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The solution of Maxwell’s equations in a non-convex polyhedral domain is less regular than in a smooth or
convex polyhedral domain. In this paper we show that this solution can be decomposed into the orthogonal
sum of a singular part and a regular part, and we give a characterization of the singular part. We also prove
that the decomposition is linked to the one associated to the scalar Laplacian. Copyright ( 1999 John
Wiley & Sons, Ltd.
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1. Introduction

When solving Maxwell’s equations with regular source terms in a non-convex
polygonal or polyhedral domain (with Lipschitz continuous boundary) the solutions,
instead of being in H1())3 as in the case of a convex domain, are only in
H(curl, ))WH(div, )). In the same way, when solving a problem involving the scalar
Laplace operator with data in ¸2 ()), the solution instead of being in H2 ()) as in the
regular case (convex polygonal or polyhedral, or with a smooth boundary) is only in
H1`s()), with 0(s(1. Grisvard [10] showed that a solution of the scalar Laplace
operator in the general case could be decomposed into the sum of a regular part and
a singular part. This decomposition is based on a decomposition of ¸2()) into the sum
of the image space of the regular parts and its orthogonal. In the case of a polygonal
domain of R2, Grisvard [11] completely characterized these two spaces; starting from
this result, we introduced an orthogonal decomposition of the solution of Maxwell’s
equations and proposed a method for its numerical computation [1, 2]. This method
can be generalized to a polyhedral domain with Lipschitz continuous boundary



provided an orthogonal decomposition of ¸2 ()) can be obtained and each of its terms
can be fully described.

In this article we would like to generalize the results obtained in [1, 2] to the
three-dimensional case, proving in particular that the solution of Maxwell’s equations
can also be decomposed into the orthogonal sum of a regular term and a singular
term. We shall show that this decomposition is still linked to the decomposition of
¸2 ()) associated to the scalar Laplace operator.

The article is organized as follows. First, we shall recall the characterization of the
orthogonal decomposition of ¸2()) in the case of a non-convex polyhedral domain
) with Lipschitz continuous boundary obtained by Assous and Ciarlet [3]. Then for
a model problem associated to the steady-state Maxwell equations, we shall introduce
a decomposition of the space of solutions, which will enable us to characterize the
singular solutions as well as the regular solutions.

In the last part, we obtain results that are complementary to those obtained by
Costabel and Dauge [6], who worked on the explicit study of the singular part of the
solution. In this spirit, Bonnet—Ben Dhia et al. [4] have recently worked on the
solution of the frequential Maxwell equations by a regularizing method that can be
related to the theory developed by Costabel and Dauge. The originality of our
approach lies on the one hand, on the theoretical analysis of the decomposition of
¸2 ()) and, on the other hand, in the introduction of orthogonal decompositions,
which enable us among other things to describe the space of singular solutions more
precisely.

2. A characterization of the orthogonal of * (H2())WH1
0
())) in ¸2())

Let ) be a connected and simply connected polyhedral open set of R3 with
a connected and Lipschitz-continuous boundary !. We denote by (!

i
)
1)i)N

F
the

faces of !. Let n be the unit outward normal to !.
As we mentioned in the introduction, the space ¸2()) can be decomposed in the

following way.

Theorem 2.1. ¹he image by the ¸aplace operator of the space H2 ())WH1
0
()), denoted

by * (H2())WH1
0
())), is a closed subspace of ¸2()), and we have the following ortho-

gonal decomposition:

¸2 ())"* (H2())WH1
0
()))

¡

= N. (1)

Proof. This result was proved by Grisvard [10], and by Dauge [7]. K

One of the goals of this paper is to characterize the elements p of N. To that aim, we
denote by D(*, )) the space Mq3¸2 ()); *q3¸2())N.

By definition, each face !
j

is a polygon, hence its boundary !
j

is Lipschitz
continuous. For any point x3!

j
, we denote by o

j
(x) the distance of x to !

j
. We then

have the following definition (cf. [11]).
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Definition 2.1. H3 1@2(!
j
) is the set of functions f of H1@2(!

j
) such that f/Jo

j
also belongs

to ¸2(!
j
). ¼e denote by E f E

&,1/2,!
j
"(E f E21/2,!

j
#E f /Jo

j
E2
0,!j

)1@2 the associated norm.

Finally, we denote by H3 ~1@2(!
j
) the dual space of H3 1@2(!

j
).

Now, let us recall the theorem which is proved in Assous and Ciarlet [3].

Theorem 2.2. p3N if and only if

p3D(*, )), *p"0, p D!
i
"0 in H3 ~1@2(!

i
) for 1)i)N

F
.

The proof is based on several technical results, which we recall as we shall also need
them in the present paper, and on the classical theory developed by Gagliardo [8] and
Necas [12]. Let !

j
be a fixed face.

Proposition 2.1. (i) ¹he normal trace on !
j
mapping, g> g ) nD!

j
, is linear and continu-

ous from Mg3H1())3, g]nD!"0N into H3 1@2(!
j
).

(ii) ¹he trace of the normal derivative on !
j
mapping, u> (u/n)D!

j
, is linear and

continuous from H2 ())WH1
0
()) into H3 1@2(!

j
) .

Next, we define the space

H
j
())"Mv3H2())WH1

0
()), (u/n)D!

k
"0, for kOjN.

Proposition 2.2. ¸et k be an element of H3 1@2(!
j
). ¹hen there exists a lifting u belonging

to H
j
()) such that

u

n D!
j

"k.

Proposition 2.3. For a given face !
j
, there exists a constant C(!

j
) such that

∀k3H3 1@2(!
j
) , &u3H

j
()),

u

n D!
j

"k and EuE
2
)CEkE

&,1/2,!
j
.

Proposition 2.4. ¹he space H2 ()) is dense in D(*, )) endowed with the graph norm
EqE

D
"MEqE2

0
#E*qE2

0
N1@2 .

Proposition 2.5. ¼hen p belongs to D(*, )), we have pD!
i
3H3 ~1@2(!

i
) for all 1)i)N

F
.

In addition, for each face !
i
, there exists C

i
'0 such that

∀p3D(*, )), EpE
&,!1/2,!

i
)C

i
EpE

D
. (2)
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Moreover, the following integration by parts formula holds:

∀(p, v)3D (*, ))](H2())WH1
0
())),

P)
p*vdx!P)

v*pdx"+
i
TpD!

i
, A

v

nBD!
i
U

H
I ~1@2 (!i),HI 1@2 (!i)

. (3)

3. Application to Maxwell’s equations

3.1. The model problem

Consider

X"Mu3H (curl, ))WH(div, )), u]n"0 on !N,

the Hilbert space endowed with the canonical inner product of H(curl,))WH(div,))
and

»"Mu3H (curl,))WH(div, )), div u"0, u]n"0 on !N,

the Hilbert space endowed with the canonical inner product of H (curl,))WH (div,)).
Given a function g3¸2()), and a function f3¸2())3 verifying div f"0 and

f )n"0 on !, we consider the following problem:

Find u3H (curl,))WH (div,)) such that:

curl u"f in ), (4)

div u"g in ), (5)

u]n"0 on !. (6)

Theorem 3.1. ¸et f3¸2())3 with div f"0 and f ) n"0 on ! and g3¸2 ()). ¹hen
problem (4)—(6) admits a unique solution u3H (curl,))WH(div, )).

Proof. The proof can be based on the theory of mixed problems by introducing
a Lagrange multiplier for divergence-condition (5) (see [9]).

First, the solution of (4)—(6), if it exists, is unique, because from Weber [13], we
know that EvE

X
"MEdiv vE2

0
#Ecurl vE2

0
N1@2 is a norm equivalent to the canonical

norm on X. Then, it is also a solution of the variational problem (if p"0):
Find (u, p)3X]¸2()) such that

P)
curl u ) curl v dx#P)

pdiv v dx"P)
f ) curl vdx ∀v3X, (7)

P)
div u qdx"P)

gqdx ∀q3¸2()). (8)

So there remains to prove that variational problem (7)—(8) has a unique solution. We
shall do this with the help of the inf-sup theory (see for example [9]). From Weber
[13], it is clear that the bilinear form (u, v)> :

)
curl u ) curl v dx is coercive on the
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kernel of the second bilinear form (8), that is ». Moreover the inf-sup condition is
satisfied. Indeed, let q3¸2()). Then taking v"+m with m3H1

0
()) such that *m"q:

we have v3X and

P)
qdiv vdx"P)

q*mdx"P)
q2 dx.

If follows that

inf
q|L2())

sup
v3X

:
)

q div vdx

EvE
X
EqE

0

*1.

Hence problem (7)—(8) has a unique solution. Finally, let v"+m with m3H1
0
()) such

that *m"p: we have v3X. Then (7) yields

P)
p2dx"0,

which enables us to conclude. Indeed, (7) becomes

P)
curl u ) curl v dx"P)

f ) curl vdx ∀v3X.

Whence curl(curl u!f)"0 and consequently, there exists u3H1()) such that
curl u!f"+u. In particular,

E+uE2
0
"P)

curl u )+udx!P)
f )+udx.

As u3X, the first term cancels by integration by parts. The same is true for the second
term, thanks to the hypotheses on f. The conclusion follows.

Remark 3.1. Equation (5) can be brought back to the case g"0 by letting
v"u!+t, t being the unique element of H1

0
()) verifying *t"g. The function

t verifies a Laplace problem (which has been studied by Grisvard [10]) that can be
solved with a classical variational formulation. In order to simplify our presentation
we shall suppose in the sequel that g"0.

3.2. Decomposition of the space of solutions

Let us introduce the space of regular solutions

X
R
"Mv3H1())3, v]n"0 on !N, X

R,j
"Mv3X

R
, v ) nD!

k
"0 for kOjN

and

»
R
"Mz3H1())3, div z"0, z]n"0 on !N.

Proposition 3.1. ¹he space X
R

and »
R

are closed, respectively, in X and ».
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Proof. Costabel showed in [5] that on the space X
R

we have the equality of the
bilinear forms

P)
+v : +wdx"P)

curl v ) curl wdx#P)
div vdiv wdx. (9)

This equality remains obviously verified on »
R
. The claimed results are a straightfor-

ward consequence. K

Lemma 3.1. ¸et !
j
be a given face and let k belong to H3 1@2(!

j
). ¹hen the extension kN of

k by 0 to ! is such that kJ 3H1@2(!). Moreover, this continuation operator is continuous
from H3 1@2(!

j
) to H1@2(!).

Proof. See the Appendix. K

We have the following results:

Proposition 3.2. ¸et k belong to H3 1@2(!
j
). ¹hen there exists a lifting v3X

R,j
such that

v ) nD!
j
"k.

Proof. A face !
j
being fixed, we consider k3H3 1@2(!

j
). We assume that the face !

j
is

embedded in the plane of equation x
3
"0. The reasoning is done in two stages:

(a) Case of a scalar function. From the Lemma above, the extension k8 of k by 0 to
! belongs to H1@2(! ). After Necas [12]:

&z
3
3H1()), z

3D!"kJ .

(b) Case of a vector function. If we take z
1
"z

2
"0 and denote by z"(z

1
, z

2
, z

3
)T,

we have z3H1())3. By construction,

zD!
k
"0 for kOj, z]nD!

j
"0 and z ) nD!

j
"k.

In other terms, z3X
R,j

is a lifting of k. K

Proposition 3.3. For a given face !
j
, there exists a constant C(!

j
) such that

∀k3H3 1@2(!
j
), &v3X

R,j
, v ) nD!

j
"k and EvE

1
)CEkE

&,1/2,!
j
.

Proof. We now consider the mapping:

X
R,j

PH3 1@2(!
j
) ,

v> v ) nD!
j
.

Due to Propositions 2.1 and 3.2, respectively, it is linear and continuous on the one
hand, and onto on the other hand. Moreover, its kernel is Mv3X

R,j
, v ) nD!

j
"0N"

H1
0
())3.
The mapping v> v ) nD!

j
is hence bijective, linear and continuous from X

R,j
/H1

0
())3

into H3 1@2(!
j
).
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The inverse mapping is thus also continuous owing to the Banach—Steinhaus
theorem. The conclusion follows. K

Proposition 3.4. ¼e have the following integration by parts formula:

∀(p, v)3D (*, ))]X
R
,

S+p, vTX{
R,XR

#P)
pdiv v dx"+

i

SpD!
i
, v ) nD!

i
TH3 ~1@2 (!

i
),H3 1@2(!

i
) . (10)

Proof. Let p3D(*, )). Due to Proposition 2.4 we can choose a sequence (p
k
)
k

of
elements of H2()) such that p

k
Pp in D(*, )). For v3X

R
, we have the relation

P)
+p

k
vdx#P)

p
k
div vdx"+

i
P!i

p
k D!

i
v ) nD!

i
dp

i
.

As v ) nD!
j
3H3 1@2(!

j
) thanks to Proposition 2.1, as we know from (2) that the trace

mapping is continuous from D (*, )) onto H3 ~1@2(!
j
) , we get

P!j
p
kD!j

v ) nD!
j
dp

j
PSpD!

j
, v ) nD!

j
TH3 ~1@2 (!

j
),H3 1@2(!

i
) .

On the other hand, as :
)
p
k
div vdxP:

)
pdiv v dx, the term :

)
+p

k
vdx admits a limit

when kP#R. Moreover, for kOl,

K P) (+p
k
!+p

l
) ) vdx K)Ep

k
!p

l
E
0
Ediv vE

0
#+

i

Ep
k
!p

l
E
&,!1/2,!

i
Ev ) nE

&,1/2,!
i

)CEp
k
!p

l
E
D
EvE

X
, (11)

due to Proposition 2.5 for (p
k
!p

l
) and Proposition 2.1 for v. Thus (+p

k
)
k
is a Cauchy

sequence in the dual space of X
R
. Hence it has a limit in this space. On the other hand,

+p
k
P+p in H~1())3.

As, moreover, H1
0
())3LX

R
, we have X@

R
LH~1())3 and, consequently, (+p

k
)
k
con-

verges in X@
R

to +p. The conclusion follows. K

In the case where the boundary ! is smooth or when the domain ) is convex we
have the equality »

R
"». But in our case »

R
is strictly included in ». Let us denote by

»
S

the orthogonal of »
R

in » for the norm v>Ecurl vE
0

(which is indeed a norm
equivalent to the canonical norm after [13]). We then have the decomposition into
a direct orthogonal sum

»"»
R

¡
=»

S
. (12)

We have the following characterization of the space »
S
:

Theorem 3.2. ¸et u be an element of ». ¹hen u belongs to »
S

if and only if there exists
a p3N, unique, such that curl curl u"+p in H

0
(curl,))@.
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Theorem 3.2 can be proved in the following way, which takes two steps. First we
have the theorem:

Theorem 3.3. ¸et u3». ¹hen u belongs to »
S

if and only if there exists a function
p3¸2()), unique, such that

P)
curl u ) curl v dx#P)

pdiv v dx"0 ∀v3X
R
.

Proof. Let u3», we have u3»
S

if and only if

P)
curl u ) curl z dx"0 ∀z3»

R
.

Consider then the linear form l defined by

l : v>Sl, vT"P)
curl u ) curl vdx

defined and continuous on X
R

which cancels on »
R
. In particular, it is a continuous

linear form on H1
0
())3 which cancels on

Mv3H1
0
())3 ; div v"0N .

Due to the de Rham theorem, there exists p3¸2 ()) (defined for the moment up to a
constant) such that

Sl, vT"!P)
pdiv v dx ∀v3H1

0
())3

that is

P)
curl u ) curl v dx#P)

pdiv v dx"0 ∀v3H1
0
())3.

Now let v3X
R
; first we assume that

P)
div vdx"0.

After [9], there exists a function w3H1
0
())3 such that div w"!div v.

Then the function v#w of X
R

verifies div(v#w)"0, so that v#w3»
R
. This

implies

P)
curl u ) curl(v#w) dx"0,

that is

P)
curl u ) curl v dx"!P)

curl u ) curl w dx"P)
pdiv wdx"!P)

pdiv v dx,
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or

P)
curl u ) curl v dx#P)

p div vdx"0.

Let us now consider any function v3X
R
. We introduce a function /

0
3H2())WH1

0
())

such that :)*/
0
dx"1 and set v

0
"+/

0
. Then

v
0
3X

R
, P)

div v
0
dx"1.

We then set

v8 "v!AP) div v dxBv
0
,

so that v8 3X
R

verifies

P)
div v8 dx"0.

Due to the previous considerations, we have

P)
curl u ) curl v8 dx#P)

pdiv v8 dx"0.

But curl v8 "curl v and so

P)
pdiv v8 dx"P)

pdiv v dx!A P) pdiv v
0
dxB P) div vdx

"P)
(p!j(p)) div vdx,

with

j(p)"P)
pdiv v

0
dx.

(We notice that p!j (p) is determined uniquely). Replacing p!j(p) by p, we finally
obtain that

P)
(curl u ) curl v#pdiv v) dx"0 ∀v3X

R
.

Conversely, if u3» satisfies this last relation, we have straightforwardly

P)
curl u ) curl z dx"0 ∀z3»

R
,

so that u3»
S
. Of course, the uniqueness of p comes immediately from the fact that

u3»
S

and the first part of the proof. K

The second step of the proof consists in a more explicit characterization of p.
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Lemma 3.2. ¸et u be an element of H
0
(curl, )). ¹hen p3¸2()) verifies

P)
(curl u ) curl v#pdiv v) dx"0 ∀v3X

R

if and only if

curl curl u"+p in H
0
(curl, ))@, and p3N.

Proof. Taking v3D ())3, we immediately have curl curl u"+p in H
0
(curl, ))@, as

curl(curl u)3curl¸2())3LH
0
(curl, ))@. Choosing v"+/, with a function /3H2 ())

WH1
0
()), we find

P)
p*/dx"0,

so that p3* (H2())WH1
0
()))M "N.

Conversely, if p3N verifies curl curl u"+p in H
0
(curl, ))@, we have on the one hand

Scurl curl u, vT
H0

(curl)@ , H
0
(curl)"P)

curl u ) curl v dx ∀v3X
R
. (13)

On the other hand (cf. (10) Proposition 3.4),

S+p, vT
X@

R,XR
"!P)

p div vdx#+
i

SpD!
i
, v ) nD!

i
T
H3 ~1@2(!i)

,
H3 1@2(!i)

"!P)
pdiv vdx ∀v3X

R
. (14)

But, as X
R

is dense in H
0
(curl, )), we have

∀v3X
R

S+p, vTX@
R,XR

"Scurl curl u, vT
H0

(curl)@ , H
0
(curl).

The result follows. K

Theorem 3.2 is then a straightforward consequence of Theorem 3.3 and of
Lemma 3.2.

Remark 3.2. We also notice that in our case X
R

is a genuine subspace of X. Let us
denote by X

S
the orthogonal of X

R
in X for the inner product

(v, w)>P)
curl v ) curl w dx#P)

div vdiv wdx.

We then have the following decomposition into a direct orthogonal sum:

X"X
R

M= X
S
. (15)

The solution of (4)—(6) can be written as u"u@
R
#u@

S
, with (u@

R
, u@

S
)3X

R
]X

S
. In

particular, for any q3H2())WH1
0
()), +q is orthogonal to u@

s
for the above inner
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product. This reads

P)
*qdiv u@

s
dx"0.

Hence, the definition of N yields that

div u@
s
3N.

Thus, if div u"0, it follows that the divergence of the regular part is singular, i.e.
div u@

R
3N.

K

3.3. Saddle-point formulation

We now come to a saddle-point formulation in H1())3 of the problem:
Find u3» solution of

curl u"f.

We have already seen, cf. (7)—(8), that u is a solution of

P)
curl u ) curl v dx"P)

f ) curl vdx ∀v3X (16)

P)
div u qdx"0 ∀q3¸2()). (17)

We use the decomposition

u"u
R
#u

S
, u

R
3»

R
, u

S
3»

S
.

To u
S

we associate the unique function p3N such that

curl curl u
S
"+p in H

0
(curl, ))@.

We can then characterize the pair (u
R
, p) which consists of the regular part u

R
and the

function p associated to the singular part u
S

of the solution u as the solution of a
saddle-point problem in the space X

R
]¸2()).

Theorem 3.4. ¹he pair (u
R
, p ) is the unique solution of the problem:

Find (u
R
, p )3X

R
]¸2()) solution of

P)
(curl u

R
) curl v!pdiv v) dx"P)

f ) curl v dx ∀v3X
R
, (18)

P)
div u

R
qdx"0 ∀q3¸2 ()). (19)

Proof. Let us verify that (u
R
, p) is indeed a solution of the previous problem. Due to

(16), we have

P)
(curl u

R
) curl v#curl u

S
) curl v) dx"P)

f ) curl v dx ∀v3X.
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Taking v3X
R

and regarding the definition of p, we have

P)
(curl u

R
) curl v!pdiv v) dx"P)

f ) curl v dx ∀v3X
R
,

which proves our claim.
It remains to verify the uniqueness of the solution. If (u

R
, p)3X

R
]¸2()) verifies

(18)—(19) with f"0, taking v"u
R
3»

R
, we obtain curl u

R
"0 and so, as

u> Ecurl uE
0

is a norm on », u
R
"0. Thus,

P)
pdiv vdx"0 ∀v3X

R
.

In particular, +p"0, hence p is a constant. Whence

p P)
div vdx"0 ∀v3X

R
,

so p"0. (see the next Proposition for the existence of vX
R

such that :) div vdxO0).
K

This is enough to prove Theorem 3.4. However, let us now also check the existence
and uniqueness of a solution to the saddle-point problem (18)—(19) using the inf—sup
theory. First, we have already seen that the bilinear form :

)
curl u

R
) curl vdx is

coercive on »
R
. Thus, all we need to check is the inf—sup condition:

sup
v3X

R

:) pdiv vdx

EvE
1

*bEpE
0

∀p3¸2()). (20)

This will follow straightforwardly from the following Proposition.

Proposition 3.5. ¹he divergence mapping from X
R
P¸2()) is surjective, i.e.

divX
R
"¸2()).

Proof. We have the inclusions

H1
0
())3LX

R
and +(H2())WH1

0
()))LX

R
.

Hence, as ¸2
0
())"divH1

0
()) (see [9]),

¸2
0
())LdivX

R
and * (H2())WH1

0
()))LdivX

R
.

We also have div X
R
L¸2()), so

¸2
0
())#* (H2())WH1

0
()))LdivX

R
L¸2()).

Moreover, obviously,

¸2 ())"¸2
0
())= R, (21)

the sum being orthogonal in ¸2()).
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Then, assuming for the moment that there exists /3H2())WH1
0
()) such that */

does not belong to ¸2
0
()), there exists a non-vanishing real constant c such that

*/"f#c with f3¸2
0
())"divH1

0
())3. Hence there exists g3H1

0
())3 such that

f"div g. Then y"+/!g, which belongs to X
R
, is such that div y"c. Now as c is

different from 0, any constant is the divergence of an element of X
R

(y multiplied by the
appropriate scalar).

Now as we already know that the elements of ¸2
0
()) are the divergence of an

element of X
R
, the result follows thanks to the decomposition (21).

To end the proof we now need to prove that there exists indeed /3H2())WH1
0
())

such that */ does not belong to ¸2
0
()). For this let us assume that

*(H2 ())WH1
0
()))L¸2

0
()) and come to a contradiction:

Take c3RC M0N. Then c3¸2())"* (H2())WH1
0
())) =N. Hence,

c"*/#p, /"H2())WH1
0
()), p3N,

and EcE2
0
"E*/E2

0
#EpE2

0
. We have, because of the hypothesis, :

)
*/ dx"0 and, due

to the orthogonality of the decomposition, :
)
p*/ dx"0. Then

EcE2
0
"P)

c(*/#p) dx"P)
cp dx"P)

(*/#p)p dx"P)
p2dx"EpE2

0
.

Hence E*/E2
0
"0, which implies that c3N. Then, from Theorem 2.2, cD!

j
"0 which

implies c"0. This contradicts our previous assumption, thus the Proposition is
proved. h

To conclude, we note that the divergence mapping is continuous from X
R

to ¸2 ()),
and that its kernel is »

R
. Thus, due to the Banach—Steinhaus theorem, the inverse

mapping is also continuous from ¸2()) to X
R
/»

R
, which yields (20).

Once the pair (u
R
, p) solution of the saddle-point problem (18)—(19) is obtained,

there remains to determine the singular part u
S

from p, that means solving

curl curl u
S
"+p in H

0
(curl, ))@ with u

S
3».

Of course, this problem admits a unique solution due to Theorem 3.2.

Appendix

The proof of Lemma 3.1 is based on [3].

Proof. Let k belong to H3 1@2(!
j
) and denote by k8 its extension by 0 to !. Recall (cf.

[12]) that k8 is an element of H1@2(! ) if and only if

k8 3¸2(! ), and Dk8 D
1@2,!"P! P!

Dk8 (x)!kJ (y) D2
Ex!yE3

dp(x) dp(y)(R

with dp a measure on !.
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The fact that k8 is an element of ¸2 (! ) is clear from its definition. Now,

Dk8 D
1@2,!"DkD

1@2,!j#2 +
kOj

P!j
Dk (x)D2 dp(x) P!k

dp (y)

Ex!yE3
.

as k8 vanishes outside of !
j
. The first term is bounded by assumption, so there remains

only to bound the second term. Let us consider a single term of the sum: if !1
j
W!1

k
"0,

then min(x, y)3!
j
]!

k
Ex!yE'd(!

j
, !

k
)'0. So we have to consider the case when their

intersection is not empty. In order to prove the Lemma, we have to bound the
right-hand side term by

CMEkE
1@2,!j

#DkD
&,1@2,!jN with DkD

&,1@2,!j"P!j
Dk (x) D2
o
j
(x)

dp(x)(R.

Now, according to [10], in the plane %
j
which contains !

j
, there exists a non-negative

constant C
j
such that

Pz3%
j
C!

j

dp(z)

Ex!zE3
)

C
j

o
j
(x)

.

To put things in the correct order, one has to consider some geometry.
If the diedric angle a

jk
between the two faces is larger than n/2, let us use the

orthogonal projection p
j

onto %
j

to map !
k

into %
j
: for all (x, y)3!

j
]!

k
,

Ex!yE'Ex!p
j
yE. Assume that p

j
(!

k
)W!

j
"0, then for x3!

j
,

P!k
dp(y)

Ex!yE3
(P!k

dp(y)

Ex!p
j
yE3

(C
j,k Pz3%

j
C!

j

dp(z)

Ex!zE3
(

C

o
j
(x)

.

This proves the Lemma in this case. If, on the other hand, p
j
(!

k
)W!

j
O0, one can

perform in the first place a C1-mapping m
k

of the face !
k

(in the plane %
k
), in such

a way that p
j
(m

k
(!

k
))W!

j
"0 and C

j,k
Ex!yE*Ex!m

k
yE, for all (x, y)3!

j
]!

k
.

The same reasoning can be applied again on m
k
(!

k
).

On the contrary, if a
jk

is smaller than or equal to n/2, then one has to consider the
rotation r

j
around the common boundary of the two faces, of angle (n!a

jk
) , to map

!
k

onto a region of %
j
. After some technical computations, one obtains that there

exists a nonnegative constant which depends on a
jk

such that, for all (x, y)3!
j
]!

k
,

C(a
jk
)Ex!yE'Ex!r

j
yE . The same kind of bound as above is thus obtained.

Note that, by construction, the constants which appear only depend on the
geometry of the domain ). This yields finally the existence of a constant C such that,

∀k3H3 1@2(!
j
) , k8 3H1@2(!) and Ek8 E

1@2,!)CEkE
&,1/2,!

j
. K
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