setting (32). Therefore, it is our opinion that the decomposition (30) is more relevant from a physical point 
of view than (32).

• When the contrast and the interface are such that for the N vertices c1, . . . , cN , there exist oscillating singularities 
s±

n (rn, θn) := r±iηn
n 0n(θn) at cn , (ηn > 0) the analysis is exactly the same. Here, (rn, θn) denote the polar coordinates 

associated with cn . In this case, we can prove that Problem (6) has a unique solution u which admits the expansion

u =
N∑

n=1

bn sout
n + ũ in R2, with bn ∈ C and ũ ∈ H1

loc(R
2). (33)

In that case, working as in (31), denoting ∂ Dn
ρ := {x ∈ R2 | |rn| = ρ}, we obtain the energy balance

Jext =
N∑

n=1

Jn, with Jn := ℑm

⎛

⎜⎝
∫

∂ Dn
ρ

ε−1∂rn u u dσ

⎞

⎟⎠ = −ηn |bn|2
∣∣∣∣∣∣

π∫

−π

ε−102
n dθn

∣∣∣∣∣∣
. (34)

Using (34), one can quantify the energy trapped by each corner (see §4.4.2 for numerical illustrations).

4. Approximation of the solution for a contrast inside the critical interval

We have obtained a well-posed formulation for Problem (6) with a contrast inside the critical interval. It leads to look for 
solutions u which decompose as u = ∑

n bn sout
n + ũ (see (33)). Now, a natural question is: how to approximate u? Let us try 

to use a classical finite element method. We consider a setting where the inclusion is a triangle made of silver embedded in 
vacuum. The angles of the triangle (see Fig. 6) are equal to φ1 = π/6 (top corner) and φ2 = φ3 = 5π/12 (bottom corners).
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Fig. 6. Solution obtained using a standard P2 finite element method for different meshes: from left to right, 13273 nodes, 56031 nodes and 100501 nodes. 
The frequency is set to ω = 9 PHz (κε = −1.1838). Note that the computed field is not stable at the interface when we refine the mesh.

Fig. 7. Change of variables at the corner. The disk Dρ is transformed into a semi-infinite strip Sρ (the waveguide) with periodic conditions in θ . As r → 0, 
z tends to −∞.

For such geometry, according to (9) and (10), we have b% = (2π −π/6)/(π/6) = 11 so that the critical interval is given by

Ic = [−11;−1/11].
For silver, the plasma frequency is ωp = 13.3 PHz [38]. From the dissipationless Drude’s model (3), we deduce that

κε ∈ Ic ⇐⇒ ω ∈
[

ωp√
1 + b%

; ωp√
1 + 1/b%

]

= [3.839 PHz;12.733 PHz].

For our experiment, we set ω = 9 PHz (corresponding to εm(ω) = −1.1838), εd = 1, µm = µd = 1. Therefore, we have 
κε = εm/εd = −1.1838 ∈ [−11; −1]. For the other parameters, we take

uinc(x) = eik·x, k = k
(

cosαinc−→ex + sinαinc−→e y

)
, k = k0 = ω/c, and αinc = −π/12.

In Fig. 6, we represent the approximated total field obtained using a standard P2 finite element method for three different 
meshes. The incident plane wave produces both a usual scattered field outside the inclusion and a typical plasmonic wave at 
the interface between the two materials. When we refine the mesh, the scattered field outside the inclusion is approximately 
stable. However, the plasmonic wave seems very sensitive to the mesh (see in particular at the bottom and right edges of 
the inclusion). The numerical solution does not converge when the mesh size tends to zero, the classical finite element 
method fails to approximate the field which is not in H1 locally around the corners. More precisely, this is due to the fact 
that it is impossible to capture the oscillations of the singularities sout

n (see Figs. 3, 5) with a mesh of given size. Spurious 
reflections are always produced. Hence, we have to develop another method.

4.1. Analogy with a waveguide problem

In order to capture the oscillations of sout
n , a natural idea consists in unfolding a neighborhood of each corner using 

a change of variables. To explain the idea, assume that there is only one corner c. Define z = ln r (as it is classical for 
the Mellin transform [29]), ŭ(z, θ) = u(ez, θ). In a neighborhood of c, the function ε depends only on θ so we make no 
difference between ε(r, θ) and ε(z, θ). With this notation, as illustrated by Fig. 7, Equation (18) in Dρ is changed into the 
equation

(
ε−1∂2

z + ∂θε
−1∂θ

)
ŭ + k2

0e2zµŭ = 0
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in the semi-infinite strip (the waveguide) Sρ := (−∞; lnρ) × (−π ; π). Note that z = ln r → −∞ when r → 0. As a con-
sequence, the corner is sent to −∞ in the waveguide. With this change of variables, the function ŭ is 2π -periodic in θ : 
ŭ(·, −π) = ŭ(·, π) and ∂θ ŭ(·, −π) = ∂θ ŭ(·, π). On the other hand, the term k2

0e2zµ is exponentially decaying as z → −∞. 
As a consequence, the behavior of ŭ at −∞ is determined by the functions s̆ which satisfy

(
ε−1∂2

z + ∂θε
−1∂θ

)
s̆ = div(ε∇ s̆) = 0 in Sρ

and which are 2π -periodic for the θ variable. Since r = ez , the singularities s(r, θ) = rλ0(θ), solutions of (19) in Dρ , are 
turned into s̆(z, θ) = eλz0(θ) in Sρ . These functions are commonly called the modes of the waveguide Sρ . In §3.1, we said 
that for λ ∈ 2 such that ℜe λ > 0 the singularity s = rλ0 belongs to H1(Dρ). In this case, the associated mode s̆ = eλz0

is evanescent in the waveguide Sρ . While, for λ = ±iη, η > 0, the oscillating singularities s± do not belong to H1(Dρ). 
The corresponding modes s̆± := e±iηz0 are propagative in Sρ . According to Lemma 2, we know that propagative modes 
exist only for contrasts inside the critical interval. In the presence of propagative modes, it is well-known that a radiation 
condition at infinity in the waveguide has to be enforced to obtain a well-posed problem. But we have already done this 
work for the corner problem. Define s̆out such that s̆out(z, θ) = sout(ez, θ). Then in the waveguide Sρ , we look for solutions 
ŭ which decompose as ŭ = bs̆out + ŭev, b ∈ C, where ŭev is the sum of a constant term and evanescent modes at −∞.

For numerical purposes, we will use the analogy with the waveguide writing a formulation of the scattering problem in 
a domain split in two parts, namely the perforated domain D R/Dρ and the semi-infinite strip Sρ . The main difficulty lies 
in the fact that the new geometry is unbounded and that the solution we want to approximate does not decay at infinity 
in Sρ . However, many efficient techniques have already been developed to consider waveguide problems in presence of 
propagative modes. A class of methods consists in bounding artificially the waveguide to compute an approximation of the 
solution on a bounded domain. For this kind of approaches, it is well known that the waveguide has to be bounded in a 
clever way to avoid spurious reflections on the artificial boundary. One technique to achieve this end is to use a Perfectly 
Matched Layer (PML) [15,4]. In the following, we apply this method to our problem. First, we set up the PML. Then, we 
explain how to truncate the PML to derive a formulation set in a bounded domain which can be discretized numerically.

4.2. An approximation of the scattering problem at the continuous level

Imposing a PML in the semi-infinite strip Sρ boils down to compute an analytic continuation of ŭ. In practice it leads to 
make the complex stretching z :→ z/α, α ∈ C \ {0}. With this stretching one finds that ŭα(z, θ) := ŭ(z/α, θ) satisfies

(
α2ε−1∂2

z + ∂θε
−1∂θ

)
ŭα + e2z/αk2

0µŭα = 0 in Sρ .

Let us explain how to choose the parameter α ∈ C \ {0}. Without loss of generality, we can impose |α| = 1 so that α = eiϑ

for some ϑ ∈ (−π ; π ]. In order for the function z :→ e2z/α to be exponentially decaying at −∞, we impose ℜe α > 0 which 
amounts to take ϑ ∈ (−π/2; π/2). On the other hand, observe that the modes of the problem 

(
α2ε̆−1∂2

z + ∂θ ε̆−1∂θ

)
w̆ = 0

with periodic boundary conditions for the θ variable are the functions (z, θ) :→ eλz/α0(θ), where (λ, 0) corresponds to an 
eigenpair of Problem (20). And if ŭ decomposes on the modes eλz0(θ), ŭα , the analytic continuation of ŭ, decomposes 
on the modes eλz/α0(θ). Therefore, in order ŭα to be exponentially decaying at −∞, we have to choose α such that 
there holds ℜe (λ/α) > 0 for all λ ∈ 2out \ {0}. Here, 2out refers to the set of singular exponents appearing in the modal 
decomposition of ŭ:

2out := {0,λout} ∪ 2̃out with 2̃out = {λ ∈ 2 |ℜe λ > 0},
where λout denotes the singular exponent of sout defined according to Table 1. This means that we choose ϑ such that 
π/2 + arg(λ) > ϑ > −π/2 + arg(λ) for all λ ∈ 2out \ {0}, where arg : C \ {0} → (−π ; π ] denotes the complex argument. Let 
us clarify this.

