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Abstract: This thesis focuses on the
theoretical and numerical study of fast
methods to solve the equations of 3D
elastodynamics in frequency-domain, in
view of the optimization of the con-
vergence of seismic inversion problems.
We use the Boundary Element Method
(BEM) as discretization technique, in
association with the hierarchical matri-
ces (H-matrices) technique for the fast
solution of the resulting linear system.
The BEM is based on a boundary inte-
gral formulation which requires the dis-
cretization of the only domain bound-
aries. Thus, this method is well suited
to treat seismic wave propagation prob-
lems. A major drawback of classical
BEM is that it results in dense matri-
ces, which leads to high memory require-
ment (O(N2), if N is the number of
degrees of freedom) and computational
costs. Therefore, the simulation of real-
istic problems is limited by the number
of degrees of freedom. Several fast BEMs

have been developed to improve the com-
putational efficiency. We propose a fast
H-matrix based direct BEM solver. Even
though the concept of H-matrices is sim-
ple to understand, its implementation
requires significant algorithmic develop-
ments, such as the product of matrices
with different structures (compressed or
not). Another delicate point is the use of
the low-rank approximation techniques
in the context of vectorial problems. A
numerical study has been done to imple-
ment the H-matrix technique. An origi-
nal contribution of this work is the inves-
tigation of the expected low rank in the
case of oscillatory kernels. Furthermore,
we have analyzed the influence of the var-
ious parameters of the method in acous-
tics and 3D elastodynamics, in order to
calibrate their optimal values. Finally,
we have treated the problem of the prop-
agation of a seismic wave in an elastic
half-space subject to point force applied
to the surface.
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Titre : Solveurs fondés sur la méthode des H-matrices pour les équations intégrales
en élastodynamique 3D
Mots clés : Éléments Finis de Frontière, H-matrices, Approximation Adaptive
Croisée, Décomposition en Valeurs Singulières Aléatoire, Élastodynamique 3D,
Problèmes de Vibrations Forcées.

Résumé : Cette thèse porte sur
l’étude théorique et numérique des méth-
odes rapides pour résoudre les équa-
tions de l’élastodynamique 3D en do-
maine fréquentiel, en vue d’optimiser la
convergence des problèmes d’inversion
sismique. La méthode repose sur
l’utilisation des éléments finis de fron-
tière (BEM) pour la discrétisation et
sur les techniques de matrices hiérar-
chiques (H-matrices) pour l’accélération
de la résolution du système linéaire. La
BEM, qui correspond à la résolution
numérique des équations intégrales de
frontière, présente l’avantage de ne né-
cessiter que la discrétisation de la fron-
tière du domaine de calcul considéré. De
plus, elle permet de simuler des milieux
étendus en évitant la forte dispersion
numérique associée à d’autres schémas.
Cette méthode est donc bien adaptée
pour le calcul de la propagation d’ondes
sismiques. Les difficultés sont liées d’une
part aux besoins de stockage en mémoire
de l’ordre de N2 (N étant le nombre
de degrés de liberté) et d’autre part au
coût de la résolution. La simulation de
problèmes réalistes est donc limitée par
le nombre de degrés de liberté que peut
traiter sur une machine donnée. Afin de

dépasser ces limites, des méthodes BEMs
rapides ont été développées. Nous avons
proposé un solveur direct pour le BEMs
en utilisant une factorisation LU et un
stockage hiérarchique. Si le concept des
H-matrices est simple à comprendre, sa
mise en œuvre requiert des développe-
ments algorithmiques importants tels
que la gestion de la multiplication de ma-
trices représentées par des structures dif-
férentes (compressées ou non). Un autre
point délicat est l’utilisatioin des méth-
odes d’approximations par matrices com-
pressées (de rang faible) dans le cadre
des problèmes vectoriels. Une étude al-
gorithmique a donc été faite pour met-
tre en œuvre la méthode des H-matrices.
Nous avons par ailleurs estimé théorique-
ment le rang faible attendu pour les
noyaux oscillants, ce qui constitue une
nouveauté, et montré que la méthode
est utilisable en élastodynamique. En
outre on a étudié l’influence des divers
paramètres de la méthode en acoustique
et en élastodynamique 3D, à fin de cal-
ibrer leur valeurs numériques optimales.
En fin, nous avons étudié un problème de
propagation d’une onde sismique dans un
demi-espace élastique soumis à une force
ponctuelle en surface.
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Introduction

The modeling of seismic wave propagation to understand complex phenomena such
as site-effects or soil-structure interaction is an active area of research. The difficulties
are related to the complexity of the system to model and the large spatial scale of prob-
lems. The development of efficient numerical approaches to simulate visco-elastic wave
propagation in complex media is crucial for many topics going from understanding the
geodynamics of the Earth, the management of underground resources as well as the
mitigation of seismic risk.

Historical Background

Early historical records contain references to earthquakes as far back as 2000 B.C.E.
Mentions to major earthquakes on the Dead Sea fault system are present in the Bible
and in the Epic of Gilgamesh, where supernatural elements are imported in the narra-
tion with a natural tendency to exaggeration in describing such phenomena [19].

Thales of Miletos (624 to 546 B.C.E.) was the first to abandon the mythological expla-
nations, expanding the theory of a natural cause (water) for earthquakes. Afterwards
some ancient writers on natural philosophy (as Thucidides, Strabo, Seneca, Livy and
Pliny) offered rational explications of earthquake phenomena. In particular, Aristotle
(384 to 322 B.C.E.) speculated that earthquakes are caused by air trapped inside the
Earth, as it is trying to escape. This theory was destined to influence European thought
until the seventeenth century.

In 1660 Robert Hooke laid the foundation for the theory of elasticity, stating the one-
dimensional linear stress-strain relationship. After almost a century (November 1st,
1755) the Lisbon earthquake changed dramatically man’s outlook on the phenomenon
of earthquakes. This tragic event was the starting point of the pioneering studies of John
Michell (1761), who firmly established that earthquakes originate within the Earth and
they propagate in the form of waves of finite velocity (he estimated that the earthquake
waves after Lisbon earthquake had travelled outward at 530 m/sec).

The advent of elastodynamics began in 1821, when Navier derived the elastodynamic
displacement equation, using the moduli of elasticity defined by Young, the first to rec-
ognize shear stress as an elastic strain. In 1828, Poisson established the existence of
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longitudinal and shear waves (body waves) in elastic solids, whose physical interpreta-
tion is due to Stokes (1845). In a theoretical study, Lord Rayleigh (1885) discovered
another type of elastic waves, subsequently known as Rayleigh waves (surface waves),
accommodated by a homogeneous elastic medium at its boundary. The mathemati-
cal results of Poisson and Lord Rayleigh were confirmed ten years later (1897), when
Oldhan identified on earthquake recording the three types of waves predicted. At the
beginning of twentieth century (1911) Love explained the occurrence of transversely
polarized surface waves, not included in the theories of Lord Rayleigh. These so-called
Love waves allowed to derive estimates of the thickness of the Earth’s crust and its
rigidity. Love’s work gave rise to a large number of mathematical investigations, yield-
ing much information on the structure of continents and oceans.

Modelling Seismic Wave Propagation

Since the 1960s, when electronic computers became generally available in universities,
the development of numerical schemes to solve elastodynamic problems is of great im-
portance for providing quantitative informations for earthquake disaster prevention and
mitigation, for mapping shallow underground structures, such as buried valleys, and for
hydrocarbon exploration and extraction. All the classical numerical methods have been
employed to handle seismic wave propagation. In particular, we remark the distinction
presented in [167] between differential or strong implementations (for example the Finite
Difference Method and the Pseudospectral Method), i.e. numerical methods based on
the velocity-stress formulation of the equation of motion in its differential form subject
to certain boundary conditions, and integral or weak implementations (for example the
Finite Element Method, the Spectral Element Method and the Discontinuous Galerkin
Method), i.e. numerical methods based on an integral implementation of the equation
of motion that contains the boundary conditions implicitly. Let us review first methods
that require a meshing of the volume where the waves propagate.

Finite Difference Method. Perhaps the most intuitively appealing numerical technique
is the Finite Difference Method (FDM) [123, 165, 166]. In this approach, the computa-
tional domain is covered by a space-time grid, that is by a set of discrete grid positions in
space and time. The first-order space and time derivatives in velocity-stress formulation
of the equation of motion are approximated by taking differences between neighboring
grid points. The original differential equation is thus replaced by a system of algebraic
equations, having three basic properties: consistency with the original differential equa-
tions, stability and convergence of the numerical solution. These properties have to
be analyzed prior to the numerical calculation. To limit numerical grid dispersion and
anisotropy, one typically uses a fourth-order scheme in space, and a second-order scheme
in time [116]. The main advantage of the FDM is its relative ease of implementation
but an improper application of the method can give very inaccurate results. However,
when properly treated, the results provided are valid in the interior of the domain. Since
less accurate one-sided difference operators come in to play near the domain boundary,
the implementation of free surface boundary conditions is often problematic. For this
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reason surface waves can be poorly simulated [75, 137, 150]. To improve this situation,
optimal or compact finite difference operators are developed [7, 70, 179, 178].

Pseudospectral Method. The need for more accurate spatial derivative operators is the
motivation of the Pseudospectral Method (PM). Starting from the velocity-stress for-
mulation of the equation of motion, the components of the velocity field and the stress
tensor are expanded in term of known global basis functions, for example Fourier basis
functions [66, 67, 107, 109, 170], Chebyshev basis functions [31, 94, 95, 108, 110, 161, 163]
or a combination of Fourier and Chebyshev basis functions [162]. Alternatively, it is
possible to consider directly the equation of motion and use wavelets as basis functions
[89]. In both these cases, the space derivatives are computed in the wavenumber-domain
with the aid of fast transforms. Since this derivative operation is based on information
from all available grid points, it is very accurate and allows to obtain a good precision
when smooth isotropic and anisotropic models are considered. Unfortunately, like the
FDM, the main demerit of PM is related to the poor representation of surface waves.
The PM has been used to address local [30] as well as global [93] seismic wave propa-
gation problems but, due to the use of global basis functions, this technique is limited
to smooth media and it is not appropriate when sharp discontinuities are present in
the model. To avoid the numerical noise appearing in this case, it is possible to use a
domain decomposition approach [169].

Finite Element Method. The Finite Element Method (FEM) for partial differential
equations is very popular in science and engineering [92, 176], but has found limited
application in seismology in general. The offset of the FEM is the so-called weak or
variational formulation of the problem, that is equivalent to the strong formulation.
The computational domain is then decomposed into disjoint subdomains, called the el-
ements. Within each element the unknown fields are approximated by polynomials of
low order (typically piecewise linear functions) and continuity between the elements is
imposed explicitly. The problem then reduces to a space-discrete system for the polyno-
mials coefficients, where the so-called mass and stiffness matrices are present. Despite
its capability to correctly account for irregular geometries and to design complicated
meshes capturing realistic 3D models, applications of the pure FEM to seismic wave
propagation problems are comparatively rare [122, 164], because the method tends to
suffer from numerical grid dispersion and anisotropy, which is highly undesirable for phe-
nomena involving real dispersion and anisotropy. Moreover, the mass matrix in FEM
is not diagonal, which makes its inversion computationally expensive. FEM is actively
being used in the context of regional simulations [1, 11, 21, 68], but it is not used for
simulations at the scale of the globe. In the context of regional simulations, only an area
of interest is considered and an artificial boundary is introduced at a given distance from
it. If we assign Dirichlet or Neumann boundary conditions on this artificial boundary,
we observe a reflection of the outgoing waves back into the computational domain [57].
To avoid this problem it is possible to impose Absorbing Boundary Conditions (ABCs)
[46, 145] or Perfectly Matched Layers (PMLs) [12, 49, 65, 104].
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Spectral Element Method. Used for two decades in computational fluid dynamics [140],
the Spectral Element Method (SEM) is half-way between the FEM and the PM, com-
bining the advantages of both approaches while avoiding many of their drawbacks. Like
in FEM, after meshing the model, the geometry of each element is defined using low-
degree polynomials. The main differences between FEM and SEM are the polynomial
degree of the basis functions used to represent the vector fields and the test functions,
and the choice of the integration rule. In FEM it is typical to use low-degree basis
functions and Gaussian quadrature. In SEM, one uses higher-degree basis functions
and Gauss-Lobatto-Legendre quadrature to obtain a higher resolution. In this way,
the resulting mass matrix is diagonal and it is trivially inverted. In this respect, the
SEM is related to FEM when mass lumping is used to avoid the costly resolution of the
non-diagonal system resulting from the use of Gaussian quadrature [48]. Alternatively
Chebyshev polynomials can be used as basis functions [144], establishing a direct link
to Chebyshev PMs. SEM has been applied to problems related to 3D local or regional
[64, 98, 99, 101, 106, 158] and global [40, 41, 42, 100, 102, 103, 105] seismic wave prop-
agation.

Discontinuous Galerkin Method. In 1971 a new class of FEM was proposed for the
numerical solution of the nuclear transport problem [146]. This method, namely Dis-
continuous Galerkin Method (DGM), allows for solutions that are discontinuous across
element boundaries, because neighboring elements are linked by numerical fluxes and
not by continuity constraints. DGMs for seismic wave propagation have been developed
only recently [60, 59, 58, 63, 96, 129, 130].

On the other hand, they are methods that require only meshing of the boundary of
the volume where the waves propagate (and possibly of the interfaces between different
media).

Boundary Element Method

The Boundary Element Method (BEM) has emerged as an efficient alternative to
all these numerical methods to treat several classes of partial differential equations
[44, 54, 90, 171]. The main advantage of the BEM is that only the domain boundaries
are discretized, so that it allows to handle external problems with bounded boundaries
as easily as internal problems.

The most important feature of BEM is a reformulation of the original differential equa-
tions and boundary conditions as Boundary Integral Equations (BIEs), describing the
problem only by an equation with known and unknown boundary states. For problem
described by elliptic differential equations, a Fredholm integral equation is obtained.
Time dependent problems described by parabolic or hyperbolic equations give rise to
Volterra integral equations. In order to obtain such reformulation, the equation should
have a fundamental solution, also known as Green’s function. Many physical phenomena
are described by a differential equation Lu(x) = f(x), involving a differential operator L
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that determines a physical unknown u when there is a source f of that physical quantity.
When the source term is a unit magnitude load (Dirac Delta distribution), the solution
of this equation is called Green’s function of the operator L. In other words, the Green
function characterizes the response of a system to the presence of a point source.

Traditionally, there have been two different ways to derive BIEs [27, 28]. The indirect
approach [88] uses certain fictitious density functions, assumed to be distributed over
the boundary and having no specific physical significance, to represent the solution.
These density functions are sought first using numerical solution procedures, those in
turn, are used to arrive at quantities of physical interest. On the other hand, the direct
approach uses the actual physical variables present in the given problem to form the
BIEs, via reciprocal or Betti theorem [53, 148]. Although formally different, these two
approaches have been proved equivalent [26].

Once the reformulation of the problem as a BIE is obtained, the idea of the BEM is to
partition the boundary of the domain into a number of sub-boundaries, referred to as
boundary elements. Parallel to this, the discretization of the BIEs is based on the nodal
collocation method in which an approximated BIE is evaluated on the interpolation
nodes. Besides collocation method, the Nyström method is an alternative technique.
The numerical solution of BIE is sought by replacing the integral with a representative
weighted sum (quadrature). The last approach implements in BEM discretization pro-
cedure using one of the weighted residual techniques called Galerkin method. Unlike the
collocation and Nyström procedures, the Galerkin approach does not involve specific
point satisfying the BIE but requires double integrals: in this sense, it is a variational
formulation. However, the collocation method can be considered as a particular case of
the Galerkin BEM, for which the test functions are Dirac distributions. All the three
approaches lead to a linear system, whose matrix (non-symmetric in the case of collo-
cation method) is in general dense. This is an essential difference from FEM, where the
mass and the stiffness matrices are sparse.

Early formulations of the BEM for elastodynamic problems are due to Cruse, Rizzo [55]
and Dominguez [61] for frequency-domain, and Mansur [126], Wheeler and Sternberg
[172] for time-domain. Recent developments of time-domain BEM are due to Antes,
Banjai and Schanz [10, 157] and to Aimi, Diligenti, Frangi and Guardasoni [3]. Instead,
in frequency-domain some progress is due to Xiao, Ye, Chai and Zang [173, 174], and
to Phan, Guduru, Gray and Salvadori [143].

Some interesting examples of application of BEM in elastodynamics can be found in the
work of Sánchez-Sesma and Campillo [153, 154] to compute the 2D seismic response of
topographical irregularities on the surface of a homogeneous half-space, in the work of
Pederson [141] to compute the 3D response of 2D topographies, in the work of Sánchez-
Sesma and Luzón to study 3D alluvial valleys [155] and topographies [121], and in the
work of Luco and Barros to obtain the 3D response of an infinitely long canyon [120, 119].
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Although the use of the BEM reduces the spatial problem dimension (only the dis-
cretization of the domain boundaries is required), it leads to a fully-populated and,
using the collocation approach, non-symmetric matrix. When a direct method is used
to solve the BEM system, the operation count is proportional to O(N3) and the memory
requirement is proportional to O(N2), with N being the number of degrees of freedom
(DOF). When an iterative solver is used, the memory requirement remains the same and
the computing time is proportional to O(NitN

2), where Nit denotes the total number
of iterations necessary to reach convergence. Thus, the traditional implementation of
this method on ordinary laptops is prohibitive for large problems (O(106) DOF) and,
therefore, is restricted to problems of small size, typically O(104) DOF.

Fast BEMs

The history of fast methods to overcome the drawback of the fully-populated BEM ma-
trices started in 1985 when Vladimir Rokhlin introduced the Fast Multipole Method for
the 2D Laplace equation in integral form [151]. Then, in 1987 Leslie Greengard applied
the algorithm in the context of multi particles simulations [76]. The capabilities of the
fast multipole algorithm to accelerate the boundary element method, i.e. Fast Multipole
accelerated Boundary Element Method (FM-BEM) and its recursive variant the Multi
Level FMBEM (ML-FMBEM) have rapidly progressed during the last decades, allow-
ing many engineering applications requiring large BEM models in various fields (plasma
physics, fluid dynamics, molecular dynamics and celestial mechanics), including in 3D
elastodynamics [35, 37] and 3D visco-elastodynamics [74]. The FMM requires analytic
closed-form expression of the fundamental solution to approximate the integral opera-
tors and the solution of the BEM system is done with an iterative solver (i.e. GMRES)
of complexity O(niterµ(N)) in terms of CPU time (where µ(N) represents the cost of
the matrix-vector product for N degrees of freedom and niter is the number of itera-
tions of the iterative solver). In 3D elastodynamics, although µ has been shown to be
µ(N) = N logN , the iteration count becomes the main limitation to use the FM-BEM
on large-scale problems [39]. Since, in the context of the FMM, the influence matrix is
never explicitly assembled in totality, the definition of an efficient preconditioner is not
an easy task. Algebraic preconditioners (SPAI, ILU, diagonal, ...) have been adapted
to this constraint but have been shown to have real but limited efficiency. A possible
explanation is that they are based on the discretized system.

At the end of the 80’s, Hackbusch presented the Panel Clustering [85], another fast
approach closely related to the single-level FMM. Applied to the potential [4] and linear
elastostatic problems [87], it is considered to be the ancestor of the Hierarchical Ma-
trices (H-matrices) [81], introduced to compute a data-sparse representation of some
special dense matrices (for example matrices resulting from the discretization of non-
local operators). The H-matrix technique has its largest application field in BEM,
because they are a very efficient way to approximate dense matrices. An H-matrix is
a data-sparse representation of a matrix, consisting of a collection of exactly computed
full-matrices (of small sizes) and approximated low-rank matrices (of various sizes).
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In combination with efficient algorithms to compute low-rank approximations, such as
Adaptive Cross Approximation (ACA, see [13] for Nyström and [18] for collocation ma-
trices), H-matrices are purely algebraic tools. Thus, this technique is an alternative
to tackle problems for which analytical expressions of the Green’s functions are not
available. Hence, the procedure is problem independent. The extension of the clas-
sical matrix arithmetic to H-matrices allows to define fast solver. In particular, the
H-matrix/vector product can be used within an iterative solver, in order to acceler-
ate the classical matrix/vector product and, consequently, to reduce the time of each
iteration. In computational mechanics, the method has been successfully applied to
various problems (in [51] the method has been applied to the layered half-space elas-
todynamics fundamental solutions to study soil-structure interactions, while in [132] it
has been applied to study anisotropic elastodynamics media). Recent works (see [32] for
electrodynamic, [80] for electromagnetic and [159] for electrical integral equations) have
proposed the development of fast direct solvers based on H-matrices. The advantage of
this solution strategy consists in the possibility of treating problems with multiple right
hand sides.

Aims and Outline of this Thesis

The main goal of this thesis is to develop alternative fast, stable and accurate frequency-
domain collocation based BEMs, to increase the capabilities of the standard method in
the context of 3D elastic wave propagation and forced-vibration problems. To this end,
H-matrix based iterative and direct solvers for the Boundary Element Method, already
developed in other areas such as acoustic and electromagnetism, are extended to 3D
elastodynamics. The main difficulty consists in analyzing the capabilities of the method
when dealing with oscillatory kernels, since the previous theoretical studies concern
the Laplace kernel function. This work is a further step at POEMS (CNRES, INRIA,
ENSTA-ParisTech) toward the development of fast solvers for visco-elastic waves in
anisotropic media. In the future, other applications of the present work will be per-
formed: soil-structure interaction, inverse problems, ...

This thesis is divided into five chapters.

Chapter 1 introduces the dissertation by presenting the basic principles of elastodynam-
ics and of the boundary element method.

Chapter 2 presents the principles of H-matrices and Adaptive Cross Approximation.
The construction of H-matrix based iterative and direct solvers is shown. Particular
attention is given to the H-matrix arithmetic, whose implementation requires the study
of 27 different cases. The original contributions of this chapter are the investigation of
the capability of the ACA to produce low-rank approximations in the case of oscillatory
kernels and the extension of the standard ACA to vectorial problems.

Chapter 3 treats the H-matrix based iterative and direct solvers for 3D elastodynamics.
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Their computational performances are assessed through numerical examples, concern-
ing the diffraction of an incident, vertical P-wave by a unit sphere. The H-matrix based
iterative solver is compared with a Fast Multipole based solver and an error estimate
is proposed to certify the quality of the solution of the H-matrix based direct solver,
when the analytical solution is unknown.

Chapter 4 focuses on forced-vibration problems. The formulation is extended to multi-
domain scenarios by developing a H-matrix based BEM-BEM coupling approach suit-
able for 3D piecewise-homogeneous media. We treat the problem of the computation
of the Green’s displacement functions of an homogeneous elastic half-space, i.e. the
propagation of a seismic wave in an elastic half-space subject to a point force applied
to the surface. Then, we consider a half-space with topographic irregularities.

Chapter 5 gives some directions for future work opened by this thesis: viscoelasticity,
anisotropy, parallelization, preconditioning, coupling with other numerical methods,
forward solver for inverse problems.
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CHAPTER 1. ELASTODYNAMIC FUNDAMENTAL EQUATIONS AND

BOUNDARY INTEGRAL FORMULATION

1.1 Introduction

This Chapter aims at introducing the elastodynamic fundamental equations and
its boundary integral reformulation. The Chapter is organized as follows. In Section
1.2 the relationships between stress and strain in terms of displacement and material
parameters are given [6]. These in turn represent the deformation of a body. Starting
from the Cauchy first law of motion, the Navier-Cauchy equations are derived, both
in time-domain and in frequency-domain. The elastodynamics problem for an elastic
body is formulated as a boundary value problem and a physical interpretation of the
boundary conditions is presented [136]. Subsequently, the theory for P- and S-waves is
explained and the Rayleigh wave propagating on the surface of a half-space is considered
[135]. Love waves are also introduced [6]. Finally, we present the constitutive law for a
linear visco-elastic medium. Section 1.3 is devoted to the reformulation of elastodynamic
problem as a Boundary Integral Equation (BIE) and to the Boundary Element Method
(BEM) to compute its solution. We choose the direct approach to reformulate the
elastodynamic problem as BIE [6] and we consider the BEM discretization procedure
followed by Chaillat in [33], previously introduced by Bonnet in [22].

1.2 The Basics of Elastodynamics

We consider an elastodynamic medium, i.e. an infinite, homogeneous, continuous
and isotropic elastic solid, whose constitutive properties are defined by two indepen-
dent elastic moduli, i.e. shear modulus µ and Poisson’s ratio ν, related to the Lamé
parameter λ := 2µν/1−2ν. Since the material is homogeneous, µ and ν are independent
of the position. The motion of the medium is assumed to satisfy conservation of mass,
meaning that the mass of the body is the same at all times. Furthermore, the mass
density % is defined at every point in the body as the mass divided by the volume.

Throughout this work, the Einstein summation convention is used, i.e. summation is
performed over repeated indices.

Assuming that in a fixed Cartesian coordinates system x = (x1, x2, x3)> the medium
occupies a region Ω ⊂ R3, having surface boundary Γ := ∂Ω connected and globally Lip-
schitz continuous with outward unit normal vector n = n(x), the time-domain equation
of motion in xi-direction, i.e. the Cauchy first law of motion, may be written

∂

∂xj
σij(x, t) + %Fi(x, t) = %üi(x, t), i = 1, 2, 3 (1.1)

where σij(x, t) are the cartesian components of the Cauchy stress tensor, ui(x, t) are
the components of the displacement field and Fi(x, t) is a given body-force distribution
in coordinate direction i. Finally, üi(x, t) is the second order local time derivative of
the displacement, i.e. the local acceleration.
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The stress tensor σij(x, t) is a very useful quantity because it allows to compute the
force acting on the surface Γ per unit of surface area. This force is called traction and
it is represented by a vector t(x, t), whose components are given by

ti(x, t) := σij(x, t)nj(x) i = 1, 2, 3. (1.2)

Since the conservation of angular momentum is required [71, 125], the stress tensor
results symmetric:

σij(x, t) = σji(x, t). (1.3)

For general medium the stress in the medium depends in a complicated way on the
deformation of the medium, due to the variation of the displacement with position (a
constant displacement vector does not generate an internal deformation). The deforma-
tion of the medium is described by the Green-Lagrange strain tensor which, for small
strains, reduces to the symmetric tensor

εij(x, t) := 1
2

[
∂ui
∂xj

(x, t) + ∂uj
∂xi

(x, t)
]
, i, j = 1, 2, 3. (1.4)

The small strain tensor εij(x, t) is related to the Cauchy stress tensor σij(x, t) through-
out the Hooke’s law (constitutive equation)

σij(x, t) = Cijhlεhl(x, t), i, j = 1, 2, 3 (1.5)

where Cijhl is a fourth order stiffness tensor, generalizing the concept of the spring
constant of a simple spring to three-dimensional elastic medium.

In Hooke’s law (1.5) the strain is assumed to be small enough that stress and strain
depend linearly on each other. Such a medium is called linear. Of course, problems exist
in which the nonlinear behaviour can not be disregarded, i.e. when the excitation leads
to large strain (for example in the earthquake source region, where nonlinear fracture
behavior governs the response of the medium).

In general a tensor of rank 4 in three dimensions has 81 components but the stiffness
tensor has only 21 independent elements. From relation (1.3) it is possible to deduce
the symmetry of Cijhl when the first two indices are exchanged, i.e. Cijhl = Cjihl. Since
the strain tensor εij(x, t) is symmetric, the stiffness tensor is also symmetric in the last
two indices, i.e. Cijhl = Cijlh. Energy considerations [5] imply that the stiffness tensor
is also symmetric for exchange of the first and the last pair of indices, i.e. Cijhl = Chlij .
The symmetry properties of the stiffness tensor are summarized by

Cijhl = Cjihl = Cijlh = Chlij . (1.6)

Combining Equation (1.5) and Equation (1.4) and using the symmetry of the stiffness
tensor in the first pair of indices, the relation between the stress and the displacement
can be written as
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σij(x, t) = Cijhl
∂ul
∂xh

(x, t), i, j = 1, 2, 3. (1.7)

In the case of an isotropic medium, the stiffness tensor does not depend on some pre-
ferred direction, but only on µ and λ and the Kronecker delta δij :

Cijhl := λδijδhl + µ(δihδjl + δilδjh), i, j, h, l = 1, 2, 3. (1.8)

1.2.1 Linear Elastodynamic System

Inserting Equation (1.7) and Equation (1.8) in Equation (1.1), we have the Navier-
Cauchy equations of motion [2], i.e.

(λ+ µ) ∂2uj
∂xi∂xj

(x, t) + µ
∂2ui
∂x2

j

(x, t) + %Fi(x, t) = %üi(x, t), i = 1, 2, 3. (1.9)

Introducing the vector displacement u(x, t) = (u1, u2, u3)>(x, t) and the body force
vector per unit volume F(x, t) = (F1, F2, F3)>(x, t), Equation (1.9) can be written as

(λ+ µ)∇∇ · u(x, t) + µ∆u(x, t) + %F(x, t) = %ü(x, t), (1.10)
where ∇ and ∆ denote the Nabla and the Laplace operators, respectively.

Using the identity ∆u(x, t) =∇∇ ·u(x, t)−∇× (∇×u)(x, t), in which × denotes the
vector cross-product, an alternative form of Equation (1.10) is

(λ+ 2µ)∇∇ · u(x, t)− µ∇× (∇× u)(x, t) + %F(x, t) = %ü(x, t). (1.11)

This expression represents a linear system of hyperbolic partial differential equations
for the dependent variables u1, u2 and u3. For a well-posed problem, conditions have to
be prescribed at the initial time t = 0 (initial conditions) and at the domain boundary
(boundary conditions).

The initial conditions give the solution at the instant from which the physical system
evolves:

u(x, 0) = u0(x)
u̇(x, 0) = v0(x),

with initial rest (u0(x) = v0(x) = 0) frequently assumed in practice.

Boundary conditions can be of different types, depending if they impose the solution
(displacements u(x, t)) or its derivative (traction t(x, t)). Among the others, we cite
the Dirichlet boundary conditions (u(x, t)), Neumann boundary conditions (t(x, t)),
Robin boundary conditions (linear combination of u(x, t) and t(x, t)), mixed boundary
conditions (different boundary conditions are used on different parts of the boundary).
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1.2.2 Derivation of the P- and S-waves Velocities

The concept of waves is fundamental to elastodynamics, as it provides a convenient
way to describe the mathematics and the physics of the transmission of energy. In
physics, waves are usually divided into progressive and standing waves. Seismic waves
are also of these two types but we focus on the progressive seismic waves that propa-
gate away from seismic sources and ignore the standing seismic waves, that represent
vibrations of the Earth as a whole.

Expressing the displacement field and the body force field as a combination of two
simpler fields facilitates the analysis of solutions of the elastodynamic equations. With
the aid of Helmholtz’s decomposition theorem the vectors u(x, t) and F(x, t) can be
expressed as

u(x, t) := ∇ϕ(x, t) +∇×ψ(x, t) (1.12)
F(x, t) := ∇Φ(x, t) +∇×Ψ(x, t), (1.13)

where ϕ(x, t) and Φ(x, t) are called scalar potentials, while ψ(x, t) and Ψ(x, t) are
called vectorial potentials. Both the scalar and the vectorial potentials are everywhere
continuous and differentiable at interior points where the respective vector field is also
continuous. The conditions∇ ·ψ(x, t) = 0 and∇ ·Ψ(x, t) = 0 may be assumed without
loss of generality. These are also known as the gauge conditions.

The Helmholtz’s decomposition theorem stated above is valid even for infinite, or open,
domains, provided that the vector fields u(x, t) and F(x, t) vanish with a rate of at least
1/‖x‖ for ‖x‖ → ∞. This constitutes a radiation condition at infinity.

Taking the divergence of Equation (1.11) and remembering that the divergence of the
curl of a vector field is always equal to zero, we obtain

(λ+ 2µ)∆(∇ · u)(x, t) + %∇ · F(x, t) = %
∂2

∂t2
(∇ · u)(x, t). (1.14)

Since from Helmholtz’s decomposition it holds

∇ · u(x, t) := ∇ · (∇ϕ)(x, t) = ∆ϕ(x, t) (1.15)
∇ · F(x, t) := ∇ · (∇Φ)(x, t) = ∆Φ(x, t), (1.16)

Equation (1.14) can be recast into the equivalent form

∆ ((λ+ 2µ)∆ϕ+ %Φ− %ϕ̈) (x, t) = 0. (1.17)

Instead, taking the curl of Equation (1.11) and remembering that the curl of the gradient
of a scalar field is always equal to zero, we have
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− µ∇× (∇× (∇× u))(x, t) + %∇× F(x, t) = %
∂2

∂t2
(∇× u)(x, t). (1.18)

From the Helmholtz’s decomposition and the gauge conditions, it follows

∇× u(x, t) := ∇× (∇×ψ)(x, t) = −∆ψ(x, t) (1.19)
∇× F(x, t) := ∇× (∇×Ψ)(x, t) = −∆Ψ(x, t) (1.20)

and Equation (1.18) can be rewritten as

∆
(
µ∆ψ + %Ψ− %ψ̈

)
(x, t) = 0. (1.21)

Important particular solutions of Equation (1.17) and Equation (1.21) can be obtained
from

∆ϕ(x, t) = 1
c2
P

[ϕ̈(x, t)− Φ(x, t)] with cP :=
√
λ+ 2µ
%

∆ψ(x, t) = 1
c2
s

[
ψ̈(x, t)−Ψ(x, t)

]
with cS :=

√
µ

%

(1.22)

i.e ϕ satisfies the scalar wave equation in three dimensions with phase speed of wave
propagation given by cP , while ψ satisfies the vectorial wave equation in three dimen-
sions with phase speed of wave propagation given by cS . In this way, the nature of two
different wave types has been revealed.

1.2.3 Body and Surface Waves

It is now evident that in a homogeneous medium two body waves types propagate
independently from each other: the compressional waves with velocity cP and the shear
waves with velocity cS .
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(a) P-waves

(b) S-waves

Figure 1.1: Body waves: (a) Primary or P-waves and (b) Secondary or S-waves (Image
Credits: http://www.kgs.ku.edu).

Recalling that for most real materials the shear modulus and the Poisson’s ratio are
both real positive quantities (in general −1 < ν < 1/2 but only auxetics have negative
Poisson’s ratio), if we compare cP and cS we observe that cP > cS . The compres-
sional waves reach an observation point before the shear waves. For this reason the
seismological names for compressional and shear waves are P-waves (or primary waves,
Figure 1.1a) and S-waves (or secondary waves, Figure 1.1b), respectively. Since in many
elastic materials Poisson’s relation holds (λ = µ), the relation cP = cS

√
3 is frequently

used [136]. In liquid or gases, only P-waves (sound waves) can propagate since µ = 0.

Looking at Equation (1.12), we note that P-waves are free of rotation, while S-waves
are free of divergence. This means that P-waves consist of changes in the volume (di-
latations) of the medium as they pass through it. Each particle vibrates around its
equilibrium position, parallel to the wave propagation direction (primarily longitudi-
nally polarized). For this reason P-waves are often called longitudinal waves. Instead,
the S-waves consist of shear deformations and rigid rotations. Since the particle motion
is perpendicular to the wave propagation direction (primarily transversely polarised),
S-waves are also called transverse waves and their contribution to the total field is
usually further decomposed into a component in a horizontal plane (SH-waves) and a
component in a vertical plane (SV-waves).

The body waves are the only waves that can exist in an infinite elastodynamic medium
[111]. However, the Earth can not be considered as a homogeneous medium but can be
approximated by piecewise homogeneous media, whose thicknesses are irregular due to
several abrupt and gradual variations. This model represents a first approximation of a
realistic configuration, due to the presence of heterogeneities inside each homogeneous
layer, that have a significant effect on the wave propagation.
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Since the materials on the two side of these surfaces of discontinuity are supposed ho-
mogeneous and isotropic, boundary conditions have to be imposed on the interfaces
between two domains with different properties [136]. On solid-solid boundaries (such
as Moho discontinuity), both the traction t(x, t) and the displacement u(x, t) need to
be continuous, whereas on fluid-solid boundaries (such as the Gutenberg and Lehmann
discontinuities), both the traction t(x, t) and the normal component of the displacement
u(x, t) need to be continuous.

Body waves incident on one side of a discontinuity give rise to both a refracted wave
on the other side and a reflected wave on the same side. Even if the incident wave is
purely longitudinal or purely transverse, the refracted and reflected waves are in gen-
eral superpositions of P- and S-waves, propagating in different directions. If the angle
of incidence becomes large enough, at the material interface there are special types of
waves which do not penetrate into the bulk of the materials, but decay exponentially
with the distance [136]. These waves are known as surface waves.

The simplest way to study the surface waves consist in considering the ground as an
homogeneous and isotropic elastic medium, in which only the boundary between air
and soil exists and all the others are assumed infinitely far away. This model is called a
half-space [6]. On the so-called free-surface, the traction should vanish, so a traction-free
Neumann boundary condition has to be imposed, i.e. t(x, t) = 0.

(a) Rayleigh waves

(b) Love waves

Figure 1.2: Surface waves: (a) Rayleigh waves and (b) Love waves (Image Credits:
http://www.kgs.ku.edu).

If Equations (1.10) are associated with this boundary condition, other solutions to the
Navier-Cauchy equations of motion rise. These solutions are surface waves, known as
Rayleigh waves (Figure 1.2a), whose velocity cR is given by the following equation [135]:
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(
2− c2

R

c2
S

)2

= 4
(

1− c2
R

c2
P

)1/2(
1− c2

R

c2
S

)1/2

. (1.23)

Rayleigh waves are slower than the S-waves, typically with a phase speed of around
cR = 0.9cS [136]. For this reason they are recorded even later than shear waves origi-
nated in the same point. The particles vibrate in the plane perpendicular to the free
surface as they pass through it. The resulting motion can be regarded as a combination
of the P- and the SV-vibrations and describes an ellipse with its major axis vertical and
minor axis in direction of wave propagation.

Since surface waves polarized in the horizontal plane perpendicularly to the direction
of propagation, i.e. surface waves of the SH type, are present on seismograms, the
half-space is insufficient to model the ground structure. To describe these waves, called
Love waves (Figure 1.2b), we have to consider a medium that consists of a layer of a
constant thickness, lying on a half-space. Both the layer and the half-space are assumed
homogeneous, isotropic and perfectly elastic. Love waves move faster than the other
surface waves in the surface layer, but slower than shear waves in the bulk. Thus, they
arrive before Rayleigh waves originating at the same point. In earthquakes Love waves
are the most destructive because of the shearing motion of the surface layer, not very
well tolerated by buildings [6].

1.2.4 Frequency-Domain Elastodynamic Equations

To treat elastodynamic problems it is possible to follow two different approaches,
namely, time-domain and frequency-domain approaches. In the first the physical prob-
lem is directly solved in the real time domain, thus one can observe the phenomenon
as it evolves. Instead, in the frequency-domain approach the problem is solved at a se-
ries of sampling frequencies and the results are then transformed back into time-domain.

The frequency-domain formulation and the time-domain formulation are related by the
Fourier transform. The Fourier transform of an integrable function g : R→ C is defined
by:

g̃(ω) = F
(
g(t)

)
:=
∫ +∞

−∞
g(t)e−ıωtdt. (1.24)

Under suitable conditions, g is determined by g̃ via the inverse transform:

g(t) = F−1
(
g̃(ω)

)
:= 1

2π

∫ +∞

−∞
g̃(ω)eıωtdω. (1.25)

Since we are interested in harmonic variations of the body forces and the boundary
conditions in time, we consider the analysis of elastodynamic problems with respect to
frequency rather than time. Thus, the displacement field is in the form

u(x, t) = û(x)eıωt,
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where û(x) is an amplitude function, ω = 2π/T is the circular frequency and T denotes
the period. From now on, u(x) = û(x) with abuse of language.

Taking into account these considerations, the Cauchy first law of motion can be rewritten
for time-harmonic problems in the following vector form:

∇ · σ(x) + %F(x) + %ω2u(x) = 0, (1.26)

while the displacement governing equation for linear elasticity (Equation (1.10)) is re-
formulated as an elliptic partial differential equation:

(λ+ µ)∇∇ · u(x) + µ∆u(x) + %ω2u(x) + %F(x) = 0. (1.27)

In frequency-domain the potential ϕ and ψ satisfy the scalar and vector Helmholtz’s
equation respectively, i.e.

∆ϕ(x) + κ2
Pϕ(x) = − 1

c2
P

Φ(x) with κP := ω

cP

∆ψ(x) + κ2
Sψ(x) = − 1

c2
s

Ψ(x) with κS := ω

cS
.

(1.28)

The wavelength of a α-wave is λα = cαT , α = P, S. However, in the case of harmonic
waves, the spatial variation may advantageously be described in terms of wavenumbers
κα, related to λα by the relation κα = 2π/λα.

1.2.5 Constitutive Law for a Linear Viscoelastic Medium

In real materials, anelastic effects such as friction between particles or grains, molec-
ular collisions or irreversible intercrystal heat flux, lead to the material damping, a decay
or attenuation of seismic waves, due to a dissipation of energy (conversion of mechanical
energy into thermic energy). To take into account this phenomenon in a linear model,
there is a need of a generalization of the constitutive law which retains linearity and
supposes that stress depends not only on the strain at a given instant, but also on the
strain history. By the so-called hereditary integral, the viscoelastic law can be written
[45] as:

σij(x, t) =
∫ t

−∞
Cijhl(t− τ)ε̇hl(x, t)dτ, (1.29)

where σij(x, t) is the incremental stress. The integral present in this relation represents
a time convolution of the relaxation tensor Cijhl(t) and the strain rate εhl(x, t).

Since stress can depend only on past times, Cijhl(t) must vanish for negative values of
t, i.e. it must be a casual function of time.

For a homogeneous isotropic viscoelastic medium, the relaxation tensor is written in
terms of the Heaviside step function H(t) and two time-dependent Lamé-type coeffi-
cients:
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Cijhl(t) := [δijδhlλ(t) + (δihδjl + δilδjh)µ(t)]H(t), i, j, h, l = 1, 2, 3. (1.30)
In frequency domain, using the convolution theorem, Equation (1.29) is equivalent to
Equation (1.5) with the only difference that λ and µ are complex-valued constants or
frequency-dependent parameters [62], given by

µ = Re(µ)(1 + ı2βµ) and λ = Re(λ)(1 + ı2βλ), (1.31)
where βµ and βλ are the material damping ratios which allow to distinguish the contri-
bution of the damping of S- and P-waves.

1.3 Boundary Element Methods for 3D Elastodynamics
In this work we want to solve elastodynamic problems using the Boundary Ele-

ment Method (BEM), that requires a reformulation of the problem as a Boundary
Integral Equation (BIE). The first step to obtain such a reformulation consists in es-
tablishing a mutual relationship between two elastodynamic states (u(1)

i , F
(1)
i , σ

(1)
ij ) and

(u(2)
i , F

(2)
i , σ

(2)
ij ), both satisfying Equations (1.26), i.e.

∂

∂xj
σ

(1)
ij (x) + %F

(1)
i (x) + %ω2u

(1)
i (x) = 0 i = 1, 2, 3 (1.32)

∂

∂xj
σ

(2)
ij (x) + %F

(2)
i (x) + %ω2u

(2)
i (x) = 0 i = 1, 2, 3. (1.33)

Applying the two states as weight functions in the governing equation for the other
state, we obtain:

u
(2)
i (x) ∂

∂xj
σ

(1)
ij (x) + %u

(2)
i (x)F (1)

i (x) + %ω2u
(2)
i (x)u(1)

i (x) = 0, i = 1, 2, 3 (1.34)

u
(1)
i (x) ∂

∂xj
σ

(2)
ij (x) + %u

(1)
i (x)F (2)

i (x) + %ω2u
(1)
i (x)u(2)

i (x) = 0, i = 1, 2, 3. (1.35)

Subtracting the first equation to the second and integrating over the domain Ω, we have

∫
Ω

[
u

(1)
i (x) ∂

∂xj
σ

(2)
ij (x)− u(2)

i (x) ∂

∂xj
σ

(1)
ij (x)

]
dx = %

∫
Ω

[
u

(2)
i (x)F (1)

i (x)− u(1)
i (x)F (2)

i (x)
]
dx.

(1.36)
Application of the divergence theorem to the first term of the last equation provides:

∫
Ω
u

(1)
i (x) ∂

∂xj
σ

(2)
ij (x)dx =

∫
Γ
t
(2)
i (x)u(1)

i (x)dΓx −
∫

Ω
σ

(2)
ij (x)∂u

(1)
i

∂xj
(x)dx

∫
Ω
u

(2)
i (x) ∂

∂xj
σ

(1)
ij (x)dx =

∫
Γ
t
(1)
i (x)u(2)

i (x)dΓx −
∫

Ω
σ

(1)
ij (x)∂u

(2)
i

∂xj
(x)dx.

(1.37)
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Since the symmetry properties of the elastic constitutive equation allow us to conclude

σ
(1)
ij (x)∂u

(2)
i

∂xj
(x) = σ

(2)
ij (x)∂u

(1)
i

∂xj
(x), (1.38)

we can formulate the reciprocity theorem:

∫
Γ

[
t
(2)
i (x)u(1)

i (x)− t(1)
i (x)u(2)

i (x)
]
dΓx = %

∫
Ω

[
u

(2)
i (x)F (1)

i (x)− u(1)
i (x)F (2)

i (x)
]
dx.
(1.39)

Obviously, in case of unbounded domains, this relation holds provided that the two
states satisfy the radiation condition at infinity.

1.3.1 Integral Representation and Boundary Integral Equation

If one of the two elastodynamic states involved in Equations (1.39) is selected as the
fundamental solution, or Green’s function, i.e. the response at an observation point x
due to a unit magnitude load acting at a source point y, we can formulate the boundary
integral representation of the displacement field.

In the case of general three-dimensional elastic wave propagation we are dealing with
displacement and surface traction vector fields. Hence, whereas the displacement field
u(x) is a vector field with components ui(x), the corresponding Green’s function is a
tensor field U(x,y;ω) with the double-indexed components Uki (x,y;ω). Similarly, since
the Cauchy stress tensor σ(x) is a second order tensor field with components σij(x),
the corresponding Green’s function is a tensor field Σ(x,y;ω) with the triple-indexed
components Σk

ij(x,y;ω).

Because the fundamental solution is strongly dependent on the boundary conditions, in
this work we consider the time-harmonic elastodynamics Green’s functions for a homo-
geneous full-space, i.e. unbounded domain. These fundamental solutions are available
in closed form and can be written as [22]

Uki (x,y;ω) := 1
4πµr

[
δikA1 + r,ir,kA2

]
Σk
ij(x,y;ω) := 1

4πr2

[
2r,ir,kr,jA3 + (δikr,j + δjkr,i)A4 + δijr,kA5

]
,

(1.40)

where δij stands for the Kronecker’ symbol, r := x − y and r,i is the derivative of
r = ‖x− y‖ with respect to xi.

Using the notations xP := κP r, xS := κSr and γ = cS/cP , the coefficients in (1.40)
A1, A2, A3, A4, A5 are defined by
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A1 :=
(

1 + ı

xS
− 1
x2
S

)
eıxS − γ2

(
ı

xP
− 1
x2
P

)
eıxP ,

A2 :=
(

3
x2
S

− 3ı
xS
− 1

)
eıxS − γ2

(
3
x2
P

− 3ı
xP
− 1

)
eıxP ,

A3 :=
(
ı15
xS
− 15
x2
S

+ 6− ıxS

)
eıxS − γ2

(
ı15
xP
− 15
x2
P

+ 6− ıxP

)
eıxP ,

A4 := (ıxS − 1) eıxS + 2A2,

A5 :=
(
1− 2γ2

)
(ıxP − 1)eıxP + 2A2.

(1.41)

In 2001, Yoshida [175] proposed a reformulation of the fundamental solutions (1.40)
in terms of derivatives of the Green’s function for the Helmholtz equation with wave-
number κα, i.e.

G(x,y;κα) := eıκαr

4πr α = P, S.

These reformulations read

Uki (x,y;ω) := 1
κ2
Sµ

[
(δqsδik − δqkδis)

∂

∂xq

∂

∂ys
G(x,y;κS) + ∂

∂xi

∂

∂yk
G(x,y;κP )

]
,

Σk
ij(x,y;ω) := Cijhl

∂

∂yl
Ukh (x,y;ω).

(1.42)
Defining the first state in Equations (1.39) as the state of physical displacements ui,
specific body forces Fi and surface traction ti, and choosing the second state as the
fundamental solution state, for all x ∈ Ω we have [22]

γ(x)uk(x) =
∫

Γ

[
Uki (x,y;ω)ti(y)− T ki (x,y;ω)ui(y)

]
dΓy + %

∫
Ω
Uki (x,y;ω)Fi(y)dx,

(1.43)
where the components of the tensor field T(x,y;ω) are defined as

T ki (x,y;ω) := Σk
ij(x,y;ω)nj(x).

In Equations (1.43), known as Somigliana identity, γ(x) is a scalar constant only de-
pending on the local geometry at the observation point x, and it is given by the size,
the shape and the spatial orientation of the interior solid angle at x. Hence, γ(x) = 1
for any interior point within the domain Ω and γ(x) = 0 at an exterior point.

Since a singularity occurs in y = x when x ∈ Γ, allowing x ∈ Ω to reach the boundary
with the help of a limiting process [77], the frequency-domain BIE for the general three-
dimensional elastodynamics problem in absence of body forces can be written in the
form
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γki(x)ui(x) =
∫

Γ
Uki (x,y;ω)ti(y)dΓy − (C.P.V)

∫
Γ
T ki (x,y;ω)ui(y)dΓy x ∈ Γ, (1.44)

where the free term γki(x) depends on the Poisson’s ratio ν [77] and is equal to
γki(x) := 1/2δki in the usual case where Γ is smooth at x, and is otherwise a known
(second-order tensor-valued) function of the local geometry of Γ at x.

Equations (1.44) involves the evaluation of the Cauchy principal value (C.P.V.) integrals
of the strongly singular Green’s tractions. In the following, a regularized boundary
integral equation is employed, in which the evaluation of the (C.P.V.) integrals is avoided
[29, 56, 113, 139]. Since the singularity of the static T ki (x,y) and dynamic T ki (x,y;ω)
fundamental tractions are known to be identical, we consider

∫
Γ
T ki (x,y;ω)ui(y)dΓy =

∫
Γ

[
T ki (x,y;ω)− T ki (x,y)

]
ui(y)dΓy +

∫
Γ
T ki (x,y)ui(y)dΓy

(1.45)
The first integral in the right side of the previous equation is non-singular and its numer-
ical integration is performed using classical Gaussian integration [78]. The remaining
integral involving the static fundamental solution is singular, but can be evaluated an-
alytically for some special configurations (for example triangular elements, [33]).

From now on, we refer to Equation (1.44) as

γki(x)ui(x) =
∫

Γ
Uki (x,y;ω)ti(y)dΓy −

∫
Γ
T ki (x,y;ω)ui(y)dΓy x ∈ Γ, (1.46)

where the described regularization process is applied.

1.3.2 Boundary Element Method

In order to use the collocation method, we take NC collocation nodes xc ∈ Γ and
enforce Equation (1.46) on these points, obtaining:

γki(xc)ui(xc) =
∫

Γ
Uki (xc,y;ω)ti(y)dΓy −

∫
Γ
T ki (xc,y;ω)ui(y)dΓy, 1 ≤ c ≤ NC .

(1.47)
The discretization of this equation begins with an approximation Γh of the surface Γ,
i.e.

Γ ' Γh =
NE⋃
e=1

Ee, (1.48)

using a system of surface elements Ee, such that the resulting mesh of Γ is denoted by
Th(Γ) := {Ee, e = 1, . . . , NE}, where NE is the total number of elements. The index h
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represents the grain size of the mesh, i.e. the maximal diameter of an element in Th(Γ).
In principle, the boundary elements may take a variety of forms but usually triangular
or quadrilateral elements are used.

(a) Common edge (b) Common vertex (c) Coincident case

Figure 1.3: Conforming triangulation: intersection of two triangles.

The mesh of elements needs to be geometrically conforming, i.e, the intersection of two
elements must be either empty, or an element, or a vertex, or a common side, and from
now on, the mesh considered is assumed to be conforming.

An important technical issue in BEM is the normal orientation of the elements. In
the standard convention the ordering of the element nodes is such that the normals are
always exterior to the domain.

Equation (1.47) then takes the form of a sum of elementary integrals:

γki(xc)ui(xc) =
NE∑
e=1

[∫
Ee
Uki (xc,y;ω)ti(y)dΓy −

∫
Ee
T ki (xc,y;ω)ui(y)dΓy

]
. (1.49)

Unknown displacement and traction fields over each element are interpolated indepen-
dently through shape functions. Therefore, appropriate functions have to be used, in
order to achieve a good accuracy and convergence rate, weighted against computational
costs.

In the following, we consider linear interpolation shape functions for the components
of both the displacement and the traction fields [33]. Furthermore, only triangular ele-
ments are used and we refer to Th(Γ) as triangulation.

Cartesian points y within a given element Ee are mapped to points ξ = (ξ1, ξ2)> in a
reference element Eref based upon the transformation

y(ξ) :=
3∑
p=1

Mp(ξ)yp. (1.50)
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The control points or anchors yp define the geometry of the triangle. The functions Mp

provide a mean for mapping and are given by

M1(ξ) := 1− ξ1 − ξ2,
M2(ξ) := ξ1,
M3(ξ) := ξ2.

(1.51)

In practice, it is advantageous to use isoparametric triangles, i.e. use the same functions
M1, M2 and M3 also as shape functions for the approximation of the components of
the displacement field, thus

ui(y) '
3∑
p=1

ũ
m(e,p)
i Mp(ξ) y ∈ Ee,

ti(y) '
3∑
p=1

t̃
m(e,p)
i Mp(ξ) y ∈ Ee,

(1.52)

where ũm(e,p)
i and ũ

m(e,p)
i are the nodal values at the anchors ym. Since in the mesh

the grid points are shared among neighboring triangles, we need to distinguish between
the grid points that define an element (the local mesh) and all grid points in the model
(the global mesh), many of which are shared among several elements. The index m(e, p)
represents a mapping between grid points in the local mesh and grid points in the global
mesh.

In the light of these considerations, Equation (1.49) becomes

γki(xc)ui(xc) =
NE∑
e=1

3∑
p=1

[∫
Ee
Mp(ξ)Uki (xc,y;ω)dΓy

]
t̃
m(e,p)
i +

−
NE∑
e=1

3∑
p=1

[∫
Ee
Mp(ξ)T ki (xc,y;ω)dΓy

]
ũ
m(e,p)
i .

(1.53)

1.3.3 BEM System

Equation (1.53) can be recast in the following vector form

γ(xc)u(xc) =
NE∑
e=1

{[∫
Ee

U(xc,y;ω) ·M(ξ)dΓy

]
t̃e −

[∫
Ee

T(xc,y;ω) ·M(ξ)dΓy

]
ũe
}
,

(1.54)
where

ũe :=
[
ũ
m(1,e)
1 ũ

m(2,e)
1 ũ

m(3,e)
1 ũ

m(1,e)
2 ũ

m(2,e)
2 ũ

m(3,e)
2 ũ

m(1,e)
3 ũ

m(2,e)
3 ũ

m(3,e)
3

]>
t̃e :=

[
t̃
m(1,e)
1 t̃

m(2,e)
1 t̃

m(3,e)
1 t̃

m(1,e)
2 t̃

m(2,e)
2 t̃

m(3,e)
2 t̃

m(1,e)
3 t̃

m(2,e)
3 t̃

m(3,e)
3

]> (1.55)
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are vectors containing all the 9 nodal values respectively of the displacement and the
traction field on Ee, and M(ξ) is a matrix given by

M(ξ) :=

 M1(ξ) M2(ξ) M3(ξ) 0 0 0 0 0 0
0 0 0 M1(ξ) M2(ξ) M3(ξ) 0 0 0
0 0 0 0 0 0 M1(ξ) M2(ξ) M3(ξ)

 .
(1.56)

The equation for each collocation node may be assembled into a global system of Nc

linear equations for the entire domain, i.e.

Hũ = Kt̃, (1.57)

where ũ and t̃ are vectors storing all nodal values of the displacements and tractions
respectively, while H and K are the matrices of influence coefficients.

If the boundary conditions are given in term of a Dirichlet datum along one part ΓD of
the boundary and a Neumann datum on the remaining part ΓN of the boundary, it is
obvious that the vectors ũ and t̃ are known on ΓD and ΓN respectively, i.e. ũ = ũD on
ΓD and t̃ = t̃N on ΓN . Therefore, the system (1.57) may be written as[

HDD HDN

HND HNN

] [
ũD
ũN

]
=
[

KDD KDN

KND KNN

] [
t̃D
t̃N

]
. (1.58)

Upon rearrangement, the final result can be written as[
−KDD HDN

−KND HNN

] [
t̃D
ũN

]
=
[
−HDD KDN

−HND KNN

] [
ũD
t̃N

]
, (1.59)

whose compact form is

Az = b, (1.60)

where the influence matrix A, the unknown vector z and the Right Hand Side (RHS)
b are given by

A :=
[
−KDD HDN

−KND HNN

]
, z :=

[
t̃D
ũN

]
and b :=

[
−HDD KDN

−HND KNN

] [
ũD
t̃N

]
.

(1.61)
In order to have a square system, on each triangle the collocation has to be performed
at the vertices (nodal collocation), because both the displacement and the traction fields
are unknown on this element.

1.3.4 Solution Strategies for BEM Systems

In Equation (1.60), A is a full matrix because, as the involved boundary integral
operators are non-local, its entries do not vanish in general. For this reason, the di-
mensional advantage of BEM with respect to domain discretization methods is offset.
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The computing time and the memory requirements for the evaluation of the matrix en-
tries increase quadratically withN (N2 operations andN2 units of storage are required).

Two classes of methods for solving system (1.60) are of interest: direct methods (such
as the LU factorization) and iterative methods (GMRES [152] being the usual choice in
case of non-symmetric matrices). In a direct method, the system matrix is transformed
or factorized into a simpler form, involving diagonal or triangular matrices. If numerical
rounding errors are not considered, the exact solution is obtained in a finite number of
arithmetic operations. On the other hand, iterative methods compute a sequence of
approximate solutions, which converges to the exact solution to the limit, i.e. in prac-
tice until a desired accuracy is obtained. Their computational cost is of the order of
O(N2) operations for each iteration, to be compared with an overall cost of the order
of O(N3) operations needed by direct methods. Direct methods can therefore become
competitive with iterative methods provided the total number of iterations Nit depends
on N . Furthermore, direct solvers have advantages when the number of right hand sides
Nrhs is large.

Due to the current available computer capacity, the implementation of the standard
BEM on laptops is restricted to problems of rather small size, i.e. not exceeding
N = O(104), because the total cost of the problem (cost of building the matrix plus
cost of solving the system) is at least of the order of O(N2). However, applications of
the BEM to large models (typically N = O(106)) requires procedures that are fast and
avoid the explicit storage of the system matrix. The idea is to compress the informa-
tions and give a data-sparse representation of A, whose amount of storage is no longer
quadratic but logarithmic-linear or almost linear. These procedures are known as fast
BEM techniques. In the last decades, several fast BEM have been published, including
the Fast Multipole Method (FMM) [151] and the Hierarchical Matrices (H-matrices)
[81].
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2.1 Introduction

In the introductory Chapter 1, the standard boundary element method (BEM) has
been presented and shown to be well suited to deal with problems in spatially-extended
regions (idealized as unbounded), typically not only of seismology but also of acoustics
and electromagnetics. In fact, the BEM is based on a boundary integral formulation
that accounts implicitly for the radiation condition at infinity. Numerically, it requires
only the discretization of the domain boundaries (i.e a surface for 3-D problems) and
possible interfaces. However, the BEM leads to a fully-populated coefficient matrix,
which makes the implementation of traditional BEM prohibitive for large-scale realistic
problems. It is thus essential to develop alternative, faster strategies that still allow to
exploit the known advantages of BEM.

Initially introduced in the context of potential problems [83], the hierarchical matrices
are a very efficient way to treat dense matrices [73, 81]. Due to their purely algebraic
nature, in addition to the memory advantages of storing such matrices, approximations
of the usual matrix operations (addition, multiplication, inversion, etc...) can be com-
puted (with logarithmic-linear complexity in case of potential problems [73]) and allow
to define fast solvers. In particular, the H-matrix/vector product accelerates the clas-
sical matrix/vector product and, consequently, reduces the time of each iteration of an
iterative solver, which is the most expensive task for these solvers. Since the convergence
rate (number of iterations) of iterative solvers usually deteriorates with the increase of
the problem size, in many applications a direct solution strategy is an interesting option
and H-matrix arithmetic has been used to do an approximated LU decomposition, in
order to reduce the numerical effort of a direct solver. There is a vast literature on the
applications of H-matrices. In particular, this technique has been successfully employed
to solve elliptic Helmholtz [9], Laplace [138] and Lamé [124] problems.

This Chapter aims at describing the principles of H-matrices and presenting the prin-
ciples of H-matrix based iterative and direct solvers. The Chapter is organized as fol-
lows. Section 2.2 gives a general description of H-matrices, illustrating how to establish
a hierarchical separation of a matrix into sub-blocks, and introducing the concepts of
cluster tree, block cluster-tree and admissibility condition. Section 2.3 is devoted to the
algorithms to compute low-rank approximations, needed for the reduction of memory
requirements. In Section 2.4 we consider the extension to vectorial oscillatory problems.
Finally, in Section 2.5 iterative and direct solvers based on H-matrices are presented.

2.2 General Description of H-Matrices

H-matrices have been introduced by Hackbusch [81] to compute a data-sparse rep-
resentation of some special dense matrices (for example matrices resulting from the
discretization of non-local operators). The key features of H-matrices are:

1. a hierarchical separation of the space, leading to a block decomposition of the
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matrix;

2. a simple tool to carefully determine a priori which blocks are approximately of
low-rank, i.e. can be approximated by low-rank matrices, since the explicit com-
putation of the ranks of the sub-matrices would be too expensive;

3. a method to compute a low-rank approximation of blocks that are approximately
of low-rank.

With these three ingredients, it is possible to define fast solvers for matrices having a
hierarchical representation. Using low-rank approximation, the memory requirements
and the cost of a matrix-vector product are reduced [25]. In addition, using H-matrix
arithmetic [83], it is possible to derive fast direct solvers.

2.2.1 Motivation of an H-Matrix Representation of BEM Matrices

The possibility of an H-matrix representation of the influence matrix A coming from
the discretization of a non-local operator, is linked to the concept of low-rank matrices.

Before providing a definition of such matrices, we recall that the rank of a matrix
M ∈ Cm×n corresponds to the common value of the column rank, i.e. the maximum
number of linearly independent column vectors, and the row rank, i.e. the maximum
number of linearly independent row vectors. Usually, M is said to be full-rank if its
rank equals the minimum between m and n. Otherwise, M is said to be rank deficient.
Supposing that M is rank deficient with rank k, it can be represented in the so-called
outer-product form, i.e. there exist two matrices U ∈ Cm×k and V ∈ Cn×k such that

M = UV H . (2.1)

where the matrix V H is the conjugate transpose of V . The storage requirement for M
is therefore reduced from O(mn) to O(k(m + n)). This leads to a formal definition of
low-rank matrices, i.e. rank deficient matrices such that k(m+ n) << mn. It is known
that low-rank matrices allow always a representation in outer-product form.

Briefly, we recall that the SVD of a matrix M ∈ Cm×n with rank r ≤ min{m,n} is a
factorization of the form

M :=
r∑
l=1

ulslvHl = USV H , (2.2)

where u1, . . . ,ur are the first eigenvectors of MMH (left singular vectors forming the
matrix U ∈ Cm×r), v1, . . . ,vr are the first eigenvectors of MHM (right singular vectors
forming the matrix V ∈ Cn×r) and s1 > s2 > . . . > sk are the square roots of the
eigenvalues of MHM (singular values placed on the diagonal of the diagonal matrix
S ∈ Cr×r).



32 CHAPTER 2. PRINCIPLE OF H-MATRICES

The SVD is linked to the Frobenius norm ‖ · ‖F and to the spectral norm ‖ · ‖2, because
it holds:

‖M‖22 = s2
1 ≤

r∑
l=1

s2
l = ‖M‖2F . (2.3)

In terms of relative error of approximation, an alternative notion of rank is introduced
[15], based on a required accuracy ε > 0, in order to compute a low-rank approximation
of matrices that are approximately of low-rank. The ε-rank k := k(ε) of the matrix
M in a unitary invariant norm ‖ · ‖ (for example Frobenius norm or spectral norm) is
defined as

k(ε) := min{k such that ‖M −Mk‖ ≤ ε‖M‖}, (2.4)
where Mk is the Singular Value Decomposition (SVD) of M truncated to the k largest
singular values, i.e.

Mk :=
k∑
l=1

ulslvHl (2.5)

Since the matrices coming from the discretization of non local operators are invertible
and, consequently, of full rank, representing exactly the entire matrix A by a low-rank
matrix is not feasible. However, it is possible to establish a hierarchical separation of the
matrix into sub-blocks, such that some of those are approximately of low-rank. In order
to simply illustrate this hierarchical reppresentation, we consider the kernel function
Gh : [−1, 1]× [−1, 1]→ C defined as

Gh(x, y;κ) = eıκ|x−y|

4π|x− y|+ h
, (2.6)

i.e. the Helmholtz fundamental solution modified by introducing the parameter h > 0,
in order to avoid the singularity occurring as x→ y. We choose h such that it equals the
discretization step used to discretize the interval [−1, 1]. Since we want 10 discretization
points per wave-length (as standard procedure), we fix the wave-number κ = 100π and
put h = π/5κ. With this value of h we obtain n = 1000 discretization points uniformly
discretized and given by:

xi = −1 + (i− 1)h, i = 1, . . . , n. (2.7)
We call G the n × n matrix with entries Gij = Gh(xi, xj ;κ) and I := {1, . . . , n} the
set of degrees of freedom of the problem. Since G has full rank, which is not surprising
remembering the near-singular nature of Gh, we cluster the interval [−1, 1] into two
sub-intervals [−1, 0] and (0, 1]. Remembering that each element i ∈ I is bijectively
mapped to one discretization point xi, the set I is naturally partitioned into two sub-
sets {1, . . . , n/2} and {n/2+1, . . . , n}, inducing a partition of matrix G in four sub-blocks,
that are the candidates for checking in which parts of the matrix low-rank approxima-
tions are possible. This procedure have to be applied to each of these four sub-blocks.
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In Figure 2.1, we give an example of the partition of the interval [−1, 1] (2.1a) and,
consequently, of the set I = {1, . . . , n} (2.1b). The sub-intervals and the sub-sets
obtained are organized in two binary trees with four levels.
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(a) Partition of the domain of the problem
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(b) Partition of the set of degrees of freedom

Figure 2.1: Partition of the interval [−1, 1] and, consequently, of the set of degrees of
freedom I = {1, . . . , n} (n=1000).

In Figure 2.2, we present the structure of theH-matrix obtained. From the first diagram
we see that the whole matrix has full rank. The second diagram in Figure 2.2 shows the
ranks of the four blocks obtained splitting the interval [−1, 1] in two sub-intervals, and
consequently partitioning the set of row and column indices of the matrix in two subsets.
These ranks are computed by the MATLAB function rank with the default tolerance.
We observe that the off-diagonal blocks G12 and G21 are approximately of low-rank,
while the diagonal blocks G11 and G22 are full-rank. We subdivide these blocks further
(third and fourth diagrams). The amount of entries required for storing the matrix
at each level of the approximation is: 1 000 000 (the whole matrix), 542 000 (almost
the 50% of the original matrix), 292 000 (almost the 30% of the original matrix) and
243 000 (almost the 25% of the original matrix). Clearly, we have a drastic reduction
in storage requirements.

1000
(a) Step 1

21

50021

500

(b) Step 2

21

21

20 250

20250

20 250

20250

(c) Step 3

21

21

20

20

20

20

18

125 18

125

12518

125 18

12518

125 18

12518

125 18

(d) Step 4

Figure 2.2: Ranks of the sub-blocks of the matrix corresponding to Gh(x, y;κ) (n=1000)
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In Figures 2.3 and 2.4, we present the singular values of the diagonal block G11 and of
off-diagonal block G12 in Step 2 of Figure 2.2. We observe that the approximation of
G11 would require a lot of informations, since all the singular values are significant, i.e.
far from the machine epsilon. Instead, the singular values of G12 decrease very quickly
and a good approximation is achieved considering only a few of them in (2.5).
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Figure 2.3: Singular values of diagonal
blocks (Step 2 of Figure (2.2))

200 400
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Figure 2.4: Singular values of off-diagonal
blocks (Step 2 of Figure (2.2))

Thanks to this simple toy model, we have investigated the possibility of decomposing a
matrix A coming from the discretization of a non-local operator into a system of blocks
which can be approximated by low-rank matrices. This operation is very subtle because
each low-rank approximation introduces an error that could propagate on the H-matrix
representation AH of the whole matrix A. To avoid this phenomenon, each low-rank
approximation has to be computed according to an acceptable tolerance, that allows to
guarantee the error bound

‖A−AH‖ ≤ ε‖A‖, (2.8)

where ‖ · ‖ denotes an unitarily invariant norm and ε > 0 a given accuracy.

2.2.2 Clustering of the unknowns

As explained in the previous Section, the first step prior to the partition of the ma-
trix A consists in a partitioning of the domain, that induces a partitioning of the set I
of degrees of freedom. The purpose is to obtain cluster of degrees of freedom such that
constitutive indices correspond to points interacting at close range.

In a realistic 3D scenario, the clustering requires a data structure called cluster tree,
i.e. a full binary tree with root I, where the leaves consist of a relatively small number
NLEAF ∈ N of indices. Each node of the cluster tree, from now on denoted by TI , defines
a subset of indices τ ⊂ I, corresponding to a sub-domain partition of the domain (see
Figure 2.5b). If |τ | ≤ NLEAF, τ is a leaf and it has no sons. Otherwise, τ has two sons
τ1, τ2 ⊂ I and it is their disjoint union. The levels of TI are counted beginning with the
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root and its depth L(I) is determined by NLEAF.

...

......

...

(a) Partition of the domain

I(0)1

I(1)1 I(1)2

I(2)1 I(2)2 I(2)3 I(2)4
...

...
...

...
(b) Cluster Tree TI

Figure 2.5: Clustering of the degrees of freedom: (a) partition of the degrees of freedom
in the domain and (b) corresponding binary tree.

By induction, it is easy to prove [14] that the number of nodes in a cluster tree is
bounded by the dimension of the problem, i.e.

|TI | ≤ 2|I| − 1. (2.9)
In theory there are more than |I| possible cluster trees for the set I, all generated by
recursive subdivisions of I [25]. In the most common strategies each cluster τ ∈ TI is
enclosed into a simple structure, called bounding box, and it is divided into two sons
using a separation plane, orthogonal to a chosen direction (see Figure 2.5a).

Depending on the position of this plane, we have two types of cluster trees:
• a balanced cluster tree, i.e. a cluster tree where each non-leaf cluster is split into

two sons of approximately equal cardinality;

• a geometric cluster tree, i.e. a cluster tree where each non-leaf cluster is split into
two sons whose bounding boxes have approximately equal volume.

It is important to remark that, during the construction of the cluster tree, a renumber-
ing of the degrees of freedom occurs.

When the geometry of the domain is regular and its discretization is uniform, these two
approaches are equivalent. In this work we only consider geometric clusters tree.

2.2.3 Subdivision of the matrix

The next step consists in a subdivision of the matrix A into a system of non-
overlapping sub-blocks. A uniform partition based on the cluster tree TI would be
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inefficient, since the number of all possible candidates is |TI |2 = |I|2. Additionally, such
a partition is not fine enough such that most of the blocks can be successfully approx-
imated by low-rank matrices. For this reason a hierarchical representation is introduced.

Starting from the initial matrix A, a block cluster representation TI×I of the matrix A
is performed by going through the cluster tree TI . Each node of TI×I contains a pair
(τ, σ) of clusters of TI and defines a block of A (Figure 2.6a). τ is called row-cluster and
σ is called column-cluster. Starting from the initial matrix, each block is recursively
subdivided until its row-cluster or its column-cluster is a leaf of TI [25].

(a) Clustering of the unknowns

A⌧,�

A =

�

⌧

(b) Corresponding block in the matrix

Figure 2.6: Illustration of the construction of the block cluster tree: (a) Clustering of
the unknowns on the geometry and (b) corresponding block clustering in the matrix.

The set Leaf(TI×I) of all the leaves of TI×I , that are nodes which do not have any sons,
realizes a partition, among whose elements we have to find which parts of matrix A can
be well approximated by a low-rank matrix and which parts have to be stored as dense
matrices. Since the computation of the rank of a matrix is a very expensive procedure
(based on the SVD), this aim is accomplished introducing an admissibility condition,
i.e. a boolean function Adm : TI × TI → {true, false}. If Adm(τ, σ) = true, the cluster
pair (τ, σ) (or equivalent the corresponding block of TI×I) corresponds to a block that
can be approximated by a low-rank matrix and it is marked as admissible. Otherwise,
it is a full-rank matrix and it is marked as non-admissible.

Defining the sets

Leaf+(TI×I) := {(τ, σ) ∈ TI×I : Adm(τ, σ) = true}
Leaf−(TI×I) := {(τ, σ) ∈ TI×I : Adm(τ, σ) = false}, (2.10)

we can look at the partition Leaf(TI×I) as their disjoint union, i.e.

Leaf(TI×I) = Leaf+(TI×I) ∪ Leaf−(TI×I). (2.11)
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2.2.4 Admissibility Condition

H-matrices are efficient representations for matrices coming from the discretization
of asymptotically smooth kernels. In this case, the method is well-documented and
estimates are provided for the Taylor expansion and interpolation errors. A kernel
function K(x,y) is said asymptotically smooth if there exist two real constants c1, c2 > 0
and a singular degree β ∈ N such that for any z ∈ {xi, yi : i = 1, 2, 3} and any α ∈ N
it holds:

|∂αzK(x,y)| ≤ α!c1(c2‖x− y‖)−α−β, x 6= y. (2.12)

The admissibility condition was defined in the context of the data-sparse approximation
of matrices resulting from the discretization of the boundary integral equations involving
this type of kernels [25]. The admissibility condition depends on a parameter η < 0 and
it is given by

Adm(τ, σ) = true ⇔ min{diam(τ), diam(σ)} ≤ ηdist(τ, σ), (2.13)

where the diameter of a cluster τ ∈ TI is defined as

diam(τ) := max
i,j∈τ
‖xi − xj‖, (2.14)

while the distance between two clusters τ, σ ∈ TI is given by

dist(τ, σ) := min
i∈τ,j∈σ

‖xi − xj‖. (2.15)

Since the computation of these quantities can be too expensive, for practical implemen-
tations it is convenient to replace the clusters τ and σ with their bounding boxes Bτ
and Bσ (see Figure 2.7). Thus, the admissibility condition becomes:

Adm(τ, σ) = true ⇔ min{diam(Bτ ),diam(Bσ)} ≤ ηdist(Bτ , Bσ). (2.16)

Figure 2.7: Illustration of the admissibility condition with bounding boxes.
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2.3 Algorithms to Perform Low-Rank Approximations

Informally, an H-matrix representation of the matrix A is a structure AH where the
matrix blocks Aτ,σ corresponding to a non-admissible cluster pair (τ, σ) ∈ Leaf−(TI×I)
are stored as dense matrices and the matrix blocks Aτ,σ corresponding to an admissible
cluster pair (τ, σ) ∈ Leaf+(TI×I) are approximated by low-rank matrices and stored
in outer-product form (2.1). The storage requirement of the matrix blocks Aτ,σ with
cluster pair (τ, σ) ∈ Leaf−(TI×I) is influenced by the (small) parameter NLEAF, since
|τ | ' |σ| ' NLEAF. On the other hand, the storage requirement of the matrix blocks
Aτ,σ with cluster pair (τ, σ) ∈ Leaf+(TI×I) is determined by the rank of its low-rank
approximation. Thus, the crucial point for computing the H-matrix representation AH
is an accurate and rank revealing algorithm to perform low-rank approximations of the
admissible blocks.

2.3.1 Truncated Singular Value Decomposition

The best possible low-rank approximation (with rank k) of the matrix M ∈ Cm×n
with rank r ≤ min{m,n} is given by its truncated SVD (Eckart-Young Theorem), i.e.

Mk :=
k∑
l=1

ulslvHl = USV H , with k < r. (2.17)

Unfortunately, the computation of the truncated SVD is too expensive, in the order
of O(max (m,n) min2 (m,n)). In addition, it requires the knowledge of all the entries
of M , i.e. an assembling cost of the order of O(mn). For this reason, in the context
of the H-matrices, the use of the truncated SVD would be equivalent to assembly the
complete matrix.

2.3.2 Fully-Pivoted Adaptive Cross Approximation

The Adaptive Cross Approximation (ACA) [17, 18] offers an interesting alternative
to the SVD since it produces a quasi-optimal low-rank approximation. The starting
point of the ACA is that every matrix M ∈ Cm×n of rank r is the sum of r matrices of
rank 1. The ACA is thus a greedy algorithm that improves the accuracy of the approx-
imation by adding iteratively rank-1 matrices.

The matrix M is split into M = Sk + Rk, where Sk denotes the rank k approximation
of M and Rk denotes the residual to be minimized. Starting from

S0 := 0 and R0 := M (2.18)

at each iteration the pivot γk+1 = (Rk)−1
ij is the inverse of the largest entry in Rk (see

[15] for further details about the right choice of the initial pivot γ1). At each step, the
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information is shifted iteratively from the residual to the approximant, by subtracting
the outer product of the pivot row and the column from Rk and adding it to Sk:

Rk+1 := Rk − uk+1v>k+1,
Sk+1 := Sk + uk+1v>k+1

(2.19)

with the i-th row vector and the j-th column vector defined as

vk+1 = γk+1(Rk)i,· and uk+1 = γk+1(Rk)·,j . (2.20)

In this way the residual Rk is minimized and the rank of the approximation Sk is
increased step by step. Finally, the approximation stops if the following criterion holds:

‖M − Sk‖F ≤ εACA‖M‖F , (2.21)

where εACA > 0 is a parameter of the method.

The efficiency of the fully-pivoted ACA is illustrated using the off-diagonal block G12
of the matrix Gij = Gh(xi, xj ;κ) obtained in Step 2 of Figure 2.2. In Figure 2.8 and
Figure 2.9, the successive minimizations of the residual Rk are shown. Note that the ex-
actly computed crosses are shown in black, while the remaining color scales are adapted
to the actual values of the residuals and, therefore, are different for all pictures. In
Table 2.1, we report the indices of the row and the column pivot, the value of the pivot
and the relative error at each iteration of the algorithm. All these results correspond to
the value εACA = 10−4 for the threshold in the stopping criterion (2.21). In particular
we observe that the first five steps of the algorithm remove rows and columns in the
left lower part of the matrix. Further iterations quickly reduce the relative error of
approximation in the Frobenius’ norm. As we expect, the value of the pivot decreases
at each iteration.

The complexity of the fully-pivoted ACA to generate an approximation of rank k is
O(kmn) (at each iteration O(mn) operations are required to update the approximant
Sk and the residual Rk). Similarly to the SVD, it requires the computation of all the
entries of M to find the pivot. Thus, the ACA in the fully-pivoted form does not fulfill
our requirements.
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(a) Residual R0 (b) Residual R1

(c) Residual R2 (d) Residual R3

(e) Residual R4 (f) Residual R5

Figure 2.8: From top to bottom and from left to right, residuals R0 − R5 produced by
fully-pivoted ACA of the off-diagonal block G12 of matrix G (Step 2 of Figure 2.2).
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(a) Residual R6 (b) Residual R7

(c) Residual R8 (d) Residual R9

Figure 2.9: From top to bottom and from left to right, residuals R6 − R9 produced by
fully-pivoted ACA of the off-diagonal block G12 of matrix G (Step 2 of Figure 2.2).

Step Pivot row Pivot column 1/γk Relative Error
1 500 1 2.50× 10+2 6.94× 10−1

2 497 4 2.25× 10+1 4.80× 10−1

3 480 21 4.55× 10+0 2.32× 10−1

4 499 2 1.05× 10+0 2.21× 10−1

5 386 115 8.13× 10−1 3.41× 10−2

6 1 500 1.56× 10−1 3.31× 10−3

7 492 9 1.16× 10−1 1.95× 10−3

8 452 49 2.39× 10−2 6.09× 10−4

9 249 252 3.79× 10−3 1.80× 10−5

Table 2.1: Fully-pivoted ACA of the off-diagonal block G12 of matrix G (Step 2 of
Figure 2.2).
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2.3.3 Partially-Pivoted Adaptive Cross Approximation

The partially-pivoted ACA proposes a different approach to choose the pivot, avoid-
ing the assembly of the complete matrix. The idea is to maximize the residual only for
one of the two indices and to keep the other one fixed. With this strategy, only one
row or one column is assembled at each iteration. More precisely, at iteration k, given
Sk and assuming the row index i∗ is known the algorithm is given by the following six
steps:

1. generation of the rows a := M>ei∗ and R>k ei∗ := a −
k∑
l=1

(ul)i∗vl

2. find the column index j∗ := arg maxj |(Rk)i∗j | and compute γk+1 := ((Rk)i∗j∗)−1

3. generation of the columns b := Mej∗ and Rkej∗ := b−
k∑
l=1

(vl)j∗ul

4. find the next row index i∗ := arg maxi |(Rk)ij∗ |

5. compute vectors uk+1 := γk+1Rkej∗ and vk+1 := R>k ei∗

6. update the approximation Sk+1 := Sk + uk+1v>k+1.
With this approach, approximants and residuals are not computed explicitly nor stored,
so the stopping criterion (2.21) needs to be adapted. The common choice is a stagnation-
based error estimate. The algorithm stops when the new rank-1 approximation does not
improve the accuracy of the approximation. Since Sk+1 − Sk = uk+1v>k+1, the stopping
criterion now reads:

‖uk+1‖2‖vk+1‖2 ≤ εACA‖Sk+1‖F , (2.22)

where

‖Sk+1‖2F = ‖Sk‖2F + 2
k∑
l=1

u>k+1ulv>l vk+1 + ‖uk+1‖2F ‖vk+1‖2F . (2.23)

Table 2.2 illustrates the behavior of the partially-pivoted ACA algorithm. We report
again the indices of the row and the column pivot, the value of the pivot and the rela-
tive error at each iteration of the algorithm. All these results correspond to the value
εACA = 10−4 for the threshold in the stopping criterion (2.22). We note that the nu-
merical rank is bigger than the numerical rank computed by full-pivoted ACA with the
same threshold. This phenomenon is not strange and it is linked to the choice of the
pivot. In fact, in the fully-pivoted version the pivot γk+1 is chosen as the maximum
entry in modulus of the residual Rk, while in the partially-pivoted ACA it is chosen
as the maximum entry in modulus of a computed row or column of the residual Rk.
However, the two numerical ranks are of the same order.
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Step Pivot row Pivot column 1/γk Relative Error
1 1 1 7.83× 10+2 7.79× 10+0

2 500 24 5.21× 10+2 7.42× 10−1

3 499 2 3.27× 10+1 5.73× 10−1

4 498 5 6.51× 10+0 4.10× 10−1

5 495 172 4.32× 10+0 4.82× 10−2

6 482 10 9.99× 10−1 2.75× 10−2

7 469 61 7.58× 10−1 1.01× 10−2

8 431 3 2.55× 10−1 4.86× 10−3

9 404 500 4.44× 10−2 2.71× 10−4

10 312 296 5.19× 10−3 2.12× 10−5

Table 2.2: Partially-pivoted ACA of the off-diagonal block G12 of matrix G (Step 2 of
Figure 2.2)

If we approximate a matrix M ∈ Cm×n, the update of the approximation Sk and the
computation of its Frobenius norm require O(k2(m+ n)) operations, while the compu-
tation of matrix entries requires O(k(m + n)) operations. Thus, the partially-pivoted
ACA has a reduced computational cost of O(k2(m + n) + k(m + n)) compared to the
cost of the fully-pivoted ACA. When we consider the dense matrices resulting from the
discretization of non-local operators, this complexity scales like O(k(m + n)), because
the costs for generating the matrix entries dominate the algebraic transformations in
the algorithm. In fact, the sums and the multiplications involved in each iteration of
partially-pivoted ACA are much faster than the evaluation of non-local operator.

Since the partially-pivoted ACA is a heuristic method, there exist counter-examples
where it fails [24] and variants to improve the robustness of the method, such as the
improved ACA (ACA+) and the Hybrid Cross Approximation [14, 25]. However, we
show with numerical examples in the next Chapter that the basic partially-pivoted ACA
is sufficient for our applications.

2.3.4 Recompression of the Admissible Blocks

After a low-rank matrix has been approximated by ACA, a further reduction of
the required memory can be achieved by a suitable recompression scheme, so that the
amount of memory required for the final storage is lower than the one needed for the
ACA generated matrices. In fact, ACA does not provide the best numerical rank but a
first approximation, that can be improved, without losing accuracy, performing a SVD
recompression.

Each matrix M ∈ Cm×n, with m ≥ n, can be factorized as the product of an unitary
matrix Q ∈ Cm×m and an upper triangular matrix R ∈ Cm×n. As the bottom m − n
rows of R consist of zeros, it is often useful to partition Q and R in the following way:
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M =
[
Q1 Q2

]
·
[
R1
0

]
= Q1R1, (2.24)

where Q1 ∈ Cm×n and Q2 ∈ Cm×(m−n) have orthogonal columns and R1 ∈ Cn×n is an
upper triangular matrix. Equation (2.24) is called reduced QR-decomposition of M .

Starting from M ' UV H with U ∈ Cm×kACA and V ∈ Cn×kACA (where kACA ∈ N is the
rank provided by the ACA), we compute the reduced QR-decomposition of matrices U
and V in O(k2

ACA(m+ n)) operations, such that

U = QURU and V = QVRV . (2.25)

Next, we assemble the small matrix RURHV ∈ CkACA×kACA in O(k3
ACA) operations and

compute a truncated SVD of this kACA× kACA matrix to obtain its best approximant of
rank kSVD < kACA according to a prescribed accuracy εSVD > 0, i.e.

RUR
H
V ' ΦΣΨH . (2.26)

The cost of the evaluation of this SVD is O(k3
ACA).

We deduce the truncated SVD of M, since:

M ' UV H = QU (RURHV )QHV ' (QUΦ)Σ(QV Ψ)H . (2.27)

The cost of the products QUΦ and QV Ψ is O(k2
SVD(m+ n)).

Finally, the total cost of this recompression procedure is O(k2
SVD(m + n) + k3

ACA) (see
[16] for further details).

2.4 Extension of H-matrix to BEM for Elastodynamics

The 3D elastodynamics Green’s functions are linear combinations of derivatives of
the Helmholtz fundamental solution, that is not asymptotically smooth in the sense of
relation (2.12). On the other hand, it can be decomposed as follows

G(x,y;κ) = eıκ‖x−y‖

4π‖x− y‖ := f(x,y)eıκ‖x−y‖. (2.28)

Since f(x,y) is an asymptotically smooth function, it has been proved [9] that there
exist two real constants c1, c2 > 0 and a singular degree β ∈ N such that for any
z ∈ {xi, yi : i = 1, 2, 3} and any α ∈ N it holds:

|∂αz G(x,y;κ)| ≤ α!c1(1 + κ‖x− y‖)α(c2‖x− y‖)−α−β, x 6= y. (2.29)

From this inequality, it follows that we need to distinguish two cases [17]. In the low-
frequency regime, i.e. when κdiam(Ω) is small, the Helmholtz fundamental solution
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is asymptotically smooth because κ‖x − y‖ is small for all x,y ∈ Ω. But in the high
frequency regime the methods developed for asymptotically smooth kernels could be not
efficient.

2.4.1 Application of ACA to Oscillatory Kernels: Theoretical Esti-
mates

There exist a lot of works on ACA [18, 23] for asymptotically smooth kernels but the
case of Helmholtz fundamental solution has been paid less attention. We can mention
the work [160] where a collocation approach is considered for Helmholtz problems up
to 20 480 DOFs and where encouraging numerical results are presented.

The capability of the ACA to produce low-rank approximations can be related to the
concept of degenerate functions [15]. A kernel function is said to be degenerate if it can
be well approximated (under some assumptions) by a sum of functions with separated
variables. Noting Ω1 and Ω2 two domains of R3, we are looking for an approximation
of G : Ω1 × Ω2 → C such that

Gk(x,y;κ) =
k∑
l=1

ul(x;κ)vl(y;κ) ∀x ∈ Ω1 and ∀y ∈ Ω2. (2.30)

Assuming that x ∈ Ω1 and y ∈ Ω2 with ‖x‖ > ‖y‖, for Helmholtz kernel it is possible
to prove [72] the following error estimates

|G(x,y;κ)−Gk(x,y;κ)| ≤ c e
ıκ‖x‖

4π‖x‖k
2
(‖y‖
‖x‖

)2
, (2.31)

where Gk(x,y;κ) is the multipole expansion of G(x,y;κ), given in terms of the Legendre
polynomials Pl (l ≥ 0), i.e.

Gk(x,y;κ) := ıπ
k−1∑
l=0

(
l + 1

2

) H(1)
l+ 1

2
(κ‖x‖)

‖x‖1/2

Jl+ 1
2
(κ‖y‖)
‖y‖1/2

Pl(x̂ · ŷ). (2.32)

Here, we use the notation x̂ := x/‖x‖ for x 6= 0, H(1)
l denotes the l-th Hankel function

of first kind and Jl denotes the l-th Bessel function.

The degeneracy becomes visible by the addition theorem of spherical harmonics:

Pl(x̂ · ŷ) := 4π
2l + 1

∑
|m|≤l

Y m
l (x̂)Y −ml (ŷ), (2.33)

with the spherical harmonics Y m
l of order l and degree m (|m| ≤ l).

It is clear that the error estimate (2.31) deteriorates in the high-frequency regime.
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Another way to get a degenerate kernel is to perform a Taylor expansion. Of course
this method is only used to mathematically justify the degeneracy, because in practice
we use the ACA after discretization.

Following the method presented in [15] (see Lemma 3.15), let ξΩ2 be the Chebyshev
center of the set Ω2, i.e. the center of a ball with minimum radius %Ω2 containing Ω2
(see Figure 2.10).

ξΩ2

ξΩ1

%Ω2

%Ω1

x

y

Ω1

Ω2

Figure 2.10: Chebyshev centers of domains Ω1 and Ω2.

In order to guarantee that ‖x‖ > ‖y‖ holds for all x ∈ Ω1 in the coordinate system with
origin in ξΩ2 , we have to require

ηdist(ξΩ2 ,Ω1) ≥ %Ω2 , with η < 1. (2.34)

For asymptotically smooth kernels, the estimate (2.12) is used to prove exponential
convergence of the Taylor series if Ω1 and Ω2 are sufficiently far enough away one from
the other.

Since Helmholtz kernel G : Ω1×Ω2 → C is analytic with respect to its second argument
y 6= x, it is decomposed into the following Taylor expansion:

G(x,y;κ) =
∑
|α|<k

1
α!∂

α
yG(x, ξΩ2 ;κ)(y− ξΩ2)α +Rk(x,y;κ), (2.35)

where α! := α1!α2!α3! for the multi-index α := (α1, α2, α3). The remainder Rk(x,y;κ)
converges to zero as k tends to infinity, even if the convergence rate depends on the
respective positions of x, y and ξΩ2 .

It is clear that the remainder satisfies

|Rk(x,y;κ)| ≤
∑
|α|≥k

1
α! |∂

α
yG(x, ξΩ2 ;κ)| · |(y− ξΩ2)α|. (2.36)

From inequality (2.29) it follows

|Rk(x,y;κ)| ≤ c1
∑
|α|≥k

|α|!
α!

(1 + κ‖x− ξΩ2‖)|α|

(c2‖x− ξΩ2‖)|α|+β
· |(y− ξΩ2)α| (2.37)
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or equivalently

|Rk(x,y;κ)| ≤ c1
(c2‖x− ξΩ2‖)β

∞∑
l=k

(
γ

‖x− ξΩ2‖

)l ∑
|α|=l

(
l

α

)
|(y− ξΩ2)α| (2.38)

having set

γ := 1 + κ‖x− ξΩ2‖
c2

. (2.39)

Due to

∑
|α|=l

(
l

α

)
|ξ|α =

( 3∑
i=1
|ξi|
)l
≤ 3l/2‖ξ‖l, (2.40)

we have

|Rk(x,y;κ)| ≤ c1
(c2‖x− ξΩ2‖)β

∞∑
l=k

(√
3γ ‖y− ξΩ2‖
‖x− ξΩ2‖

)l
. (2.41)

By the definition of %Ω2, it follows:

|Rk(x,y;κ)| ≤ c1
(c2‖x− ξΩ2‖)β

∞∑
l=k

(√
3γ %Ω2

dist(ξΩ2 ,Ω1)

)l
. (2.42)

To assure convergence of the series, the parameter η < 1 introduced in (2.34) needs to
be chosen such that

√
3γ %Ω2

dist(ξΩ2 ,Ω1) < 1. (2.43)

Provided that this conditions holds, we have

|Rk(x,y;κ)| ≤ c1
(c2‖x− ξΩ2‖)β

(
√

3γη)k

1−
√

3γη
. (2.44)

As a result, the Taylor expansion of the Helmholtz kernel converges exponentially with
convergence rate

√
3γη < 1 and k ∼ | log ε| is the rank required to achieve an approxi-

mation with accuracy ε > 0.

Remark that in the low-frequency case, γ ∼ 1/c2 such that the condition is similar to
asymptotically smooth kernels. Instead, in the high-frequency case the parameter η
in the admissibility condition (2.13) should be adapted to the frequency to keep the
required k to achieve a constant accuracy ε, by keeping κdiam(Ω) to a constant value.
In other words, if the frequency doubles, i.e. κ = 2κ0, the size of the admissible blocks
should be divided by two to keep the product constant. An admissible block A0 at
frequency κ0 should be decomposed into a 2× 2 block matrix at frequency κ, i.e.
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A0 =
[
A1 A2
A3 A4

]
. (2.45)

From error estimates (2.31) and condition (2.44) we deduce that the low-rank approxi-
mation of A0 is of the form[

U1V
H

1 U2V
H

2
U3V

H
1 U4V

H
2

]
=
[
U1 U2
U3 U4

]
·
[
V1 0
0 V2

]H
. (2.46)

This means that if η is kept constant, i.e. it is not adapted to the frequency, then the
rank of the admissible blocks depends linearly on the frequency.

Another approach to avoid the linear dependence of the rank with the frequency is
the concept of H2-matrices (see [82]). However, for our applications we should stay in
low/mid-frequency regime, such that the H-matrix structure is sufficient.

2.4.2 Vectorial Partial-Pivoted Adaptive Cross Approximation

One of the specificity of this work is to consider H-matrices and ACA in the context
of vectorial problems. There exist a lot of works both theoretical and numerical on the
ACA for scalar problems, in particular on the selection of non-zero pivots (since they
are used to normalize the new rank-1 approximation). Indeed for scalar problems, it is
straightforward to find the largest non-zero entries in a given column. But for vectorial
problems in Rd, each pair of nodes on the mesh does not define a single entry in the
complete matrix but rather a d×d sub-matrix. This happens for example for 3D elasto-
dynamics where the Green’s tensors are 3× 3 matrices. Messner and Schanz claim that
a straightforward generalization of the scalar-value ACA to the matrix-valued version is
not possible [131]. They proposed to partition the complete system matrix into 3 × 3
block matrices and for each 3×3 block matrix they used the scalar ACA. This approach
is well suited for iterative solvers but can not be adapted in the context of direct solvers.

Before describing the solution we adopted, we report two ideas tested and explain why
they did not work. For this purpose we define the notion of block row (respectively
block column), i.e. a row whose entries are 3 × 3 matrices, as opposed to scalar row
(respectively scalar column), i.e. a classical row.

The first idea consists in applying the fully-pivoted ACA in a block row or column: once
the first block row is generated, we look for the largest non zero entry in modulus and
choose the respective scalar row and column as the first scalar row and column pivot; we
then find the largest non zero entry in modulus in the selected scalar column pivot and
define the next block row as the block row to which this entry belongs; we repeat this
procedure until the ACA stopping criterion (2.22) is satisfied. However, this technique
does not select the best scalar rows and column to subtract to the residuum Rk and to
add to the approximant Sk.
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In the second proposed approach, we do not consider scalar rows or columns: we select
the 3× 3 matrix with the largest norm in the first block row and define the first block
column pivot as the block column to which this matrix belongs; the next block row
pivot is the one corresponding to the 3 × 3 matrix with the largest norm in the pre-
viously selected block column pivot; we repeat this procedure until the ACA stopping
criterion (2.22) is satisfied. The convergence of this method fails because for no norm
it is guaranteed that a proper pivot can be found.

We propose instead to consider the eigenvalues of every 3×3 matrix in a block row/column
in order to choose the pivot. In practice, we compute the eigenvalues of every 3 × 3
matrix and select the smallest one in modulus. The next pivot is given by the index of
the 3 × 3 matrix with the largest eigenvalue among the selected ones. In this case the
choice of pivot is stable and the convergence of the algorithm is ensured, because the
3 × 3 matrix defining each pivot is non singular and its determinant is not too small.
This technique ensures a good low-rank approximation of an admissible block and it is
used to obtain the results presented in the Chapter 3.

2.5 H-matrix Based Solvers

Since the hierarchical matrix framework is an algebraic approach, it is possible to
define a matrix-vector product and a matrix arithmetics (addition, multiplication and
inversion) for the hierarchical matrices [73, 115]. As a consequence, once the H-matrix
representation of the influence matrix is computed, it is easy to derive an H-matrix
based solver.

2.5.1 H-matrix Based Iterative Solver

A number of iterative procedures has been developed for the approximate solution of
a linear system of equations. The oldest and simplest iterative methods are the so called
stationary iterative methods (or relaxation methods), such as the Jacobi Method, the
Gauss-Seidel Method and the Successive Over-Relaxation (SOR) Method. While these
methods are simple to derive, implement and analyze, convergence is only guarantee for
a limited class of matrices. For this reason, these methods have largely been supplanted
by more sophisticated procedures, such as Krylov subspace methods. The prototyp-
ical method in this class is the Conjugate Gradient Method (CGM). Other methods
are the Generalized Minimal Residual Method (GMRES) and the Biconjugate Gradient
Method (BiCG). In particular, GMRES (initially proposed by Saad and Schultz [152]) is
the usual choice in the case of non-symmetric systems, as the BEM systems obtained by
using the collocation approach. In order to define an iterative solver, the matrix/vector
product is the only operation needed.

The H-matrix/vector product can be used to accelerate the classical matrix/vector
product and, consequently, to reduce the time of each iteration of a GMRES based
iterative solver, which is the most expansive task for this type of solution method.
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The H-matrix/vector product is performed hierarchically by going through the block
cluster tree TI×I . At the leaf level, there are two possibilities for a sub-block Aτ,σ ∈
Cm×n:
• if the cluster pair (τ, σ) ∈ Leaf−(TI×I), Aτ,σ does not admit a low-rank approxi-

mation and the standard matrix-vector product is used with cost O(mn);

• if the cluster pair (τ, σ) ∈ Leaf+(TI×I), Aτ,σ admits a low-rank approximation and
its representation in outer-product form is used to perform the product. The cost
of this part of the matrix-vector product is reduced from O(mn) to O(k(m+ n)),
where k is the numerical rank of the block.

Obviously, the accuracy of this matrix-vector product is related to the overall accuracy
of the H-matrix representation and to the accuracy of the low-rank approximations.

2.5.2 H-matrix Arithmetic

As the efficiency of an H-matrix based iterative solver relies on an efficient H-
matrix based matrix-vector product, the efficiency of an H-matrix based direct solver
relies on an efficient H-matrix arithmetic. Since the H-matrix representation relies on
the low-rank approximations, it is natural to generalize the matrix/matrix addition
and multiplication first in the context of low-rank matrices and, then, extend these
operations to the H-matrices.

2.5.2.1 Algebra of Low-rank Matrices

Summation. Let us consider two matrices M1 = U1V
H

1 ∈ Cm×n and M2 = U2V
H

2 ∈
Cm×n with low-ranks k1, k2 ∈ N respectively. The sum of these matrices is given by

M̃ = M1 +M2 = U1V
H

1 + U2V
H

2 =
[
U1 U2

]
·
[
V H

1
V H

2

]
= UV H ∈ Cm×n (2.47)

Without any manipulation the rank of M̃ is k1 + k2. However, further compression can
be obtained by using the following recompression procedure:

1. calculate a reduced QR-decomposition of U = QURU, with QU ∈ Cm×(k1+k2) and
RU ∈ C(k1+k2)×(k1+k2);

2. calculate a reduced QR-decomposition of V = QVRV, with QV ∈ Cn×(k1+k2) and
RV ∈ C(k1+k2)×(k1+k2);

3. calculate a truncated SVD of RUR
>
V = Φ̃Λ̃Ψ̃H , in order to obtain its best approx-

imant of rank k′ < k1 + k2 according to a given accuracy ε > 0;

4. set Ũ := QUΦ̃Λ̃ ∈ Cm×k
′
and Ṽ := QVRVΨ̃ ∈ Cn×k

′
.
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It results that the recompressed addition between low-rank matrices is not an exact
operation but a formatted operation, i.e. it is based on the given accuracy ε > 0, and
its total cost is O((k1 + k2)(k1 + k2 + k

′)(m + n) + (k1 + k2)3). This technique is a
good compromise between a controlled loss of precision and memory savings, because
the rank is reduced.

Multiplication. The multiplication of a low-rank matrix M = UV H ∈ Cm×n, with
U ∈ Cm×k and V ∈ Cn×k, by an arbitrary matrix R from the left (in this case R ∈ Cs×m)
or the right (in this case R ∈ Cn×s) yields again to a low-rank matrix

M ·R = (UV H) ·R = U · (RHV )H := UṼ H with U ∈ Cm×k, Ṽ ∈ Cs×k
R ·M = R · (UV H) = (RU) · V H := ŨV H with Ũ ∈ Cs×k, V ∈ Cn×k.

(2.48)
To calculate this product, we perform the matrix-vector multiplication RHVi for the k
columns of V with the conjugate transposed of R, or RUi for the k columns of U with
the matrix R. The total cost of this procedure is O(kns) in the case of the multiplication
from right, and O(knm) in the case of the multiplication from left.

2.5.2.2 Algebra of H-Matrices

After these considerations about the low-rank matrices, we explain how to multiply
two blocks Aτ,ζ and Aζ,σ of an H-matrix and add the result to another block Aτ,σ,
i.e. Aτ,σ ← Aτ,σ + Aτ,ζ · Aζ,σ := Aτ,σ + Ãτ,σ. First of all, we need to assure the
compatibility between the blocks, since they can be: an H-matrix block, a full matrix
block or a low-rank block. For this reason, we have to distinguish 27 possible cases,
grouped in 3 scenarios:

1. Aτ,σ is a full matrix. This is the simplest case because the conversion of the matrix
Ãτ,σ into a full matrix is obtained using the standard product between matrices.
For sake of clarity, we treat separately the nine sub-cases.

1.1 Aτ,ζ and Aζ,σ are both full matrices.

+ ·

Figure 2.11: Aτ,σ is a full matrix, Aτ,ζ is a full matrix and Aζ,σ is a full
matrix.

The matrix Ãτ,σ is computed and added to Aτ,σ using the standard matrix
arithmetic.

1.2 Aτ,ζ is a full matrix and Aζ,σ = Uζ,σV
H
ζ,σ is a low-rank matrix.
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+ ·

Figure 2.12: Aτ,σ is a full matrix, Aτ,ζ is a full matrix and Aζ,σ is a low-rank
matrix.

We observe that the matrix Ãτ,σ is obtained in the outer-product form in a
fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = Aτ,ζ(Uζ,σV H
ζ,σ) = (Aτ,ζUζ,σ)V H

ζ,σ := Ũζ,σV
H
ζ,σ.

This matrix is converted into a full matrix performing the product between
Ũζ,σ and V H

ζ,σ, and then it is added to Aτ,σ using the standard matrix arith-
metic.

1.3 Aτ,ζ = Uτ,ζV
H
τ,ζ is a low-rank matrix and Aζ,σ is a full matrix.

+ ·

Figure 2.13: Aτ,σ is a full matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is a full
matrix.

We observe that the matrix Ãτ,σ is obtained in the outer-product form in a
fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = (Uτ,ζV H
τ,ζ)Aζ,σ = Uτ,ζ(V H

τ,ζAζ,σ) := Uτ,ζ Ṽ
H
τ,ζ .

