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ABSTRACT

The neutron transport equation can be used to model the physics of the nuclear reactor
core. Its solution depends on several variables and requires a lot of high precision com-
putations. One can simplify this model to obtain the SPN equation for a generalized
eigenvalue problem. In order to solve this eigenvalue problem, we usually use the inverse
power iteration by solving a source problem at each iteration. Classically, this problem
can be recast in a mixed variational form, and then discretized by using the Raviart-
Thomas-Nédélec Finite Element. In this article, we focus on the steady-state diffusion
equation with heterogeneous coefficients discretized on Cartesian meshes. In this situa-
tion, it is expected that the solution has low regularity. Therefore, it is necessary to refine
at the singular regions to get better accuracy. The Adaptive Mesh Refinement (AMR) is
one of the most effective ways to do that and to improve the computational time. The
main ingredient for the refinement techniques is the use of a posteriori error estimates,
which gives a rigorous upper bound of the error between the exact and numerical solu-
tion. This indicator allows to refine the mesh in the regions where the error is large. In this
work, some mesh refinement strategies are proposed on the Cartesian mesh for the source
problem. Moreover, we numerically investigate an algorithm which combines the AMR
process with the inverse power iteration to handle the generalized eigenvalue problem.

KEYWORDS: Neutronics, diffusion equation, eigenvalue problem, a posteriori error estimates, adaptive
mesh refinement.

1. Introduction

Numerical simulations of nuclear reactor core are generally expensive as they require the exact
solution of the neutron transport equation. These simulations are computationally expensive since
one has to deal with many variables such as the neutron position in space, the motion direction and
neutron energy. In this work, we use the multi-group theory for the discretization of the energy
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variable and we focus on the steady state multi-group neutron diffusion equation. However, we
choose to present the results in the form of the multi-group SPN equation since this extension is
straightforward. In the time independent case, the multi-group SPN equation corresponds to a
generalized eigenvalue problem:

To p + grad (Hφ) = 0, inR,
H>div (p) + Te φ = 1

keff
Mfφ, inR,

φ|∂R = 0, on ∂R,
(1)

where R is a bounded and open subset of Rd with d = 1, 2, 3. Let G be the number of energy
group and N an odd number which represents for the order of the SPN equation. The number of
odd and even moments is N̂ = N+1

2
. The vector φ and p represent the even and odd components

of the multi-group flux defined by:

φ = (φ1, . . . , φG)> ∈ RN̂×G with φg =
(
φg0, φ

g
2, . . . , φ

g
N−1

)> ∈ RN̂ ,

p = (p1, . . . ,pG)> ∈ Rd×N̂×G with pg = (pg1,p
g
3, . . . ,p

g
N)> ∈ Rd×N̂ .

The operators To, Te, Mf and H are defined by block matrices:

(To)g,g′ =

{
Tgo for g = g′

−Sg′→go for g 6= g′
, (Te)g,g′ =

{
Tge for g = g′

−Sg′→ge for g 6= g′
,

(Mf )g,g′ = χgMg′

f , (H)g,g′ = δg,g′Hg.

In the above definition, χg is the fission spectrum and the blocks Tgo, Tge, Sg
′→g
o , Sg′→ge , Mg′

f , Hg are
given by

Tgo = diag
[
(t2n+1Σg

r,2n+1)N̂n=0

]
, Tge = diag

[
(t2nΣg

r,2n)N̂n=0

]
, Sg′→go = diag

[
(t2n+1Σg′→g

s,2n+1)N̂n=0

]
,

Sge = diag
[
(t2nΣg′→g

s,2n )N̂n=0

]
, Mg′

f =
(
t0ν

g′Σg′

f δ2m,0δ2n,0

)N̂
n,m=0

, Hg = (δn,m + δn,m−1)N̂n,m=0

where Σg
t is the total cross section, Σg′→g

s is the scattering cross section and the removal macro-
scopic cross sections defined by Σg

r,n(x) = Σg
t,n(x) − Σg→g

s,n (x). The notation tn stands for the
normalization factor defined by t0 = 1 and tn = 4n2−1

ntn−1
for n > 0. The notation νg is the number

of neutron emitted per fission, and Σg
f is the macroscopic fission cross section. The multiplica-

tion factor keff is the inverse of the eigenvalue and characterizes the physical state of the core
reactor. In this work, we focus on the development of the project APOLLO3, a shared plat-
form among CEA, FRAMATOME and EDF, which includes different deterministic solvers for
the neutron transport equation. Particularly, we are interested in the MINOS solver based on the
mixed Raviart-Thomas-Nedelec finite element method and implemented on Cartesian and hexag-
onal grids for the multi-group SPN equation [1]. Since the removal matrices To and Te are usually
heterogeneous (piecewise constant), the solution of the SPN equation may have some singulari-
ties which limit the precision and convergence of the solution [2]. It is well known that the mesh
subdivision method is one of the most effective ways to treat this problem [3–5].
The purpose of this work is to develop an adaptive solution for the eigenvalue problem. In partic-
ular, this article is organized as follows. In Section 2, we present the Adaptive Mesh Refinement
(AMR) strategies for the source problem by using a posteriori error estimators. Some marker cell
strategies on Cartesian mesh are also detailed in this section. Next, we propose a splitting algo-
rithm for the eigenvalue problem in Section 3. Some numerical test cases are shown in Section 4
to illustrate our purposes. Finally, concluding remarks in Section 5 complete the study.
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2. Adaptive mesh refinement strategies

To be convenient, let us introduce the following function spaces: Q = H(div ,R)N̂×G, V =

H1
0 (R)N̂×G, V ′ = H−1(R)N̂×G, L = L2(R)N̂×G, X = Q× L and the following operators:

◦ :


RN̂×G × RN̂×G → R

(x, y)→
G∑
g=1

N̂∑
n=1

xgny
g
n

, � :


(Rd)N̂×G × (Rd)N̂×G → R

(x,y)→
G∑
g=1

N̂∑
n=1

xgn · ygn.

Let Xh be the discrete space associated to the mixed Raviart-Thomas finite elements. We denote
ζh = (ph, φh) ∈ Xh and ξh = (qh, ψh) ∈ Xh. The discrete variational formulation associated to
Problem (1) reads:

Find (ζh, k
h
eff) ∈ Xh × R+such that for all ξh ∈ Xh, B(ζh, ξh) =

1

kh
eff

f(ζh, ξh), (2)

where the bilinear form B(ζh, ξh) and f(ζh, ξh) are respectively defined by

B(ζh, ξh) :=

∫
R
Toph � qh −

∫
R
φh ◦H>div qh +

∫
R
ψh ◦H>divph +

∫
R
Teφh ◦ ψh,

f(ζh, ξh) :=

∫
R
Mfφh ◦ ψh.

The inverse power iteration algorithm is a well known method for the resolution of eigenvalue
problem. At iteration m + 1, we deduce (pm+1, φm+1, km+1

eff ) from (pm, φm, km
eff) by solving the

following source problem: To pm+1 + grad (Hφm+1) = 0, inR,
H>div (pm+1) + Te φm+1 = Sm, inR,

φm+1|∂R = 0, on ∂R,
(3)

where the source term is defined by Sm = (km
eff)−1Mfφ

m. This iterative process is stopped when
the relative error between the current and previous iteration of the flux as well as the multiplication
factor keff are smaller than the given threshold numbers. In this section, we aim to illustrate the
adaptive mesh refinement strategies for the source problem (3). In general, the h-refinement is to
generate a sequence of mesh Thk from the initial mesh Th0 by using the AMR strategy which is in
general an iterative loop where at each iteration, we consider the four modules:

SOLVE→ ESTIMATE→MARK→ REFINE.

In particular, the module SOLVE is the mixed Raviart-Thomas finite element discretization on
the mesh Thk of the source problem (3). In module ESTIMATE, the ηK local error indicator on
each element is obtained from a posteriori error estimate for the discrete solution. The purpose
of the module MARK is to select a set of elements with large error to be refined. In the module
REFINE, we use some rule for dividing the marked cells such that the obtained mesh Thk+1

is still
conforming. We now detail how we obtain the error indicators for the source problem and some
marker cell strategies on Cartesian mesh for the MINOS solver.
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2.1. A posteriori error estimate for the source problem

Let us define the linear form fS(ξ) :=
∫
R Sf ◦ψh with a given source term Sf ∈ V ′. The variational

formulation of the source problem writes,

Find ζ = (p, φ) ∈ X such that for all ξ = (q, ψ) ∈ X, B(ζ, ξ) = fS(ξ) (4)

The associated discrete variational formulation reads,

Find ζh = (ph, φh) ∈ Xh such that for all ξh = (qh, ψh) ∈ Xh, B(ζh, ξh) = fS(ξh). (5)

We now define the norm on X by ‖ζ‖2
S :=

∑
K∈Th

‖dT1/2
o p‖2

K + ‖dT1/2
e φ‖2

K + ‖dT−1/2
e H>divp‖2

K

where the notation dT stands for the diagonal of the matrix T. Finally, let us define the following
norm

|ζ|+ = sup
ξ∈X,||ξ||S≤1

B(ζ, ξ).

In the mixed dual Raviart-Thomas finite element method, we only have φh ∈ Lh. In particular,
the discrete flux is a priori not in V . In order to find a posteriori error estimate for the source
problem, it is crucial to introduce a discrete potential reconstruction flux φ̃h ∈ V by using the
average operator (see [6] and references therein). Next, let ζ and ζh be respectively the solution
of (4) and (5). Let ζ̃h = (ph, φ̃h) be a reconstruction of ζh in Q × V . For any K ∈ Th, we
define respectively the residual estimator, flux estimator, symmetric non-conforming estimator and
non-symmetric non-conforming estimator by:

ηR,K =
∥∥∥dT−1/2

e (Sf −H>div (ph)− Teφh)
∥∥∥
K
, ηF,K =

∥∥∥dT−1/2
o

(
Toph + grad (Hφ̃h)

)∥∥∥
K

ηNC,K =
∥∥∥dT1/2

e (φ̃h − φh)
∥∥∥
K
, ηNC?,K =

∥∥∥dT−1/2
e Te(φ̃h − φh)

∥∥∥
K
.

Then it stands

|ζ − ζh|+ ≤

(∑
K∈Th

η2
R,K + η2

F,K

)1/2

+

(∑
K∈Th

η2
NC,K

)1/2

+ 2

(∑
K∈Th

η2
NC?,K

)1/2

. (6)

The proof of this results for the multi-group SPN equation is an extension of the one for the
diffusion one group equation proposed in [6, Chapter 8]. For the sake of brevity, details of the
numerical analysis for the diffusion equation are given in the companion paper [7].

2.2. Refinement strategies on Cartesian mesh

The AMR method is usually applied to the non-structured mesh like triangular grids and the marker
strategy is based on the total error indicator on each cell ηK =

√
η2
R,K + η2

F,K + η2
NC,K + 4η2

NC?,K
.

For example, the classical Dorfler’s marking strategy aims to select the minimal cardinality of the
subset Shk such that

∑
K∈Shk

ηK ≥ θ
∑

K∈Thk
ηK for a fixed threshold number 0 < θ ≤ 1. In this

article, we focus on the solvers which use the structured meshes like the MINOS solver. In this
case, to ensure the conformity of the mesh, it is essential to refine the mesh according to the whole
line in each direction (x, y, z) which contain the selected cells. As a consequence, it is obvious to
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see that we use the error indicator of just some selected cells to refine the other cells located in the
same line for a given direction. Therefore, it is extremely important to point out some other marker
cell strategies based on more information. Instead of using the classical bulk chasing (Dorfler’s
marking strategy) defined on cell, we modify it to propose the construction of some other error
indicators according to the lines of each direction and also on the ”cross” value (the total error
indicators of all the lines). In order to preserve Cartesian mesh structure, we just simply refine the
selected lines by dividing into two lines.

3. Splitting algorithm for the generalized eigenvalue problem

In order to combine the AMR process with the power inverse iteration, a first approach is the
combining algorithm where at each outer iteration, the AMR process is taken into account for the
source problem [6, Chapter 8]. In this work, we would like to investigate the splitting algorithm
is illustrated in Algorithm 1: The first process is the power inverse iteration for the eigenvalue
problem and the second one is the AMR strategy for the source problem. The implementation of
the splitting algorithm is easier than the combining one since we can use the solver of the problem
(2) as a black box. The stopping criterion of the algorithm is usually defined by the maximum
of the error indicators. However, for comparison purposes, if we have the reference value of the
multiplication factor keff , we can define another stopping criterion based on the relative error given
by εkeff

=
|kh

eff−keff |
keff

where kh
eff is the numerical multiplication factor.

Algorithm 1: The splitting algorithm
Input: The threshold numbers EAMR or EAccuracy and the maximum of the refinement nmax

Output: The solution (phk , φhk , k
hk
eff) associated to the mesh Thk .

