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Abstract. FoCaliZe is a development environment allowing the writing
of specifications, implementations and correctness proofs. It generates
both OCaml (executable) and Coq code (for verification needs). This pa-
per extends the language and the compiler to handle termination proofs
relying on well-founded relations or measures. We propose an approach
where the user’s burden is lightened as much as possible, leaving glue
code to the compiler. Proofs are written in the usual way in FoCalLiZe,
using the declarative proof language and the automatic theorem prover
Zenon. When compiling to Coq we rely on the Coq construct Function.

Keywords: Formal proof, functional programming, FoCaLiZe, Coq, re-
cursion, termination

1 Introduction

The FoCaliZe environment [1] (formerly FoCal [12]) allows one to incrementally
build programs or library components with a high level of confidence and qua-
lity. FoCaLiZe units may contain specifications, implementations and proofs that
the implementations satisfy their specifications. These ones are first-order like
formulas while implementations are given as a set of functions in a syntax close
to OCaml’s one. Proofs are done using hints to the automatic prover Zenon [2] [7]
in a declarative style. Inheritance and parametrization allow the programmer to
reuse specifications, implementations and proofs. FoCaLiZe units are translated
into OCaml executable code and verified by the Coq proof assistant.

When specifying properties that the result of a function should follow, we
assume that the function does compute a result. This hypothesis is trivial for
functions such as identity or square; others may require the programmer to res-
trict their domain (e.g. division) or lead to extra proof obligations to show that
the -recursive- functions terminate. The problem of termination is known as un-
decidable, however it is tractable in many cases. We rely on classical techniques
also used in PVS, Coq or Isabelle consisting in showing that the arguments of
each recursive call in the function are strictly lower than the arguments of the
initial call according to a measure or a well-founded relation. Some tools, e.g.
Isabelle and Agda [10] [3], try to automatically find a convenient lexicographic
order and verify termination. In FoCalLiZe, we adopt for termination checking, a
solution in line with the general proof discipline which consists in guiding Zenon



in its proof search by giving some hints. So, the programmer will indicate the
well-founded relation or the measure the proof will use, the recursive argument
and provide the proof that the argument is decreasing and the proof that the
relation is a well-founded one when necessary. FoCaliZe provides some helps
and computes the statements of the required proofs. Furthermore we do want
as much as possible to write the proofs with Zenon. However Zenon relies on
first-order and thus cannot cope with higher-order statements, such as the ones
that could be required to prove that a certain relation is well-founded. Howe-
ver in many practical cases, the relation is a usual one (e.g. the usual order on
natural numbers) or a lexicographic one obtained by combining some standard
orders. Hence, with a toolbox offering some standard orders, Zenon will be able
to perform the required proofs. As said previously, all the proofs must be checked
by Coq. In this context, the FoCaLiZe compiler translates a FoCaliZe function
into a Coq function that is required to be total. Thus, when the recursion is
structural, the function is translated into a Coq Fixpoint, and we benefit from
the syntactic termination verification made by Coq. When the function is recur-
sive but implements a general recursion, we translate it into a general recursive
Coq function, using the Function construct [5]. This latter requires to deter-
mine the relation and asks for proofs that the argument is decreasing and when
necessary a proof that the relation is well-founded. In order to be as general
as possible, we rely on a compilation scheme that restricts Function to use a
well-founded relation or a measure defined on the tuple of all the arguments of
the recursive function. This general compilation process will ease future work,
e.g. allowing the user to set a measure involving several arguments or to make
several arguments decrease. Thus, the translation is not syntactic and the com-
piler has to re-build the relation and the proofs required by Function and Coq
from the ones provided by the FoCaliZe programmer. Our approach strongly
distinguishes these two views: the user/programmer view and the internal view.
The compiler does the glue because it is not the burden of the programmer to fit
to a scheme imposed by the certification process (Coq verification). Furthermore,
we believe that the user view allows for targeting different compilation schemes
or certification environments (e.g. Isabelle).

The rest of the paper is organized as follows. Section 2 presents very briefly
the FoCaliZe environment, in particular its proof language. Section 3 is devoted
to the definition of recursive functions whose termination proof requires a well-
founded relation: both the user view and the internal view are illustrated on an
example. Section 4 follows the same roadmap but for functions that can rely on a
measure to prove termination. Section 5 explains the current limitations and pro-
poses some work in progress and perpectives. Many works exist on termination
proof, so in Section 6, we discuss some related work.

2 An Overview of FoCaliZe

FoCaliZe[1] is a development environment providing a unique language to write
properties, functions and proofs, allowing high-level programming constructs like



inheritance, late-binding, and parametrization. It is the continuation of FoC [8]
and FoCal [18].

A FoCaliZe development is compiled into an executable (or object to link)
OCaml code and a Coq term. The OCaml code only contains the computational
aspects of the development, while the Coq code is a complete model, also em-
bedding the logical aspects (i.e. properties and proofs). During the compilation
process, the logical model is sent to Coq that acts as an assessor (i.e. it checks
the code issued by the FoCaliZe compiler and Zenon).

The basic brick of a FoCaliZe development is the species, a grouping structure
embedding methods which may be an internal datatype, properties (to be proved
later), theorems, signatures (declarations of functions to be defined later) or de-
finitions. Once a species has all its signatures defined and properties proved, it
can be submitted to an abstraction process turning it into an abstract datatype
(a collection in the FoCalLiZe terminology) only showing its signatures and pro-
perties. Collections can then be used to parameterize species, bringing their own
material.

The code generation model extensively uses a dependency calculus to handle
late-binding and parametrization and A-lifts both types and methods to allow
code consistency and sharing [18,17]. The dependency calculus has been extended
to take into account termination proofs which are not different from other proofs.
Roughly speaking, a method m depending on the declaration (type) of a method
n is said having a decl-dependency on n. In the definition of m, n then gets \-
lifted to circumvent its missing definition or final redefinition. If m depends on
the definition of n, then it has a def-dependency. In this case, no A-lifting is done,
and the real definition of m is used in n. Dependencies on species parameters
methods exist and can be considered as decl-dependencies.

Proofs are written in the FOCALIZE PROOF LANGUAGE, providing a hierar-
chical decomposition into intermediate steps [16]. Each step states hypotheses,
one goal and a proof of this latter. Each proof can either invoke Zenon to unfold
definitions, use previous outer steps, properties, induction or can be a sub-proof.

As an example, the following proof has two outer steps <1>1 and <1>2. The
step <1>1 introduces hypotheses h1, h2, h3 and the sub-goal c. It is proved by a
2-steps sub-proof. The step <2>1 uses h1l and h2 to prove b. The step <2>2 uses
<2>1 and h3 in order to prove c. The step <1>2 ends the whole proof.

theorem t : all a b ¢ : bool, a -> (a -> b) -> (b -> ¢c) -> ¢

proof =
<1>1 assume a b ¢ : bool,
hypothesis hl: a, hypothesis h2: a -> b, hypothesis h3: b -> c,
prove c

<2>1 prove b by hypothesis hl, h2
<2>2 ged by step <2>1 hypothesis h3
<1>2 ged by step <1>1

During the compilation process, proofs are compiled and sent to Zenon which
tries to find a proof and returns a Coq term. This proof term is then injected in
the final generated Coq script which is sent to Coq. If Zenon fails finding a proof
with the hints given by the user, then the compilation process fails. Because
Zenon does not support higher-order, A-lifting must be temporarily replaced



by Coq Hypothesis and Variable in Sections. This requires the compiler to
prepare a suitable Coq environment to host the term that Zenon will return. The
compiler must also transmit the user’s hints to Zenon. This leads to a slightly
verbose generated code for proofs but this remains still readable.

A “backdoor” mechanism is however available, allowing to directly inline Coq
scripts in proofs when Zenon does not suffice (e.g. higher-order) or to bind already
existing Coq notions. This solution requires from the user a good knowledge of
Coq, of the compiler transformations and makes the proofs not portable. It is
mostly reserved for the standard library.

3 Well-Founded Relations

The essence of terminating recursion is that there are no infinite chains of nested
recursive calls. This intuition is commonly mapped to the mathematical idea of
a well-founded relation and we stick to this view which is also the Coq approach.
More precisely, Coq uses accessibility to define well-founded relations. Accessibi-
lity describes those elements from which one cannot start an infinite descending
chain. A relation on T is well-founded when all the elements of type T are ac-
cessible.

In this section we illustrate our approach with the simple example of the
function div that computes the quotient in the Euclidean division of two positive
integers. The function, whose definition is given below, is made total in order to
only focus on its termination.

let rec div (a, b) =

if a <= 0 || b <= 0 then 0
else ( if (a < b) then 0 else 1 + div ((a - b), b))
termination proof = order pos_int_order on a ... ;;

3.1 User View

From the user’s point of view, despite div has two arguments, only the first one a
is of interest for termination. The well-founded relation used here, pos_int_order
(of type int — int — bool), is the usual ordering on positive integers provided
by the standard library:

let pos_int_order (i1, i2)=(0 <=i2)&& (il < i2)
The well-foundedness obligation of this relation is stated by is_well_founded

pos_int_order, which relies on the FoCaliZe standard library’s definition of

is_well _founded as:

(fun f => well_founded (fun x y => Is_true (f x y)))
The well-foundedness obligation is easily proved thanks to the library theorem
pos_int_order_wf. Notice that well founded here is a Coq predicate, defined
in the Coq standard library (see Fig. 1 for the Coq definition). This exemplifies
that a FoCaLiZe specification can mix definitions and properties defined with the
FoCalLiZe language together with Coq exported definitions and theorems (and
also OCaml definitions but it is not the case in this work).
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Variable A : Type.
Variable R : A -> A -> Prop.
Inductive Acc (x: A) : Prop :=
Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
(¥ A relation is well-founded if every element %is accessible. *)
Definition well_founded := forall a:A, Acc a.

Fig. 1. Coq definition of well founded

The function div having only one recursive call, the only decreasing proof
obligation is:

Va :int,Vb:int,~(a <0V b <0) = —(a <b) — pos_int_order(a — b, a)
where the conditions on the execution path leading to the recursion must be
accumulated as hypotheses.

The termination proof consists in as many steps as there are recursive calls,
each one proving the ordering (according to the relation) of the decreasing ar-
gument and the initial one, then one step proving that the termination relation
is well-founded and an immutable concluding step telling to the compiler to as-
semble the previous steps, generate some stub code using a built-in Coq script to
close the proof. The complete termination proof for div is given in Fig. 2. The
statements of proof obligations (here lines 3-5 and line 21) are indicated to the
user by the compiler. The proof that the argument of the recursive call is smaller
than the initial one is quite long because Zenon has no support for arithmetic.
However, this could be improved by using Zenon Arith which is an extension of
Zenon, to handle linear arithmetic [11].

let rec div (a, b) =

termination proof = order pos_int_order on a
<1>1 prove all a : int, all b : int,
“ (a <=0 1l b <=10) ->
~ (a < b) -> pos_int_order (a - b, a)
<2>1 assume a : int, b : int,
hypothesis H1: ~ (a <= 0 || b <= 0),
hypothesis H2: ~ (a < b),
prove pos_int_order (a - b, a)

<3>1 prove b <= a
by property int_not_lt_ge, int_ge_le_swap hypothesis H2
<3>2 prove 0 <= a
by property int_not_le_gt, int_ge_le_swap, int_gt_implies_ge
hypothesis H1
<3>3 prove 0 < b
by property int_not_le_gt, int_gt_lt_swap hypothesis H1
<3>4 prove (a - b) < a
by step <3>1, <3>2, <3>3 property int_diff_1t
<3>e ged by step <3>4, <3>2 definition of pos_int_order
<2>e conclude (¥ = ged by all previous steps of this nesting level. *)
<1>2 prove is_well_founded (pos_int_order)
by property pos_int_order_wf
<1>e qed coq proof {*wf_gedx} ;

Fig. 2. Termination Proof for div

To summarize, from the user’s point of view, a recursive function whose
termination relies on a well-founded relation is given by the four following points:

1. the relation,
2. the theorem stating that this relation is well-founded,



3. a theorem for each recursive call, stating that the arguments of the recursive
calls are smaller than the initial arguments according to the given relation,

4. the recursive function with a termination proof of the shape (the order of
the obligations does not matter):

<1>z proofs of decreasing for each recursive call arguments

(the same statements as the corresponding theorems in point 3,

even if it is possible to directly inline the proofs instead)
<1>x 4+ 1 proof of the relation being well-founded

(same statement as in point 2, same remark than in steps <1>z)
<1>x + 2 qged coq proof {*wf_qedx}

3.2 Internal view
From the compiler’s point of view, the code generation is split in 4 steps:

1. Creation of the relation expected by Function. This one takes two tu-
ples with as many arguments as the user’s recursive function has. It extracts
the decreasing one from each tuple, and applies the user’s relation on them.

2. Creation of the user-side termination theorem containing the com-
piled proof of the user. This theorem only operates on the decreasing argu-
ment, hence uses the user’s relation. This theorem is the conjunction of the
decreasing obligations and the well-foundedness obligation.

3. Creation of the Function-side termination theorem. This theorem
operates on the tuple of arguments of the function and uses the generated
relation. Roughly speaking, this theorem states the same property as the pre-
vious one, but operating on tuples and referring to the relation synthesized
at step 1. This proof is fully done by the compiler, using the proof of well-
foundedness of the user’s relation and a Coq theorem (wf_inverse_image)
stating that the reverse image of a well-founded relation by any function
(here, tuple projectors) is a well-founded relation.

4. Creation of the recursive function definition using Function. The
Function body is obtained using the usual FoCaliZe compilation scheme,
the termination part is filled with the relation generated at step 1 and a final
proof built with the theorem generated at the previous step.

Figure 2 gives an overview of the structure of the compilation of a function.
Grayed blocks are those generated by the compiler while white ones are the code
of the user.

User relation

User recursive function
+ proof of decreasing for each call
+ proof of well-foundedness of the relation

Fig. 3. Global Structure of a Function with its Proof



3.2.1 Function
In this part, we briefly recall how the command Function works.

The Coq proof assistant provides the command Function [5] (see also the Coq
manual reference) that allows the definition of both structural and well-founded
recursive functions. When defining a non-structurally recursive function, the user
is asked to provide a well-founded relation (or a measure function) and an ar-
gument (the decreasing one) and to show that the corresponding arguments in
the recursive calls are smaller than the initial ones according to the well-founded
relation (or the measure). Furthermore, the user has also to prove that the re-
lation is indeed a wellfounded one. So a definition using this construct looks
like a definition by pattern-matching in a functional language, annotated with
a measure or a wellfounded relation and completed with some proof scripts dis-
charging the termination proof obligations generated by Function. Note that the
statements of the termination proof obligations do not appear in the definition.
These ones are made explicit in a FoCalLiZe definition. Once the definition has
been accepted by Coq, a set of definitions is automatically derived, in particular
a fixpoint equation and an induction principle that follows the structure of the
function.

3.2.2 Creation of the Relation Expected by Function

The expected relation takes two arguments __x and __y being tuples of all
the function’s arguments. To extract the one used for decreasing, a built-in
projection on tuples is used. In Coq, tuples are encoded as pairs nested to the
left: (z,y,2) = ((z,y), z). Projections are part of the low-level standard library of
FoCalLiZe and internally known by the compiler which generates the right name
from the number of components of the tuple and the position of the component
to extract. Here the projection __tpl_firstprj2 extracts the first component of
a 2-uple. and is defined as:

Definition __tpl_firstprj2 (__var_a : Set) (__var_b : Set)

(x : (__var_a * __var_b)) : __var_a := __left __var_a __var_b x.

Once components are extracted, there remains to apply the user relation to

them. The corresponding Coq definition is as follows (where _ stands for inferred
arguments):

Definition div_.wforder (__x __y : (int__t * int__t)) : Prop :=
Is_true
(pos_int_order (__tpl_firstprj2 _ _ __x) (__tpl_firstprj2 _ _ __y)).

3.2.3 Creation of the User-Side Termination Theorem

The user’s termination proof must now be compiled and generated. Except
the concluding step, all steps are compiled using the usual FoCaliZe compilation
process. Because Zenon does not handle higher-order, dependencies cannot be \-
lifted (c.f. 2). Instead, we enclose the proof in a Coq section, where dependencies
lead to Variable and Hypothesis clauses. For the same reason, each step of
proof is also embedded in a Section. In the generated proof below, line numbers
and proof steps refer to the code given at Fig. 2.



Section Proof_of_div.
Section __A_1.
(* Step <1>1 line 3. *)
Theorem A_1_LEMMA

forall a : int__t, forall b : int__t,
Is_true (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) ->
Is_true (_1lt_ a b) -> Is_true (pos_int_order (_dash_ a b) a).
(* ... Zenon proof term inlined here ... *)
End __A_1.
Section __A_2.
(* Step <1>2 line 21. *)
Theorem __A_2_LEMMA : ((is_well_founded _) pos_int_order).
(* ... Zenon proof term inlined here ... *)
End __A_2.
(* Theorem’s body. *)
Theorem for zenon_div
(forall a : int__t, forall b : int__t,
Is_true (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) ->
Is_true (_lt_ a b) -> Is_true (pos_int_order (_dash_ a b) a))
/\
(well_founded (fun __al __a2 => Is_true (pos_int_order __al __a2))).
Proof.
generalize __A_2_LEMMA.
generalize __A_1_LEMMA.
unfold is_well_founded.
intros.
SplitandAssumption.
Qed.
End Proof_of_div.

Once each step of the proof but the concluding one has been generated,
the compiler detects that the concluding one refers to termination. It then ge-
nerates and proves the theorem for_zenon div stating the termination obliga-
tions as the user sees them: only dealing with the unique decreasing argument.
This theorem’s statement is the conjunction of all the decreasing lemmas and
the well-foundedness of the user’s relation introduced in 3.1. Since the user is
expected to have proved the different parts of this conjunction in the previ-
ous steps, each lemma introduced by the steps is generalized, and a Coq tactic
SplitandAssumption is used to automate splitting the goal then picking in the
context to solve each sub-goal.

3.2.4 Creation of the Function-Side Termination Theorem

Once the user-side theorem is available, its counterpart as expected by Function
must be generated as a separate theorem. This theorem states the same proof
obligations, but dealing with the tuple of arguments of the recursive function.
Hence it must use the relation automatically generated in 3.2.2 and the user-
side termination theorem generated in 3.2.3 as shown in the following generated
code.

Theorem div_termination

(forall a : int__t, forall b : int__t,

~ Is_true (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) ->

~ Is_true (_1lt_ a b) -> div_wforder ((_dash_ a b), b) (a, b))
/\
(well_founded (div_wforder)).

Proof.

unfold div_wforder;simpl.

elim for_zenon._div.



intro _user_decl.

intro __user_rem_dec_n_wf.
(¥ Separate decreasing obligations and well-foundedness. *)
split.

auto. (* For each rec call. *)
(* There, only remains the well-foundedness obligation. *)

set (R := (fun __a __b => Is_true (pos_int_order __a __b))).
change
(well_founded (fun __c __d : (int__t * int__t)
=> R (__tpl_firstprj2 _ _ __c) (__tpl_firstprj2 _ _ __d))).

apply wf_inverse_image.
assumption.
Qed.

The proof of the theorem is automatically generated by the compiler. The
proof proceeds as follows. It first introduces in the hypothesis context the con-
clusions of the user-side termination theorem (named here __user _decl and
_user_rem_decn.wf). The proof is split, thus separating the decreasing and
well-foundedness obligations. Decreasing obligations are proved automatically
thanks to the simplification of the goal and hypotheses found in the context.
This is to be repeated as many times as there are recursive calls. The last
part proves that the relation defined for Function is well-founded. We refor-
mulate the goal statement such that it appears as well-foundedness of the user-
defined relation (denoted by R in the proof script) composed with the projection
needed to extract the decreasing argument from the tuple of arguments (here
_tpl_firstprj2). The proof ends with the application of the Coq standard
library theorem wf_inverse_image that establishes that if a relation is well-
founded then this relation composed with any function is also well-founded. It
asks for the well-foundedness of the user-relation which is a hypothesis (here
_user_rem_dec_n_wf).

3.2.5 Creation of the Recursive Function Definition Using Function
The Coq Function can now be generated, using the generated relation (in our
example, div_wforder). The compiler emits the “glue code” of the final proof,
using the theorem generated in 3.2.4 and some low-level theorems of the FoCalLiZe
standard library. These low-level theorems mostly deal with properties about the
equality.
Function div (__arg: (int__t * int__t))

{wf div_.wforder __argl}: int__t :=

match __arg with

| (a, b) =>

(if (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) then O
else ((if ((_1lt_ a b)) then 0 else _plus_ 1 (div ((_dash_ a b), b)))))

end.
Proof.
elim div_termination.
intros __for_function_decl __for_function_rem_dec_n_wf.
split. intros.
eapply __for_function_decl ; eauto ||

(apply coq_builtins.EqTrue_is_true; assumption) ||
(apply coq_builtins.IsTrue_eq_false2; assumption) ||
(apply coq_builtins.syntactic_equal_refl).

(* Remaining proof of well-foundedness ... %)

assumption.

Qed.



Figure 3 gives a detailed structure of the complete compilation of a function
f whose termination relies on a relation r. Grayed blocks are those generated by
the compiler while white ones are the code of the user.

letr (y)=...:int let reAch..A, X, o) = e
termination proof = orderronx ...

{

Definition f_wforder (..., a, ...) (..., b, ...) == (* User—side theorem *)
rab Theorem for_zenon_f: all x y,

! r(.)xA (*Rec call 1 *)
7

(* Function—side theorem *)

r(.)xA (*Rec call n *)
Theorem f_termination: all ... b ..., well_founded (funab->rab)

|
|
|
|
|
|
f_wforder (..)b A (*Rec call I *) ! proof =
|
|
|
|
|

f wforder (.)bA  (*Rec call n *)

well_founded f_wforder

proof = : =~ g Function f ...
o proof =

Fig. 4. Detailed Structure of a Function with its Proof

4 Measure Functions

We consider here the particular case when the termination relies on a measure —
a function that returns a natural number — which must decrease at each recursive
call. We want to ease such termination proofs even if it would be possible for
the user to use the previous approach, by constructing himself a well-founded
relation from the measure. Precisely, the compiler does this job for him.

A measure has to be positive, which will be a proof obligation. However, the
relation built from the measure being internalized, its well-foundedness is no
more asked of the user. From the user’s point of view, the proof obligation for
each recursive call must now show that the measure decreases on the argument
of interest between each call. The compiler must build a well-founded relation
from the measure, operating on all the arguments of the function, to prove its
well-foundedness and build the final proof expected by Coq’s construct Function.

Let us notice that Function natively supports a measure annotation that we
do not use. Indeed, we think that only relying on a well-founded relation leaves
the compilation scheme more open to other logical target languages.

We illustrate the approach with a function gsort quick-sorting the elements
of a list. These elements are provided by the parameter A of the species AList and
are sorted according to their ordering method le. At each step, the quick-sort
algorithm performs two recursive calls on two sub-lists obtained by splitting the
list to sort. The termination is ensured by the shorter lengths of these sub-lists
compared to the initial list. We first write the method length whose termination
is simply structural on its argument 1. The sorting function requires a partition
method to split a list into the two sub-lists respectively containing the elements
lower or equal and strictly greater than a “pivot” value, according to the method



le which is left only declared. Finally, we write the method gsort, stating a
termination proof using the measure length on its argument 1, but we do not
show the proof itself yet:
species AList (A is Comparable)
let rec length (1 : list (A))

match 1 with
I 1 ->0

let rec gsort (1 : list (A)) =
match 1 with

| h :: g -> 1 + length (q) : i].j>r[1>
termination proof = structural 1 ; match r with
let rec partition (1 , x : A) = : [],T> l_>
match 1 with yoioa s :
0 o 0. let p = partition (r, x) in
b :s o app (gsort (fst (p)),
tioq x :: (gsort (snd (p))))

let p = partition (g, x) in

if Alle (h, x) then termination proof =

measure length on 1 ... ;

(h :: (fst (p)), snd (p)) end ::
else (fst (p), h :: (snd (p))) 7
termination proof = structural 1 ;

Using the species and collection parameters features of FoCaliZe, this exam-
ple also shows that the compilation model introduced in this paper fits the usual
dependency calculus and A-lifting mechanisms used by the compiler.

Note that in this example, gsort has only one argument. In this particular
case, the mechanism described in the section 3 to manage the tuple of all the
arguments of a function will have no work to do.

4.1 User View

From the user’s point of view, the measure being length on the argument 1, the
first proof obligation is VI : list(A),0 < length(l).
Then, the method gsort having two recursive calls, the two decreasing proof
obligations are:
VI list(A), Vo« A,Vr @ list(A),Yy : A,Vq : list(A),Vp : list(A) * list(A),
(l=z:r)—> (r=y:q) = (partition(r,x) = p) — length(fst(p)) < length(l)
and
VI list(A), Vo : A)Vr: list(A), Yy : A,Vq : list(A),Vp : list(A) * list(A),
(l=z:ur)—> (r=y:q) = (partition(r,x) = p) — length(fst(p)) < length(l)
where variables bound on the execution path leading to the recursive call must be
accumulated as hypotheses. Here, the recursive calls being in pattern-matching
cases, x and r must be related to the matched value 1 (idem for y, q and r). The
core of the decreasing facts is the < relation between the length of the recursive
calls arguments and the length of the list in the current call.
For readability, instead of inlining the proofs of these obligations, the user
can state two related properties or theorems before the function gsort itself:

property length_pos : all 1: list (A), 0 <= length (1) ;

theorem mes_decr_fst :
all 1 : list (A), all x : A, all r : list (A), all y : A,
all q : list (A), all p : list (A) * list (A),
(1 =x ::r) ->(r =y :: q) -> (partition (r, x) = p) ->
length (fst (p)) < length (1)
proof = ... ;
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theorem mes_decr_snd
all 1 : list (A), all x : A, all r : list (A), all y : A,
all q : list (A), all p : list (A) * list (A),
(1 =x ::r) -> (r =y :: q) -> (partition (r, x) = p) ->
length (snd (p)) < length (1)
proof = ... ;

Note that length_pos is a property, not a theorem: it is not yet proved.
Hence, thanks to the dependency calculus, it will be A-lifted. This shows that
our code generation model is not impacted by termination proofs.

Now the termination proof (see Fig. 5) consists in as many steps as there
are recursive calls, each one proving the strict decreasing of the measure, then
one step proving that the measure is positive and an immutable concluding step
telling the compiler to assemble the previous steps and generate some stub code
to close the proof.

let rec gsort (1 : list (A)) =
termination proof = measure length on 1
<1>1 prove all 1 : list (A), all x : A,
all r : list (A), all y : A, all q : list (A),
all p : list (A) * list (A),
(Ll =x::1r) ->(r =y :: q) -> (partition (r, x) = p) ->
length (fst (p)) < length (1)
by property mes_decr_fst
<1>2 prove all 1 : list (A), all x : A,

all r : list (A), all y : A, all q : 1list (A),
all p : list (A) x list (A),
(L =x ::r) -> (r =y :: q) -> (partition (r, x) = p) ->

length (snd (p)) < length (1)
by property mes_decr_snd
<1>3 prove all 1: 1list (A), O <= length (1)
by property length_pos
<1>e ged coq proof {xwf_gedx*} ;

Fig. 5. Termination Proof for gsort

To summarize, from the user’s point of view, a recursive function whose
termination relies on a measure is given by the four following points:

1. the measure function returning a regular integer (which raises the issue that
< is well-founded on naturals, not integers),

2. the theorem stating that the measure is always positive or null,

3. a theorem for each recursive call, stating that the measure on the argument
of interest decreases,

4. the recursive function with a termination proof of the following shape:

<1>x proofs of decreasing for each recursive call

(the same statements as corresponding theorems in point 3,

even if it is possible to directly inline the proofs instead)
<1>x 4+ 1 proof of the measure being always positive or null

(same statement as in point 2, same remark than in steps <1>x)
<1>z + 2 qed coq proof {*wf_qgedx*}

4.2 Internal view

From the compiler’s point of view, the code generation is split in 4 parts:



1. Creation of the relation expected by Function. It takes two tuples
with as many arguments as the user’s recursive function has. It extracts the
decreasing one from each tuple, say x and y. It finally states that the measure
on y is positive and that the measure on x is strictly lower than the measure
on y. The first part of this definition is needed by the proof done in point 3.

2. Creation of the user-side termination theorem containing the com-
piled proof of the user. This theorem only operates on the decreasing argu-
ment, hence uses the user’s measure function. This theorem is the conjunc-
tion of the decreasing obligations and the measure positive obligation.

3. Creation of the Function-side termination theorem. This theorem
operates on the tuple of arguments of the function and uses the generated
relation. Roughly speaking, this theorem states the same property as the
previous one, but operating on tuples and referring to the relation generated
at step 1. This proof is fully done by the compiler, using the user’s proof
that the measure is always positive and a Coq theorem stating that the usual
order on positive integers is well-founded.

4. