
Medial faes from a onise 3D thinning algorithmAntoine Manzanera Thierry M.Bernard Fran�oise Prêteux Bernard LonguetDCE/ETC4/CTA/GIP ENSTA/LEI INT/UP Artemis A�erospatiale16b Av. P. de la Côte d'Or 32 Bd Vitor 9 Rue Charles Fourier 2 Rue B�eranger94114 Arueil Cedex 75015 Paris 91011 Evry Cedex 92320 Chatillon CedexAbstratWe propose in this paper a new 3D fully parallelthinning algorithm that we believe to be the most on-ise due to its simple haraterization. The algorithmis indeed ompletely de�ned by a set of �ve patterns,three removing onditions and two non-removing on-ditions. These patterns are designed from the two fun-damental and ompatible onstraints usually expetedin skeleta: (1) Topology preservation and (2) Medialsurfae. From these two onstraints, the removing pat-terns (�1, �2 and �3) detet the non-loal maxima,whereas the non-removing patterns (�1 and �2) pre-vent any topology hange that the removing onditionsould imply. We show that the three mentioned on-straints are respeted. The logial oniseness of ourproedure, alled MB-3D, makes it to our knowledgethe easiest 3D thinning algorithm to implement. Someresults are displayed, that illustrate the relevane ofour approah. Keywords3D fully parallel thinning algorithm - Disrete topo-logy - Conise Boolean expression.1 IntrodutionSkeletonization is a very ommon way to representbinary shapes with a limited amount of information.A skeleton that faithfully represents a shape is ex-peted to (1) be topologially equivalent to that shapeand (2) render its geometry and loation. Skeleta areusually obtained through an iterative redution ope-rator alled thinning : ertain types of border pointsare iteratively removed until no more points an bedeleted: the remaining image is alled the skeleton.Thinning algorithms have been an important subjetof researh for years in 2D, and more reently in 3D.Lots of e�orts have been done to provide the simplestharaterization of the non-skeletal points removed byan elementary thinning iteration. In 3D, the hara-terizations remain ompliated, with great number ofdeleting onditions and exeptions [10℄, [2℄, [6℄, [7℄, or

with speial rules to avoid disonnetion due to paral-lel removal [5℄.We present in this paper what we believe to be themost omputationally eÆient to date Boolean expres-sion of a fully parallel 3D thinning proess: the non-skeletal points are entirely haraterized through a setof three Boolean removing onditions and two Booleanremaining onditions, every ondition being de�ned bya simple pattern, whih makes our algorithm straight-forward to implement. Our algorithm meets two fun-damental (yet ompatible) onstraints: (1) Topologypreservation (2) presene of the loal maxima. Con-straint (2) ensures that the skeleton is loated rightat the \middle" of shapes, and renders their most sig-ni�ant geometrial features. The algorithm, alledMB-3D, is ompletely de�ned by two small families ofpatterns:� Patterns �1, �2 and �3 are designed to removenon loal maxima points for the distane induedby the 6-topology, within the 26-neighborhood.� Patterns �1 and �2 are designed to avoid dison-netion of 18- and 26-onneted points respetive-ly.For self-ontainedness purposes, the following setionrealls some preliminaries. In Setion 3, we presentour algorithm, giving the Boolean expression and thevisual representation of the patterns. Then we showthat with the two simple pattern families that de�neit, the MB-3D algorithm respets the two onstraintsstated above. At the same time, we illustrate the pa-per with some results and disuss the behavior of thealgorithm.2 Theoretial bakgroundIn this setion we set out the mathematial toolsneessary to handle the notions we are dealing with. Inthe �rst subsetion, we present the disrete geometryframework, the ubi grid. Next, we disuss the issue
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Figure 1: Unity sized balls for the three di�erenttopologies in the ubi grid.of topology preservation, and present the way it hasbeen addressed for the ubi grid in the litterature.Finally, we introdue the morphologial operators tobe used for the de�nition of our thinning proedure.2.1 Disrete topologies in the ubi gridLet Z3 be the disrete spae. Let X � Z3 a (binary)(three-dimensional) image. Let X = Z3 n X denotethe bakground of X . We are working in the ubigrid, this means that the real spae R3 is disretizedinto Z3 by means of the ubi quantization: A pointz 2 Z3 represents an elementary volume whih is theunit ube entered around z. In this mesh, three dif-ferent onnetivity relations an be de�ned. Figure 1shows the di�erent topologies in the ubi grid, as de-�ned by the unity sized balls. The topology (and theindued distane) is usually denoted using the numberof neighbors in the orresponding type of onnetivity.Namely, a point, i.e. a ube in our representation, has6 (respetively 18, 26) neighbors in the onnetivityde�ned by B6 (respetively B18, B26) whih are thepoints it shares a fae (respetively an edge, a vertex)with. Let x; y be two points of Z3. We say that x isN-adjaent to y (N = 6, 18 or 26) if x is a N -neighborof y. Let A;B be two subsets of Z3. We say that Ais N-adjaent to B if there exists a 2 A and b 2 Bsuh that a is N -adjaent to b. Let X � Z3. X is anN-onneted omponent (N-) of Z3 if there does notexist any partition of X into two subsets that are notN -adjaent. Let X � Z3 be an image. x 2 X is saidto be N-interior to X if all its N -neighbors belong toX .De�nition 1 Let dN be the distane indued by theN-topology. Let X � Z3. A ball B is maximal inX if B � X and there does not exist a ball B0 suhthat B � B0 � X. Let SN (X) be the olletion of theentres of maximum balls assoiated with dN .De�nition 2 Let X � Z3. The distane funtionassoiated with dN on X is �N (x) = dN (x;X).Property 1 SN (X) = fx 2 X ;8y N-adjaent tox;�N (x) � �N (y)g: In other words, the olletion ofthe entres of maximal balls orresponds to the set ofloal maxima of the distane map.