1 begin
2 Set k ← 0 and the initial mesh Thk
3 Solve Problem (2) on mesh Thk by the power inverse iteration

4 Set the counter refinement parameter n = 0
5 Solve Problem (5) on the mesh Thk+n

by using module SOLVE
6 Evaluate the local error indicator ηK in the module ESTIMATE
7 if max(ηK) > EAMR or εkeff

> EAccuracy then
8 Select the minimal subset Shk+n

of Thk+n
with the help of the module MARK

9 Using module REFINE to obtain a new mesh Thk+n+1
and then n← n+ 1

10 else
11 Stop the algorithm
12 end
13 if n ≤ nmax then

14 Go to line 5
15 else
16 Set k ← k + n and go to line 3
17 end
18 Return the solution (phk , φhk , k

hk
eff)

19 end
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4. Numerical results

4.1. The one group case

We present here a checkerboard test case for the one group diffusion equation on the domain of the
computationR = (0, 100)2. The diffusion coefficient D = (3Σt)

−1 is given as in Figure 1(a) with
D = 5 in region and D = 1 in region. The fission cross section Σf = 1 and the absorption
cross section Σa = Σt − Σs = 1. This test aims at investigating the effect of some marker
strategies in the discussion above. Therefore, we compare these marker strategies for the splitting
algorithm with nmax = 1, θ = 0.5 and the lowest order Raviart-Thomas finite element RT0. We
fix EAccuracy = 10−5 and the reference eigenvalue is kreff = 0.995194 which is obtained from the
computation on the uniform mesh 1000×1000. Figure 1(b) clearly shows that the direction marker
is much better than the element and cross marker method since it requires less elements to reach
the target accuracy. It was observed that the uniform mesh needs 32400 elements to obtain the
same accuracy. Moreover, Figure 1(c)-1(e) illustrate that there are more refinement at singularities
with the direction marker strategy which helps to improve the accuracy of the solution.

(a) The coefficient D
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Figure 1: The diffusion coefficient, the evolution of the total number of element during the
splitting algorithm and the discrete solution φh on refined mesh.
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4.2. The multi-group case

We consider here the small FBR core proposed in [8] with 4 energy groups and where the control
rod is withdrawn (model 2-case 1). However, we impose zero flux boundary condition on the
boundary ∂R. Figure 2 shows the behavior of all error components. As can be seen, the structures
of ηNC?,K and the total error ηK are very similar. Therefore, the non-conforming estimator ηNC?,K

is the main contributor to the error for this benchmark test case. Figure 3 shows some refined
meshes of the refinement process.

(a) ηR,K (b) ηF,K (c) ηNC,K

(d) ηNC?,K (e) ηK

Errors min max

ηR,K 2.20× 10−9 4.2× 10−5

ηF,K 9.96× 10−5 0.503
ηNC,K 6.67× 10−4 0.327
ηNC?,K 3.47× 10−4 0.226
ηK 9.67× 10−4 0.633

(f) Range of indicators

Figure 2: Error indicators with RT0.

Table 1: Data of adaptive mesh refinement by using direction marker method

Iteration Number of elements max
K∈Th

ηK keff |R|/ min
K∈Th

|K|

0 23520 0.632849 0.96405 23520
1 67200 0.321258 (max η0K/2) 0.964081 188160
2 205204 0.119536 (max η1K/2.7) 0.963956 1.50528× 106

3 599343 0.053853 (max η2K/2.2) 0.963818 1.20422× 107

4 1813560 0.028126 (max η3K/1.9) 0.963686 1.20422× 107

5 5110200 0.011569 (max η4K/2.4) 0.963669 9.6338× 107

Since there is no analytical value for keff , the stopping criterion is given by EAMR = 0.02. The
numerical multiplication factor and the total number of element are given in Table 1.
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(a) Th0 (b) Th1 (c) Th2

Figure 3: Adaptive meshes with direction marker method.

5. Conclusion

In this work, we propose an adaptive mesh refinement strategy for the neutron diffusion equation
which relies on a posteriori error estimators for the source problem and a splitting approach to
handle the generalized eigenvalue problem. Some marker cell strategies on the Cartesian mesh
are also investigated and the direction marker method is the best candidate. Future work will
be dedicated to the coupling between a posteriori error estimate and non-matching grid domain
decomposition method to have locally refinement one each subdomain.
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