⋆ When κε ∈ (−b%; −1), according to Table 1, we have −iη ∈ 2out and iη /∈ 2out. In this case, one takes α such that 
ℜe (−iη/α) > 0, that is ℑm (α) < 0. Then, we choose α = eiϑ with ϑ ∈ (ϑ−; 0), where ϑ− := −π/2 + max

λ∈2̃out
arg(λ).

⋆ When κε ∈ (−1; −1/b%), we have iη ∈ 2out and −iη /∈ 2out. Working as above, we find that a good choice for α is α = eiϑ

with ϑ ∈ (0; ϑ+), where ϑ+ := π/2 + min
λ∈2̃out

arg(λ).

In Fig. 8, we display the sets of singular exponents for the problem with small dissipation and for the problem with 
a PML. The important point is that these two regularization processes move the singular exponent λout in the half plane 
{λ ∈ C | ℜe λ > 0}. This suggests that our PML parameter α has been correctly set. For the problem with a PML, all the 
modes except the constant one are evanescent. Therefore, for numerical purposes, we can truncate the waveguide Sρ . Define 
the domain S L

ρ = (lnρ − L; lnρ) × (−π ; π) with L > 0. On the boundary {lnρ − L} × (−π ; π), we impose the Neumann 
condition ∂zŭ = 0 to allow constant behavior at −∞ (the PML has no influence on the constant mode). We emphasize that 
the Dirichlet boundary condition would produce spurious reflections. We also introduce the parameter L0 ∈ (0; L) such that
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Fig. 8. Left: set of singular exponents 2 = 2sym ∪ 2skew (diamonds for 2sym and asterisks for 2skew) for ω = 9 PHz (κε = −1.1838 ∈ Ic ) and a corner 
aperture φ = π/6. The singular exponent associated to sout is circled in black. In accordance with the result of Proposition 3, the outgoing singularity sout

in this setting is s− (and it is skew-symmetric). Middle: set 2γ for small γ (γ is the dissipation). Right: set of singular exponents with the PML.

the term k2
0µ̆e2zŭ becomes neglectable for all z ≤ lnρ − L0 and we define the function α such that

α(z) :=
{

1 for z ∈ (lnρ − L0; lnρ),
α for z ∈ (lnρ − L; lnρ − L0).

(35)

Working in the waveguide enables to dilate the radial coordinate near the corner and L0 defines the beginning of the PML. 
The previous analysis leads us to consider the problem

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (u, ŭ) ∈ H1(D R \ Dρ) × H1
per(S L

ρ) such that:

div
(
ε−1∇u

)
+ k2

0µu = 0 in D R \ Dρ ,

∂ru − Su = ginc on ∂ D R ,
(
ε−1∂zα∂z + α−1∂θε−1∂θ

)
ŭ + α−1e2z/αk2

0µŭ = 0 in S L
ρ ,

∂zŭ(lnρ − L, ·) = 0,

u(ρ, ·) = ŭ(lnρ, ·), ρ∂ru(ρ, ·) = ∂zŭ(lnρ, ·),

(36)

where H1
per(S L

ρ) denotes the Sobolev space of functions of H1(S L
ρ) which are 2π -periodic for the θ variable. We recall 

that ginc = ∂ruinc − Suinc. Note that the above problem is set in a split domain. The last two equations of (36) ensure the 
matching between u and ŭ through ∂ Dρ . The variational formulation associated with (36) is given by

∣∣∣∣∣
Find (u, ŭ) ∈ X such that:

b1(u, v) + b2(ŭ, v̆) = l(v), ∀(v, v̆) ∈ X,
(37)

with X := {(v, ̆v) ∈ H1(D R \ Dρ) × H1
per(S L

ρ) | v(ρ, ·) = v̆(lnρ, ·)}, l(v) =
∫

∂ D R

ginc

εd
v dσ

b1(u, v) =
∫

D R\Dρ

ε−1∇u · ∇v dx − k2
0

∫

D R\Dρ

µuv dx − ε−1
d

+∞∑

n=−∞
k

H (1)′
n (kR)

H (1)
n (kR)

un vn

b2(ŭ, v̆) =
∫

S L
ρ

α ε−1∂zŭ ∂z v̆ + α−1 ε−1∂θ ŭ ∂θ v̆ dx − k2
0

∫

S L
ρ

α−1 e2z/α µ ŭ v̆ dx.