This matrix is converted into a full matrix performing the product between
Uτ,ζ and Ṽ H

τ,ζ , and then it is added to Aτ,σ using the standard matrix arith-
metic.

1.4 Aτ,ζ = Uτ,ζV
H
τ,ζ and Aζ,σ = Uζ,σV

H
ζ,σ are both low-rank matrices.

+ ·

Figure 2.14: Aτ,σ is a full matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is a
low-rank matrix.



2.5. H-MATRIX BASED SOLVERS 53

We observe that the matrix Ãτ,σ is obtained in the outer-product form in a
fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = (Uτ,ζV Hτ,ζ)(Uζ,σV Hζ,σ) = (Uτ,ζ(V Hτ,ζUζ,σ))V Hζ,σ := (Uτ,ζ Ṽ Hτ,ζ)V Hζ,σ = Ũζ,σV
H
ζ,σ.

This matrix is converted into a full matrix performing the product between
Ũζ,σ and V H

ζ,σ, and then it is added to Aτ,σ using the standard matrix arith-
metic.

1.5 Aτ,ζ is a full matrix and Aζ,σ is an H-matrix.

+ ·

Figure 2.15: Aτ,σ is a full matrix, Aτ,ζ is a full matrix and Aζ,σ is an H-
matrix.

In order to compute the matrix Ãτ,σ, we use the fastH-matrix/vector product
to apply the H-matrix Aζ,σ to each row of Aτ,ζ . In this way, Ãτ,σ is a full
matrix and it is added to Aτ,σ using the standard matrix arithmetic.

1.6 Aτ,ζ is an H-matrix and Aζ,σ is a full matrix.

+ ·

Figure 2.16: Aτ,σ is a full matrix, Aτ,ζ is an H-matrix and Aζ,σ is a full
matrix.

In order to compute the matrix Ãτ,σ, we use the fastH-matrix/vector product
to apply the H-matrix Aτ,ζ to each column of Aζ,σ. In this way, Ãτ,σ is a full
matrix and it is added to Aτ,σ using the standard matrix arithmetic.

1.7 Aτ,ζ = Uτ,ζV
H
τ,ζ is a low-rank matrix and Aζ,σ is an H-matrix.

+ ·

Figure 2.17: Aτ,σ is full matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is an
H-matrix.
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We observe that the matrix Ãτ,σ is obtained in the outer-product form, i.e

Ãτ,σ = (Uτ,ζV H
τ,ζ)Aζ,σ = Uτ,ζ(V H

τ,ζAζ,σ) := Uτ,ζ Ṽ
H
τ,ζ ,

using the fast H-matrix/vector product to apply the H-matrix Aζ,σ to each
row of V H

τ,ζ . Ãτ,σ is converted into a full matrix performing the product
between Uτ,ζ and Ṽ H

τ,ζ , and then it is added to Aτ,σ using the standard matrix
arithmetic.

1.8 Aτ,ζ is an H-matrix and Aζ,σ = Uζ,σV
H
ζ,σ is a low-rank matrix.

+ ·

Figure 2.18: Aτ,σ is full matrix, Aτ,ζ is an H-matrix and Aζ,σ is a low-rank
matrix.

We observe that the matrix Ãτ,σ is obtained in the outer-product form, i.e.

Ãτ,σ = Aτ,ζ(Uζ,σV H
ζ,σ) = (Aτ,ζUζ,σ)V H

ζ,σ := Ũζ,σV
H
ζ,σ,

using the fast H-matrix/vector product to apply the H-matrix Aτ,ζ to each
column of Uζ,σ. Ãτ,σ is converted into a full matrix performing the product
between Ũζ,σ and V H

ζ,σ, and then it is added to Aτ,σ using the standard matrix
arithmetic.

1.9 Aτ,ζ and Aζ,σ are both H-matrices.

+ ·

Figure 2.19: Aτ,σ is full matrix, Aτ,ζ is an H-matrix and Aζ,σ is an H-matrix.

We convert the H-matrix Aτ,ζ into a low-rank matrix, using the technique
explained in Subsection 2.5.2.3, and we follow the procedure described in
sub-case 1.7.

2. Aτ,σ is a low-rank matrix. In this eventuality, we compute Ãτ,σ := Aτ,ζ ·Aζ,σ in the
outer-product form and we use the formatted addition between low-rank matrices
to add Ãτ,σ to Aτ,σ. The result is not exact but approximated according to a
given accuracy ε > 0. For sake of clarity, we treat separately the nine sub-cases.
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2.1 Aτ,ζ = Uτ,ζV
H
τ,ζ and Aζ,σ = Uζ,σV

H
ζ,σ are both low-rank matrices.

+ ·

Figure 2.20: Aτ,σ is a low-rank matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is
a low-rank matrix.

We observe that the matrix Ãτ,σ is obtained in the desired outer-product
form in a fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = (Uτ,ζV Hτ,ζ)(Uζ,σV Hζ,σ) = (Uτ,ζ(V Hτ,ζUζ,σ))V Hζ,σ := (Uτ,ζ Ṽ Hτ,ζ)V Hζ,σ = Ũζ,σV
H
ζ,σ.

This matrix is added to Aτ,σ = Uτ,σV
H
τ,σ using the formatted addition between

low-rank matrices.
2.2 Aτ,ζ is a full matrix and Aζ,σ = Uζ,σV

H
ζ,σ is a low-rank matrix.

+ ·

Figure 2.21: Aτ,σ is a low-rank matrix, Aτ,ζ is a full matrix and Aζ,σ is a
low-rank matrix.

We observe that the matrix Ãτ,σ is obtained in the desired outer-product
form in a fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = Aτ,ζ(Uζ,σV H
ζ,σ) = (Aτ,ζUζ,σ)V H

ζ,σ := Ũζ,σV
H
ζ,σ.

This matrix is added to Aτ,σ using the formatted addition between low-rank
matrices.

2.3 Aτ,ζ = Uτ,ζV
H
τ,ζ is a low-rank matrix and Aζ,σ is a full matrix.

+ ·

Figure 2.22: Aτ,σ is a low-rank matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is
a full matrix.
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We observe that the matrix Ãτ,σ is obtained in the desired outer-product
form in a fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = (Uτ,ζV H
τ,ζ)Aζ,σ = Uτ,ζ(V H

τ,ζAζ,σ) := Uτ,ζ Ṽ
H
τ,ζ .

This matrix is added to Aτ,σ using the formatted addition between low-rank
matrices.

2.4 Aτ,ζ is an H-matrix and Aζ,σ = Uζ,σV
H
ζ,σ is a low-rank matrix.

+ ·

Figure 2.23: Aτ,σ is a low-rank matrix, Aτ,ζ is an H-matrix and Aζ,σ is a
low-rank matrix.

We observe that the matrix Ãτ,σ is obtained in the desired outer-product
form, i.e.

Ãτ,σ = Aτ,ζ(Uζ,σV H
ζ,σ) = (Aτ,ζUζ,σ)V H

ζ,σ := Ũζ,σV
H
ζ,σ,

using the fast H-matrix/vector product to apply the H-matrix Aτ,ζ to each
column of Uζ,σ. Ãτ,σ is added to Aτ,σ using the formatted addition between
low-rank matrices.

2.5 Aτ,ζ = Uτ,ζV
H
τ,ζ is a low-rank matrix and Aζ,σ is an H-matrix.

+ ·

Figure 2.24: Aτ,σ is a low-rank matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is
an H-matrix.

We observe that the matrix Ãτ,σ is obtained in the desired outer-product
form, i.e

Ãτ,σ = (Uτ,ζV H
τ,ζ)Aζ,σ = Uτ,ζ(V H

τ,ζAζ,σ) := Uτ,ζ Ṽ
H
τ,ζ ,

using the fast H-matrix/vector product to apply the H-matrix Aζ,σ to each
row of V H

τ,ζ . Ãτ,σ is added to Aτ,σ using the formatted addition between
low-rank matrices.
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2.6 Aτ,ζ and Aζ,σ are both full matrices.

+ ·

Figure 2.25: Aτ,σ is a low-rank matrix, Aτ,ζ is a full matrix and Aζ,σ is a full
matrix.

First, we convert the full matrix Aτ,ζ in the outer-product form, i.e. Aτ,ζ =
Uτ,ζV

H
τ,ζ , using the truncated SVD according to a given accuracy ε > 0. Then,

we follow the procedure described in sub-case 2.3.

2.7 Aτ,ζ is a full matrix and Aζ,σ is an H-matrix.

+ ·

Figure 2.26: Aτ,σ is a low-rank matrix, Aτ,ζ is a full matrix and Aζ,σ is an
H-matrix.

First, we convert the H-matrix Aζ,σ in the outer-product form, i.e. Aζ,σ =
Uζ,σV

H
ζ,σ. Then, we follow the procedure described in sub-case 2.2.

2.8 Aτ,ζ is an H-matrix and Aζ,σ is a full matrix.

+ ·

Figure 2.27: Aτ,σ is a low-rank matrix, Aτ,ζ is an H-matrix and Aζ,σ is a full
matrix.

First, we convert the H-matrix Aτ,ζ in the outer-product form, i.e. Aτ,ζ =
Uτ,ζV

H
τ,ζ . Then, we follow the procedure described in sub-case 2.3.

2.9 Aτ,ζ and Aζ,σ are both H-matrices.
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+ ·

Figure 2.28: Aτ,σ is a low-rank matrix, Aτ,ζ is an H-matrix and Aζ,σ is a
H-matrix.

First, we convert the H-matrix Aζ,σ in the outer-product form, i.e. Aζ,σ =
Uζ,σV

H
ζ,σ. Then, we follow the procedure described in sub-case 2.4.

3. Aτ,σ is an H-matrix. The principal difficulty of this case is the conversion of
Ãτ,σ into an H-matrix with the same structure than Aτ,σ. This operation is very
delicate, because it introduces a further degree of approximation in the H-matrix
representation. For sake of clarity, we treat separately the nine sub-cases.

3.1 Aτ,ζ and Aζ,σ are both H-matrices.

+ ·

Figure 2.29: Aτ,σ is anH-matrix, Aτ,ζ is anH-matrix and Aζ,σ is aH-matrix.

The multiplication and the addition are recursively done in the sub-blocks.
3.2 Aτ,ζ is a full matrix and Aζ,σ = Uζ,σV

H
ζ,σ is a low-rank matrix.

+ ·

Figure 2.30: Aτ,σ is an H-matrix, Aτ,ζ is a full matrix and Aζ,σ is a low-rank
matrix.

First, we observe that the matrix Ãτ,σ is obtained in the outer-product form
in a fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = Aτ,ζ(Uζ,σV H
ζ,σ) = (Aτ,ζUζ,σ)V H

ζ,σ := Ũζ,σV
H
ζ,σ.

Then, we convert Ãτ,σ into an H-matrix with the same structure than Aτ,σ
(using the technique explained in Subsection 2.5.2.3) and, finally, we follow
the procedure described in sub-case 3.1.
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3.3 Aτ,ζ = Uτ,ζV
H
τ,ζ is a low-rank matrix and Aζ,σ is a full matrix.

+ ·

Figure 2.31: Aτ,σ is an H-matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is a full
matrix.

First, we observe that the matrix Ãτ,σ is obtained in the outer-product form
in a fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = (Uτ,ζV H
τ,ζ)Aζ,σ = Uτ,ζ(V H

τ,ζAζ,σ) := Uτ,ζ Ṽ
H
τ,ζ .

Then, we convert Ãτ,σ into an H-matrix with the same structure than Aτ,σ
and, finally, we follow the procedure described in sub-case 3.1.

3.4 Aτ,ζ = Uτ,ζV
H
τ,ζ and Aζ,σ = Uζ,σV

H
ζ,σ are both low-rank matrices.

+ ·

Figure 2.32: Aτ,σ is an H-matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is a
low-rank matrix.

First, we observe that the matrix Ãτ,σ is obtained in the outer-product form
in a fast way, thanks to the algebra of low-rank matrices, since

Ãτ,σ = (Uτ,ζV Hτ,ζ)(Uζ,σV Hζ,σ) = (Uτ,ζ(V Hτ,ζUζ,σ))V Hζ,σ := (Uτ,ζ Ṽ Hτ,ζ)V Hζ,σ = Ũζ,σV
H
ζ,σ.

Then, we convert Ãτ,σ into an H-matrix with the same structure than Aτ,σ
and, finally, we follow the procedure described in sub-case 3.1.

3.5 Aτ,ζ is an H-matrix and Aζ,σ = Uζ,σV
H
ζ,σ is a low-rank matrix.

+ ·

Figure 2.33: Aτ,σ is an H-matrix, Aτ,ζ is an H-matrix and Aζ,σ is a low-rank
matrix.
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First, we observe that the matrix Ãτ,σ is obtained in the outer-product form,
i.e.

Ãτ,σ = Aτ,ζ(Uζ,σV H
ζ,σ) = (Aτ,ζUζ,σ)V H

ζ,σ := Ũζ,σV
H
ζ,σ,

using the fast H-matrix/vector product to apply the H-matrix Aτ,ζ to each
column of Uζ,σ. Then, we convert Ãτ,σ into an H-matrix with the same
structure than Aτ,σ and, finally, we follow the procedure described in sub-
case 3.1.

3.6 Aτ,ζ = Uτ,ζV
H
τ,ζ is a low-rank matrix and Aζ,σ is an H-matrix.

+ ·

Figure 2.34: Aτ,σ is an H-matrix, Aτ,ζ is a low-rank matrix and Aζ,σ is an
H-matrix.

First, we observe that the matrix Ãτ,σ is obtained in the outer-product form,
i.e

Ãτ,σ = (Uτ,ζV H
τ,ζ)Aζ,σ = Uτ,ζ(V H

τ,ζAζ,σ) := Uτ,ζ Ṽ
H
τ,ζ ,

using the fast H-matrix/vector product to apply the H-matrix Aζ,σ to each
row of V H

τ,ζ . Then, we convert Ãτ,σ into an H-matrix with the same structure
than Aτ,σ and, finally, we follow the procedure described in sub-case 3.1.

3.7 Aτ,ζ is an H-matrix and Aζ,σ is a full matrix.

+ ·

Figure 2.35: Aτ,σ is an H-matrix, Aτ,ζ is an H-matrix and Aζ,σ is a full
matrix.

First, we convert the full matrix Aζ,σ in the outer-product form, i.e. Aζ,σ =
Uζ,σV

H
ζ,σ, using the truncated SVD according to a given accuracy ε > 0.

Then, we follow the procedure described in sub-case 3.5.

3.8 Aτ,ζ is a full matrix and Aζ,σ is an H-matrix.
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+ ·

Figure 2.36: Aτ,σ is an H-matrix, Aτ,ζ is a full matrix and Aζ,σ is an H-
matrix.

First, we convert the full matrix Aτ,ζ in the outer-product form, i.e. Aτ,ζ =
Uτ,ζV

H
τ,ζ , using the truncated SVD according to a given accuracy ε > 0. Then,

we follow the procedure described in sub-case 3.6.
3.9 Aτ,ζ and Aζ,σ are both full matrices.

+ ·

Figure 2.37: Aτ,σ is an H-matrix, Aτ,ζ is a full matrix and Aζ,σ is a full
matrix.

First, we convert the full matrix Aτ,ζ in the outer-product form, i.e. Aτ,ζ =
Uτ,ζV

H
τ,ζ , using the truncated SVD according to a given accuracy ε > 0. Then,

we follow the procedure described in sub-case 3.3.

2.5.2.3 Conversion of the Matrix Format

In the algebra of the H-matrices a very important role is played by the merging of
a H-matrix into a low-rank matrix. We remember that the truncated SVD allows to
convert a full matrix into a low-rank matrix. Then, to illustrate how it is possible to
merge an H-matrix into a low-rank matrix, we explain this procedure considering four
admissible sub-blocks and observing that[

U1V
H

1 U2V
H

2
U3V

H
3 U4V

H
4

]
= E1 + E2 + E3 + E4, (2.49)

with

E1 =
[
U1
0

]
·
[
V1
0

]H
, E2 =

[
U2
0

]
·
[

0
V2

]H
, E3 =

[
0
U3

]
·
[
V3
0

]H
and E4 =

[
0
U4

]
·
[

0
V4

]H
.

(2.50)
We first focus our attention on the sum
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E1 + E2 =
[
U1 ∈ Cm1×k1 U2 ∈ Cm1×k2

0 ∈ Cm2×k1 0 ∈ Cm2×k2

]
·
[
V1 ∈ Cn1×k1 0 ∈ Cn1×k2

0 ∈ Cn2×k1 V2 ∈ Cn2×k2

]H
. (2.51)

The rank of E1 + E2 is k1 + k2. Then, we apply the following algorithm to compress
the result

1. calculate the reduced QR-decomposition Ũ := [U1|U2] = QŨRŨ , with QŨ ∈
Cm1×(k1+k2) and RŨ ∈ C(k1+k2)×(k1+k2) (in the following we consider RŨ :=[
R1
Ũ
|R2

Ũ

]
with R1

Ũ
∈ C(k1+k2)×k1 and R2

Ũ
∈ C(k1+k2)×k2);

2. calculate the reduced QR-decomposition of V1 = Q1
VR

1
V , with Q1

V ∈ Cn1×k1 and
R1
V ∈ Ck1×k1 ;

3. calculate the reduced QR-decomposition of V2 = Q2
VR

2
V , with Q2

V ∈ Cn2×k2 and
R2
V ∈ Ck2×k2 ;

4. without assembling the block diagonal matrix

RṼ :=
[
R1
V 0

0 R2
V

]
∈ C(k1+k2)×(k1+k2),

calculate the product

RŨR
>
Ṽ

=
[
R1
Ũ

R2
Ũ

]
·
[
R1>
V 0
0 R2>

V

]
=
[
R1
Ũ
R1>
V R2

Ũ
R2>
V

]
5. calculate the truncated SVD Φ̃Λ̃Ψ̃H of RŨR>Ṽ , in order to obtain its best approx-

imation of rank k′ < k1 + k2 according to a given accuracy ε > 0;

6. finally, set

U :=
[
QŨ
0

]
Φ̃Λ̃ and V :=

[
Q1
V 0

0 Q2
V

]
Ψ̃.

In this way, we have a low-rank representation of the matrix E1+E2 of rank k′ < k1+k2.
Of course the algorithm described can be applied, with some small modifications, to
compute all the sums present in Equation (2.49).

To complete the description of the H-matrix arithmetic, we have to describe how to
convert a low-rank matrix M = UV H into an H-matrix with four admissible blocks.
This procedure is very simple if we consider matrices U and V as 2× 1 block-matrices,
since:

UV H =
[
U1
U2

]
·
[
V1
V2

]H
=
[
U1V

H
1 U1V

H
2

U2V
H

1 U2V
H

2

]
. (2.52)
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2.5.3 H-matrix Based Direct Solver

One of the advantages of the H-matrix representation is the possibility to derive a
fast direct solver. As we know from the standard linear algebra, a LU-factorization of
the system matrix is to be preferred to its direct inversion. Briefly, we recall that for
all non-singular matrices M ∈ Cm×m there is a permutation matrix P ∈ Cm×m and a
lower L ∈ Cm×m and a upper U ∈ Cm×m triangular matrices, such that PM = LU .
Moreover, L can be taken to have ones on its diagonal. This type of factorization is
called LU factorization with partial pivoting and can be viewed as the matrix form
of the Gaussian elimination. Ignoring pivoting, we also remember that, if M has a
LU-factorization M = LU , for any partition of the matrix of the form

M :=
[
M11 M12
M21 M22

]
, (2.53)

there are corresponding decompositions of the matrices L and U , i.e.

L :=
[
L11 0
L21 L22

]
and U :=

[
U11 U12
0 U22

]
, (2.54)

where the diagonal blocks Lii and Uii, i = 1, 2, are lower and upper triangular respec-
tively. Moreover, we have:

M11 = L11U11

M12 = L21U11

M21 = L12U22

M22 = L21U12 + L22U21.

(2.55)

Thus, L11U11 is a LU factorization of M11.

Let A be the matrix of interest. The proposed H-matrix based direct solution strategy
has three components:
• compute an H-matrix representation AH of A;

• compute an H-matrix based LU-factorization in order to obtain two factors LH
and UH in H-matrix format, such that AH ' LHUH;

• use an H-matrix based backward and forward substitution method to solve the
lower triangular system LHw = b for w and the upper triangular system UHz = w
for z, resulting from:

b = Az ' AHz ' LHUHz = LHw with w = UHz. (2.56)

2.5.3.1 H-LU Factorization

In the light of (2.54), to extend the LU-factorization to the H-matrices, we make the
assumption that the factors LH and UH have the same H-matrix structure than AH
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(Figure 2.38).

= ·

Figure 2.38: Assumption on the structure of the H-LU factorization: the factors LH
and UH have the same H-matrix structure than AH.

Provided all diagonal leaf blocks are non-singular full matrices, we use anH-matrix block
Aτ,σ to illustrate the H-LU factorization process. If the cluster pair (τ, σ) 6∈ Leaf(TI×I),
the corresponding block Aτ,σ can be subdivided into four sub-blocks, such that

Aτ,σ =
[
Aτ1,σ1 Aτ1,σ2

Aτ2,σ1 Aτ2,σ2

]
=
[
Lτ1,σ1 0
Lτ2,σ1 Lτ2,σ2

]
·
[
Uτ1,σ1 Uτ1,σ2

0 Uτ2,σ2

]
. (2.57)

where τ1 and τ2 are the children of τ , while σ1 and σ2 are the children of σ in the cluster
tree TI . For such a block matrix, the LU factorization is decomposed into four steps:

1. recursively call theH-LU decomposition until the cluster pair (τ1, σ1) ∈ Leaf−(TI×I),
to get the factors Lτ1,σ1 and Uτ1,σ1 such that Aτ1,σ1 = Lτ1,σ1Uτ1,σ1 (classical partial
pivoted LU-factorization of full matrices);

2. compute Uτ1,σ2 solving the lower triangular matrix-equation Aτ1,σ2 = Lτ1,σ1Uτ1,σ2 ,
with Lτ1,σ1 obtained in the first step;

3. compute Lτ2,σ1 solving the upper triangular matrix-equation Aτ2,σ1 = Lτ2,σ1Uτ1,σ1 ,
with Uτ1,σ1 obtained in the first step;

4. recursively call H-LU decomposition until the cluster pair (τ2, σ2) ∈ Leaf−(TI×I),
to get the factors Lτ2,σ2 and Uτ2,σ2 such that Aτ2,σ2 − Lτ2,σ1Uτ1,σ2 = Lτ1,σ1Uτ1,σ1

(classical pivoted LU-factorization of full matrices, whose existence is assured by
the hypothesis of non-singularity of the full diagonal leaf blocks).

During the LU-factorization process, a further degree of compression is introduced by
addition and multiplication in step 4. These operations are not between classical ma-
trices but between H-matrices and, consequently, they induce various modifications
on the H-matrix representation AH. In particular, the conversion of the structure of a
block requires operations that are formatted, i.e based on a prescribed accuracy εLU > 0.
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2.5.3.2 Solving an H-matrix Triangular System for a Matrix

In step 2 and step 3 of the H-LU factorization, a method to solve a triangular H-matrix
system for a matrix is needed. Such procedure can be derived in a similar fashion
as H-LU decomposition, using the hierarchical block structure. Solving the triangular
system LX = B for a right-hand side matrix B and a lower triangular matrix L in
the H-matrix format is done recursively. If the cluster pair (τ, σ) 6∈ Leaf(TI×I), the
corresponding block Lτ,σ can be subdivided into four sub-blocks

Lτ,σ =
[
Lτ1,σ1 0
Lτ2,σ1 Lτ2,σ2

]
, (2.58)

inducing a similar subdivision on the matrix X and B, i.e.

Xτ,σ =
[
Xτ1,σ1 Xτ1,σ2

Xτ2,σ1 Xτ2,σ2

]
and Bτ,σ =

[
Bτ1,σ1 Bτ1,σ2

Bτ2,σ1 Bτ2,σ2

]
. (2.59)

For such sub-block matrices, we have to solve the two triangular systems Lτ1,σ1Xτ1,σ1 =
Bτ1,σ1 and Lτ1,σ1Xτ1,σ2 = Bτ1,σ2 , which yield Xτ1,σ1 and Xτ1,σ2 , and afterwards the
two triangular systems Lτ2,σ2Xτ2,σ1 = Bτ2,σ1 − Lτ2,σ1Xτ1,σ1 and Lτ2,σ2Xτ2,σ2 = Bτ2,σ2 −
Lτ2,σ1Xτ1,σ2 , which yield Xτ2,σ1 and Xτ2,σ2 .

Of course, all the additions and multiplications performed during this process, are be-
tween H-matrices and, consequently, have to be computed according to the prescribed
accuracy εLU.

2.5.3.3 H-matrix based Backward Substitution Method

Once the H-matrix based LU factorization is computed, solving the triangular system
LHw = b for the right-hand side b and the lower triangular matrix LH in the H-matrix
format is done recursively. If the cluster pair (τ, σ) 6∈ Leaf(TI×I), the corresponding
block Lτ,σ can be subdivided into four sub-blocks, such that[

Lτ1,σ1 0
Lτ2,σ1 Lτ2,σ2

]
·
[
w1
w2

]
=
[
b1
b2

]
. (2.60)

For such sub-block matrix, we have to solve the system Lτ1,σ1w1 = b1, which yields w1
and afterwards the system Lτ2,σ2w2 = b2 − Lτ2,σ1w1, which yields w2.

A similar procedure is applied to solve the upper triangular system UHz = w.

2.6 Conclusions
In this second Chapter, we have presented the H-matrix technique to provide a

data-sparse representation of dense matrices. The construction of an H-matrix requires
several steps. First, a hierarchical cluster tree for the set of the degrees of freedom
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is derived. Its nodes should correspond in the matrix to positions which are close in
the physical space. At the root level, the cluster consists of the complete set. Each
cluster is recursively partitioned into two sons. Second, admissible and non-admissible
cluster pairs are identified (block cluster tree), in order to understand which blocks of
the matrix have to be represented as either low-rank or dense matrices.

The crucial point for the application of H-matrices is an efficient and easy-to-use rank
revealing algorithm. Among the several approaches developed, the Adaptive Cross Ap-
proximation (ACA) represents an alternative to the efficient but expensive strategy
based on the Singular Value Decomposition (SVD). Unfortunately, the ACA does not
provide the best numerical low-rank but a good first approximation, that can be im-
proved without losing accuracy performing a SVD recompression. There exist a lot of
works on ACA for asymptotically smooth kernels, we have investigated the capability
of the ACA to produce low-rank approximations in the case of oscillatory kernels. The
most important result of this Chapter is the extension of the standard ACA to vectorial
problems, suited for both iterative and direct solver, in order to utilize H-matrices and
the ACA in the context of 3D elastodynamics.

The main feature of H-matrices used in association with ACA is that this technique is
completely algebraic and, consequently, it is possible to define a matrix/vector product
and a matrix arithmetics (addition, multiplication, inversion, etc...) for the hierarchical
matrices. In particular, we have explained how to use the H-matrix/vector product
to accelerate the classical matrix/vector product, in order to reduce the time of each
iteration of a GMRES based iterative solver. We have paid a particular attention to the
algebra of H-matrices, detailing how to calculate additions and multiplications between
such matrices. We have observed that these operations are not exact but formatted, i.e.
based on a prescribed accuracy. Finally, we have presented an H-matrix based direct
solution strategy, consisting in an H-matrix based LU factorization and an H-matrix
based backward and forward substitution method.
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3 Application of H-matrices to BEM for 3D
Frequency Domain Elastodynamics
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CHAPTER 3. APPLICATION OF H-MATRICES TO BEM FOR 3D FREQUENCY

DOMAIN ELASTODYNAMICS

3.1 Introduction

The application of hierarchical matrices to 3-D elastodynamic BEM is recent. In
2010, an accelerated H-matrix elastodynamic time-domain boundary element formu-
lation has been presented [131], using the convolution quadrature method to convert
the time-domain problem into a system of decoupled Laplace-domain problems. In this
approach the full-space elastodynamic fundamental solutions are employed with conse-
quent discretization of the free-surface to model wave propagation in a half-space. In
the same year, the advantage of the hierarchical format and hierarchical arithmetic have
been exploited in the context of 3-D elastodynamic crack problems (see [20], where a
dual boundary element method formulated in the Laplace-domain is used), and in 2012
the method have been proposed for anisotropic elastodynamics in the frequency domain
[132]. In 2013, the hierarchical matrices have been applied to boundary element meth-
ods for elastodynamics based on Green’s functions for a horizontally layered half-space
[51]. A year later, the coupling of the finite element and this fast boundary element
methods have been discussed [52] in the context of soil-structure interaction problems
in the frequency domain.

This Chapter aims at extending the capabilities of H-matrix based iterative and direct
solvers to 3-D time-harmonic elastodynamics, and at studying their properties since all
the previous published works only apply the hierarchical matrix technique. The Chap-
ter is organized as follows. In Section 3.2 classical concepts pertaining to BEMs applied
to scattering problems are recalled, paying particular attention to the theory of single-
and double-layer potentials [50]. Several crucial computational and implementation is-
sues are addressed in Section 3.3, in order to understand how to set up the parameters
necessary to compute an H-matrix representation of the elastodynamic BEM matrix.
Finally, the accuracy and computational performances of the proposed H-matrix based
BEM are assessed in Section 3.4 on numerical examples treating the diffraction of in-
cident vertical P-waves by an unit sphere. A comparison between the H-matrix based
and a Fast-Multipole based iterative solver is presented [37], while the accuracy of the
H-matrix based direct solver is certified with an error estimate.

3.2 Scattering Problem

Let us consider a bounded domain Ω− in R3 representing an impenetrable body
(obstacle) with a closed boundary Γ := ∂Ω− of class C2 at least. Let Ω+ denote the
associated exterior domain R3 \Ω− and n the outer unit normal vector to the boundary
Γ. The Lamé parameters µ and λ and the density % are positive constants. The
propagation of time-harmonic waves in a three-dimensional isotropic and homogeneous
elastic medium is modeled by the Navier equation:

divσ(u) + %ω2u = 0, (3.1)

where ω > 0 is the frequency. In the case of 3D isotropic elastodynamics, the stress
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σ(u) and the strain ε(u) tensors are given by:

σ(u) := λ(divu)I3 + 2µε(u) and ε(u) := 1
2
(
[∇u] + [∇u]>

)
, (3.2)

where I3 is the 3-by-3 identity matrix and [∇u] is the matrix whose j-th column is the
gradient of the j-th component of u.

Ω−

Ω+

uinc

Figure 3.1: Scattering problem: notations.

The field u can be decomposed into a longitudinal field uP := ∇ψP and a transverse
field uS := u − uP = curl ψS . The scalar and vector potentials ψP and ψS satisfy
respectively

{
ψP = −κ−2

P divu
∆ψP + κ2

PψP = 0
and

{
ψS = −κ−2

S curl u
∆ψS + κ2

SψS = 0
, (3.3)

where κ2
P = %ω(λ + 2µ)−1 and κ2

S = %ω2µ−1 are the P and S wave-numbers. The
wave-length are defined by λα := 2π/κα, with α = P,S.

The scattering problem is formulated as follows: given an incident wave field uinc which
is assumed to solve the Navier equation in absence of any scatterer, find the displacement
u solution to the Navier Equation (3.1) in Ω+ which satisfies the Dirichlet boundary
condition on Γ:

utot|Γ = u|Γ + uinc|Γ = 0. (3.4)

In addition, the field u has to satisfy the Kupradze radiation conditions at infinity:

lim
r→∞

r

(
∂ψP
∂r
− ıκPψP

)
= 0 and lim

r→∞
r

(
∂ψS
∂r
− ıκSψS

)
= 0, (3.5)

uniformly in all directions.
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3.2.1 Traces, Integral Representation Formula and Integral Equations

We denote byHs
loc(Ω+) andHs(Γ) the standard (local in the case of exterior domain)

complex valued Hilbertian Sobolev spaces of the order s ∈ R, defined on Ω+ and Γ
respectively (with the convention H0 = L2). Spaces of vector functions will be denoted
by boldface letters, thus Hs := (Hs)3. We set

∆∗u := divσ(u) = (λ+ 2µ)∇div u− µcurl(curl u) (3.6)

and introduce the energy space

H1
±(∆∗) := {u ∈ H1

loc(Ω±) : ∆∗u ∈ L2
loc(Ω±)}. (3.7)

The Neumann trace for elastodynamic problems, defined by t := Tu, is given by the
traction operator

T := 2µ ∂

∂n + λndiv + µn× curl. (3.8)

We recall that we have u|Γ ∈ H1/2(Γ) and t|Γ ∈ H−1/2(Γ) for all u ∈ H1
±(∆∗).

If u+ ∈ H1
+(∆∗) and u− ∈ H1

−(∆∗) are solutions to the Navier Equation (3.1) in Ω+

and Ω− respectively, and u+ satisfies Kupradze radiation conditions (3.5), the integral
representation of the field is given by

D[u]Γ(x)− S[t]Γ(x) =
{

u+(x) if x ∈ Ω+

u−(x) if x ∈ Ω−
, (3.9)

where the square brackets [u]Γ := u−|Γ − u+
|Γ and [t]Γ := t−|Γ − t+

|Γ denote discontinuities
across the interface. The single-layer potential operator S and the double-layer potential
operator D are respectively defined by

Sϕ :=
∫

Γ
U(·,y)ϕ(y)dΓy and Dψ :=

∫
Γ

[TyU(·,y)]>ψ(y)dΓy. (3.10)

In (3.10), the fundamental solution of the Navier equation is a 3-by-3 matrix valued
function expressed by

U(x,y) := 1
%ω2

(
curl curlx

[
eıκS‖x−y‖

4π‖x− y‖I3

]
−∇xdivx

[
eıκP ‖x−y‖

4π‖x− y‖I3

])
. (3.11)

The tensor TyU(x,y) is obtained by applying the traction operator Ty (i.e. the oper-
ator T where the derivatives are applied with respect to variable y) to each column of
U(x,y).

The potentials S and D are continuous from H−1/2(Γ) and H1/2(Γ), respectively to
H1
−(∆∗)∪H1

+(∆∗). For any ϕ ∈ H−1/2(Γ) and ψ ∈ H1/2(Γ), the potentials Sϕ and Dψ
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solve the Navier Equation in Ω+ and Ω−, and satisfy the Kupradze radiation condition.

The exterior and interior Dirichlet γ±0 and Neumann γ±1 traces of S and D are given by

γ±0 S = S, γ±1 S = ∓1
2I +D′ and γ±0 D = ±1

2I +D, (3.12)

where I is the identity operator and the operators S, D and D′ are given by

Sϕ(x) :=
∫

Γ
U(x,y)ϕ(y)dΓy,

Dψ(x) :=
∫

Γ
[TyU(x,y)]>ψ(y)dΓy,

D
′
ϕ(x) :=

∫
Γ

[TxU(x,y)]>ϕ(y)dΓy.

(3.13)

Since we are considering a Dirichlet problem, with the particular choice of solution
u− = −uinc and u+ = u we observe that

[u]Γ = −uinc|Γ − u|Γ = 0

[t]Γ = −tinc|Γ − t|Γ := −ttot.
(3.14)

Thus, the integral representation of the unknown field u can be rewritten as

u(x) = Sttot(x), x ∈ Ω+ (3.15)

and, consequently, we get the following single-layer potential representation of the total
field

Sttot(x) + uinc(x) =
{

utot(x) if x ∈ Ω+

0 if x ∈ Ω−
. (3.16)

Since the integral representation (3.16) ensures that utot is solution to the Navier Equa-
tion (3.1) in Ω+ ∪ Ω− and satisfies Kupradze radiation conditions (3.5), we have to
determine the unknown ttot such that utot satisfies also the Dirichlet boundary con-
dition (3.4). In order to obtain an integral equation for this unknown, we apply the
potential theory that we recalled, to the relation

Sttot(x) + uinc(x) = 0, x ∈ Ω−. (3.17)

In particular, applying the trace operator γ−0 to (3.17), we obtain

Sttot(x) = −uinc|Γ (x), x ∈ Γ (3.18)

while, applying the trace operator γ−1 to (3.17), we obtain(1
2I +D′

)
ttot(x) = −tinc|Γ (x), x ∈ Γ. (3.19)
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3.2.2 Boundary Element Method

The numerical solution of the boundary integral equations (3.18) or (3.19) is based on
a discretization of the surface Γ into NE isoparametric boundary elements. Continuous,
piecewise-linear approximation of each component of the traction, based on the three-
noded triangular boundary elements, is considered. The NI traction approximation
nodes thus defined also serve as collocation points. This discretization process trans-
forms (3.18) or (3.19) into a square complex-valued matrix equation of size N = 3NI of
the form

Az = b, (3.20)

where the N -vector z collects the sought degrees of freedom (DOFs), namely the nodal
traction components, while the N -vector b arises from the imposed incident wave-field.
Setting up the matrix A classically requires the computation of all element integrals for
each collocation point, thus requiring a computational time of the order O(N2).

The influence matrix A is fully-populated. For this reason, on personal laptops, standard
BEM is usually restricted to models of size not exceeding N = O(104). BEM problems
can be solved by means of direct or iterative algorithms. The overall computational
cost of a direct method is of the order of O(N3) operations, to be compared with a
cost of the order of O(N2) operations for each iteration needed by an iterative method.
Since the total cost of the problem is at least of the order of O(N2), the application
of the BEM to large models requires a reduction not only of the memory requirements
of the matrix A, but also of the CPU time to solve (3.20). The Hierarchical Matrices
(H-matrices) technique introduced in Chapter 2 is known in many other fields as a very
efficient approach for achieving these objectives. It is therefore chosen as the basis for
the present acceleration of the elastodynamic BEM.

3.3 H-matrices: Computational Aspects

The efficiency of the H-matrix representation of the BEM matrix A is affected by
two parameters: the cardinality of the leaf-clusters NLEAF and the parameter η in the
admissible condition (2.16) that we recall here:

min{diam(Bτ ),diam(Bσ)} ≤ ηdist(Bτ , Bσ),

where Bζ is the ball enclosing all the discretization points corresponding to the matrix-
indices in ζ = τ, σ. In particular, NLEAF influences the number of levels in the cluster
tree TI and, consequently, the number of blocks in the block-cluster tree TI×I . On
the other hand, η is responsible for the number of admissible blocks and, therefore,
for the memory savings. Theoretical works on H-matrices recommend the choice of
the parameter η < 1, in order to achieve the optimal complexity of storage [84]. In
practical implementations, it has been observed that values of η between 1/2 and 3/2 are
more appropriate to deal with Laplace problems [138], while electromagnetic problems
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required η ≥ 3 [118].

To investigate how to set these two parameters NLEAF and η in the context of elastody-
namics, we consider an isotropic bar with constitutive properties µ = % = 1 and ν = 1/3,
whose geometrical configuration is shown in Figure 3.2.

Figure 3.2: Bar geometry and example of mesh.

Seven circular frequencies ω are considered, adjusted in order to have meshes with a
fixed density dλS = 10 points per S-wavelength, i.e. ω := 2π/dλSa, where a > 0 is
the mean mesh length. In Table 3.1 we report the number of degrees of freedom N
considered and the corresponding non-dimensional frequencies φS = ωL/cSπ.

N 2 310 9 222 20 742 36 870 57 606 82 950 112 902
φS 2 4 6.5 8 10 12 14

Table 3.1: Isotropic bar (elastodynamics): number of degrees of freedom and corre-
sponding non-dimensional frequency.

In the following of this Section, we focus our attention on the matrix A resulting from
the discretization of the single-layer potential operator S, defined by

Sϕ(x) :=
∫

Γ
U(x,y;ω)ϕ(y)dΓy. (3.21)

The computation of the entries of the matrix A involves the evaluation of the 3D elasto-
dynamic Green’s function U(x,y;ω), which is a linear combination of derivatives of the
Helmholtz fundamental solution. In a first step, we consider the matrix corresponding
to the evaluation of a modified version of the Helmholtz fundamental solution, i.e.

Gh(x,y;κ) = eıκ‖x−y‖

4π‖x− y‖+ h
(3.22)

where we have introduced the parameter h > 0 to avoid the singularity that occurs
when x→ y. As this singularity is only present in the diagonal blocks, which are non-
admissible (and hence the full storage is used), it does not affect the memory savings
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and the accuracy of the H-matrix representation. In the following, we choose h to be
equal to the discretization step used to discretize the bar of Figure 3.2, with a fixed
density of dλ = 10 points per wavelength. The non-dimensional frequencies φ = Lκ/2π
considered are given in Table 3.2.

N 3 074 19 202 49 154 110 594 150 530 307 202 480 002 940 802
φ 3.5 8.8 14.1 21.3 24.4 35.7 43.5 62.5

Table 3.2: Isotropic bar (Helmholtz): number of degrees of freedom and corresponding
non-dimensional frequency.

The results corresponding to the discretization matrix of the Helmholtz Green’s func-
tion (acoustic toy-problem) are provided by a MATLAB code. In order to treat the
matrix resulting from the discretization of the single-layer potential operator (elastody-
namic toy-problem), this code has been used as prototype for a FORTRAN 90 code,
subsequently merged into the code COFFEE, developed at the laboratory POEMS
(ENSTA-ParisTech) to handle full elastodynamic problems 1.

All the results presented in this Chapter have been obtained on a 3.5-GHz Intel Xeon
CPU ES-2637 with 768 Gb of RAM.

3.3.1 Compression Rate

As explained in Chapter 2, an H-matrix representation of a matrix coming from
the discretization of a non-local operator, is a hierarchical structure where the matrix
blocks corresponding to a non-admissible cluster pair (τ, σ) ∈ Leaf−(TI×I) are stored
as dense matrices and the matrix blocks corresponding to an admissible cluster pair
(τ, σ) ∈ Leaf+(TI×I) are stored as low-rank matrices (with rank k). Informations on the
memory saving using H-matrices is provided by the study of the compression rate T (H)
of the H-matrix representation, defined as the ratio between the size of the compressed
matrix and the size of the complete (not compressed) matrix, i.e.

T (H) := 1
N2

 ∑
(τ,σ)∈Leaf+(TI×I)

k (|τ |+ |σ|) +
∑

(τ,σ)∈Leaf−(TI×I)

|τ | · |σ|

 . (3.23)

The ACA algorithm computes adaptively the rank required to guarantee a prescribed
accuracy εACA > 0 (usually the intrinsic stopping criterion (2.21) based on the variation

1The code COFFEE is a Fortran 90 based program that solves 3D linear visco-elastodynamic prob-
lems in the frequency domain by the Boundary Element Method accelerated by Fast Multipole Method
(FM-BEM). This code is able to integrate the singularities of the Green’s displacement and traction.
Our contribution (25 000 lines) consists in the implementation of the H-matrices technique. The code,
written by Chaillat [33], is now able to assemble the H-matrix representation of the BEM matrix and
solve the BEM system with both an iterative (based on GMRES accelerated by the fastH-matrix/vector
product) and with a direct (accelerated by the fast H-LU factorization) solution strategy.
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of the Frobenius norm in consecutive approximations is used). Unfortunately, ACA
does not provide the best numerical rank (i.e. the lowest to achieve a prescribed accu-
racy) but a good first approximation. Thus, a truncated SVD recompression is applied
to each admissible block of the H-matrix representation with a parameter εSVD > 0
(Subsection 2.3.4).

The first stage of our numerical study of the compression rate is relative to the acoustic
toy-problem with kernel Gh(x,y;κ). In Figure 3.3, we plot the compression rate ob-
tained when we compute the H-matrix representation of the matrix coming from the
discretization of the function Gh(x,y;κ), for the frequency range κ = 4π to 80π and,
consequently, N = 2 310 to 921 606 (see Table 3.2). In this case no recompression with
truncated SVD has been performed. As suggested by acoustic studies [118], the H-
matrix representation is constructed with a minimum number of elements NLEAF = 100
in the hierarchical cluster tree and the parameter η = 3 in the admissibility condition.

103 104 105 106
10−2

10−1

100

N

T
(H

)

εACA = 10−4

εACA = 10−6

Figure 3.3: Discretization of the modified 3D Helmholtz fundamental solution: com-
pression rate obtained with two different values of the parameter εACA.

We note that for both values εACA = 10−4 and εACA = 10−6, the compression rate
improves when we increase the frequency and, consequently, the problem size. In par-
ticular, for problems of almost 1 million unknowns only 2% of the entries of the original
matrix is needed in its H-matrix representation. After these encouraging results for the
3D acoustic Green’s function, we consider the following studies on the matrix A, coming
from the discretization of single-layer potential operator defined in (3.21).

In Tables 3.3 - 3.5, we present the dependency of the compression rates TB(H) and
TA(H), respectively before and after recompression, as a function of NLEAF and η, with
the fixed values εACA = εSVD = 10−4. We observe that for all values of NLEAF neither
compression rates TB(H) or TA(H) are modified, if η is greater than 3. As in the
context of electromagnetic problems [118], a good choice of these two parameters seems
to be NLEAF = 100 and η = 3, because they ensure good compression rates, due to an
appropriate number of blocks in the block-cluster tree (consequence of NLEAF = 100)
and a proper selection of the admissible blocks (consequence of η = 3). To validate
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these values, it is necessary to investigate the efficiency of the H-matrix representation
and H-matrix/vector product.

η = 1 η = 3 η = 5
N TB(H) TA(H) TB(H) TA(H) TB(H) TA(H)

2 310 0.877 0.824 0.741 0.684 0.741 0.684
9 222 0.604 0.508 0.417 0.318 0.417 0.318

20 742 0.409 0.333 0.277 0.219 0.277 0.219
36 870 0.292 0.231 0.184 0.142 0.184 0.142
57 606 0.238 0.196 0.144 0.112 0.144 0.112
82 950 0.184 0.144 0.111 0.085 0.111 0.085

112 902 0.158 0.126 0.093 0.072 0.093 0.072

Table 3.3: Dependency of TB(H) and TA(H) on η (NLEAF = 75 and εACA = 10−4).

η = 1 η = 3 η = 5
N TB(H) TA(H) TB(H) TA(H) TB(H) TA(H)

2 310 0.909 0.888 0.745 0.694 0.745 0.694
9 222 0.696 0.653 0.477 0.416 0.477 0.416

20 742 0.414 0.342 0.278 0.223 0.278 0.223
36 870 0.333 0.285 0.205 0.171 0.205 0.171
57 606 0.244 0.202 0.146 0.115 0.146 0.115
82 950 0.210 0.177 0.119 0.096 0.119 0.096

112 902 0.156 0.128 0.094 0.074 0.094 0.074

Table 3.4: Dependency of TB(H) and TA(H) on η (NLEAF = 100 and εACA = 10−4).

η = 1 η = 3 η = 5
N TB(H) TA(H) TB(H) TA(H) TB(H) TA(H)

2 310 0.909 0.887 0.754 0.694 0.754 0.694
9 222 0.862 0.855 0.643 0.632 0.643 0.632

20 742 0.686 0.669 0.400 0.369 0.400 0.369
36 870 0.348 0.302 0.212 0.179 0.212 0.179
57 606 0.305 0.273 0.175 0.150 0.175 0.150
82 950 0.281 0.256 0.152 0.134 0.152 0.134

112 902 0.203 0.179 0.105 0.087 0.105 0.087

Table 3.5: Dependency of TB(H) and TA(H) on η (NLEAF = 200 and εACA = 10−4).

3.3.2 Accuracy of the H-matrix representation

When we replace the matrix A (resulting from the discretization of the single-layer
potential operator) with its H-matrix representation, the reduction of storage costs
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comes from low-rank approximations computed by the ACA. To understand how it af-
fects the overall accuracy of the H-matrix representation and to validate the parameters
NLEAF = 100 and η = 3, we study the relative error

ε1 := ‖A−AH‖F

‖A‖F
. (3.24)

In Table 3.6, we represent the dependency of ε1 on the parameter εACA, used in the
stopping criteria (2.22). The circular frequencies ω corresponding to the considered
problem sizes are reported in Table 3.1. We see that the level of error introduced by
ACA can be controlled by the parameter εACA. It represents a good measure of the
error on the approximation of the whole BEM matrix.

N εACA = 10−4 εACA = 10−6 εACA = 10−9

2 310 5.23× 10−5 5.27× 10−7 4.72× 10−10

9 222 1.25× 10−4 1.49× 10−6 1.65× 10−9

20 742 1.48× 10−4 1.64× 10−6 1.92× 10−9

36 870 2.12× 10−4 2.78× 10−6 2.31× 10−9

57 606 2.83× 10−4 3.11× 10−6 2.73× 10−9

82 950 3.30× 10−4 3.17× 10−6 3.13× 10−9

112 902 3.66× 10−4 3.41× 10−6 3.85× 10−9

Table 3.6: Dependency of ε1 on εACA (NLEAF = 100 and η = 3)

In the context of Helmholtz problem [17], it has been observed that the achieved error of
the H-matrix approximation via the ACA deteriorates for a growing number of degrees
of freedom. In our applications this phenomenon does not occur. However, in order to
achieve a desired accuracy, it is better to choose a value of εACA which is one order of
magnitude higher than our goal.

3.3.3 Accuracy of the H-matrix/vector multiplication

The accuracy of the H-matrix/vector product is related to the precision of the low-
rank approximations. For this reason, we introduce the relative error

ε2 := ‖y− yH‖2
‖y‖2

, (3.25)

where y := Aw is the result of the product of the matrix A with an arbitrary random
vector w and yH := AHw is the result of the product between the H-matrix represen-
tation AH and the vector w.

Table 3.7 gives the precision of the H-matrix/vector product for three values of εACA:
10−4, 10−6 and 10−9. The circular frequencies ω corresponding to the considered prob-
lem sizes are reported in Table 3.1. No recompression with SVD has been performed.
We observe that the accuracy of the H-matrix/vector product is related to the overcall
accuracy of the H-matrix representation. In fact, comparing Table 3.6 and Table 3.7,
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we observe the same order of accuracy. In particular, the precision obtained by the
ACA gives informations on the accuracy of the H-matrix/vector product. Note that we
have tested this accuracy for different random vectors w.

N εACA = 10−4 εACA = 10−6 εACA = 10−9

2 310 4.05× 10−5 1.89× 10−7 1.62× 10−10

9 222 2.18× 10−4 1.32× 10−6 1.80× 10−9

20 742 1.76× 10−4 1.34× 10−6 1.12× 10−9

36 870 4.92× 10−4 2.57× 10−6 1.93× 10−9

57 606 2.88× 10−4 4.44× 10−6 2.68× 10−9

82 950 4.26× 10−4 4.34× 10−6 4.08× 10−9

112 902 7.17× 10−4 6.60× 10−6 6.26× 10−9

Table 3.7: Dependency of ε2 on the parameter εACA (NLEAF = 100 and η = 3).

3.4 Scattering of a Plane Wave by a Rigid Sphere
So far, we have only considered the H-matrix representation of the BEM matrix

of the problem modeled by (3.18). Now, we focus our attention on the time-harmonic
scattering problem of a plane wave by a rigid elastic sphere of radius R > 0, in order
to analyze the performances of the H-matrix based solvers. We recall here the ana-
lytical solution for this problem, presented in [38]. Since the Neumann trace t|Γ of
the displacement u solution to the exterior problem (3.1)-(3.4)-(3.5) can be expressed
analytically in terms of vector spherical harmonics, in the following Y m

l denotes the
spherical harmonics of order l ∈ N and degree m ∈ N (|m| ≤ l), Jl denotes the spherical
Bessel functions of the first kind and order l ∈ N and H(1)

l denotes the spherical Hankel
function of the first kind and order l ∈ N. These functions allow to introduce the scalar
functions:

u
(1)
l,m(κP,x) := Jl(κP|x|)Y m

l (x̂)

u
(3)
l,m(κP,x) := H

(1)
l (κP|x|)Y m

l (x̂)
(3.26)

and the vector function

M(k)
l,m(κS,x) := curl

(
xu(k)

l,m(κS,x)
)

N(k)
l,m(κS,x) := 1

ıκS
curl

(
M(1)

l,m(κS,x)
) k = 1, 3 (3.27)

In (3.26), we use the notation x̂ := x/‖x‖ ∈ S2 (unit sphere) for x 6= 0. We consider an
incident plane wave of the form

uinc(x) = 1
µ
eıκS(x·d)(d× p)× d + 1

λ+ 2µe
ıκP(x·d)(d · p)d, (3.28)

where p ∈ R3 is the polarization vector and d ∈ S2 is the propagation vector. Such
incidence plane wave admits the following series expansion:
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uinc(x) =
∞∑
l=1

l∑
m=−l

[
α

(1)
l M(1)

l,m(κS,x) + β
(1)
l N(1)

l,m(κS,x)
]

+
∞∑
l=1

l∑
m=−l

γ
(1)
l ∇u

(1)
l,m(κP,x)

(3.29)
with coefficients

α
(1)
l := 1

µ

4πıl

l(l + 1)curlS2Y m
l (d) · p

β
(1)
l := 1

µ

4πıl

l(l + 1)∇S2Y m
l (d) · p

γ
(1)
l := − 4πıl

κP(λ+ 2µ)Y
m
l (d)d · p

(3.30)

Since the vector spherical harmonics form a complete orthonormal system in the Hilbert
space L2(S2), the scattered wave is given by

u(x) =
∞∑
l=1

l∑
m=−l

[
α

(3)
l M(3)

l,m(κS,x) + β
(3)
l N(3)

l,m(κS,x)
]

+
∞∑
l=1

l∑
m=−l

γ
(3)
l ∇u

(3)
l,m(κP,x)

(3.31)
where

γ
(3)
0 := − J

′
0(κPR)

H
(1)′
0 (κPR)

γ
(1)
0 (3.32)

and for m ≥ 1α
(3)
l

β
(3)
l

γ
(3)
l

 = −

a
(3)
l 0 0
0 b

(3,1)
l c
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l

0 b
(3,2)
l c

(3,2)
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 ·
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l 0 0
0 b

(1,1)
l c

(1,1)
l

0 b
(1,2)
l c

(1,2)
l

 ·
α

(1)
l

β
(1)
l

γ
(1)
l

 . (3.33)

In this last equation we have a(k)
l := z

(k)
l (κSR) and

b
(k,1)
l := 1

ıκSR

[
z

(k)
l (κSR) + κSRz

(k)′
l (κSR)

]
b
(k,2)
l := l(l + 1)

ıκSR
z

(k)
l (κSR)

c
(k,1)
l := 1

R
z

(k)
l (κPR)

c
(k,2)
l := κP z

(k)′
l (κPR).

(3.34)

To compute the traction trace of u, i.e.

t|Γ(x) =
∞∑
l=1

l∑
m=−l

[αexl curlS2Y m
l (x̂) + βexl ∇S2Y m

l (x̂)] +
∞∑
l=1

l∑
m=−l

γexl x̂Y m
l (x̂), (3.35)
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we use the following formulas for k = 1, 3:

TxM(k)
l,m(κ,x) :=µ

[
κz

(k)′

l (κ|x|)−
z

(k)
l (κ|x|)
|x|

]
curlS2Y ml (x̂)

TxN(k)
l,m(κ,x) := µ

ıκ|x|2 ·
[
−
(
κ2|x|2 − 2l(l + 1) + 2

)
z

(k)
l (κ|x|)− 2κ|x|z(k)′

l (κ|x|)
]
∇S2Y ml (x̂)+

+ 2µl(l + 1)
ıκ|x|

[
κz

(k)′

l (κ|x|)−
z

(k)
l (κ|x|)
|x|

]
x̂Y ml (x̂)

(3.36)
and

Tx∇u(k)
l,m(κ,x) := 2µ

|x|

[
κz

(k)′

l (κ|x|)−
z

(k)
l (κ|x|)
|x|

]
∇S2Y ml (x̂)+

+
[
− 2µ
|x|2

((
κ2|x|2 − l(l + 1)

)
z

(k)
l (κ|x|) + 2κ|x|z(k)′

l (κ|x|)
)]

+ x̂Y ml (x̂)

− λκ2z
(k)
l (κ|x|)x̂.

(3.37)

3.4.1 Diffraction of P-waves by a Unit Sphere

To demonstrate the accuracy and the efficiency of the H-matrix based solvers for
3D elastodynamics, we consider the diffraction of vertical incident plane P-waves (p =
d = (0, 0,−1)>) by a unit sphere (R = 1 in Figure 3.4). The material properties are
again fixed to µ = % = 1 and ν = 1/3.

Figure 3.4: Diffraction of an incident P-wave by a unit sphere: geometry and notations.

This scattering problem is modeled by the Boundary Integral Equation (3.18) or (3.19).
The surface of the sphere is discretized with a density of dλS = 10 degrees of freedom
per S-wavelength. Six circular frequencies ω = ω(dλS) are considered, with respective
problem sizes N = N(dλS) and corresponding non-dimensional frequencies φS = ωR/cSπ

reported in Table 3.8.
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N 7 686 30 726 183 099 490 629 763 638 985 818
ω 8 16 40 66 84 92
φS 2.5 5.1 12.7 21.0 26.7 29.3

Table 3.8: Diffraction of an incident P-wave by a unit sphere: dimensions of the problem,
circular frequency and non-dimensional frequencies.

In the light of the numerical results of Sections 3.3.2 and 3.3.3, in all the following
numerical examples the cluster tree TI is built with a stopping criteria NLEAF = 100
and the constant in the admissibility condition is set to η = 3. The admissibility
condition depends only on the geometry of the domain and on the parameter η. In
Figure 3.5, we give an illustration of the block repartition in theH-matrix representation
corresponding to the simple geometry of the unit sphere. We consider a problem of small
size (N = 30 726) in order to better illustrate how η = 3 leads to large low-rank blocks
(green blocks) and a small number of full blocks (red blocks).

(a) Mesh (b) H-matrix representation

Figure 3.5: Diffraction of an incident P-wave by a unit sphere: mesh of the sphere and
corresponding H-matrix representation (N = 30 726).

3.4.2 Numerical Study of the Complexity

The efficiency of H-matrix based solvers depends on the possible storage reduc-
tion obtained by low-rank approximations. As explained in [73], due to the use of a
geometrical cluster tree, the storage requirement is of the order of

Nst(A) ' max{kMAX, NLEAF}|I| log |I|, (3.38)

where kMAX is the maximum rank among the low-rank approximations of the admissible
blocks. In the context of BEM, |I| = N such that storage requirement is

Nst(A) ' max{kMAX, NLEAF}N logN. (3.39)
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For asymptotically smooth kernels, a constant kMAX is used for all problem size without
sacrificing accuracy, and hence ignored in the theoretical complexity analysis. Instead,
for oscillatory kernels we have shown in Subsection 2.4.1 that kMAX scales linearly with
respect to the wave number κ. Additionally, the mesh size h used to discretize the
boundary has to be chosen such that κh << 1 ⇔ κ << h−1 for a sufficient accuracy
of the solution. If we assume that h−1 ∼ N 1/2, we have kMAX ∼ h−1 ∼ N 1/2. Hence, it is
worthwhile to investigate the maximum rank of low-ranks blocks obtained in the case of
the simple-layer and the double-layer operators. The theoretical complexity analysis is
compared against the recorded memory requirements (number of entries that we have
to store). These numerical experiences aim in particular at studying kMAX as a func-
tion of N and at exploring the possibility to treat elastodynamic BEM matrices with
logarithmic-linear complexity.

The following results involve the numerical solution of (3.18) and (3.19). We noticed
in Subsection 2.4.2 that, since ACA gives an almost optimal numerical rank, the op-
timum rank has to be revealed performing a recompression with truncated SVD. This
technique is applied to each admissible block of the H-matrix representation with a
parameter εSVD always chosen equal to εACA.

In Figure 3.6, the maximum rank in the admissible blocks obtained numerically in the
case of single-layer and double-layer operators is reported for two values of εACA, both
before and after recompression with the truncated SVD. The results indicate that kMAX

evolves as O(N0.4) when we increase the number of degrees of freedom N and, con-
sequently, the frequency. Therefore, for this elastodynamic problem we find the same
behavior observed in the case of 3-D Helmholtz problems [17], even if a small regression
is observed. In particular, for large N no significant differences are observed between
the value of kMAX obtained performing ACA with εACA = 10−4 and εACA = 10−6. For
the two considered values of εACA, kMAX given by the recompression with the truncated
SVD is of the same order than the numerical maximum rank revealed by the ACA,
during the approximation of the low-rank blocks of the H-matrix representation.

Combining these observations on kMAX and the theoretical estimate (3.39), we expect
the memory requirement of the elastodynamic H-matrix based BEM to be of the order
of O(N1.4 logN). In practice, it is reduced to O(N1.25 logN), as shown in Figure 3.7
where the numerical results for the single- and the double-layer operators are lower than
this bound.

We conclude that H-matrix representations of the elastodynamic BEM matrices can be
achieved with almost logarithmic linear memory cost for both the values εACA = 10−4

and εACA = 10−6. Since this last parameter influences the accuracy of the H-matrix,
further considerations on the adequate choice require the knowledge of how the error of
the approximation of the matrix propagates on the solution of the BEM system.

The cumulative CPU time for the computation of the H-matrix representation of the
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matrix A is the last aspect that we investigate. In Figure 3.8, we present the values
recorded, which are of course code- and computer-dependent. We note that the param-
eter εACA has small influence on the computational time, that evolves as O(N1.5 logN)
for both the single-layer and the double-layer operators. We observe that this behavior
is almost equal to the optimal O(kMAXN logN). Comparing the results obtained for the
memory requirement and for the CPU time, we see that, although the latter is more
affected by the evolution of kMAX than the former, it is still lower than its theoretical
bound. Furthermore code-optimizations are possible but a parallelization of the code is
needed (Section 3.5), in order to drastically reduce the computation time required for
the H-matrix representation.
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Figure 3.6: Diffraction of an incident P-wave by a unit sphere: maximum rank for fixed
density, before and after recompression with truncated SVD.
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(b) Double-layer

Figure 3.7: Diffraction of an incident P-wave by a unit sphere: memory requirement
(number of entries that we have to store) for the elastodynamic H-matrix based BEM.
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Figure 3.8: Diffraction of an incident P-wave by a unit sphere: CPU times (in hours)
to compute the H-matrix representation of the BEM matrix.

In the light of these considerations and remembering the algebraic nature of the hier-
archical matrices, we have all the elements to extend the fast H-matrix based solvers,
introduced in Subsections 2.5.1 and 2.5.3, to 3-D elastodynamic BEM.

3.4.3 H-matrix Based Iterative Solver

The first solver proposed for 3-D elastodynamic BEM is an iterative solver, using
the fast H-matrix/vector product to accelerate the GMRES based iterative solver. The
accuracy of the solver is studied with the relative error defined by
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εH := ‖t
tot − ttotH ‖2
‖ttot‖2

, (3.40)

where ttot is the analytical solution of (3.18) or (3.19) evaluated at the approximation
nodes, and ttotH is the numerical solution obtained with the H-matrix based iterative
solver. In the following, the surface of the sphere is discretized with a fixed density of
dλS = 10 degrees of freedom per S-wavelength.

In Tables 3.9 and 3.10, we report the accuracy of the H-matrix based iterative solver.
For both the single-layer and the double-layer operators, a threshold εACA = 10−4 is used
in the ACA algorithm to obtain low-rank approximations of the admissible blocks in the
H-matrix representation of the BEM matrix. The values of εH show that the error on
the solution is kept almost constant (εH varies at most by a factor of two in Table 3.10)
in the range analyzed. As a result, it is useless to use a value of εGMRES smaller than
εACA, because it is impossible to solve the BEM system with a more accurate result than
the approximation of the matrix. In addition, the quality of the approximation is better
in the case of the single-layer potential. The reason is that the double-layer requires
more discretization points to achieve the same level of precision, due to its stronger
singularity.

εH
N εGMRES = 10−4 εGMRES = 10−6 εGMRES = 10−9

7 686 7.62× 10−3 7.62× 10−3 7.62× 10−3

30 726 5.77× 10−3 5.77× 10−3 5.77× 10−3

183 099 7.96× 10−3 7.96× 10−3 7.96× 10−3

490 629 9.40× 10−3 9.40× 10−3 9.40× 10−3

Table 3.9: Diffraction of an incident P-wave by a unit sphere: accuracy of the H-matrix
based iterative solver (Single-layer, εACA = 10−4).

εH
N εGMRES = 10−4 εGMRES = 10−6 εGMRES = 10−9

7 686 7.95× 10−2 7.95× 10−2 7.95× 10−2

30 726 1.59× 10−1 1.59× 10−1 1.59× 10−1

183 099 7.59× 10−2 7.59× 10−2 7.59× 10−2

490 629 1.70× 10−1 1.70× 10−1 1.70× 10−1

Table 3.10: Diffraction of an incident P-wave by a unit sphere: accuracy of theH-matrix
based iterative solver (Double-layer, εACA = 10−4).

In Figures 3.9 and 3.10, we compare the accuracy of the proposed H-matrix based
iterative solver with the accuracy of a Multi Level Fast Multipole based iterative solver
[37]. As just explained, we consider only the value εGMRES = 10−4, because εACA = 10−4.
In the low-frequency regime, the H-matrix based solver gives a good approximation of
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the analytical solution while the Fast Multipole based iterative solver is less precise.
At higher frequencies, the results obtained by the two solvers are similar. This is not
surprising because it is known that the reformulation, in terms of plane wave expansions,
of the elastodynamic fundamental solutions in terms of products of functions of x and
y used in FMM (involving Legendre polynomials and spherical Henkel functions of the
first kind) deteriorates in the low-frequency case.
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Figure 3.9: Diffraction of an incident P-wave by a unit sphere: comparison between
H-matrix and FMM based iterative solvers (Single-layer, εGMRES = 10−4).
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Figure 3.10: Diffraction of an incident P-wave by a unit sphere: comparison between
H-matrix and FMM based iterative solvers (Double-layer, εGMRES = 10−4).

The number of iterations Nit required for convergence of the two solvers are reported in
Figure 3.11. We observe that in the low-frequency regime the H-matrix based iterative
solver converges after a number of iterations smaller than the number of iterations
required by the Fast Multipole based iterative solver. At higher frequencies Nit is equal
for the two solvers and increases due to the combined effect of the mesh refinement
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and the badly conditioned nature of the BEM matrix. Reducing the iteration count
requires a preconditioning strategy, a critical component of the development of efficient
iterative BEM solvers. However, it has to be kept in mind that the construction of
efficient preconditioners is significantly easier for hierarchical matrices than for Fast
Multipole method. In fact, the algebraic nature of H-matrices allows to use the H-
matrix arithmetic with a small threshold to compute an H-SPAI (hierarchical Sparse
Approximate Inverse) or an H-ILU (hierarchical Incomplete LU decomposition) of the
BEM matrix. These preconditioners can be used to accelerate the convergence not only
of the H-matrix based iterative solver, but also of the Fast Multipole based iterative
solver [115].
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Figure 3.11: Diffraction of an incident P-wave by a unit sphere: comparison of the
number of iterations of H-matrix and FM based iterative solvers.

In Figure 3.12, we compare the performance of the H-matrix based and the Fast Mul-
tipole based iterative solvers. In particular, in Figure 3.12a we show the computation
time for a single matrix/vector product, while in Figure 3.12b we present the total com-
putation time to solve the BEM system. These results are relative to the single-layer
operator and are computed setting εACA = 10−4 and, consequently, εGMRES = 10−4. We
observe that the total computation time to solve the BEM system is of the same order
for the two solvers (it varies at most by a factor of four), even if the computation time for
a single matrix/vector product is significantly faster for H-matrix based iterative solver
(almost two orders of magnitude less than the Fast Multipole based iterative solver).
This phenomenon can be explained, because the Fast Multipole based iterative solver
does not assemble the BEM matrix, while the time needed to assemble the H-matrix
representation of the BEM matrix is predominant during the H-matrix based iterative
solution process. Although the H-matrix based iterative solver is almost four times
slower than the Fast Multipole based iterative solver, the first is more advantageous
in the context of elastodynamic BEM problems, if we keep in mind that the imple-
mentation and parallelization is much easier for hierarchical matrices compared to fast



88
CHAPTER 3. APPLICATION OF H-MATRICES TO BEM FOR 3D FREQUENCY

DOMAIN ELASTODYNAMICS

multipole method. Additionally, the H-matrix based iterative solver is more suitable for
dealing with multiple right hand side problems, because the H-matrix representation of
the BEM matrix is assembled only once.
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(b) Solution of BEM system

Figure 3.12: Diffraction of an incident P-wave by a unit sphere: comparison between
the computation time (a) for a single matrix/vector product and (b) to solve the BEM
system (Single-layer operator).

3.4.4 H-matrix Based Direct Solver

The large number of iterations of the H-matrix based iterative solver is the principal
motivation for using the H-matrix based arithmetic to develop a fast direct solver or an
efficient preconditioner. The H-LU factorization (see Subsection 2.5.3) is particularly
suited to fulfill these two tasks.

In Tables 3.11 and 3.12, the precision of the H-matrix based iterative and direct solvers
is compared. For both the single-layer and the double-layer operators, a threshold
εACA = 10−4 is used in the ACA algorithm to obtain low-rank approximations. The
results presented are relative to four different values of εLU. As explained in Subsec-
tion 2.5.3, this parameter is the prescribed accuracy assigned to perform the H-matrix
based arithmetic during the H-LU factorization. The same accuracy is observed for the
iterative and direct solvers. In the case of the iterative solver, the last three columns
of Tables 3.11 and 3.12 prove that it is not judicious to choose εLU smaller than εACA,
because the precision of the approximation of the low-rank blocks dominates the error
on the system solution. Since in the case of scattering problem modeled by (3.18) the H-
matrix based iterative solver need 547 iterations to solve a problem of size N = 490 629,
these results incentivize to treat 3D elastodynamic problems with a direct approach or
to use the H-LU factorization as an efficient preconditioner for the H-matrix or Fast
Multipole based iterative solvers.
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N Iterative Direct
εLU = 10−2 εLU = 10−4 εLU = 10−6 εLU = 10−9

7 686 7.62× 10−3 7.70× 10−2 7.61× 10−3 7.61× 10−3 7.61× 10−3

30 726 5.77× 10−3 1.16× 10−1 5.77× 10−3 5.77× 10−3 5.77× 10−3

183 099 7.96× 10−3 1.87× 10−1 7.98× 10−3 7.98× 10−3 7.98× 10−3

490 629 9.40× 10−3 2.07× 10−1 9.40× 10−3 9.40× 10−3 9.40× 10−3

Table 3.11: Diffraction of an incident P-wave by a unit sphere: accuracy of theH-matrix
based solvers (Single-layer, εACA = 10−4).