This formalism aims at giving a sound basis to thenotion of medial surfae. Indeed, we ensure that theskeleton lies \at the middle" of the shape if we knowthat it ontains the loal maxima of the orrespondingdistane funtion.2.2 Topology preservationThe topologial equivalene is a well known prop-erty. A doughnut is equivalent to a o�ee up be-ause they have both exatly one \hole of the sametype" (the handle). In 2D and 3D, the topology anbe haraterized by the so-alled fundamental group,i.e a partition of the urves by the homotopi relation(two urves are homotopi if there exists a ontinuousmorphing from one to the other).To get a sound de�nition of suh topologial proper-ty in our ubi grid, speial are must be taken inthe hoie of the onnetivity. In partiular, an ob-jet may be rossed by a onneted omponent of thebakground only if there is a hole through it ! In thisrespet, it is usually hosen the strongest onnetivityfor the bakground (i.e. fae sharing), and a weakerone for the objet itself (i.e. edge or vertex sharing).The onnetivity model that is used in this paper is(26,6)-onnetivity, whih means 26-onnetivity forthe image and 6-onnetivity for the bakground.Our thinning proess works by iterative deletion ofsets of points. The entral notion around the hara-terization of the deleted points is simpliity. A pointis simple if its deletion does not hange the topology.As in 2D, the omputation of simpliity an be donewithin a �nite neighborhood of the point. The mostonise haraterization is provided by Bertrand andMalandain in [1℄:Theorem 1 (Bertrand and Malandain 94)Let X � Z3 be a binary image. Let x 2 X. Let Xx26denote the set of all the 26-neighbors of x, exept xitself, that belong to X, and Xx18 the set of all the 18-neighbors of x that do not belong to X. x is simple inX for the (26,6)-onnetivity model if and only if thetwo following onditions hold:� x is 26-adjaent to only one 26- of Xx26.� x is 6-adjaent to only one 6- of Xx18.This haraterization uses onneted omponentsounting only, as in the 2D ase. It is important tonotie, however, that simpliity is a property whih isstritly individual with respet to a point of the u-bi grid. In general, simultaneously removing simplepoints from a shape leads to topology hanges. Fromthis problem arose the notion of simple sets, whih aresets of points that an be removed from a shape while



preserving the topology. Ronse �rst introdued theonept in [8℄ for 2D images, onept that was thengeneralised by Kong in [3℄ for higher-dimensional im-ages. In these papers, it is shown that a set is simplefor the image X if and only if it an be ordered in asequene of points fx1; : : : ; xng suh that for every iin f1; : : : ; ng, xi is individually simple (in the formersense) with respet to X n fx1; : : : ; xi�1g. From thisproperty, Ronse proposed in [9℄ suÆient onditionsthat were very eÆient to prove the soundness of par-allel thinning algorithm in 2D. This result has beenextended to the 3D ase by Ma in [4℄. We now giveMa's result for the (26,6)-onnetivity. Let a unit lat-tie square be the set of four orners of a unit squareof the ubi grid, and a unit lattie ube be the set ofeight orners of a unit ube of the ubi grid.Theorem 2 (Ma 94)Let X � Z3 be a binary image. An algorithm thatremoves points in parallel from a binary 3D shape Xpreserves (26,6)-onnetivity if the two following on-ditions are satis�ed:� Every subset of X that is ontained in a unit lat-tie square and that is removed by the algorithmis simple.� No onneted omponent of X ontained in a unitlattie ube is ompletely removed.This theorem allows to prove the soundness of a par-allel thinning algorithm by heking a limited numberof on�gurations.2.3 Morphologial operatorsWe de�ne hereunder the morphologial operatorsneeded to provide the Boolean expression of our thin-ning proedure.The morphologial erosion of an image X by a setB � Z3, denoted X 	 B is the set of all points x ofZ3 suh that the translated set of B by vetor x isompletely inluded in X .The morphologial dilation of an image X by a setB � Z3, denoted X � B is the set of all points x ofZ3 suh that the intersetion of the translated set ofB by vetor x with X is non-empty.A pattern of Z3 is a tuple (H;M) of �nite subsets ofZ3 suh that H \M = ;.The Hit-Or-Miss Transform (HMT) of an image X bya pattern  = (H;M) is the image:X ~  = (X 	H) \ (X 	M).We will say that x mathes  every time that x 2X ~ .If we denote BN the set of all the N -neighbors of the

origin (N = 6, 18 or 26, f. Figure 1), we may also de-�ne another transformation that we all Hit-Or-MissNeighborhood Transform (HMNT) relative to the N -neighborhood, that we denote X }N , and de�ne by:X }N  = (X ~ )� (BN 	 (H [M))Note that X }N  is a superset of X ~ .These notions are going to be used in the de�nition ofMB-3D. HMT orresponds to a on�guration that theneighborhood of a point must exatly math, whereasHMNT orresponds to a on�guration that must beontained in the mentioned neighborhood.3 The thinning proedureMB-3D is an iterative parallel thinning algorithm,where eah iteration deletes from an image X a setof points denoted mb(X), orresponding to ertainneighborhood onditions. These onditions are basedon patterns that are shown in Table 1. Every patternatually omes with all its �=2 rotated versions aroundthe three axes Ox, Oy, and Oz.z 2 mb(X) if and only if:(1) 9i 2 f1; 2; 3g; z 2 X ~ �i (2) z 62 X }18 �1and (3) z 62 X }26 �2Let X0 = X , Xn+1 = Xn nmb(Xn).The MB-3D skeleton of X is X1.
α1 α2 α3 β1 β2

Table 1: De�nition of the MB-3D algorithm, basedon 5 lasses of patterns.The �rst olletion (the �i family) is used in HMTs.Every pattern represents two subsets of Z3, The Hit-set orresponds to the grey ubes, whih are the pointswhose value is 1. The Miss-set orresponds to thetransparent ubes, whih are the points whose valueis 0. The dark ube orresponds to the origin. No ori-entation is given, as every pattern must be onsideredin all its possible orientations, indeed, the proedureis ompletely isotropi. Note right away that �1, �2and �3 are based on the unity sized ball B6 of Fi-gure 1. Thus these patterns naturally lend themselvesto omputationally eÆient desription and manipu-lation. The seond olletion (the �i family) is used inHMNTs, �1 is to be deteted in the 18-neighborhood,�2 in the 26-neighborhood. Note that no origin isneessary here, sine both patterns are symmetrial.To simplify in the following setions we shall say \xmathes �1" (resp. �2) every time that x 2 X }18 �1(resp. x 2 X }26 �2).