(38)

4.3. Numerical approximation

Now we turn to the discretization of Problem (37). We use a P2 finite element method set on the domain which is the 
union of the perforated disk D R \ Dρ and the rectangle S L

ρ . We introduce (Th, T̆h)h a shape regular family of triangulations 
of (D R,h \ Dρ,h, S L

ρ) where D j,h is a polygonal approximation of D j , j = R , ρ . Here h refers to the mesh size. We assume 
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Fig. 9. Left: mesh of S L
ρ . Right: obtained mesh with the change of variables (z, θ) :→ (ez, θ).

Fig. 10. Example of (very coarse) mesh. The arrows show the matching nodes between the different meshes.

that the meshes are such that all the triangles of (Th, T̆h)h are located either in the dielectric or in the metal. Note that 
considering a structured mesh for S L

ρ boils down to work with a mesh having a logarithmic structure near the corner (see 
Fig. 9). Due to the behavior of the black-hole singularities, this is of course very interesting. To get (almost) conforming 
approximations of X , we impose that the nodes of Th located on ∂ Dρ,h coincide with the ones of T̆h situated on {lnρ} ×
[−π ; π ] (see Fig. 10). Then we define the family of finite element spaces

Xh := {(v, v̆) ∈ H1(D R, h \ Dρ,h) × H1
per(S L

ρ) such that v(ρ, ·) = v̆(lnρ, ·),
and (v|τ , v̆|τ ′) ∈ P2(τ ) × P2(τ ′) for all (τ ,τ ′) ∈ Th × T̆h}.

Practically, we compute the solution of the problem

∣∣∣∣∣
Find (uh, ŭh) ∈ Xh such that:

b1,h(uh, vh) + b2(ŭh, v̆h) = lh(vh) ∀(vh, v̆h) ∈ Xh.
(39)

In (39), the forms b1,h(·, ·), lh(·) are defined as b1(·, ·), l(·) (see (38)) with D R \ Dρ replaced by D R,h \ Dρ,h and the approx-
imate transparent boundary condition ∂r u − (ik − (2R)−1)u = ∂ruinc − (ik − (2R)−1)uinc instead of the Dirichlet-to-Neumann 
map S .
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Fig. 11. Numerical solution in D R for ω = 9 PHz (κε = −1.1838). We reconstitute the field inside the three disks using the transform (z, θ) :→ (ez, θ). As 
we refine the mesh (from left to right), the solution does not change much.

Remark 5. In the case where the metallic inclusion has N corners, one discretizes the problem
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find (u, ŭ1, . . . , ŭN) ∈ H1(D R \ ∪N
i=1 Dρi ) × H1

per(S L1
1 ) × · · · × H1

per(S LN
N ) such that :

div
(
ε−1∇u

)
+ k2

0µu = 0 in D R \ ∪N
i=1 Dρi

∂ru − Su = ginc on ∂ D R

(
ε−1∂zαi∂z + αi

−1∂θε−1∂θ

)
ŭi + αi

−1e2zαi
−1

k2
0µŭi = 0 in S Li

i , i = 1, . . . , N

∂zŭ(lnρ − Li, ·) = 0, i = 1, . . . , N

u(ρi, ·) = ŭi(lnρi, ·), ρi∂ru(ρi, ·) = ∂zŭi(lnρi, ·), i = 1, . . . , N.

(40)

In (40), for i = 1, . . . , N , Dρi is a small disk around ci of radius ρi while S Li
i := (lnρ − Li; lnρi) × (−π ; π) with Li > 0 (see 

Fig. 10). For each PML, we use a parameter αi as in (35).

4.4. Numerical experiments

4.4.1. Numerical results with the PML approach
We present some results obtained with the analogous of Formulation (39) for Problem (40). We consider the same setting 

as in the beginning of §4. We choose PML coefficients such that α1 = e−i2π/25 (top corner) and α2 = α3 = e−i2π/33 (bottom 
corners). We consider an incident field of incidence αinc = −π/12. In Fig. 11, we observe that the numerical solution seems 
to converge when we refine the mesh, contrary to what happens without the PMLs (see Fig. 6). In Fig. 12, we display the 
field inside the PMLs. We note that it is correctly attenuated and that at the end of the PMLs, the solution seems constant. 
According to Table 1, for κε = −1.1838, the outgoing singularity at each corner is skew-symmetric with respect to the 
corner’s bisectors. This is indeed the case. For this particular incidence, at the bottom right corner the solution is locally 
symmetric (with respect to the corner’s bisector) and there is no excitation of the outgoing singularity.