N Iterative Direct
εLU = 10−2 εLU = 10−4 εLU = 10−6 εLU = 10−9

7 686 7.95× 10−2 1.39× 10−1 7.95× 10−2 7.95× 10−2 7.95× 10−2

30 726 1.59× 10−1 7.50× 10−1 1.59× 10−1 1.59× 10−1 1.59× 10−1

183 099 7.59× 10−2 7.09× 10−1 7.59× 10−2 7.59× 10−2 7.59× 10−2

490 629 1.70× 10−1 7.77× 10−1 1.70× 10−1 1.70× 10−1 1.70× 10−1

Table 3.12: Diffraction of an incident P-wave by a unit sphere: accuracy of theH-matrix
based solvers (Double-layer, εACA = 10−4).

Now, we investigate the CPU time to compute the H-LU factorization and to solve the
BEM system. In Tables 3.13 and 3.14, we report the recorded CPU times to compute
the H-LU factorization, for both the single-layer and the double-layer operators. We
consider only the value εLU = 10−4, because εACA = 10−4. We note that the dense
BEM matrices can be factorized in modest CPU time, modest memory usage and with
prescribed accuracy satisfied. In this light, the H-matrix based direct solver is again
very advantageous when we treat problems with multiple right hand sides.

N T (H) H-LU (CPU Time [h])
7 686 4.71× 10−1 3.00× 10−2

30 726 2.06× 10−1 3.80× 10−1

183 099 5.89× 10−2 1.59× 10+1

490 629 3.29× 10−2 6.34× 10+1

Table 3.13: Diffraction of an incident P-wave by a unit sphere: Compression rate and
CPU time to compute the H-LU factorization (in hours). Single-layer, εACA = εLU =
10−4.
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N T (H) H-LU (CPU Time [h])
7 686 4.97× 10−1 4.00× 10−2

30 726 2.26× 10−1 4.40× 10−1

183 099 6.00× 10−2 1.73× 10+1

490 629 3.45× 10−2 6.79× 10+1

Table 3.14: Diffraction of an incident P-wave by a unit sphere: Compression rate and
CPU time to compute the H-LU factorization (in hours). Double-layer, εACA = εLU =
10−4.

Finally, in Tables 3.15 and 3.16, we present the recorder CPU times to solve the BEM
system, for both the single-layer and the double-layer operators. Again, we consider
only the value εLU = 10−4, because εACA = 10−4. In particular, we observe that the
CPU times to solve the BEM system is negligible, compared with the CPU time to
compute the H-LU factorization.

N Sol (CPU Time [s]) Sol/H-LU

7 686 4.80× 10−2 4.00× 10−4

30 726 2.96× 10−1 2.16× 10−4

183 099 4.60× 10+0 8.04× 10−5

490 629 1.98× 10+1 8.68× 10−5

Table 3.15: Diffraction of an incident P-wave by a unit sphere: CPU time to solve
the system (in seconds) and comparison with the CPU time to compute the H-LU
factorization. Single-layer, εACA = εLU = 10−4.

N Sol (CPU Time [s]) Sol/H-LU

7 686 5.20× 10−2 3.61× 10−4

30 726 3.16× 10−1 2.00× 10−4

183 099 4.72× 10+0 7.58× 10−5

490 629 2.09× 10+1 8.55× 10−5

Table 3.16: Diffraction of an incident P-wave by a unit sphere: CPU time to solve
the system (in seconds) and comparison with the CPU time to compute the H-LU
factorization. Double-layer, εACA = εLU = 10−4.

With the purpose of giving a purely qualitative representation of the results obtained
by the H-matrix based direct solver (single-layer), in Figure 3.13 we show the solution
of (3.18), modeling the diffraction of an incident P-wave by a unit sphere. The surface
of the sphere is discretized with 372 082 triangular boundary elements and 163 543
collocation nodes are used. Consequently, the number of degrees of freedom of the
problems is N = 490 629. A hierarchical cluster tree is constructed with a minimum
number of elements NLEAF = 100, resulting in 4 807 clusters and 13 cluster levels. The
parameter η = 3 is used in the admissibility condition with, consequently, 82 517 block
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clusters in the block cluster tree. A threshold εACA = 10−4 has been used in the ACA
algorithm to obtain low-rank approximations of the blocks corresponding to admissible
cluster pairs, while a tolerance εLU = 10−4 is used in the H-LU factorization.

(a) |u1| (b) |u2| (c) |u3|

Figure 3.13: Diffraction of an incident P-wave by a unit sphere: graphic representation
of the magnitude of the three components of the solution of (3.18).

3.4.5 Error Estimate to Certify the Results of the H-LU Direct Solver

The H-LU direct solver is based on a heuristic method (the Adaptive Cross Approxi-
mation) to perform the low-rank approximations of the admissible blocks. Additionally,
during the H-LU factorization a further degree of approximation is introduced, due to
the computation of addition and multiplication not only between classical matrices, but
also between H-matrices. As explained in Subsection 2.5.2, given three compatible clus-
ter pairs (τ, σ), (τ, ζ), (ζ, σ) in the cluster tree TI×I , to compute Aτ,σ ← Aτ,σ−Aτ,ζAζ,σ
we have to distinguish between 27 different cases, many of which require operations that
are not exact but approximated up to a given accuracy εLU (for example, the conversion
of a full matrix or an H-matrix into a low-rank matrix). Furthermore, the H-LU fac-
torization process is performed going up and down in the H-matrix representation and,
consequently, the error may propagate from lower to upper levels. For these reasons, it
is important to propose a simple and efficient way to certify the results obtained, when
the analytical solution of the problem is unknown.

We start considering an initial system Az = b. We denote z̃ the approximated solution
of Az = b, obtained by replacing A with its H-matrix representation AH, i.e. z̃ is the
numerical solution of the linear system AHz = b. Since

b−Az̃ = b−AHz̃ +AHz̃−Az̃, (3.41)

we observe that
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‖b−Az̃‖2
‖b‖2

≤ 1
‖b‖2

(‖b−AHz̃‖2 + ‖A−AH‖2‖z̃‖2) . (3.42)

As for every square matrix we have ‖ · ‖2 ≤ ‖ · ‖F , the following estimate holds:

‖b−Az̃‖2
‖b‖2

≤ 1
‖b‖2

(‖b−AHz̃‖2 + ‖A−AH‖F ‖z̃‖2) := 1
‖b‖2

(δ + δH‖z̃‖2) . (3.43)

Above, δH := ‖A − AH‖F estimates the accuracy of the H-matrix representation, i.e.
the precision of the approximation of the low-rank blocks influenced by the parameter
εACA; δ := ‖b − AHz̃‖2 measures the quality of the solution and, consequently, gives
informations on the stability of theH-LU factorization, influenced by the parameter εLU.
The evaluations of δ, ‖b‖2 and ‖z̃‖2 reduce to the computation of the norm of a vector.
The evaluation of δH is performed in Frobenius norm to reduce the computational cost
2, and this term does not depend on the right-hand side, meaning that for multiple right-
hand sides the computation of this error estimate is not expensive. In the following, we
refer to the proposed error estimate as

I(δH; δ) := 1
‖b‖2

(δ + δH‖z̃‖2) . (3.44)

Acoustic Case. The first numerical test performed to validate the proposed error es-
timate consists in considering the matrix A coming from the evaluation of the modified
Green’s function Gh(x,y;κ), defined in (3.22), on the discretization nodes used to dis-
cretize the bar in Figure 3.2. The value of h is chosen equal to the discretization step
and the density of the mesh is dλ = 10 points per wavelength. In this case the right-
hand side is an arbitrary b ∈ RN . The H-matrix representation of A is constructed
with a minimum number of elements NLEAF = 100 in the hierarchical cluster tree and
the parameter η = 3.

In Table 3.17, we present the true error, the proposed error estimate, the error on
the solution of the system and the accuracy of the H-matrix representation, for a fre-
quency range κ = 4π − 16π and, consequently, N = 2 310 − 36 870. Different values
of the parameters εACA and εLU are considered. We observe that I(δH; δ) represents a
good measure of the true error. Additionally, the error on the H-matrix representation
‖A − AH‖F affects mainly the error estimate. In particular, the parameter εACA is a
good measure of the error on the system solution, even when εLU is smaller. In fact,
relaxing εACA, the quality of the solution becomes worse. These considerations allow to
conclude that it is not necessary to choose εLU smaller than εACA.

Elastodynamic Case. Now, we validate the proposed error estimate for the direct
solver, considering the problem of the diffraction of an incident plane P-wave by a unit
sphere, modeled by (3.18) and (3.19). In this case, the circular frequency ω is adapted
to the mesh length to keep the density of points per S-wavelength fixed for different

2(3.43) obviously holds with δH := ‖A−AH‖2.
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meshes. Thus, an increase of the number of degrees of freedom N leads to an increase
of the dimensions γλS compared to the S-wavelength.

In Tables 3.18 and 3.19, we present the true error, the proposed error estimate, the error
on the solution of the system and the accuracy of the H-matrix representation, for both
the single-layer and the double-layer operators. We set the parameters εACA = 10−4

or εACA = 10−6 and εLU = 10−4 or εLU = 10−6, in order to study their influence on
the error estimate. First of all we note that the level of error introduced by the ACA,
i.e. ‖A − AH‖F , and the quality of the solution, i.e. ‖b − AHz̃‖2, can be controlled
respectively by εACA (as we expect from Table 3.6) and εLU. Then, since the error on
the H-matrix representation affects mainly I(δH; δ), we expect that it is impossible to
solve the system and to obtain a more accurate result than the approximation of the
matrix (as we expect from Tables 3.11 and 3.12). Thus, it is not necessary to choose εLU

smaller than εACA, because the precision of the approximation of the low-rank blocks
represents a good measure of the error on the system solution. Also, in order to achieve
a desired accuracy, we choose a value of εACA and εLU which is one order of magnitude
higher than our goal. All these considerations are valid for both the single-layer and the
double-layer operators. We conclude this analysis observing that I(δH; δ) represents a
good measure of the true error, because they are of the same order (I(δH; δ) varies at
most by a factor of two).

N κ εACA, εLU
||b−Az̃||2
||b||2 I(δH; δ) ||b−AHz̃||2 ||AH −A||F

2 310 4π 10−4, 10−4 6.97× 10−15 5.01× 10−15 1.66× 10−14 9.36× 10−17

9 222 8π 10−4, 10−4 9.89× 10−6 3.57× 10−4 8.71× 10−5 1.17× 10−4

20 742 13π 10−4, 10−4 1.07× 10−5 4.83× 10−4 1.08× 10−4 1.33× 10−4

36 870 16π 10−4, 10−4 1.63× 10−5 7.57× 10−4 1.89× 10−4 2.84× 10−4

2 310 4π 10−6, 10−4 6.97× 10−15 5.01× 10−15 1.66× 10−14 9.36× 10−17

9 222 8π 10−6, 10−4 3.99× 10−6 8.96× 10−6 4.97× 10−4 1.22× 10−6

20 742 13π 10−6, 10−4 5.02× 10−6 1.14× 10−5 6.27× 10−4 1.56× 10−6

36 870 16π 10−6, 10−4 6.00× 10−6 2.92× 10−5 6.93× 10−4 2.01× 10−6

2 310 4π 10−4, 10−6 6.97× 10−15 5.01× 10−15 1.66× 10−14 9.36× 10−17

9 222 8π 10−4, 10−6 9.94× 10−6 4.02× 10−4 3.13× 10−7 1.17× 10−4

20 742 13π 10−4, 10−6 1.14× 10−5 5.31× 10−4 7.89× 10−6 1.33× 10−4

36 870 16π 10−4, 10−6 1.68× 10−5 6.73× 10−4 9.04× 10−6 2.84× 10−4

2 310 4π 10−6, 10−6 6.97× 10−15 5.01× 10−15 1.66× 10−14 9.36× 10−17

9 222 8π 10−6, 10−6 4.09× 10−6 9.95× 10−6 5.55× 10−6 1.22× 10−6

20 742 13π 10−6, 10−6 5.52× 10−5 3.27× 10−5 6.78× 10−6 1.56× 10−6

36 870 16π 10−6, 10−6 6.61× 10−5 5.83× 10−5 8.40× 10−6 2.01× 10−6

Table 3.17: Discretization of the modified 3D Helmholtz Green’s function: error estimate
for fixed density of points.
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N ω (dλs) εACA, εLU
||b−Az̃||2
||b||2 I(δH; δ) ||b−AHz̃||2 ||AH −A||F

1 926 3(13) 10−4, 10−4 3.61× 10−15 3.21× 10−15 1.66× 10−14 9.36× 10−17

7 686 3(27) 10−4, 10−4 9.94× 10−6 4.63× 10−4 5.84× 10−5 7.21× 10−5

30 726 3(55) 10−4, 10−4 1.18× 10−5 6.37× 10−4 1.40× 10−4 9.93× 10−5

1 926 7(6) 10−4, 10−4 3.87× 10−15 4.07× 10−15 1.79× 10−14 8.56× 10−17

7 686 7(12) 10−4, 10−4 3.78× 10−5 1.39× 10−3 2.30× 10−4 9.59× 10−5

30 726 7(24) 10−4, 10−4 3.97× 10−5 1.70× 10−3 5.35× 10−4 1.18× 10−4

1 926 14(3) 10−4, 10−4 4.67× 10−15 5.69× 10−15 2.27× 10−14 7.16× 10−17

7 686 14(6) 10−4, 10−4 1.04× 10−4 3.89× 10−3 5.99× 10−4 1.37× 10−4

30 726 14(12) 10−4, 10−4 1.29× 10−4 5.50× 10−3 1.39× 10−3 1.95× 10−4

1 926 3(13) 10−6, 10−4 3.61× 10−15 3.21× 10−15 1.66× 10−14 9.36× 10−17

7 686 3(27) 10−6, 10−4 4.65× 10−6 9.69× 10−6 5.88× 10−5 7.92× 10−7

30 726 3(55) 10−6, 10−4 5.50× 10−6 1.29× 10−5 1.39× 10−4 1.16× 10−6

1 926 7(6) 10−6, 10−4 3.87× 10−15 4.07× 10−15 1.79× 10−14 8.56× 10−17

7 686 7(12) 10−6, 10−4 1.87× 10−5 3.40× 10−5 2.37× 10−4 1.07× 10−6

30 726 7(24) 10−6, 10−4 2.17× 10−5 4.13× 10−5 5.50× 10−4 1.37× 10−6

1 926 14(3) 10−6, 10−4 4.67× 10−15 5.69× 10−15 2.73× 10−14 7.15× 10−17

7 686 14(6) 10−6, 10−4 4.85× 10−5 9.42× 10−5 6.14× 10−4 1.62× 10−6

30 726 14(12) 10−6, 10−4 5.65× 10−5 1.16× 10−4 1.43× 10−3 2.12× 10−6

1 926 3(13) 10−4, 10−6 3.61× 10−15 3.21× 10−15 1.66× 10−14 9.36× 10−17

7 686 3(27) 10−4, 10−6 9.01× 10−6 4.59× 10−4 2.97× 10−7 7.21× 10−5

30 726 3(55) 10−4, 10−6 1.11× 10−5 5.61× 10−4 9.27× 10−6 8.53× 10−5

1 926 7(6) 10−4,10−6 4.06× 10−15 3.87× 10−15 1.79× 10−14 8.56× 10−17

7 686 7(12) 10−4, 10−6 3.34× 10−5 1.37× 10−3 9.72× 10−7 9.59× 10−5

30 726 7(24) 10−4, 10−6 3.38× 10−5 1.68× 10−3 2.26× 10−6 1.18× 10−4

1 926 14(3) 10−4, 10−6 4.67× 10−15 5.69× 10−15 2.27× 10−14 7.16× 10−17

7 686 14(6) 10−4, 10−6 9.20× 10−5 3.85× 10−3 2.60× 10−6 1.37× 10−4

30 726 14(12) 10−4, 10−6 1.17× 10−4 5.44× 10−3 5.81× 10−6 1.95× 10−4

Table 3.18: Diffraction of an incident P-wave by a unit sphere: error estimate for fixed
frequency (Single-layer)
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N ω (dλs) εACA, εLU
||b−Az̃||2
||b||2 I(δH; δ) ||b−AHz̃||2 ||AH −A||F

1 926 3(13) 10−4, 10−4 3.29× 10−15 3.61× 10−15 7.67× 10−14 2.88× 10−16

7 686 3(27) 10−4, 10−4 8.47× 10−4 3.85× 10−4 9.79× 10−5 2.72× 10−4

30 726 3(55) 10−4, 10−4 1.03× 10−5 4.88× 10−4 2.29× 10−4 3.37× 10−4

1 926 7(6) 10−4, 10−4 3.45× 10−15 3.52× 10−15 1.87× 10−13 3.66× 10−16

7 686 7(12) 10−4, 10−4 1.94× 10−5 8.98× 10−4 1.11× 10−3 6.03× 10−4

30 726 7(24) 10−4, 10−4 2.17× 10−5 1.14× 10−3 2.61× 10−3 7.61× 10−4

1 926 14(3) 10−4, 10−4 3.25× 10−15 3.36× 10−15 3.38× 10−13 5.23× 10−16

7 686 14(6) 10−4, 10−4 7.16× 10−5 2.50× 10−3 6.46× 10−3 1.94× 10−3

30 726 14(12) 10−4, 10−4 6.92× 10−5 3.18× 10−3 1.54× 10−2 2.43× 10−3

1 926 3(13) 10−6, 10−4 3.29× 10−15 3.26× 10−15 7.67× 10−14 2.88× 10−16

7 686 3(27) 10−6, 10−4 1.97× 10−6 6.58× 10−6 1.06× 10−4 3.27× 10−6

30 726 3(55) 10−6, 10−4 2.25× 10−6 8.40× 10−6 2.42× 10−4 4.27× 10−6

1 926 7(6) 10−6, 10−4 3.45× 10−15 3.52× 10−15 1.87× 10−13 3.66× 10−16

7 686 7(12) 10−6, 10−4 9.30× 10−6 1.98× 10−5 1.16× 10−3 7.12× 10−6

30 726 7(24) 10−6, 10−4 1.07× 10−5 2.41× 10−5 2.66× 10−3 9.08× 10−6

1 926 14(3) 10−6, 10−4 3.25× 10−15 3.36× 10−15 3.38× 10−13 5.23× 10−16

7 686 14(6) 10−6, 10−4 2.62× 10−5 5.05× 10−5 6.56× 10−3 1.90× 10−5

30 726 14(12) 10−6, 10−4 3.14× 10−5 6.45× 10−5 1.58× 10−2 2.54× 10−5

1 926 3(13) 10−4, 10−6 3.29× 10−15 3.26× 10−15 7.67× 10−14 2.88× 10−16

7 686 3(27) 10−4, 10−6 8.22× 10−6 3.84× 10−4 6.12× 10−7 2.72× 10−4

30 726 3(55) 10−4, 10−6 1.01× 10−5 4.86× 10−4 1.49× 10−6 3.37× 10−4

1 926 7(6) 10−4,10−6 3.45× 10−15 3.52× 10−15 1.87× 10−13 3.66× 10−16

7 686 7(12) 10−4, 10−6 1.72× 10−5 8.89× 10−4 3.82× 10−6 6.03× 10−4

30 726 7(24) 10−4, 10−6 1.89× 10−5 1.13× 10−3 9.39× 10−6 7.61× 10−4

1 926 14(3) 10−4, 10−6 3.25× 10−15 3.36× 10−15 3.38× 10−14 3.38× 10−16

7 686 14(6) 10−4, 10−6 6.66× 10−5 2.47× 10−3 6.24× 10−5 1.94× 10−3

30 726 14(12) 10−4, 10−6 6.15× 10−5 3.15× 10−3 6.04× 10−5 2.43× 10−3

Table 3.19: Diffraction of an incident P-wave by a unit sphere: error estimate for fixed
frequency (Double-layer)
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3.5 Parallelization

The results presented in this Chapter are relative to a sequential implementation of
the H-matrix technique to accelerate the 3D elastodynamic BEM in frequency domain.
Even if the CPU times recorded are conformed to theoretical or previous-published
results, they are still too large to treat realistic problems. Thus, a parallelization of
the code developed is needed. During his internship at laboratory POEMS (ENSTA-
ParisTech), Shashank Kumar Anand worked on the parallelization of the construction
of the H-matrix representation of the BEM matrix.

There are several parallel programming models in common use. Shared memory is an
efficient means of passing data between processes. In a shared-memory model, parallel
processes share a global address space that they read and write to asynchronously. Asyn-
chronous concurrent access can lead to race conditions and mechanisms such as locks,
semaphores and monitors can be used to avoid these. Conventional multi-core proces-
sors directly support shared memory, which many parallel programming languages and
libraries, such as Cilk, OpenMP and Threading Building Blocks, are designed to exploit.

Shashank Kumar Anand opted for an OpenMP (Open Multi-Processing) implementa-
tion. Briefly, we recall that OpenMP uses the fork-join model of parallel execution. All
Open MP programs begin as a single process, the master thread. The master thread
executes sequentially until the first parallel region construct is encountered. The master
thread then creates a team of parallel threads (Fork). The statements in the program
that are enclosed by the parallel region construct are then executed in parallel among
the various team threads. When the team threads complete the statements in the par-
allel region construct, they synchronize and terminate, leaving only the master thread
(Join). The number of parallel regions and the threads that comprise them are arbitrary.

In Figures 3.14 and 3.15, we report the results obtained on a 2.0-GHz Intel Xeon CPU
E7-4820 with 1 TB RAM, having 32 cores with hyper threading. Thus, we have logical
64 threads which mean we can set our maximum number of threads equal to 64. But
maximum speed up expected is around 32 (may be slightly more than that) as physical
number of cores are 32 in number. The problem considered is the diffraction of an inci-
dent plane P-wave by a unit sphere, modeled by the boundary integral equation (3.18).
Four different problem sizes are considered: N = 7 686 (Figure 3.14a), N = 30 726
(Figure 3.14b), N = 122 886 (Figure 3.15a) and N = 183 099 (Figure 3.15b). To accel-
erate the construction of the H-matrix representation of the BEM matrix, a Dynamic
Scheduling strategy was adopted, i.e. each thread will take up a single task only as soon
as it gets free. For all the four problem sizes treated, the speed up efficiency is almost
around 90%.

The parallelization of the H-LU factorization is still an open difficult task, because
various stages of the algorithm link at least two sub-blocks. Recently, the idea of splitting
the H-LU factorization into single tasks and of defining corresponding dependencies
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to form a Direct Acyclic Graph (DAG), has been presented. This task/DAG based
algorithm is able to utilize parallel CPU which are much more efficient compared to the
recursive algorithm and, in particular, demonstrates an optimal parallel scaling behavior
on many-core systems [112].

(a) Single-layer (N = 7 686) (b) Single-layer (N = 30 726)

Figure 3.14: Diffraction of an incident P-wave by a unit sphere: Dynamic Scheduling
Results for the computation of the H-matrix representation of BEM matrix (Paral-
lelization of a Fast Direct Solver for the 3D Elastodynamic Boundary Element Method,
Shashank Kumar Anand).

(a) Single-layer (N = 122 886) (b) Single-layer (N = 183 099)

Figure 3.15: Diffraction of an incident P-wave by a unit sphere: Dynamic Scheduling
Results for the computation of the H-matrix representation of BEM matrix (Paral-
lelization of a Fast Direct Solver for the 3D Elastodynamic Boundary Element Method,
Shashank Kumar Anand).

3.6 Conclusions

In this Chapter, we have developed innovative fast 3D Boundary Element Method
solvers based onH-matrices. Taking advantages of published developments for Helmholtz,
Laplace and Lamé equations, the H-matrices have been extended to elastodynamics in
the frequency domain. The efficiency and the accuracy of the method have been tested
in the context of scattering of time-harmonic elastic plane P-waves by a unit sphere,
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comparing the results with analytical solutions.

Firstly, we have shown that the generalization of the scalar-value Adaptive Cross Ap-
proximation (ACA) to the matrix-valued problems presents all the features of standard
ACA, i.e. its black-box and self-controlling nature. In particular, the level of error
introduced by the ACA can be controlled by one parameter, εACA, representing in prac-
tice an accurate measure of the error on the approximation of the whole BEM matrix.
However, in order to achieve a desired accuracy, it is better to choose a value of εACA

which is one order of magnitude higher than our goal. Since vectorial ACA gives an
almost optimal numerical rank, the optimum rank has to be revealed performing a
recompression with truncated SVD. In this way, we have observed a reduction of the
memory requirement compared to classical boundary element method. In fact, in our
experiments the H-matrix representations of the elastodynamic BEM matrices can be
achieved with almost logarithmic linear memory cost, i.e. O(N1.25 logN).

Due to the purely algebraic nature of H-matrices, approximations of the usual matrix
operations (addition, multiplication, inversion, etc...) allow to define fast solvers. We
have obtained that the accuracy of the H-matrix/vector product is related to the overall
accuracy of the H-matrix representation, because it is impossible to obtain a more ac-
curate result than the approximation of the matrix. In the light of these considerations,
the H-matrix/vector product has been used to accelerate the classical matrix/vector
product and, consequently, to reduce the time of each iteration of a GMRES based
iterative solver, which is the most expensive task for this type of solution method. No
preconditioner has been used. The proposed iterative solver has been compared with
a Fast Multipole based iterative solver. Although for both solvers a deterioration of
the convergence rate (number of iterations) has been observed for large problem sizes,
the computation time to solve the BEM system is of the same order for both these
iterative solvers. Even if H-matrix based iterative solver is four times slower than the
Fast Multipole based iterative solver, it results more advantageous because its imple-
mentation and parallelization is easier. In parallel, the H-matrix based arithmetic has
been used to approximate the factors of the LU decomposition, in order to reduce the
numerical effort of a direct solver. The numerical tests presented have shown that it is
not necessary to choose the parameter εLU smaller than εACA, because the precision of
the approximation of the low-rank blocks represents a good measure of the error on the
system solution. For this last solver an error estimate has been proposed to assess the
quality of the solution, when the analytical solution is unknown.

Both the proposed iterative and direct solvers permit to reduce the computational bur-
den in CPU time, for the simulation of wave propagation and allow to run models of size
N = O(106) on a personal laptop. In particular, the CPU time observed incentivates
to treat 3D elastodynamic problems with a direct approach, especially in the case of
problems with multiple right hand sides.
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PROBLEMS

4.1 Introduction

In the previous Chapter, we have extended the capabilities of the H-matrices to 3D
frequency-domain elastodynamics, validating this technique in the context of the scat-
tering of time-harmonic elastic waves by a bounded obstacle. The presented integral
formulations involve the single-layer operator S and the double-layer operator D that
are the basis of other integral equations, suitable to treat more general wave propaga-
tion phenomena.

This Chapter is aimed at developing an H-matrix based Boundary Element Method
(BEM) to simulate forced vibration problems. The Chapter is organized as follows. In
Section 4.2 we give the motivation and the industrial context of the problem, recalling
the principles of a seismic experiment. Next, in Section 4.3 the mathematical formu-
lation of the problem is presented and we introduce a multi-domain BEM formulation,
naturally suited to define H-matrix based solution strategies. The capability of the
method to treat a simple forced vibration problem, i.e. the computation of the response
of a homogeneous medium to time-harmonic point load, is investigated in Section 4.4.
This example is also used to present the randomized Singular Value Decomposition
(rand SVD) as an alternative to the vectorial partially-pivoted Adaptive Cross Ap-
proximation (ACA) to compute low-rank approximations. Finally, in Section 4.5 we
show the efficiency of the H-matrix based BEM to simulate an elastic half-space with
topographic irregularities.

4.2 Seismic Method

Detailed informations about the nature and the structure of the shallow surface is
required to reduce many uncertainties in oil and gas exploration and production. Un-
fortunately, little of the planet is accessible to direct observation. In Kola peninsula
in Russia drilling has penetrated to depths of up to 12 km (' 0.2% of Earth’s radius,
6 371 km), though at great expense. Consequently, most of our understanding is based
on indirect inferences, including both geochemical and geophysical observations and lab-
oratory studies of state and properties of materials at high pressures and temperatures.

Parallel to the development of techniques such as computers, GPS positioning, increased
number of channels in instrument recording, improvements in processing software, etc.,
enormous resources (the 95% of all geophysical exploration funds) have been invested
in seismic explorations. These sophisticated and powerful geophysical methods, based
on the analysis of the information from data obtained by recording elastic wave mo-
tion of the ground, enable imaging of geological stratigraphy and structure to depths of
several kilometers, and have been fundamental to the mapping of much of the world’s
hydrocarbon reserves. For this reason, in many major oil companies seismic methods
surveying increased exponentially over the past few decades.
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Figure 4.1: Schematic geometry of a seismic experiment

In a seismic data acquisition (see Figure 4.1), an elastic wave-field is emitted by a seismic
source (there are different kinds of sources in practice but in general impulsive dyna-
mite sources and vibroseis method are considered) at a certain location at the surface
of the ground, and propagates in different directions through the surface. Variations in
the physical properties of the geological layers cause the seismic signal to reflect and
refract at the boundaries of these layers, depending on the velocities (see Table 4.1)
and densities of the material on either side of the boundaries. The reflected waves head
back towards the surface where detectors or receivers have been placed to record these
waves. Typically, the receivers are deployed in a straight line for 2D work (depth versus
distance profiles) or on a grid for 3D work (area versus depth data blocks). Each receiver
is a sensitive geophone or a combined group of geophones, allowing to transform seis-
mic energy into an electrical voltage. It ordinarily responds to only one component of
the ground displacement, velocity or acceleration associated with the passage of a seis-
mic wave (for a seismic reflection survey with P-waves this is the vertical component).
A motion-sensitive transducer converts ground motion to an electrical signal, that is
recorded to a digital seismograph. If the origin time when the waves left the source is
known, their arrival time at the receiver gives the travel time required to pass through
the medium, and hence information about the speed at which they traveled, and thus
the physical properties of the medium. After each such short record experiment, the
source is moved to another location and the measurement is repeated.

One of the key challenges of the shallow surface reconstruction is the presence of strong
noisy events, i.e. ground-roll or surface waves, that have to be removed from the gath-
ered data before starting the imaging process, since they do not contain any information
of the deeper interior of the ground. Historically, two-dimension filters, the so-called
F-K filters, were used for this type of noise removal. Again for land data, surface and
near-surface topography can have a tremendous effect on the total response, since the
near-surface conditions can vary strongly from location to location. Static corrections
have been defined as corrections applied to seismic data to compensate for the effects
of variations in elevation, weathering thickness, weathering velocity or reference to a
datum. The objective is to determine the reflection arrival times which would have
been observed if all measurements had been made on a flat plane with no weathering
or low-velocity materials presence.
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cP (km/s)

Unconsolidated materials
Sand (dry) 0.2 - 1.0
Sand (water-saturated) 1.5 - 2.0
Clay 1.0 - 2.5
Glacial till (water-saturated) 1.5 - 2.5
Permafrost 3.5 - 4.0

Sedimentary rocks
Sandstones 2.0 - 6.0
Tertiary sandstone 2.0 - 2.5
Pennant sandstone (Carboniferous) 4.0 - 4.5
Cambrian quartzite 5.5 - 6.0

Limestones 2.0 - 6.0
Cretaceous chalk 2.0 - 2.5
Jurassic oolites and bioclastic limestones 3.0 - 4.0
Carboniferous limestones 5.0 - 5.5

Dolomites 2.5 - 6.5
Salt 4.5 - 5.0
Anhydrite 4.5 - 6.5
Gypsum 2.0 - 3.5

cP (km/s)
Igneous/Metamorphic rocks

Granite 5.5 - 6.0
Gabbro 6.5 - 7.0
Ultramafic rocks 7.5 - 8.5
Serpentinite 5.5 - 6.5

Pore fluids
Air 0.3
Water 1.4 - 1.5
Ice 3.4
Petroleum 1.3 - 1.4

Other materials
Steel 6.1
Iron 5.8
Aluminium 6.6
Concrete 3.6

Table 4.1: Compressional waves velocities for various isotropic materials.

4.3 Forced Vibration Problem
To get insight into the combination of waves generated by a localized source, such

as an explosion, it is useful to consider a semi-infinite layered half-space consisting of
homogeneous, elastic, non- intersecting layers on the top of a homogeneous half-space
with topographic irregularities.

Accordingly, letting ΩF denotes the half-space {x = (x1, x2, x3)> ∈ R3 : x3 > 0}
bounded by the infinite planar free-surface ΓF := {x ∈ R3 : x3 = 0}, characterized
by the unit outward normal vector n = (n1, n2, n3)>. Local coordinate system with its
origin on ΓF is introduced. Configurations of interest are semi-infinite domains Ω which
coincide with ΩF or deviate from it only in a region of finite size (surface irregularities).
The boundary Γ01 of Ω is thus of the form Γ01 := S ∪ Γ, where the bounded surface
S defines possible topographic irregularities and Γ is the remaining part of ΓF (see
Figure 4.2). Note that Γ coincides with ΓF outside of S.

x1

x3
Ω

S
Γ

t̂ = δi3δ(x− x0)

Figure 4.2: Forced vibration problem: geometry and notations.
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The forced vibration problem is formulated as follows: given a vertical point unit time-
harmonic excitation t̂(x) (point load), applied in the point x0 ∈ Γ (see Figure 4.2), find
the displacements u solution to Navier-Cauchy equation of motion in Ω, which satisfies
the Neumann boundary condition on Γ01

t|Γ01(x) := σ(x) · n(x) = t̂(x) := δ(x− x0)e3, (4.1)

where the load t̂ is modeled by the Dirac delta distribution δ(x).

4.3.1 Multi-Domain BEM Formulation

Since we treat a layered soil, the entire problem domain Ω is divided into M non-
overlapping and non-intersecting sub-domains Ωi, i.e.

Ω :=
M⋃
i=1

Ωi, (4.2)

each characterized by its shear modulus µi, Poisson’s ratio νi and mass density %i.
Time-harmonic motions with circular frequency ωi are assigned in each sub-domain. In
the following, ∂Ωi denotes the boundary of the sub-domain Ωi, while Γij is the interface
between Ωi and Ωj , characterized by the unit normal vector nij , directed outside of Ωi.

In this way, the original single-domain problem is divided into a group of local problems
in M sub-domains (see Figure 4.3, where a simple model is shown).

Figure 4.3: Simple model of layer soil: a semi-infinite layered half-space consisting of
homogeneous, elastic non-intersecting layers on the top of a homogeneous half-space.
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Since for each of these sub-domains the local displacement field ui satisfies the Navier-
Cauchy equation of motion in the domain Ωi, each sub-problem can be reformulated as
a boundary integral equation(

−1
2I +D∂Ωi

)
ui|Γi (x) = S∂Ωiti|Γi (x), (4.3)

involving the identity operator I and a linear combination of the single-layer S∂Ωi and
the double-layer D∂Ωi operators, defined in Equation (3.13) in the context of scattering
problems. In order to relate the unknown fields on the interfaces, additional coupling
conditions are required. In the case of interfaces between two solid materials, we require
that both the traction and the displacement are continuous on Γij , i.e.

ui|Γij (x) := uj|Γij (x) and ti|Γij (x) := −tj|Γij (x). (4.4)

We note that the interface conditions are not unique (any linearly independent com-
binations of the relations in Equation (4.4) can be used as coupling conditions) and
different forms of interface conditions can influence the conditioning of the final system.
Due to this consideration and in the light of the results of potential problems (see [91]),
we choose to consider the following form of the coupling conditions:

ui|Γij (x)− uj|Γij (x)− ti|Γij (x)− tj|Γij (x) = 0
−ui|Γij (x) + uj|Γij (x)− ti|Γij (x)− tj|Γij (x) = 0. (4.5)

The following multi-domain formulation is based on three-noded triangular boundary
elements and piecewise linear interpolations of displacements and tractions. The col-
location method is used. In each sub-domain Ωi, the discretization of the integral
equation (4.3) gives rise to the matrix equation:

Kiũi = Sit̃i with Ki =
(
−1

2I +Di

)
, (4.6)

where the matrices Di and Si are fully populated unsymmetric matrices, whose com-
putation entails the evaluation of the single-layer and the double layer operators, and
I is the identity matrix. The vectors ũi and t̃i gather the displacement and traction
degrees of freedom.

For sake of definiteness, we first focus our attention on the sub-domain Ω1. Since its
boundary ∂Ω1 = Γ01∪Γ12 is composed by the free-surface Γ01 and the interface Γ12, we
can separate the interactions between Γ01 and Γ12 and consider Equation (4.6) in the
form: [

KΓ01Γ01 KΓ01Γ12

KΓ12Γ01 KΓ12Γ12

]
·
[

ũ01
1

ũ12
1

]
=
[
SΓ01Γ01 SΓ01Γ12

SΓ12Γ01 SΓ12Γ12

]
·
[

t̃01
1

t̃12
1

]
. (4.7)

Now, calling t̂ the vector resulting from the evaluation of the function t̂(x) in the node
used to discretize the free-surface Γ01, the application of the boundary condition (4.1)
allow us to rewrite the previous equation as the following system of matrix equations:
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{
KΓ0,1Γ0,1ũ

0,1
1 +KΓ0,1Γ1,2ũ

1,2
1 − SΓ0,1Γ1,2 t̃

1,2
1 = SΓ0,1Γ0,1 t̂

KΓ1,2Γ0,1ũ
0,1
1 +KΓ1,2Γ1,2ũ

1,2
1 − SΓ1,2Γ1,2 t̃

1,2
1 = SΓ1,2Γ0,1 t̂.

(4.8)

Similarly, separating the interactions between the interfaces Γi,i−1 and Γi,i+1 (i=2,. . . ,M-
1), in each sub-domain Ωi we have to solve the system of matrix equations:

{
KΓi,i−1Γi,i−1ũ

i,i−1
i +KΓi,i−1Γi,i+1ũ

i,i+1
i − SΓi,i−1Γi,i−1 t̃

i,i−1
2 − SΓi,i−1Γi,i+1 t̂

i,i+1
2 = 0

KΓi,i+1Γi,i−1ũ
i,i−1
i +KΓi,i+1Γi,i+1ũ

i,i+1
i − SΓi,i+1Γi,i−1 t̃

i,i−1
2 − SΓi,i+1Γi,i+1 t̂

i,i+1
2 = 0.

(4.9)
Finally, in the sub-domain ΩM we have to consider the matrix equation

KΓM,M−1ΓM,M−1ũ
M,M−1
M − SΓM,M−1ΓM,M−1 t̃

M,M−1
M = 0. (4.10)

If we do not eliminate the duplicated unknowns on the interfaces, combining Equa-
tions (4.8), Equations (4.9) and Equations (4.10) with the coupling conditions (4.4),
the final BEM linear system of equations is

Az = b, (4.11)
where coefficient matrix A is given by:

A =



KΓ01Γ01 KΓ01Γ12 −SΓ01Γ12 0 0 0 0 . . . 0 0
KΓ12Γ01 KΓ12Γ12 −SΓ12Γ12 0 0 0 0 . . . 0 0

0 I −I −I −I 0 0 . . . 0 0
0 −I I −I −I 0 0 . . . 0 0
0 0 0 KΓ21Γ21 KΓ21Γ23 −SΓ21Γ21 −SΓ21Γ23 . . . 0 0
0 0 0 KΓ23Γ21 KΓ23Γ23 −SΓ23Γ21 −SΓ23Γ23 . . . 0 0
0 0 0 I −I −I −I . . . 0 0
0 0 0 −I I −I −I . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . KΓM,M−1ΓM,M−1 −SΓM,M−1ΓM,M−1



,

(4.12)
while the unknown vector z and the right hand side b are given by

z =



ũ0,1
1

ũ1,2
1

t̃1,2
1

ũ2,1
2

t̃2,1
2

ũ2,3
2

t̃2,3
2
...

ũM,M−1
M

t̃M,M−1
M



and b =



SΓ0,1Γ0,1 t̂
SΓ1,2Γ0,1 t̂

0
0
0
0
0
...
0
0



. (4.13)

Briefly, we remember that all the block-matrices present in (4.12) require a quadratic
amount of storage. Thus, if N is the total number of degrees of freedom of the global
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problem, the amount of memory for the matrix A is O(N2). Furthermore, solving
equation (4.11) with a direct solver such as a LU-factorization requires a cubic amount
of numerical operations (O(N3)), to be compared with a cost of the order of O(N2)
operations for each iteration needed by an iterative method. Therefore, the application
of classical boundary element method is restricted to problem of small size.

4.3.2 Hierarchical Multi-Domain BEM Formulation

The use of H-matrices provides an efficient way to approximate fully populated
matrices (with an arbitrary prescribed accuracy) by means of memory efficient rep-
resentations. In particular, the proposed multi-domain BEM formulation is naturally
suited to define H-matrix based solution strategies, because the entire coefficient matrix
is partitioned and decomposed using the Schur component.

Assembling the hierarchical representations KHi and SHi of the matrices Ki and Si
respectively, allows us to replace equation (4.11) with

AHz = bH. (4.14)

Since the construction of an H-matrix representation of matrices Ki and Si requires a
hierarchical subdivision of the initial matrix based on the geometrical considerations, for
each sub-domain Ωi we need only one cluster tree T iI and, consequently, only one block-
cluster tree T iI×I . Additionally, we can separate the interactions between the interfaces
Γi,i−1 and Γi,i+1 during the construction of the cluster tree T iI , and obtain the required
partition of matrix Ki and Si in a natural way. Once the H-matrix SH1 is assembled,
we use the H-matrix/vector product to accelerate the matrix/vector products needed
to compute the right hand side.

4.4 Green’s Function of a Homogeneous Half-Space
A special case of forced vibrations is the computation of the Green’s function for a

homogeneous elastic half-space. This problem harks back to the early twentieth century,
when Horace Lamb [114] investigated a half-space subjected to concentrated vertical or
horizontal loads at the surface or inside it. The use of complex contour integration in
his work yielded the wave motions generated at the surface of the elastic half-space.
An important and comprehensive subsequent study in this area is the work of Miller
and Pursey [133], in which Lamb’s method was adapted to furnish definite integral
representations of the field at an arbitrary point in an isotropic half-space due to the
stress prescribed on the surface. The first truly complete solutions to Lamb’s problem
were given by Pekeris [142] and Chao [43], who provided closed-form expressions for
the components of motion elicited by a vertical and a horizontal load, respectively, but
only when Poisson’s ratio is 1/4. This problem was taken up again by Mooney [134],
who extended the Pekeris solution to any arbitrary Poisson’s ratio, but he did so only
for the vertical component while ignoring the radial one. Then in 1979, Richards [147]
considered this problem once again and gave a complete set of exact formulae for both
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loading cases and for any Poisson’s ratio.

In the frequency domain, the Green’s function for a homogeneous elastic half-space is
known [8, 97] and applied in dynamic soil-structure interaction [47, 79]. Since it is
expressed in Fourier-Bessel integral form (involving oscillatory integrals over infinite
intervals), with no closed-form expression available, its numerical evaluation is com-
plex and time-consuming [128]. Singularity and regularization issues for the half-space
Green’s function have been presented [149]. A fast multipole formulation has recently
been introduced [36].

In the following, we consider the response of a homogeneous half-space ΩF to a time-
harmonic load t̂(x) = δi3δ(x), applied on the free-surface ΓF at the origin 0 of the local
coordinate system (see Figure 4.4). The material properties are fixed to µ = % = 1 and
ν = 1/3.

x1

x3

0

t̂ = δi3δ(x)

ΩF

Figure 4.4: Schematic representation of a homogeneous elastic half-space

As we consider a homogeneous domain, the BEM formulation of the problem reduces
to (

−1
2I +D

)
ũ = St̃, (4.15)

where the solution ũ is the response in the direction ei, at the observation point x
to the load, i.e. it is the Green’s displacement function UHS

i3 (x,0;ω), corresponding
to the component i3 of the Green’s displacement tensor for a homogeneous half-space,
UHS(x,y;ω), evaluated in y = 0.

Assembling the hierarchical representations DH and SH of the matrices D and S re-
spectively, allows us to replace Equation (4.15) with(

−1
2I +DH

)
ũ = SHt̃. (4.16)

This last matrix equation differs from the previous considered in Chapter 3, because
its right hand side has to be computed performing the fast H-matrix/vector product
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between SH and t̃.

Since the computation of the H-matrix representations of matrices D and S in Equa-
tion (4.16) involves integrals over the unbounded surface ΓF, in practice we need to
truncate ΓF at ΓF(L), i.e. to bound the unbounded surface by a circle of radius L.

The main difficulty of the extension of the H-matrices to this problem is linked to
the quality of the approximation provided by the vector ACA, when we evaluate the
double-layer operator D.

4.4.1 Limitations of the Vector Version of the ACA for Half-Space
Problems

Looking at equation (4.16), we note that the computation of the entries of matrices
DH and SH requires the evaluation of the tensors U(x,y;ω) and T(x,y;ω) on the
surface ΓF, whose components are given by:

Uki (x,y;ω) := 1
4πµr (A1δik +A2r,ir,k)

T ki (x,y;ω) := 1
4πr [2A3r,ir,kr,j + (δikr,j + δjkr,i)A4 + δijr,kA5]nj

(4.17)

where the coefficients A1, A2, A3, A4 and A5 are defined by equations (1.41), while r,i is
the derivative of r = ‖x− y‖ with respect to xi.

Since ΓF is a planar surface with normal n(x) = (0, 0,−1)>, we have:

T ki (x,y;ω) = − 1
4πr (δ3kr,iA4 + δi3r,kA5). (4.18)

Finally, as the third component of the distance between x and y vanishes, the symmetric
tensor U(x,y;ω) corresponds to the 3-by-3 matrix

U(x,y;ω) = 1
4πµr

 A1 +A2r
2
,1 A2r,1r,2 0

A2r,1r,2 A1 +A2r
2
,2 0

0 0 A1

 ⇒ det (U) 6= 0, (4.19)

while the symmetric tensor T(x,y;ω) corresponds to the 3-by-3 matrix

T(x,y;ω) = − 1
4πr

 0 0 A4r,1
0 0 A4r,2

A4r,1 A4r,2 0

 ⇒ det (T) = 0. (4.20)

As result, we can not use the vector ACA to give an H-matrix representation of matrix
D on ΓF, because each of its entries is a singular 3-by-3 matrix and, consequently, it is
not possible to choose a non-zero pivot (see Subsection 2.4.2).
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As we have explained in Section 2.3, the truncated Singular Value Decomposition or
the fully-pivoted ACA always provide good approximations of low-rank matrices but
they are not interesting options for H-matrices, because they need the knowledge of the
complete matrix to approximate. In order to avoid these approximation techniques, we
take advantage of the sparse structure of T(x,y;ω) and we use randomized Singular
Value Decomposition algorithm to approximate the admissible blocks.

4.4.2 Randomized Singular Value Decomposition

Randomized algorithms for low-rank approximations of matrices have been an active
research topic in the recent years with a vast literature (see [127] for an overview). In
particular, the randomized singular value decomposition (random SVD) algorithm is a
very useful alternative to the vectorial ACA for computing a low-rank approximation of
a given numerically low-rank matrix [117]. Given a matrixM of size m×n, the random
SVD method computes k ∈ N, U ∈ Cm×k, S ∈ Ck×k and V ∈ Cn×k, with singular
values σ1 ≤ σ2 ≤ . . . σmin{m,n}, such that

‖USV H −M‖ ≤ εrSVDσk+1, (4.21)

where k is the number of singular values greater than a prescribed accuracy εrSVD > 0.
There exist different versions of this technique but we choose the procedure presented
by Halko [86] and used by Chaillat and Biros to treat scalar Helmholtz inverse medium
problems [34].

Starting with k = 1, we consider l = k + c, where c ∈ N is a fixed small parameter.
The main component of the randomized SVD algorithm is the multiplication of M to
a Gaussian random matrix G ∈ Cn×l to compute R := MG ∈ Cm×l. Applying classical
singular value decomposition to R, we obtain two orthogonal matrices Φ ∈ Cm×l and
Ψ ∈ Cl×l and a diagonal matrix Λ ∈ Cl×l such that R = ΦΛΨH . The first k left singular
vectors of R, i.e. the first k columns of Φ, give the matrix Q ∈ Cm×k. To avoid the
need to precompute the matrix rank, we use an error estimate and test if

‖R−QQHR‖ ≤ εrSVDλ1 (4.22)

where λ1 is the bigger singular value of R. If this condition is not fullfilled, we increase
k and we repeat the algorithm. Otherwise, we compute the matrix T = QHM ∈ Cn×k
and its singular value decomposition T = WSV H , where W ∈ Ck×k and V ∈ Cn×k
are orthogonal matrices and S ∈ Cr×r is a diagonal matrix. Finally, we assemble
U = QW ∈ Cm×r.

Since the generation of random numbers is quite efficient, the cost of the Gaussian
random matrix G is negligible and, in practice, the cost of each iteration of the described
algorithm is O(µ(n,m)l+µ(n,m)r+ml2 +nk2), where µ(n,m) denotes the cost of the
application of matrix M . Assuming m < n, the complexity is O(µ(n,m)l + k2n). If
we have a dense matrix, the complexity is O(lmn) but, in practice, we use randomized
SVD to approximate sparse matrices. It follows that for our applications the overall
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complexity of this approximate factorization is O(ln) for work and O(kn) for storage,
values comparable with work and storage required by the ACA.

4.4.3 H-matrix based BEM for Half-Space Problems

In the following, we consider a truncated version ΓF(L) of ΓF bounded by a circle
of radius L = 5 and discretized with a density of dλS = 10 degrees of freedom per
S-wavelength. Four circular frequencies ω are considered, with respective problem size
N and non-dimensional frequency φS = Lω/cSπ reported in Table 4.2.

N 5 475 21 507 85 251 339 459
ω 2.72 5.43 10.85 21.74
φS 4.33 8.64 17.27 34.60

Table 4.2: Green’s displacement function of a homogeneous half-space: dimensions of
the problem, circular frequency and non-dimensional frequency.

The cluster tree TI is built with a stopping criteria NLEAF = 100 and the constant
in the admissibility condition is set to η = 3. The low-rank approximations of the
admissible blocks are computed using the randomized Singular Value Decomposition
with εrSVD = 10−4. The SVD recompression is applied to each of these blocks with a
parameter εSVD always chosen equal to εrSVD. Equation (4.14) is solved using a direct
approach based on the H-LU factorization. To perform the H-matrix based arithmetic,
the accuracy εLU = 10−4 is assigned.

(a) |u1| (free-surface) (b) |u2| (free-surface) (c) |u3| (free-surface)

Figure 4.5: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on the free-surface (N = 339 459).

In Figure 4.5 we show the solution of Equation (4.16), that is the starting point to
analyze the accuracy of the proposed H-matrix BEM. In fact, once the approximated
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solution of Equation (4.15) is known, in a post-processing step we are able to calculate
the displacement field u at each point of the half-space ΩF, using the integral represen-
tation formula:

u(x) =
∫

ΓF(L)
U(x,y;ω) · t(y)dΓy −

∫
ΓF(L)

T(x,y;ω) · u(y)dΓy, ∀x ∈ ΩF. (4.23)

Since the analytical solution UHS
·3 is not defined on all the free-surface, we compute u

on six different planes parallel to ΓF(L) and we introduce the relative error

εHS := ‖U
HS
·3 − u‖2
‖UHS
·3 ‖2

(4.24)

where UHS
·3 is computed numerically using the code provided by B.B. Guizina (for fur-

ther details see [79]).

In Figure 4.6, we show the dependency of the relative error εHS on the distance from
the center of the plane (the closest point to the source). We observe that increasing
the number of the degrees of freedom, and consequently the frequency, we are able to
improve the quality of the approximation. These results may be inconsistent with the
analogous presented in the context of scattering problems, where the error was almost
constant for different problem sizes. In order to explain the improvement of the quality
of the solution of the problem treated, we have to keep in mind that the reference so-
lution UHS

·3 is not exact but computed numerically. For this reason some oscillations of
the relative error are present at higher frequencies.

In Figures 4.7-4.12, we present a graphical comparison between the numerical solution
and the reference solution. In this case we have discretized ΓF(L) with 225 280 triangu-
lar boundary elements and 113 153 collocation noreference solutiondes. Consequently,
the number of degrees of freedom of the problem is N = 339 459. The hierarchical
cluster tree consists in 2 924 clusters and 11 cluster levels. Consequently, there are
51 931 block clusters in the block cluster tree.
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(b) Plane x3 = 2
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(c) Plane x3 = 3
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(d) Plane x3 = 4
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(e) Plane x3 = 5
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(f) Plane x3 = 6

Figure 4.6: Green’s displacement function of a homogeneous half-space: dependence
of the relative error on the distance from the source on different planes parallel to the
free-surface.
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(a) |u1| (reference solution)

(b) |u2| (reference solution)

(c) |u3| (reference solution)

(d) |u1| (numerical solution)

(e) |u2| (numerical solution)

(f) |u3| (numerical solution)

Figure 4.7: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on plane x3 = 1.
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(a) |u1| (reference solution)

(b) |u2| (reference solution)

(c) |u3| (reference solution)

(d) |u1| (numerical solution)

(e) |u2| (numerical solution)

(f) |u3| (numerical solution)

Figure 4.8: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on plane x3 = 2.
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(a) |u1| (reference solution)

(b) |u2| (reference solution)

(c) |u3| (reference solution)

(d) |u1| (numerical solution)

(e) |u2| (numerical solution)

(f) |u3| (numerical solution)

Figure 4.9: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on plane x3 = 3.
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(a) |u1| (reference solution)

(b) |u2| (reference solution)

(c) |u3| (reference solution)

(d) |u1| (numerical solution)

(e) |u2| (numerical solution)

(f) |u3| (numerical solution)

Figure 4.10: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on plane x3 = 4.
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(a) |u1| (reference solution)

(b) |u2| (reference solution)

(c) |u3| (reference solution)

(d) |u1| (numerical solution)

(e) |u2| (numerical solution)

(f) |u3| (numerical solution)

Figure 4.11: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on plane x3 = 5.
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(a) |u1| (reference solution)

(b) |u2| (reference solution)

(c) |u3| (reference solution)

(d) |u1| (numerical solution)

(e) |u2| (numerical solution)

(f) |u3| (numerical solution)

Figure 4.12: Green’s displacement function of a homogeneous half-space: magnitude of
the three components of u(x) on plane x3 = 6.
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4.5 Elastic Half-Space with a Semi-Spherical Alluvial Basin

For the validation of the H-matrix based direct solver in the case of an half-space
with a topographic irregularity, we consider the 3D model corresponding to a semi-
spherical alluvial basin, depicted in Figure 4.13. The boundary of the domain includes
the semi-spherical basin S of radius R = 1 and the part ΓF(L) of the free-surface ΓF

bounded by a circle of radius L = 5R. The contribution of the free-surface L ≥ 5R is
neglected. The model is excited by a vertical point load t̂(x) = δi3δ(x− x0), applied at
a point x0 ∈ ΓF(L). The material properties are fixed to µ = % = 1 and ν = 1/3.

ΓF

S

A B

C

D E

x1

x3

x0

t̂(x) = δi3δ(x− x0)

Figure 4.13: Forced vibration problem: elastic half-space with semi-spherical canyon.

We discretize ΓF(L) with a density of dλS = 10 degrees of freedom per S-wavelength.
This leads to a mesh with 73 595 triangular boundary elements and 37 079 collocation
nodes. Consequently, the number of degrees of freedom of the problem is N = 111 237
and the circular frequency is ω = 12.15 (see Figure 4.14a). Since the geometry of
the boundary represents the only difference with the problem treated in the previous
Section, the BEM discretization leads to the same matrix equation, i.e.(

−1
2I +D

)
ũ = St̃. (4.25)

To assemble the hierarchical representations DH and SH of matrices D and S respec-
tively, a hierarchical cluster tree is constructed with a minimum number of elements
NLEAF = 100, resulting in 965 clusters and 11 cluster levels. The parameter η = 3 is
used in the admissibility condition with, consequently, 14 305 block clusters in the block
cluster tree. The H-matrix structure of DH and SH is shown in Figure 4.14b.

For the approximation of the low-rank blocks, we propose a mixed approach: we use the
vector ACA to compute the low-rank approximations of admissible blocks with cluster
pair in different planes, while we use the randomized SVD to calculate the low-rank
approximations of admissible blocks corresponding to cluster pair in the same plane.
The threshold εACA = 10−4 is used in the vector ACA algorithm and the same value
is assigned to the parameter εrSVD in the randomized SVD algorithm. The truncated
SVD recompression is applied to each admissible block with the parameter εSVD = 10−4.
A tolerance εLU = 10−4 is used to perform the H-matrix arithmetic during the H-LU
factorization.
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(a) Mesh of the basin (b) H-matrix representation of ma-
trices D and S

Figure 4.14: Excitation of an elastic half-space with a semi-spherical alluvial basin:
mesh of the basin and H-matrix representation of the BEM matrix (N = 111 237).

Since the analytical solution of the problem is unknown, in Figure 4.15 and 4.16 we
compare the results obtained by the proposed H-matrix based direct solver with the
results obtained by the standard BEM. The three components of the displacement field
u are plotted along line ABCDE (with points A = (−5, 0, 0), B, C, D and E = (5, 0, 0)
defined in Figure 4.13), with a density of 10 points per S-wavelength. We observe that
the results produced by the two approaches are in good agreement and allow us to
conclude the level of accuracy achieved by the H-matrix solution strategy is of the same
order of the standard BEM.
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Figure 4.15: Excitation of an elastic half-space with a semi-spherical alluvial basin:
comparison between the results obtained with the standard BEM and the proposed
H-matrix based direct solver.
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Figure 4.16: Excitation of an elastic half-space with a semi-spherical alluvial basin:
comparison between the results obtained with the standard BEM and the proposed
H-matrix based direct solver.

The model just presented does not describe a realistic scenario, because its surface is
not smooth in the points B = (−1, 0, 0) and D = (1, 0, 0), connecting the alluvial basin
and the free-surface. This is the explication of the noisy events that we observe in the
representation of the solution.

4.6 Conclusions
In this Chapter, we have extended theH-matrix based Boundary Element Method to

forced-vibration problems. Firstly, we have proposed a hierarchical multi-domain BEM
formulation, based on single-region hierarchical BEM presented in Chapter 3. The
proposed BEM-BEM coupling formulation is naturally suited to define H-matrix based
solution strategies, because the entire coefficient matrix is partitioned and decomposed
using Schur component. The analysis of the response of a homogeneous medium to time-
harmonic point load (Green’s function of a homogeneous half-space) shows the numerical
efficiency of the method and suggest that it is suitable to deal with realistic applications.
In this context, we have presented the randomized Singular Value Decomposition as an
alternative to the vectorial partially-pivoted Adaptive Cross Approximation, introduced
in Chapter 2. For the validation of theH-matrix based direct solver in the case of an half-
space with a topographic irregularity, we have considered the 3D model corresponding
to a semispherical alluvial basin. We have observed that the results produced by the
proposed hierarchical BEM are in good agreement with the results provided by the
standard BEM. In this way, we have concluded that the level of accuracy achieved by
the H-matrix solution strategy is of the same order of the standard BEM.
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5.1 Conclusions

We have developed an innovative fast 3D Boundary Element Method based on H-
matrices. Taking advantages of published developments for Helmholtz, Laplace and
Lamé equations, the H-matrices have been successfully extended to elastodynamics in
the frequency domain in Chapter 3. The generalization of the scalar-value Adaptive
Cross Approximation (ACA) to the matrix-valued problems has provided low-rank ap-
proximations for matrix blocks corresponding to admissible cluster pairs, resulting in
an improved computational efficiency compared to classical boundary element methods.
Vectorial ACA yields the near-best-possible approximation. Moreover, by combining
it with a subsequent application of the Singular Value Decomposition (SVD) the best-
possible approximation can be obtained. The extension of ACA presents all the features
of standard ACA, i.e. its black-box and self-controlling nature. Due to the purely al-
gebraic nature of H-matrices, approximations of the usual matrix operations (addition,
multiplication, inversion,etc...) can be computed with logarithmic-linear complexity
and allow to define fast solvers. In particular, the H-matrix/vector product has been
used to accelerate the classical matrix/vector product and, consequently, to reduce the
time of each iteration of a GMRES based iterative solver, which is the most expensive
task for this type of solution method. A deterioration of the convergence rate (number
of iterations) has been observed for large problem sizes. No preconditioner was used in
this work, in order to compare the proposed iterative solver with a Fast Multipole based
iterative solver. In parallel, H-matrix arithmetic has been used to approximate the fac-
tors of the LU decomposition, in order to reduce the numerical effort of a direct solver.
Both the proposed solvers permit to reduce the computational burden in CPU time, for
the simulation of wave propagation and allow to run models of size N = O(106) on an
ordinary PC. The accuracy of the methods has been tested in the context of scattering
of time-harmonic elastic P-waves by a unit sphere, comparing the results with exact and
previously-published numerical solutions. In particular, for the direct solver an error
estimate has been proposed to certify the quality of the solution, when the analytical
solution is unknown.

Next, as the other aim of this thesis was to develop a fast direct solver to treat realistic
wave propagation problems, the ability of the H-matrix based direct solver to deal with
forced-vibration problems has been investigated in Chapter 4. Since the soil can not be
considered as a homogeneous medium but can be approximated by piece-wise homoge-
neous media, whose thickness are irregular due to several abrupt and gradual variations.
The natural extension of the proposed H-matrix BEM to multi-domain problems con-
sists in forming the coefficient matrix simply by assembling the coefficient matrices of
each sub-domain and the interface conditions between sub-domains, without eliminating
any unknown variables on the interfaces. As proved in the case of potential problems
(see [91]), this approach is efficient with the fast multipole method but it is naturally
suited to define a H-matrix based direct and iterative solution strategies, because the
entire coefficient matrix is partitioned and decomposed using Schur component. Since
the single-layer and the double-layer operators presented in the integral formulations
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relative to scattering problems, are the basis of the integral equations suitable to treat
the new problems, the main difficulty of the extension of the solvers has been linked to
the quality of the approximation provided by the vector ACA, when we evaluate the
double-layer operator. A mixed approach has been proposed: vectorial ACA has been
used to compute the low-rank approximation of admissible blocks with cluster pairs
in different planes, while Randomized Singular Value Decomposition (rand SVD) algo-
rithm has been used to approximate admissible blocks corresponding to cluster pair in
the same plane. This technique, always in association with a standard SVD recompres-
sion, has been proved to be a very useful alternative to the vectorial ACA. The efficiency
of the method to compute the response of an elastic half-space, with or without topo-
graphic irregularities, to a time-harmonic point load has been shown, comparing the
results with analytical solution or standard BEM.

5.2 Directions for Future Work

This work was the first stage of the development of a fast direct solver for frequency-
domain elastodynamics, using H-matrices, at ENSTA-ParisTech in the laboratory PO-
EMS. Before this thesis, no efficient BEM direct solver for large 3D elastodynamic prob-
lems was available. In view of the encouraging results obtained in this work, further
research will be devoted to increase the capabilities and possibilities of this elastody-
namic solver. Some possible directions for future work are now briefly discussed.

Viscoelasticity. In this work, only linear elastodynamics has been considered but the
ideal model of an elastic soil is often insufficiently realistic. The introduction of damp-
ing, using a viscoelastic law, complicates the computation of the response to dynamic
excitation but usually provides a much better description of the material, because it
takes into account the transformation of mechanical energy into thermic energy, i.e.
heat, closely related to such mechanisms as friction between particles or grains, molec-
ular collisions or irreversible intercrystal heat flux. In Section 1.8 we have seen that
viscoelasticity can be easily derived from elastodynamics. The classical method consists
in introducing complex-valued elastic constants.

Anisotropy. Many kinds of rock and most sedimentary soil show an anisotropic be-
haviour, reflecting the history of the medium (deposition, deformation, consolidation,
etc...). In elastodynamics, the main difference between isotropic and anisotropic ma-
terials is the fact that in an isotropic material, the speed of wave propagation is the
same in all directions, whereas in anisotropic materials the wave speed varies. The ex-
tension of the H-matrix based direct solver to anisotropic cases is not straightforward
because an efficient way to estimate the numerical elastic anisotropic Green’s functions
(see [168]) has to be reformulated and developed. During the master thesis of Aurore
Texier, realized at the laboraty POEMS (ENSTA-ParisTech), initial numerical inves-
tigations have been considered in order to ensure that the numerical computation is
accurate and fast enough to be integrated into the H-matrix based direct solver. The
first results, obtained by using the Radom transform, are encouraging.
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Time-domain response computation. The H-matrix based direct solver can be
used to deal with time-domain problems, via Fourier synthesis, taking advantage of
the accelerated BEM at each sampling frequency. The solution for each frequency can
been computed independently, i.e. without using previously-obtained solutions at lower
frequencies. An alternative strategy consists in working directly in time-domain in-
corporating the full-space or layered half-space time-domain Green’s function into the
H-matrix based direct solver. These fundamental solutions contain convolution inte-
grals with respect to the time, that can be performed with the convolution quadrature
method. This technique has been successfully used by Messner and Schanz [131] in
order to define an H-matrix based iterative solver.

Parallelization. The present implementation of the elastodynamic H-matrix based
direct solver has been done for single-processor platforms. The introduction of the
H-matrices has been shown in this thesis to enhance the capability of the standard
BEM. Now, with the increasing performance of computers, the parallelization of the
code would further extend the capabilities of the method in terms of BEM model size of
frequency range. During his internship of Master 1, Shashank Kumar Anand worked on
the parallelization of the construction of the H-matrix representation of BEM matrix,
obtaining a drastic reduction of the CPU time. Instead, the parallelization of H-LU
factorization is still a difficult task, because various stages of the algorithm link at least
two sub-blocks. Recently, the idea of splitting the H-LU factorization into single tasks
and of defining corresponding dependencies to form a Direct Acyclic Graph (DAG), has
been presented (see [112]). This task/DAG based algorithm is able to utilize paral-
lel CPU much more efficiently compared to the recursive algorithm and, in particular,
demonstrates an optimal parallel scaling behavior on many-core systems.

Preconditioning. For BEM models of size N = O(106) or more, the iteration count
of an H-matrix or Fast Multipole based iterative solver was found to be a major lim-
iting factor. The definition of an effective preconditioner is crucial for developing an
efficient iterative solver, able to compete with the proposed direct solver. Although find-
ing appropriate preconditioners seems to be a purely algebraic problem at first glance,
efficient preconditioners usually rely on the analytic background of the linear system.
A very popular idea is approximations of the inverse, so called Sparse Approximate
Inverses (SPAI), or of the LU factorization, so called Incomplete LU decomposition
(ILU). To improve the construction of these preconditioners, one possibility is to use
the H-matrix arithmetic with a small threshold to compute an H-SPAI or an H-ILU.
An alternative (see [69]) is a preconditioner based on low-rank compression of Schur
complements, whose construction is inspired by standard nested-dissection and relies
on the assumption that Schur complements can be approximated to high precision by
Hierarchical-Block-Separable matrices. The preconditioner is built as an approximate
LDM> factorization (no knowledge of the matrix system in assembled form is required),
whose inversion is fast to compute and can be applied as fast as well.
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Coupling with other numerical methods. In this work, soil has been treated as
a viscoelastic material, applying a linear elastic continuum model. This simplified ap-
proach may provide results of an acceptable quality for dry granular materials, which
may adequately be described as a single-phase system, i.e. wave propagation only takes
place as shear and dilatation in the grain skeleton. However, in several problems con-
cerning saturated soil, i.e. liquefaction, it is necessary to model soil as a two-phase
system, because the pore pressure in the fluid phase interacts with the stress carried by
the solid phase. This results in a second P-wave in addition to P-wave that is identified
in a single-phase elastic material. Poro-elastodynamic problems can be solved using a
coupling BEM/FEM strategy, in order to use the adequateness of BEM to deal with
unbounded media (see [156]) and the flexibility of FEM to deal with non-linear materials
(see [177]). An interesting perspective of this work is to extend the numerical efficiency
of H-matrices to poro-elastodynamic FEM/BEM coupling, taking advantage of recent
results in dynamic soil-structure interaction (see [52]).

Inverse Problem. In recent years inverse elastodynamic problems have received in-
creasing attention due to a broad range of engineering necessities. Inverse models employ
measurements to obtain a better understanding of the system behavior and to infer sys-
tem parameters. In particular, 3D imaging of cavities embedded in a semi-infinite solid
using elastic waves is a topic of intrinsic interest in a number of applications, ranging
from non-destructive material testing to oil prospecting underground and object detec-
tion. In situations when detailed mapping of buried objects is required and only a few
measurements can be made, the Boundary Element Method provides the most direct
link between the surface measurements and the buried geometrical objects. Since in-
verse analysis usually require recursive or iterative computation of the forward model,
the forward calculations have an especially huge effect on the computing time and stor-
age requirement. For this reason, the developed H-matrix based direct solver paves the
way for the solution of this inverse problem.



128 CHAPTER 5. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK



BIBLIOGRAPHY 129

Bibliography

[1] B.T. Aagaard, J.F. Hall, and T.H. Heaton. Characterization of near-source ground
motions with earthquake simulations. Earthquake Spectra, 17(2):177–207, 2001.

[2] J.D. Achenbach. Wave propagation in elastic solids. North-Holland Publishing
Company, 1975.

[3] A. Aimi, M. Diligenti, A. Frangi, and C. Guardasoni. A stable 3D energetic
Galerkin BEM approach for wave propagation interior problems. Engineering
Analysis with Boundary Elements, 36(3):1756–1765, 2012.

[4] A. Aimi, M. Diligenti, and F. Lunardini. Panel clustering method and restriction
matrices for symmetric Galerkin BEM. Numerical Algorithms, 40:355–382, 2005.

[5] K. Aki and Richards P.G. Quantitative Seismology: Theory and Methods. W. H.
Freeman and Company, San Francisco, California, 1980.

[6] L. Andersen. Linear Elastodynamic Analysis. Aalborg University, 2006.

[7] H. Aochi, T. Ubrich, A. Ducellier, F. Dupros, and D. Michea. Finite difference
simulations of seismic wave propagation for understanding earthquake physics
and predicting ground motions: Advances and challenges. Journal of Physics:
Conference Series, 454(1):1–9, 2013.

[8] P.K. Banerjee and S.M. Mamoon. A fundamental solution due to a periodic point
force in the interior of an elastic half-space. Earthquake Engineering and Structural
Dynamics, 19:91–105, 1990.

[9] L. Banjai and W. Hackbusch. Hierarchical matrix techniques for low and high
frequency Helmholtz problems. IMA Journal of Numerical Analysis, 28:46–79,
2008.

[10] L. Banjai and M. Schanz. Wave propagation problems treated with convolution
quadrature and BEM. Lecture Notes in Applied and Computational Mechanics,
63:145–184, 2012.

[11] H. Bao, J. Bielak, O. Ghattas, L.F. Kallivokas, D.R. O’Hallaronb, J.R.
Shewchukb, and J. Xu. Large-scale simulation of elastic wave propagation in het-
erogeneous media on parallel computers. Computer Method in Applied Mechanics
and Engineering, 152:85–102, 1998.



130 BIBLIOGRAPHY

[12] U. Basu and A.K. Chopra. Perfectly matched layers for time-harmonic elastody-
namics of unbounded domains: theory and finite-element implementation. Com-
puter Methods in Applied Mechanics and Engineering, 192:1337–1375, 2003.

[13] M. Bebendorf. Approximation of boundary element matrices. Numerische Math-
ematik, 86:565–589, 2000.

[14] M. Bebendorf. Hierarchical LU decomposition-based preconditioners for BEM.
Computing, 74:225–247, 2005.

[15] M. Bebendorf. Hierarchical matrices: a means to efficiently solve elliptic boundary
value problems. Springer, 2008.

[16] M. Bebendorf and S. Kunis. Recompression techniques for Adaptive Cross Ap-
proximation. Journal of Integral Equations and Applications, 21(3):331–357, 2009.

[17] M. Bebendorf, C. Kuske, and R. Venn. Wideband nested cross approximation
for Helmholtz problems. Technical Report SFB 611 Preprint, Universität Bonn,
2012.

[18] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation
matrices. Computing, 70:1–24, 2003.

[19] A. Ben-Menahem. A concise history of mainstream seismology: origins, legacy and
prespectives. Bulletin of the Seismological Society of America, 85(4):1202–1225,
1995.

[20] I. Benedetti and M.H. Aliabadi. A fast hierarchical dual boundary element method
for three-dimensional elastodynamic crack problems. International Journal for
Numerical Methods in Engineering, 84(9):1038–1067, 2010.

[21] J. Bielak, J. Xu, and O. Ghattas. Earthquake ground motion and structural
response in alluvional valleys. Journal of Geotechnical and Geoenviromental En-
gineering, 125:413–423, 1999.

[22] M. Bonnet. Boundary Integral Equation Method for Solids and Fluids. Wiley,
1999.

[23] S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators.
Numerische Mathematik, 101:221–249, 2005.

[24] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Technical
report, Max Planck Institute for Mathematics, 2003.

[25] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices
with applications. Engineering Analysis with Boundary Elements, 27:405–422,
2003.

[26] C.A. Brebbia and R. Butterfield. Formal equivalence of direct and indirect bound-
ary element methods. Applied Mathematical Modelling, 2(2):132–134, 1978.



BIBLIOGRAPHY 131

[27] C.A. Brebbia and J. Dominiguez. Boundary Elements - An introductory course.
Southampton CMP.

[28] C.A. Brebbia, J.C.F. Telles, and L.C. Wrobel. Boundary element techniques -
theory and applications in engineering. Springer-Verlag, 1984.

[29] H.D. Bui, B. Loret, and M. Bonnet. Régularisation des équations intégrales de
l’élastostatique et de l’élastodynamique. Comptes rendus de l’Academie des Sci-
ences Serie II, 300:633–636, 1985.

[30] J.M. Carcione. The wave equation in generalized coordinates. Geophysics,
59:1911–1919, 1994.

[31] J.M. Carcione and P.J. Wang. A Chebyshev collocation method for the wave equa-
tion in generalized coordinates. Computational Fluid Dynamics Journal, 2:269–
290, 1993.

[32] W. Chai and D. Jiao. A complexity-reduced H-matrix based direct integral equa-
tion solver with prescribed accuracy for large-scale electrodynamic analysis. IEEE
Antennas and Propagation Society International Symposium, 2010:1–4, 2010.

[33] S. Chaillat. Fast multipole method for 3D elastodynamic boundary integral equa-
tions. Application to seismic wave propagation. PhD thesis, École Nationale des
Ponts et Chaussées, 2008.

[34] S. Chaillat and G. Biros. FaIMS: a fast algorithm for the inverse medium problem
with multiple frequencies and multiple sources for the scalar helmholtz equation.
Journal of Computational Physics, 231:4403–4421, 2012.

[35] S. Chaillat and M. Bonnet. Recent advances on the fast multipole accelerated
boundary element method for 3D time-harmonic elastodynamics. Wave Motion,
50:1090–1104, 2013.

[36] S. Chaillat and M. Bonnet. A new fast multipole formulation for the elastodynamic
half-space Green’s tensor. Journal of Computational Physics, 258:787–808, 2014.

[37] S. Chaillat, M. Bonnet, and J.F. Semblat. A multi-level fast multipole BEM for 3D
elastodynamics in the frequency domain. Computer Method in Applied Mechanics
and Engineering, 197:4233–4249, 2008.

[38] S. Chaillat, M. Darbas, and Le Louër. Approximate local Dirichlet-to-Neumann
map for three-dimensional elastic waves. Computer Methods in Applied Mechanics
and Engineering, 297:62–83, 2015.

[39] S. Chaillat, J.F. Semblat, and M. Bonnet. A preconditioned 3D multi-region fast
multipole solver for seismic wave propagation in complex geometries. Communi-
cations in Computational Physics, 11:594–609, 2012.



132 BIBLIOGRAPHY

[40] E. Chaljub. Modélisation numérique de la propagation des ondes sismiques en
géometrie spherique: application à la sismologie globale. PhD thesis, Université
Paris VII Denis Diderot, Paris, France, 2000.

[41] E. Chaljub, Y. Capdeville, and J.P. Vilotte. Solving elastodynamics in a fluid-
soild heterogeneous sphere: a parallel spectral element approximation on non-
conforming grids. Journal of Computational Physics, 187(2):457–491, 2003.

[42] E. Chaljub and B. Valette. Spectral-element modeling of three-dimensional wave
propagation in a self-graviting earth with an arbitrary stratified outer core. Geo-
physical Journal International, 158:131–141, 2004.

[43] C.C. Chao. Dynamical response of an elastic half-space to tangential surface
loadings. Journal of Applied Mechanics, 27:559–567, 1960.

[44] A.H.D. Cheng and D.T. Cheng. Heritage and early history of the boundary el-
ement method. Engineering Analysis with Boundary Elements, 29(3):268–302,
2005.

[45] R.M. Christensen. Theory of viscoelasticity. Courier Dover Publications, 2nd
edition, 2003.

[46] R. Clayton and B. Engquist. Absorbing boundary conditions for acoustic and elas-
tic wave equations. Bulletin of the Seismological Society of America, 67(6):1529–
1540, 1977.

[47] D. Clouteau and D. Aubry. Computational soil-structure interaction. In W.S Hall
and G. Oliveto, editors, Boundary element methods for soil-structure interaction,
pages 61–125. Kluwer Academic Publishers, 2004.

[48] G. Cohen, P. Joly, and N. Tordjman. Construction and analysis of higher-order
finite elements with mass lumping for the wave equation. In Kleinman R, editor,
Proceedings of the Second International Conference on Mathematical and Numer-
ical Aspects of Wave Propagation, pages 152–160, Philadephia, PA, 1993. SIAM.

[49] F. Collino and C. Tsogka. Application of the PML absorbing layer model to the
linear elastodynamic problem in anisotropic heterogeneous media. Geophysics,
66(1):294–307, 2001.

[50] D. Colton and R. Kress. Inverse acoustic and electromagnetoc scattering theory.
Springer, 1992.

[51] P. Coulier, S. François, G. Lombaert, and G. Degrande. Application of hierarchical
matrices to boundary element methods for elastodynamics based on Green’s func-
tions for a horizontally layered half-space. Engineering Analysis with Boundary
Elements, 37:1745–1758, 2013.



BIBLIOGRAPHY 133

[52] P. Coulier, S. François, G. Lombaert, and G. Degrande. Coupled finite element-
hierarchical boundary element methods for dynamic soil-structure interaction in
the frequency domain. International Journal for Numerical Methods in Engineer-
ing, 97(7):505–530, 2014.

[53] T.A. Cruse. Numerical solutions in three-dimensional elastostatics. International
Journal of Solids Structures, 5:1259–1274, 1969.

[54] T.A. Cruse. Recent advances in boundary element analysis methods. Computer
Method in Applied Mechanics and Engineering, 62(3):227–244, 1987.

[55] T.A. Cruse and F.J. Rizzo. A direct formulation and numerical solution of the
general transient elastodynamic problem. I. Journal of Mathematical Analysis and
Applications, 22(1):244–259, 1968.

[56] P. Dangla, J.F. Semblat, H. Xiao, and N. Delépine. A simple and efficient regu-
larization method for 3D BEM: application to frequency domain elastodynamics.
Bulletin of the Seismological Society of America, 95:1916–1927, 2005.

[57] R. Dautray and J.L. Lions. Mathematical analysis and numerical methods for
Science and Technology, volume 1. Springer-Verlag, 1990.

[58] J. de la Puente, J.P. Ampuero, and M. Käser. dynamic rupture modeling
on unstructured meshes using a discontinuous Galerkin method. Geophysics,
114:B10302, 2009.

[59] J. de la Puente, M. Dumbser, M. Käser, and H. Igel. Discontinuous Galerkin
methods for wave propagation in poroelastic media. Geophysics, 73(5):77–97,
2008.

[60] J. de la Puente, M. Käser, M. Dumbser, and H. Igel. An arbitrary high-order
discontinuous Galerkin method for elastic waves on unstructured meshes - IV
Anisotropy. Geophysical Journal International, 169:1210–1228, 2007.

[61] J. Dominguez. Dynamic stiffness of rectangular foundations. Technical Report
R78-20, Departement of Civil Engineering, MIT, Cambridge, MA, 1978.

[62] J. Dominguez. Boundary Elements in Dynamics. Computational Mechanics Pub-
lications, Southampton Boston, 1993.

[63] M. Dumbser and M. Käser. An arbitrary high-order discontinuous Galerkin
method for elastic waves on unstructured meshes - II The three-dimensional
isotropic case. Geophysical Journal International, 167:319–336, 2006.

[64] E. Faccioli, F. Maggio, R. Paolucci, and A. Quarteroni. 2D and 3D elastic wave
propagation by a pseudo-spectral domain decomposition method. Journal of Seis-
mology, 1:237–251, 1997.



134 BIBLIOGRAPHY

[65] G. Festa and J.P. Vilotte. The newmark scheme as velocity-stress time-staggering:
an efficient PML implementation for spectral element simulations of elastodynam-
ics. Geophysical Journal International, 161:789–812, 2005.

[66] T. Furumura, B.L.N. Kennett, and M. Furumura. Seismic wavefield calculation
for laterally heterogeneous whole Earth models using the pseudospectral method.
Geophysical Journal International, 135(3):845–860, 1998.

[67] T. Furumura, B.L.N. Kennett, and M. Furumura. Seismic wavefield calculation
for laterally heterogeneous whole Earth models - II. The influence of the upper
mantle heterogeneity. Geophysical Journal International, 139(3):623–644, 1999.

[68] K. Garatani, H. Nakamura, H. Okuda, and G. Yagawa. Large-scale parallel wave
propagation analysis by GeoFEM. Lecture Notes in Computer Science, 1823:445–
453, 2000.

[69] P. Gatto and J.S. Hesthaven. A preconditioner based on low-rank approximation
of schur complements. arXiv preprint arXiv:1508.07798, 2015.

[70] R.J. Geller and N. Takeuchi. A new method for computing highly accurate DSM
synthetic seismograms. Geophysical Journal International, 123:449–470, 1995.

[71] H. Goldstein. Classical Mechanics, 2nd ed. Addison-Wesley, Reading MA., 1980.

[72] S.A. Goreinov. Mosaic-skeleton approximations of matrices generated by asymp-
totically smooth and oscillatory kernels. pages 41–76, Moscow, 1999.

[73] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices.
Computing, 70(4):295–334, 2003.

[74] E. Grasso, S. Chaillat, M. Bonnet, and J.F. Semblat. Application of the multi-
level time-harmonic fast multipole bem to 3D visco-elastodynamics. Engineering
Analysis with Boundary Elements, 36:744–758, 2012.

[75] R.W. Graves. Simulating seismic wave propagation in 3D elastic media using
staggered-grid finite differences. Bulletin of the Seismological Society of America,
86(4):1091–1106, 1996.

[76] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal
of Computational Physics, 73:325–348, 1987.

[77] M. Guiggiani and A. Gigante. A general algorithm for multidimensional Cauchy
principal value integrals in the boundary element method. Journal of Applied
Mechanics, 57:906–915, 1990.

[78] B.B. Guizina. Seismic response of foundations and structures in multilayered
media. PhD thesis, University of Colorado, 1996.

[79] B.B. Guizina and R.Y.S. Pak. On the analysis of wave motions in a multi-layered
solid. Quarterly Journal of Mechanics and Applied Mathematics, 54:13–37, 2001.



BIBLIOGRAPHY 135

[80] H. Guo, J. Hu, H. Shao, and Z. Nie. Hierarchical matrices method and its appli-
cation in electromagnetic integral equations. International Journal of Antennas
and Propagation, 2012:1–9, 2012.

[81] W. Hackbusch. A sparse arithmetic based on H-Matrices. Part I: Introduction to
H-Matrices. Computing, 62:89–108, 1999.

[82] W. Hackbusch. H2-Matrices. Springer, 2015.

[83] W. Hackbusch and B.N. Khoromskij. A sparse arithmetic based on H-Matrices.
Part II: Application to Multi-Dimensional Problems. Computing, 64:21–47, 2000.

[84] W. Hackbusch and B.N. Khoromskij. A sparse H-matrix arithmetic: general com-
plexity estimates. Journal of computational and applied mathematics, 125:479–
501, 2000.

[85] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the Boundary
Element Method by Panel Clustering. Numerische Mathematik, 54:463–491, 1989.

[86] N. Halko, P. Martinsson, and J. Tropp. Finding structure with randmness: prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

[87] K. Hayami and S.A. Sauter. Application of the panel clustering method for 3D
elastostatic problem. In Boundary Elements XIX, Southampton, 1997. Computa-
tional Mechanics Publications.

[88] J.L. Hess and A.M.O. Smith. Calculation of potential flow about arbitrary bodies,
volume 8. Pergamon Press, New York, 1966.

[89] T.K. Hong and B. Kennett. A wavelet-based method for simulation of
two-dimensional elastic wave propagation. Geophysical Journal International,
150:610–638, 2002.

[90] G.C. Hsiao. Boundary element methods - An overview. Applied Numerical Math-
ematics, 56(10-11):1356–69, 2006.

[91] S. Huang and Y.J. Liu. A new simple multidomain fast multipole boundary
element method. Computational Mechanics, 58(3):533–548, 2016.

[92] T.J.R. Hughens. The Finite Element Method, Linear Static and Dynamic Finite
Element Analysis. Prentice-Hall International, Englewood Cliffs, NJ, 1987.

[93] S.H. Hung and D. Forsyth. Modelling anisotropic wave propagation in oceanic
inhomogeneous structures using the parallel multidomain pseudo-spectral method.
Geophysical Journal International, 133(3):726–740, 1998.



136 BIBLIOGRAPHY

[94] H. Igel. Wave propagation in three-dimensional spherical sections by the Cheby-
shev spectral method. Geophysical Journal International, 136:559–566, 1999.

[95] H. Igel, T. Nissen-Meyer, and G. Jahnke. Wave propagation in 3D spherical sec-
tions: Effects of subduction zones. Physics of the Earth and Planetary Interiors,
132:219–234, 2002.

[96] M. Käser, M. Dumbser, J. de la Puente, and H. Igel. An arbitrary high-order
discontinuous Galerkin method for elastic waves on unstructured meshes - III
viscoelastic attenuation. Geophysical Journal International, 168:224–242, 2007.

[97] B.L.N. Kennett. Seismic wave propagation in stratified media. In Advances in
Applied Mechanics, volume 21. Academic Press, 1981.

[98] D. Komatitsch. Méthodes spectrales et éléments spectraux pour l’équation de
l’élastodynamique 2D et 3D en milieu hétérogène. PhD thesis, Institut de Physique
du Globe, Paris, France, 1997.

[99] D. Komatitsch, Q. Liu, J. Tromp, P. Süss, C. Stidham, and J.H. Shaw. Simula-
tions of ground motion in the Los Angeles Basin based upon the spectral-element
method. Bulletin of the Seismological Society of America, 94:187–206, 2004.

[100] D. Komatitsch, J. Ritsema, and J. Tromp. The spectral-element method, Beowulf
computing, and global seismology. Science, 298:1737–1742, 2002.

[101] D. Komatitsch and J. Tromp. Introduction to the spectral element method for 3D
seismic wave propagation. Geophysical Journal International, 139:806–822, 1999.

[102] D. Komatitsch and J. Tromp. Spectral element simulations of global seismic wave
propagation. I: Validation. Geophysical Journal International, 149:390–412, 2002.

[103] D. Komatitsch and J. Tromp. Spectral element simulations of global seismic wave
propagation. II: 3D models, oceans, rotation and self-gravitation. Geophysical
Journal International, 150:303–318, 2002.

[104] D. Komatitsch and J. Tromp. A perfectly matched layer absorbing boundary
condition for the second-order seismic wave equation. Geophysical Journal Inter-
national, 154:146–153, 2003.

[105] D. Komatitsch, S. Tsuboi, J. Chen, and J. Tromp. A 14.6 billion degrees of
freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth simulator.
In Proceeding of the ACM/IEEE Supercomputing SC’2003 Conference, 2003.

[106] D. Komatitsch and J.P. Vilotte. The spectral element method: an efficient tool to
simulate the seismic response of 2D and 3D geological structures. Seismological
Society of America, 88(2):368–392, 1998.

[107] D. Kosloff and E. Baysal. Forward modeling by the Fourier method. Geophysics,
47:1402–1412, 1982.



BIBLIOGRAPHY 137

[108] D. Kosloff, D. Kessler, A.Q. Fiho, E. Tessmer, A. Behle, and R. Strahilevitz.
Solution of the equations of dynamics elasticity by a Chebyshev spectral method.
Geophysics, 55:748–754, 1990.

[109] D. Kosloff, M. Reshef, and D. Loewenthal. Elastic wave calculations by the Fourier
method. Bulletin of the Seismological Society of America, 74:875–891, 1984.

[110] D. Kosloff and H. Tal-Ezer. A modified Chebyshev pseudospectral method with
an O(N−1) time step restriction. Journal of Computational Physics, 104:457–469,
1993.

[111] S.L. Kramer. Geotechnical earthquake engineering. International Series in Civil
Engineering and Engineering Mechanics. Prentice-Hall, 1996.

[112] R. Kriemann. H-LU factorization on many-core systems. Computing and Visual-
ization in Science, 16(3):105–117, 2013.

[113] G. Krishnasamy, F.J. Rizzo, and T.J. Rudolphi. Hypersingular boundary integral
equations their occurrence, interpretation, regularization and computation. In
P.K. Benerjee and S. Kobayashi, editors, Developments in Boundary Element
Methods. Elsevier, 1992.

[114] H. Lamb. On the propagation of tremors over the surface of an elastic solid.
Proceedings of the royal society of London, 203(1-42), 1904.

[115] S. Le Borne and L. Grasedyck. H-preconditioners in convection-dominated prob-
lems. SIAM Journal on Matrix Analysis and Applications, 27(4):1172–1183, 2006.

[116] A.R. Levander. Fourth-order finite-difference P-SV seismograms. Geophysics,
53:1425–1436, 1988.

[117] L. Lin, J. Lu, and L. Ying. Fast construction of hierarchical matrix representation
from matrix-vector multiplication. Journal of Computational Physics, 230:4071–
4087, 2011.

[118] B. Lizé. Résolution Directe Rapide pour les Éléments Finis de Frontière en Électro-
magnétisme et Acoustique: H-Matrices. Parallélisme et Applications Industrielles.
PhD thesis, Université Paris 13, 2013.

[119] J.E. Luco and F.C.P. De Barros. On the three-dimensional seismic response of a
class of cylindrical inclusions. In Proceeding of the Sixth International Conference
of Soil Dynamics and Earthquake, pages 565–580, Bath, UK, 1993.

[120] J.E. Luco, H.L. Wong, and F.C.P. De Barros. Three-dimensional response of a
cylindrical canyon in a layered half-space. Earthquake Engineering and Structural
Dynamics, 19:799–817, 1990.



138 BIBLIOGRAPHY

[121] F. Luzón, F.J. Sánchez-Sesma, J.L. Rodríguez-Zúñiga, A.M. Posadas, J.M. Gar-
cía, J. Martín, M.D. Romacho, and M. Navarro. Diffraction of P, S and Rayleigh
waves by three-dimensional topographies. Geophysical Journal International,
129(3):571–578, 1997.

[122] J. Lysmer and L.A. Drake. A finite-difference method for seismology. In B.A.
Bolt, editor, Methods in Computational Physics, volume 11, pages 181–216, New
York, 1972. Academic Press.

[123] R. Madariaga. Dynamics of an expanding circular fault. Bulletin of the Seismo-
logical Society of America, 65:163–182, 1976.

[124] F. Maerten. Adaptive cross-approximation applied to the solution of system of
equations and post-processing for 3D elastostatic problems using the boundary
element method. Engineering Analysis with Boundary Elements, 34(5):483–491,
2010.

[125] L.E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey, 1969.

[126] W.J. Mansur. A time-stepping technique to solve wave propagation problems using
the boundary element method. PhD thesis, University of Southampton, 1983.

[127] P.G. Martinisson, V. Rokhlin, and M. Tygert. A randomized algorithm for the
approximation of matrices. Technical Report 1361, Department of Computer
Science, Yale University, New Haven, CT, 2006.

[128] A. Maurel, V. Pagneux, F. Barra, and F. Lund. Interaction of a surface wave with
a dislocation. Physical Review B, 75(22):224112(15), 2007.

[129] I. Mazzieri, C. Smerzini, P.F. Antonietti, F. Rapetti, M. Stupazzini, R. Paolucci,
and A. Quarteroni. Non-conforming spectral approximations for elastic wave equa-
tion in heterogeneous media. In M. Papadrakakis, M. Fragiadakis, and V. Plevris,
editors, Eccomas Thematic Conference on Computational Methods in Structural
Dynamics and Engineering, Corfu, Greece, 25-28 May 2011.

[130] I. Mazzieri, M. Stupazzini, R. Guidotti, and C. Smerzini. SPEED-spectral ele-
ments in elastodynamics with discontinuous Galerkin: a non-conforming approach
for 3D multi-scale problems. Technical Report 24/2013, MOX, Dipartimento di
Matematica "F. Brioschi", Politecnico di Milano, Via Bonardi 9 - 20133 Milano,
Italy, 2013.

[131] M. Messner and M. Schanz. An accelerated symmetric time-domain boundary
element formulation for elasticity. Engineering Analysis with Boundary Elements,
34(11):944–955, 2010.

[132] A. Milazzo, I. Benedetti, and M.H. Aliabadi. Hierarchical fast BEM for anisotropic
time-harmonic 3D elastodynamics. Computers & Structures, 96:9–24, 2012.



BIBLIOGRAPHY 139

[133] G.F. Miller and H. Pursey. The field and radiation impendence of mechanical
radiations on the free surface of a semi-infinite isotropic solid. Proceedings of the
royal society of London, 223(1155):521–541, 1954.

[134] H.M. Mooney. Some numerical solutions for Lamb’s problem. Bulletin of the
Seismological Society of America, 64:473–491, 1974.

[135] G. Müller. Theory of elastic waves. Scientific Technical Report STR 07/03,
Deutsches GeoForschungsZentrum GFZ, Postdam, 2007.

[136] O. Novotny. Seismic Surface Waves. Universidade Federal da Bahia - Centro de
Pesquisa em Geofisica e Geologia, Salvador, Bahia, 1999.

[137] T. Ohminato and B.A. Chouet. A free-surface boundary condition for including
3D topography in finite difference method. Bulletin of the Seismological Society
of America, 87:494–515, 1997.

[138] J. Ostrowski, Z. Andjelic, M. Bebendorf, B. Cranganu-Cretu, and J. Smajic. Fast
BEM-solution of Laplace problems withH-matrices and ACA. IEEE Transactions
on Magnatics, 42(4):627–630, 2006.

[139] R.Y.S. Pak and B.B. Guzina. Seismic soil-structure interaction analysis by direct
boundary element methods. International Journal of Solids Structures, 36:4743–
4766, 1999.

[140] A.T. Patera. A spectral element method for fluid dynamics: laminar flow in a
channel expansion. Journal of Computational Physics, 54:468–488, 1984.

[141] H. Pedersen, F.J. Sánchez-Sesma, and M. Campillo. Three-dimensional scattering
by two-dimensional topographies. Bulletin of the Seismological Society of America,
84:1169–1183, 1994.

[142] C.L. Pekeris. The seismic surface pulse. Proceedings of the National Academy of
Sciences USA, 41:469–480, 1955.

[143] A.V. Phan, V. Guduru, A. Salvadori, and L.J. Gray. Frequency domain analysis by
the exponential window method and SGBEM for elastodynamics. Computational
Mechanics, 48(5):615–630, 2011.

[144] E. Priolo, J.M. Carcione, and G. Seriani. Numerical simulation of interface waves
by high-order spectral modeling techniques. Journal of the Acoustical Society of
America, 95(2):681–693, 1994.

[145] A. Quarteroni, A. Tagliani, and E. Zampieri. Generalized Galerkin approxima-
tions of elastic waves with absorbing boundary conditions. Computer Methods in
Applied Mechanics and Engineering, 163:323–341, 1998.



140 BIBLIOGRAPHY

[146] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport
equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory,
1973.

[147] P.G. Richards. Elementary solution to Lamb’s problem for a point source and
their relevance to three-dimensional studies of spontaneous crack propagation.
Bulletin of the Seismological Society of America, 69:947–956, 1979.

[148] F.J. Rizzo. An integral equation approach to boundary value problems of classical
elastostatics. Quarterly Journal of Applied Mathematics, 25:83–95, 1967.

[149] F.J. Rizzo, D.J. Shippy, and M. Rezayat. A boundary integral equation method
for radiation and scattering. International Journal for Numerical Methods in
Engineering, 21:115–129, 1985.

[150] J.O.A. Robertsson. A numerical free-surface condition for elastic/viscoelastic fi-
nite difference modeling in the presence of topography. Geophysics, 61:1921–1934,
1996.

[151] V. Rokhlin. Rapid solution of integral equations of classical potential theory.
Journal of Computational Physics, 60(2):187–207, 1985.

[152] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear system. SIAM Journal on Scientific Computing,
7:856–869, 1986.

[153] F.J. Sánchez-Sesma and M. Campillo. Diffraction of P, SV and Rayleigh waves
by topographic features: a boundary integral formulation. Bulletin of the Seis-
mological Society of America, 81(6):2234–2253, 1991.

[154] F.J. Sánchez-Sesma and M. Campillo. Topographic effects for incident P, SV and
Rayleigh waves. Tectonophysics, 218:113–125, 1993.

[155] F.J. Sánchez-Sesma and F. Luzón. Seismic response of three-dimensional alluvion
valley for incident P, S and Rayleigh waves: a boundary integral formulation.
Bulletin of the Seismological Society of America, 85:269–284, 1995.

[156] M. Schanz. Wave propagation in viscoelastic and poroelastic continua. A boundary
element approach. Lecture Notes in Applied and Computational Mechanics. 2001.

[157] M. Schanz and H. Antes. Application of the operational quadrature methods in
time domain boundary element methods. Meccanica, 32(3):179–186, 1997.

[158] G. Seriani. 3D large-scale wave propagation modeling by a spectral element
method on a Cray T3E multiprocessor. Computer Methods in Applied Mechanics
and Engineering, 164:235–247, 1998.

[159] J. Shaeffer. Direct solve of electrically large integral equations for problem sizes to
1M unknowns. IEEE Transactions on Antennas and Propagation, 56:2306–2313,
2008.



BIBLIOGRAPHY 141

[160] M. Stolper. Computing and compression of the boundary element matrices for
the Helmholtz equation. Journal of Numerical Mathematics, 12(1):55–75, 2004.

[161] E. Tessmer. 3D seismic modelling of general material anisotropy in the presence
of the free surface by a Chebyshev spectral method. Geophysical Journal Inter-
national, 121:557–575, 1995.

[162] E. Tessmer, D. Kessler, D. Kosloff, and A. Behle. Multi-domain Chebyshev-
Fourier method for the solution of the equations of motion of dynamic elasticity.
Journal of Computational Physics, 100:355–363, 1992.

[163] E. Tessmer and D. Kosloff. 3D elastic modeling with surface topography by a
Chebyshev spectral method. Geophysics, 59(3):464–473, 1994.

[164] T. Toshinawa and T. Ohmachi. Love wave propagation in a three-dimansional
sedimentary basin. Bulletin of the Seismological Society of America, 82:1661–
1677, 1992.

[165] J. Virieux. SH wave propagation in heterogeneous media: Velocity-stress finite-
difference method. Geophysics, 49:1933–1942, 1984.

[166] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity-stress finite-
difference method. Geophysics, 51:889–901, 1986.

[167] J. Virieux, H. Calandra, and Plessix R.E. A review of the spectral, pseudo-
spectral, finite-difference and finite-element modelling techniques for geophysical
imaging. Geophysical Prospecting, 59:794–813, 2011.

[168] C.Y. Wang and J.D. Achenbach. Three-dimensional time-harmoinic elastody-
namic Green’s functions for anisotropic solids. In Royal Society, editor, Proceed-
ings: Mathematical and Physical Sciences, volume 449, pages 441–458, 1995.

[169] Y. Wang and H. Takenaka. A multidomain approach of the Fourier pseudospectral
method using discontinuous grid for elastic wave modeling. Earth Planets Space,
53:149–158, 2001.

[170] Y. Wang, H. Takenaka, and T. Furumura. Modelling seismic wave propagation in a
two-dimensional cylindrical whole-Earth model using the pseudospectral method.
Geophysical Journal International, 145:689–708, 2001.

[171] J.O. Watson. Boundary elements from 1960 to the present day. Electronic Journal
of Boundary Elements, 1(1):34–46, 2003.

[172] L.T. Wheeler and E. Sternberg. Some theorems in classical elastodynamics.
Archive for Rational Mechanics Analysis, 31(51-90), 1968.



142 BIBLIOGRAPHY

[173] J. Xiao, W. Ye, Y. Cai, and J. Zhang. Precorrected FFT accelerated BEM for
large-scale transient elastodynamic analysis using frequency-domain approach. In-
ternational Journal for Numerical Methods in Engineering, 90(1):116–134, 2012.

[174] J. Xiao, W. Ye, and L. When. Efficiency improvement of the frequency-domain
BEM for rapid transient elastodynamic analysis. Computational Mechanics,
52(4):903–912, 2013.

[175] K.I. Yoshida. Application of fast multipole method to boundary integral equation
method. PhD thesis, Kyoto University, 2001.

[176] O.C. Zienkiewicz. The Finite Element Method in Engineering Science. McGraw-
Hill, New York, 3 edition, 1977.

[177] O.C. Zienkiewicz and T. Shiomi. Dynamic behaviour of saturated porous media.
The generalized biot formulation and its numerical solution. International Journal
for Numerical and Analytical Methods in Geomechanics, 8:71–96, 1984.

[178] D.W. Zingg. Comparison of high-accuracy finite-difference methods for linear
wave propagation. SIAM Journal on Scientific Computing, 22(2):476–502, 2000.

[179] D.W. Zingg, H. Lomax, and H. Jurgens. High accuracy finite difference schemes
for linear wave propagation. SIAM Journal on Scientific Computing, 17(2):328–
346, 1996.



BIBLIOGRAPHY 143

Title: H-matrix based Solvers for 3D Elastodynamic Boundary Integral Equations
Keywords: Boundary Element Method, H-matrices, Adaptive Cross Approximation,
Randomized Singular Value Decomposition, 3D Elastodynamics, Forced Vibration Prob-
lems.

Abstract: This thesis focuses on the the-
oretical and numerical study of fast meth-
ods to solve the equations of 3D elasto-
dynamics in frequency-domain. We use
the Boundary Element Method (BEM)
as discretization technique, in associa-
tion with the hierarchical matrices (H-
matrices) technique for the fast solution
of the resulting linear system. The BEM
is based on a boundary integral formula-
tion which requires the discretization of
the only domain boundaries. Thus, this

method is well suited to treat seismic wave
propagation problems. A major drawback
of classical BEM is that it results in dense
matrices, which leads to high memory re-
quirement (O(N2), if N is the number
of degrees of freedom) and computational
costs. Therefore, the simulation of realistic
problems is limited by the number of de-
grees of freedom. Several fast BEMs have
been developed to improve the computa-
tional efficiency. We propose a fast H-
matrix based direct BEM solver.
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Résumé : Cette thèse porte sur l’étude
théorique et numérique des méthodes
rapides pour résoudre les équations de
l’élastodynamique 3D en domaine fréquen-
tiel. La méthode repose sur l’utilisation
des éléments finis de frontière (BEM) pour
la discrétisation et sur les techniques de
matrices hiérarchiques (H-matrices) pour
l’accélération de la résolution du système
linéaire. La BEM, qui correspond à la réso-
lution numérique des équations intégrales
de frontière, présente l’avantage de ne né-
cessiter que la discrétisation de la frontière
du domaine de calcul considéré. De plus,
elle permet de simuler des milieux étendus
en évitant la forte dispersion numérique as-

sociée à d’autres schémas. Cette méthode
est donc bien adaptée pour le calcul de la
propagation d’ondes sismiques. Les diffi-
cultés sont liées d’une part aux besoins de
stockage en mémoire de l’ordre de N2 (N
étant le nombre de degrés de liberté) et
d’autre part au coût de la résolution. La
simulation de problèmes réalistes est donc
limitée par le nombre de degrés de liberté
que peut traiter sur une machine donnée.
Afin de dépasser ces limites, des méthodes
BEMs rapides ont été développées. Nous
avons proposé un solveur direct pour le
BEMs en utilisant une factorisation LU et
un stockage hiérarchique.
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