(1) (2)Figure 2: Two examples to illustrate the neessity ofpatterns �i.The thinning ation learly results from the shape ofthe �i patterns. We atually believe that the de�ni-tion of these patterns is a very pure haraterizationof a peeling proess: any point that mathes an �i isadjaent to a 6-interior point, suh that all the faesopposite to this interior point are on the frontier ofthe image. Still the �i are a bit greedy: some topolo-gy hanges would our without the safety providedby the �i patterns. Figure 2 shows why the �i are ne-essary through two examples. The blak points be-long to the image, the white ones to the bakground.(1) The square point math pattern �1, but its re-moval would lead to 26-disonnetion: MB-3D will notremove it sine �1 is ontained in its 18-neighborhood.(2) The two square points math pattern �1, but theirsimultaneous removal would 6-onnet the two whitepoints, whih is forbidden: MB-3D will not removethem sine �2 is ontained in the 26-neighborhood ofthe blak square points.4 Results and behaviorSome results of our thinning algorithm an be seenon Figure 3. The results of MB-3D are displayed onthe left olumn (Images (1.a) to (4.a)). As expeted,there are two pixel-thik surfaes. This is a naturaloutome of the isotropy onstraint.In this setion, we establish the soundness of the pro-edure, �rstly, by proving that the algorithm preservesthe (26,6)-topology, and seondly by showing that, un-der a ertain ondition whih is expliited, the skele-ton ontains the maxima of the d6 distanes within the26-neighborhood. We next disuss the behavior of thealgorithm as it is applied to some signi�ant shapes.4.1 Topologial propertiesWe prove in this setion that the MB-3D algorithmpreserves the (26-6)-topology of the binary shapes. Ifx 2 X , we use the two sets Xx26 and Xx18 de�ned inTheorem 1. The proof is based on �ve lemmae. Lem-mae 1 to 3 deal with the 26-topology preservation ofobjets, whereas Lemmae 4 and 5 deal with the 6-topology preservation of the bakground. Lemma 1and 4 prove that one iteration of the MB-3D algorith-m removes only simple points. Lemma 1 and Lemma 2
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(2) (2.a)

(3) (3.a)

(4) (4.a)Figure 3: Some results of the thinning algorithm. Theleft olumn ontains the original images. The rightolumn displays the results of MB-3D.are used to prove Lemma 3. Lemma 4 is used to proveLemma 5. Lemmae 3 and 5 prove that any pair of6-adjaent points removed by MB-3D is a simple set.Finally, the proof is ompleted in Proposition 1.Lemma 1 Let x 2 X, between two 6-neighbors a andb, with a 62 X and b 2 X (f Figure 6). If x is 26-adjaent to more than one 26- of Xx26, then eitherx is ontained in pattern �1, or x is ontained in thepattern � represented on Figure 5.proofIf x is 26-adjaent to more than one 26- of Xx26, then there must exist a pointy in Xx26 whih is not 26-adjaent to b. yannot be a 6-neighbor of x, but it maybe an 18-neighbor, as illustrated by  on Figure 5:Pattern �.Figure 6(1). In that ase, sine  and b are not in thesame 26-, x mathes �1. If there is no suh , theny is only a 26-neighbor of x, as illustrated by d onFigure 6(2). In that ase, x mathes � 2



Figure 4: Result of MB-3D on a segmented image oflung.
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(1)Figure 6: Proving Lemma 1.Corollary 1 Any point removed by one iteration ofthe algorithm ful�ls ondition 1 of Theorem 1.Indeed, any point that mathes pattern �1 or �2 isneessarily between two 6-neighbors, one in X , theother in the bakground. The same holds for a pointthat mathes �3, and not �1. Then Lemma 1 appliesand, sine pattern � is a partiular ase of pattern �2,the point is 26-adjaent to only one 26- of Xx26.Lemma 2 Let x 2 X. Let Y be a subset of X suhthat Y � mb(X) and Y [ fxg is ontained in a unitlattie square. Then x 2 (X n Y ) }26 � implies x 2X }26 �2.proofLet us onsider x 2 (X n Y ) }26 �. If x 2 X }26 �,then x 2 X }26 �2. If not, the situation is that ofFigure 7(1), where Y � fy1; y2; y3g. Note that thethree points represented by squares belong either toY or to X. If y1 2 X or y3 2 X, then obviouslyx 2 X }26 �2. If not, fy1; y3; zg � X . It followsthat y2 may math an �i only with an interior pointwithin the ube drawn on Figure 7(1). But foreah of the seven possibilities, one an easily hekthat this is not possible. Then y2 62 Y , so y2 2 X,and the four points fx; t; y2; zgmake up a �2 pattern 2Lemma 3 Let x and y be two 6-neighbors suh thatfx; yg � mb(X). Then x is 26-adjaent to only one26- of (X n fyg)x26.

y2

y1
y3

(1)

z

x t

e

(2)

f

c

a

x

b

yFigure 7: Proving Lemmae 2 and 3.proofUnder the premises of Lemma 3, it an easily beheked that whatever the �i it mathes, x is al-ways between two 6-neighbors suh that one belongsto X n fyg and the other to X. Now suppose that xis 26-adjaent to more than one 26- of (X n fyg)x26.From Lemma 1, x must math one of the two pattern-s �1 or � within (X n fyg). But Lemma 2 shows itannot be � sine x would have mathed �2 before theremoval of y, in ontradition with x being removed byMB-3D. So x mathes �1 within (X n fyg); more pre-isely, the situation of x is that of Figure 6(1), with and b in distint 26-s. Sine x does not math�1 within X , y as a removed point, is part of �1, asshown on Figure 7(2). Besides, e and f must bothbelong to X. But then, y ould not have mathed an�i pattern, whih is in ontradition with its removalby MB-3D 2Lemma 4 Let x 2 X, between two 6-neighbors a andb, with a 62 X and b 2 X. If x is 6-adjaent to morethan one 6- of Xx18, then x is ontained in pattern�1.proofSee Figure 8(1). If there exists  62 X suh that a and belong to two distint 6-s of Xx18, then point d suhthat d 6= x, d 6-adjaent to both a and  must belongto X . So x mathes pattern �1 2Corollary 2 Any point removed by one iteration ofthe algorithm ful�ls ondition 2 of Theorem 1.Lemma 5 Let x and y be two 6-neighbors suh thatfx; yg � mb(X). Then x is 6-adjaent to only one6- of (X n fyg)x18.proofThe premises of Lemma 5 (idential to those of Lem-ma 3), implies that x is between two 6-neighbors suhthat one belongs to X nfyg and the other to X. Nowsuppose that x is 6-adjaent to more than one 6- of(X n fyg)x18. From Lemma 4, x must math �1 within
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yFigure 8: Proving Lemmae 4 and 5.(X n fyg). See Figure 8(2), where a and y belong todistint 6-s of (X n fyg)x18. If b and  both belong toX , then y ould not have mathed an �i pattern, so bor  belong to X. Let us suppose it is b. Sine x isremoved, it does not math pattern �2, and so d 2 X.Sine x does not math pattern �1, e 2 X also, and�nally a and y belong to the same 6-. That leads toa ontradition 2We may now give the main proposition.Proposition 1 The MB-3D algorithm preserves the(26,6) topology.proofAs mentioned earlier, Lemma 1 and Lemma 4 provethat one iteration of the MB-3D algorithm removesonly simple points. Now let fx1; x2g be a pair of 6-adjaent points, simultaneously removed by MB-3D.Lemma 3 and Lemma 5 prove that fx1; x2g is a sim-ple set. More generally, let Y be a set of points suhthat Y � mb(X) and Y is ontained in a unit lat-tie square. Let x 2 Y suh that x is not simple in(X n (Y n fxg)). Then Lemmae 1 and 4, show that xmathes pattern �1 or �, but the latter is forbiden byLemma 2. Then x mathes �1 within (X n (Y n fxg)).Now let us onsider fx1; x2g � mb(X) a pair of 18-adjaent, not 6-adjaent points. It is easy to see thatif x1 62 X }18 �1, then x1 62 (X n fx2g) }18 �1. Sox1 is simple in (X n fx2g), and then fx1; x2g is asimple set. Let fx1; x2; x3g � mb(X) be a tripletof points ontained in a unit lattie square suh thatx1 and x2 are 6-adjaent. Then fx1; x2g is simple,and it is easy to see that if x3 62 X }18 �1, thenx3 62 (X n fx1; x2g) }18 �1, so fx1; x2; x3g is a simpleset. Let fx1; x2; x3; x4g � mb(X) be the four ornersof a unit lattie square. fx1; x2; x3g is a simple set, andif x4 62 X}18�1, then x4 62 (X nfx1; x2; x3g)}18�1, sofx1; x2; x3; x4g is a simple set. Thus we have provedthat any set ontained within a unit lattie square is asimple set. At last, it is obvious that an iteration of theMB-3D algorithm annot entirely remove a onnetedomponent ontained in a unit lattie ube, sine no�i �ts into this elementary ube. So we have provedthat MB-3D is a parallel redution operator that ful-

�ls onditions (1) and (2) of Theorem 2. Then MB-3Dpreserves (26,6)-topology 24.2 Non-topologial propertiesAs we have seen in Setion 2.1, geometry preser-vation is related to the notion of medial surfae. Inthe ubi grid, there exist three anonial distanes,namely d6, d18 and d26, leading to three di�erent loalmaxima sets. A fully parallel thinning algorithm hasto favor the 6-distane, sine a removed point mustbe a 6-ontour point (i.e. have a 6-neighbor in thebakground). Let k = 6, 18 or 26. We de�ne the(6; k)�medial surfae as the following set:Sk6 (X) = fx 2 X ;8y k-adjaent to x;�6(x) � �6(y)gNote that the ase k = 6 orresponds to the setS6(X) de�ned in Setion 2.1. In order to get a faithfulshape representation featuring some noise immunity,the MB-3D algorithm is based on the (6; 26)�medialsurfae, i.e. S266 (X).We illustrate the seletive ation of the �i by apply-ing the MB-3D to a parallelepiped, �rstly restrited topattern �1, seondly to the two patterns �1 and �2,and �nally the omplete algorithm. Results an beseen on Figure 9. We see that di�erent skeleta are ob-tained aording to the medial surfae they are builton. The skeleton (b) (resp. (), (d)) is based on themedial surfae S6(X) (resp. S186 (X), S266 (X)). Thusthe MB algorithm an lead to di�erent skeleta by therestrition to ertain �i patterns. This an be veryuseful for the versatile representation of omplex 3Dobjets.As every removed point is adjaen-t to a 6-interior point, it an be for-mally shown that the skeleton ontainsthe set S266 (X) de�ned above, as longas the points are examined in the orderindued by the distane funtion. Thisis what appends with usual images.Nevertheless, there are exeptions, or- Figure 10:Ill-onstruted2D image.responding to ill-onstruted images. These imagesare the 3D equivalent of the better known patholog-
(a) (b) (c) (d)

Figure 9: Di�erent hoies of the medial surfae lead-ing to di�erent skeleta.



(1) (2)Figure 11: Ill-onstruted patterns.ial images in 2D, of whih we give an example onFigure 10. These images orrespond to a on�gura-tion that would \protet" a piee of surfae, prevent-ing a thik volume from being thinned. In 3D, animage is ill-onstruted if it ontains one of the twopatterns shown on Figure 11 (at least one of the twosquare points does not belong to X). Note that itorresponds to one-pixel holes mathing �1 or �2.The last, but not least, property of MB-3D to beemphasized on is its omputational eÆieny. Firstly,the oniseness of the Boolean de�nitions of the pro-edure leads to a ompat omputational desription,whih means eÆieny in the omputation of one itera-tion. Seondly, the full parallelism of the algorithmimplies that the overall number of iterations neededto ahieve the omputation of the skeleton equals theradius of the largest 6-ball ontained as many itera-tions.5 ConlusionA new thinning algorithm for 3D digital pitureshas been proposed. We have given in Table 1 its om-plete expression. Compared to the other algorithmswe know of, MB-3D seems to be the most onise andthen the simplest to implement. Indeed, the points re-moved by the �i patterns are those that are adjaentto a 6-interior point, and for whih every fae oppo-site to this interior point is a frontier fae. With thisvery short haraterization, the �i patterns allow toobtain the medial surfae through a fully parallel andisotropi proedure while preserving onnetivity, ex-ept in a few ases, taken are of by the even simpler�i patterns. Although the de�nition of the thinningalgorithm is muh shorter than all other algorithmswe are aware of, the results prove to be satisfying.AknowledgmentsThe authors are extremely grateful to BertrandCollin and Damien Merier, from CTA/GIP, for thevisualization tool and software support. They wish tothank also the anonymous reviewers for their help-ful omments. The volumetri medial image wasaquired in the Servie de Radiologie Central del'Hôpital de la Salpetri�ere (Professor Ph. Grenier).
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