4.4.2. Energy conservation
In this section, we wish to give numerical illustrations of the energy balance Jext = ∑

n Jn obtained in (34). Using (7), 
(31) and (34), we find

Jext = ℑm

⎛

⎜⎝
∫

∂ D R

ε−1
d (S(u − uinc) + ∂ruinc)u dσ

⎞

⎟⎠ and Jn = −ηn |bn|2
∣∣∣∣∣∣

π∫

−π

ε−102
n dθn

∣∣∣∣∣∣
, (41)

where S is the Dirichlet-to-Neumann map on ∂ D R . To assess the term Jn , the energy trapped at the corner cn , we have 
to derive formulas to compute the coefficient bn . There are two different approaches to do that. Let us present the two 
methods when the interface has only one corner c.

⋆ By definition, u admits the expansion u = bsout + ũ where b ∈ C and ũ ∈ H1
loc(R

2). This yields
∫

∂ Dρ

ε−1u sout dσ = b
∫

∂ Dρ

ε−1sout sout dσ +
∫

∂ Dρ

ε−1ũ sout dσ .

Proceeding as in §A.4, one finds that | 
∫
∂ Dρ

ε−1ũ sout dσ | ≤ Cρβ for some β > 0. We deduce
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Fig. 12. Numerical solution in D R with PMLs for ω = 9 PHz (κε = −1.1838). The bold dashed lines correspond to the interfaces where matching is made, 
the small dotted lines represent the boundary of the PMLs. Note that for the chosen incidence αinc = −π/12 (330°), there is no trapped energy at the right 
corner (see also Fig. 13).

b =

ρ−λout

π∫

−π

ε−1u(ρ, ·)0dθ

π∫

−π

ε−102 dθ

+ O (ρβ). (42)

In (42), λout denotes the singular exponent of sout defined in Table 1. Note that according to Lemma A, we know that the 
denominator of the above equation does not vanish.

⋆ Let us present another approach to assess the coefficient b. We follow a classical idea to compute stress intensity factors. 
First, introduce s the solution to the following problem:

∣∣∣∣∣∣∣

Find s = ζ sin + csout + s̃, with c ∈ C and s̃ ∈ H1(D R), such that:

div(ε−1∇s) + k2
0µ s = 0 in D R ,

∂rs − Ss = 0 on ∂ D R .

(43)

In (43), ζ is a given cut-off function such that ζ = 1 in a neighborhood of c and such that div(ε−1∇sin) = 0 on the support 
of ζ . Looking for a solution s of (43) is equivalent to look for w = s − ζ sin solution of

∣∣∣∣∣
div(ε−1∇w) + k2

0µ w = f in
1 := −(div(ε−1∇(ζ sin)) + k2

0µ(ζ sin)) in D R ,

∂r w − Sw = f in
2 := −(∂r(ζ sin) − S(ζ sin)) on ∂ D R .

(44)

Using Remark 4, one can easily prove that Problem (44) has a unique solution. Solving (44) consists in solving (7) with 
a source that, instead of coming from the exterior domain, comes from the corner. Now, if u = bsout + ũ with b ∈ C, 
ũ ∈ H1

loc(R
2) is a solution of (6), by Green’s formula we get

∫

∂ D R

ε−1 (∂ru s − ∂rs u) dσ −
∫

∂ Dρ

ε−1 (∂ru s − ∂rs u) dσ = 0. (45)

Proceeding again as in §A.4, one finds

∫

∂ Dρ

ε−1 (∂ru s − ∂rs u) dσ = 2b λout

π∫

−π

ε−102 dθ + O (ρβ) for some β > 0. (46)
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Fig. 13. Left: sum of the energy fluxes at the corners (diamond) and energy flux through ∂D R (cross) with respect to αinc ∈ [0; 2π) in polar coordinates. 
Right: energy flux at the top corner (cross), left corner (diamond), right corner (circle) in polar coordinates. The frequency is set to ω = 9 PHz (κε =
−1.1838).

On the other hand, we have 
∫
∂ D R

ε−1 (∂ru s − ∂rs u) dσ =
∫
∂ D R

ε−1
d gincs dσ (use (8) and the properties of the Hankel func-

tions to obtain this). Plug the latter identity and (46) in (45). Then take the limit as ρ → 0. We obtain

b =

∫

∂ D R

ε−1
d gincsdσ

2λout

π∫

−π

ε−102 dθ

. (47)

The advantage of the second approach is twofold. First, it does not require to compute the solution u. The function s can be 
approximated once for all, independently from the source term. Moreover, numerically, the second method is more accurate 
than the first one.

Let us turn to numerical simulations. We compute the terms Jext, Jn (see (41)) for αinc ∈ [0; 2π). We perform two 
series of experiments: one with ω = 9 PHz (κε = −1.1838), another one with ω = 11 PHz (κε = −0.4619). For the latter 
case, according to Table 1 and §4.2, we have to change the PML coefficients. We take α1 = ei2π/25 (top corner) and α2 =
α3 = ei2π/33 (bottom corners). All the other parameters are set as previously (see the beginning of §4). In Fig. 13, we work 
with ω = 9 PHz (κε = −1.1838). We observe that the energy balance (41) seems to be satisfied. There is a small mismatch 
between Jext and 

∑
n Jn . Probably, this is because we use the first method described above to assess the coefficients bn

appearing in the definition of Jn . Remark that due to the symmetry of the geometry, the results are symmetric (the left 
and right corners play a similar role). One notice that for αinc = ±π/2 (90°and 270°), there is no trapped energy at the 
top corner. This was expected. Indeed, for this setting, according to Table 1, we know that the black-hole singularities are 
skew-symmetric with respect to the bisector of cn . But for these two particular incidences, uinc is symmetric with respect 
to the top corner’s bisector. As a consequence, there is no excitation of the outgoing singularity. The same phenomenon 
occurs for the other corners when αinc corresponds to the direction of the bisector of cn .

In Fig. 14, we work with ω = 11 PHz (κε = −0.4619). When κε > −1, according to Table 1, the black-hole waves are 
symmetric. This explains why this time, we observe that the energy trapped at the corner cn (n = 1, 2, 3) is maximum when 
αinc coincides with the direction of the bisector of cn .

5. Discussion and prospects

Let us conclude this paper by making some comments regarding this new numerical method:

• We point out that the method with PMLs at the corners is also interesting when the metal is slightly absorbing. In 
this case, the scattering problem is well-posed in the usual H1 framework like when the contrast κε lies outside the 
critical interval. This is due to the fact that there is no oscillating singularities. However, when the dissipation is small, 
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Fig. 14. Left: sum of the energy fluxes at the corners (diamond) and energy flux through ∂D R (cross) with respect to αinc ∈ [0; 2π) in polar coordinates. 
Right: energy flux at the top corner (cross), left corner (square), right corner (circle) in polar coordinates. The frequency is set to ω = 11 PHz (κε = −0.4619).

Fig. 15. Up (resp. bottom): solutions without (resp. with) PMLs. From left to right, around 19 400, 28 000, 42 300 and 76 000 degrees of freedom.

the field can be very singular (according to Proposition 3, we know that limγ →0 sγ = sout where γ corresponds to the 
dissipation). As a consequence, it is necessary to use a very refined mesh to obtain a good approximation of the solution. 
Adding some PMLs at the corners allows to attenuate the singularities without producing spurious reflections. In Fig. 15, 
we use the lossy Drude’s model (see (2)) at the frequency ω = 6 PHz for silver. It yields εγ

m(ω) = −3.9193 + 0.0926i. 
We set the other parameters as previously (with PML coefficients as in the case ω = 9 PHz). We observe that when the 
mesh is refined, the numerical solution is much more stable with PMLs than without them. Note that instabilities with 
respect to dissipation have been already pointed out in [26].

• In practice, the technique with PMLs turns out to be very efficient to obtain a good approximation of the plasmonic 
waves propagating at the interface. Concerning the justification of the method, several questions remain open. First, 
one needs to control the error made when truncating the PMLs. This is not straightforward because of the change of 
sign of ε. However, using Kondratiev spaces and working for example like in [28], one can reasonably hope to establish 
such a result. The problem of the justification of the convergence of the finite element methods seems more intricate. 
Without PMLs, the existing proofs (with sign-changing ε) require assumptions on meshes (see [19,7]) and the question 
of knowing whether or not these assumptions are necessary is not solved. Here, due to the complex scaling z :→ z/α of 
the PMLs, it is not even clear that the continuous problem admits a unique solution.
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• Some efforts will be devoted to the singularity extraction techniques for problems with a sign-changing coefficient, 
namely the accurate computation of the coefficient b in (47), in the spirit of [1,25,45].
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Appendix A

A.1. Proof of decomposition (17)

Let B denote the operator associated with the sesquilinear form b(·, ·) defined by (15). Assume that the contrast κε =
εm/εd satisfies κε /∈ Ic = [−b%; −1/b%] where b% has been set in (9). We prove here the existence of a bounded operator 
T : H1(D R) → H1(D R) such that

B ◦ T= I + K (decomposition (17))

where I : H1(D R) → H1(D R) is an isomorphism and where K : H1(D R) → H1(D R) is a compact operator.
Let us introduce R0 such that R0 < R and $m ⊂ D R0 . For a given w ∈ H1

0(D R0 ), we consider the following variational 
problem:

∣∣∣∣∣∣∣∣

Find uw ∈ H1
0(R0) such that:

∫

D R0

ε−1∇uw · ∇v dx + i
∫

D R0

uw v dx = ε−1
d (w, v)H1(D R0 ), ∀v ∈ H1

0(R0).
(48)

The uniqueness of the solution is obvious (taking w = 0 and the imaginary part of the identity for v = uw ). Then, using the 
hypothesis on the contrast κε , we deduce from Theorem 4.3 and Remark 4.4 of [9] that Problem (48) is well-posed. As a 
consequence, the map T0 : H1

0(D R0 ) → H1
0(D R0 ) such that T0 w = uw , where uw is the solution to (48), is an isomorphism.

Introduce a smooth cut-off function χ such that χ = 1 in a neighborhood of $m and χ = 0 outside D R0 . Note that for 
all u, v ∈ H1(D R), by definition of T0, one has:

∫

D R

ε−1∇(T0(χu)) · ∇(χ v)dx + i
∫

D R

T0(χu)χ v dx = ε−1
d (χu,χ v)H1(D R ). (49)

Now, we define the bounded operator T : H1(D R) → H1(D R) such that for all u ∈ H1(D R),

Tu = χT0(χu) + (1 − χ2)u.

A direct calculation yields

b(χT0(χu), v) = ε−1
d (χu,χ v)H1(D R ) + c1(u, v),

b((1 − χ2)u, v) =
∫

D R

ε−1
d (1 − χ2)∇u · ∇v dx + c2(u, v) + ε−1

d

+∞∑

n=−∞

n
R

un vn

with

c1(u, v) =
∫

D R

ε−1∇χ · (T0(χu)∇v − ∇(T0(χu)) v)dx − i
∫

D R

T0(χu)χ v dx,

c2(u, v) =
∫

D R

ε−1
d ∇(1 − χ2) · (u∇v)dx.

Finally, setting

c0(u, v) =
∫

D R

ε−1
d ((χ2 + |∇χ |2 − 1)u v + χ∇χ · (∇u v + u∇v))dx,

we get the following identity:
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b(Tu, v) = ε−1
d (u, v)H1(D R ) + c0(u, v) + c1(u, v) + c2(u, v) + ε−1

d

+∞∑

n=−∞

n
R

un vn.

We deduce that B ◦T = I +K where I , K : H1(D R) → H1(D R) are the bounded operators such that, for all u, v ∈ H1(D R),

(Iu, v)H1(D R ) = ε−1
d (u, v)H1(D R ) + ε−1

d

+∞∑

n=−∞

n
R

un vn

(Ku, v)H1(D R ) = c0(u, v) + c1(u, v) + c2(u, v).

Now, using classical techniques (in particular, the Lax–Milgram theorem and the compact embedding of H1(D R) in L2(D R)), 
one can show that I is an isomorphism while K is a compact operator. Therefore, the proof of (17) is complete.

A.2. Proof of Proposition 2

We reproduce a calculus which can be found in [22] or [17, Proposition 3.2.8]. Classically, one can show that 0 is an 
eigenfunction associated with the eigenvalue λ ∈ 2sym (resp. λ ∈ 2skew) for (20) if and only if it verifies the transmission 
problem:

∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ2 + ∂2
θ )0 = 0 on (0;φ/2)

(λ2 + ∂2
θ )0 = 0 on (φ/2;π)

0(φ−/2) = 0(φ+/2), ε−1
m ∂θ0(φ−/2) = ε−1

d ∂θ0(φ+/2)

∂θ0(0) = ∂θ0(π) = 0 (resp. 0(0) = 0(π) = 0)

0(θ) = 0(−θ) (resp. 0(θ) = −0(−θ)) on (−π ;0).

Looking for solutions under the form

0(θ) = A cos(λθ) on (0;φ/2) and 0(θ) = B cos(λ(θ − π)) on (φ/2;π),

( resp. 0(θ) = C sin(λθ) on (0;φ/2) and 0(θ) = D sin(λ(θ − π)) on (φ/2;π) ),

where (A, B) ̸= (0, 0), (C, D) ̸= (0, 0) are some constants, we obtain that λ belongs to 2 \ {0} if and only if it satisfies

κ−1
ε tan(λφ/2) = tan(λ(φ/2 − π)) (resp. κε tan(λφ/2) = tan(λ(φ/2 − π))).

A.3. Proof of Lemma A

The next lemma is a technical result needed in the selection of the outgoing solution (see §3.3).

Lemma A. Assume that κε ∈ (−b%; −1/b%) \ {−1}. Let (±iη, 0) be a solution of (20), with 0 equal to (22) or (23) according to the 
situation. Then we have

π∫

−π

ε−102 dθ > 0 if κε ∈ (−b%;−1) and

π∫

−π

ε−102 dθ < 0 if κε ∈ (−1;−1/b%).

Proof. Set ℵm :=
∫

|θ |<φ/2

02dθ and ℵd :=
∫

φ/2<|θ |<π

02dθ .

⋆ Pick some κε ∈ (−b%; −1). We want to show that ε−1
m ℵm + ε−1

d ℵd > 0. Since ε−1
m ℵm + ε−1

d ℵd = ε−1
m (ℵm + κεℵd) >

ε−1
m (ℵm − ℵd), it is enough to prove that ℵm − ℵd < 0.

– First, assume that 0 < φ < π . Explicit calculus using the expression of 0 given by (22) yields

ℵm = sinh(ηφ) − (ηφ)

η(cosh(ηφ) − 1)
and ℵd = sinh(η(2π − φ)) − (η(2π − φ))

η(cosh(η(2π − φ)) − 1)
.

Define h(t) := (sinh t − t)/(cosh t − 1). We have η(ℵm − ℵd) = h(ηφ) − h(η(2π − φ)), so it is sufficient to show that 
h is an increasing function on (0; +∞). One computes h′(t) = (2 − 2 cosh t + t sinh t)/(cosh t − 1)2. Define g(t) = 2 −
2 cosh t + t sinh t . One finds g′(t) = − sinh t + t cosh t and g′′(t) = t sinh t . One deduces, successively, g′ > 0 and h′ > 0. 
Thus h is indeed an increasing function on (0; +∞).
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– When π < φ < 2π , using the expression (23), one finds

ℵm = sinh(ηφ) + (ηφ)

η(cosh(ηφ) + 1)
and ℵd = sinh(η(2π − φ)) + (η(2π − φ))

η(cosh(η(2π − φ)) + 1)
.

Introduce ĥ(t) := (sinh t + t)/(cosh t + 1). We have η(ℵm − ℵd) = ĥ(ηφ) − ĥ(η(2π − φ)), so it is sufficient to prove 
that ĥ is a decreasing function on (0; +∞). One computes ĥ′(t) = (2 + 2 cosh t − t sinh t)/(cosh t + 1)2. Define ĝ(t) =
2 +2 cosh t −t sinh t . One finds ĝ′(t) = sinh t −t cosh t and ĝ′′(t) = −t sinh t . One deduces, successively, ĝ′ < 0 and ĥ′ < 0. 
Thus ĥ is indeed a decreasing function on (0; +∞).

⋆ The same approach, mutatis mutandis, shows that 
π∫

−π

ε−102 dθ < 0 when κε ∈ (−1; −1/b%). ✷

A.4. Details of the proof of Lemma 3

Let u = b sout + ũ, with b ∈ C, ũ ∈ H1
loc(R

2), be a solution of (7). Lemma A and (28) yield

ℑm
( ∫

∂ Dρ

ε−1∂ru u dσ
)

= −|b|2η
∣∣∣

π∫

−π

ε−102 dθ
∣∣∣ + ℑm

( ∫

∂ Dρ

ε−1(b ∂r sout ũ + b ∂r ũ sout + ∂r ũ ũ)dσ
)
.

To obtain the result of Lemma 3, we need to show that the second term of the right-hand side of the above equation tends 
to zero as ρ → 0. To proceed, let us establish for example that

lim
ρ→0

∫

∂ Dρ

ε−1 ∂r sout ũ dσ = 0, (50)

the other terms being handled in the same way. Using Green’s formula, we would like to write
∫

∂ Dρ

ε−1 ∂r soutũ dσ =
∫

Dρ

ε−1 ∇sout · ∇ũ dx. (51)

The difficulty here is that sout /∈ H1(Dρ). But we can prove [29,12] that ũ has more regularity than H1 regularity. More 
precisely, the behavior of ũ at the corner is driven by the less regular singularity associated with singular exponents λ such 
that ℜe λ > 0. Set

β0 := min{ℜe λ|λ ∈ 2 and ℜe λ > 0}.
We can show that r−β∇ũ ∈ L2(D R) for β < β0 (see [12]), which implies, for all 0 < β < β0,

∣∣∣
∫

Dρ

ε−1 ∇sout · ∇ũ dx
∣∣∣ ≤ C

(∫

Dρ

r2β |∇sout|2 dx
)1/2(∫

Dρ

r−2β |∇ũ|2 dx
)1/2

. (52)

Since there holds,
∫

Dρ

r2β |∇sout|2 dx ≤ ρβ

∫

Dρ

rβ |∇sout|2 dx −→
ρ→0

0,

combining (51)–(52) leads to (50).
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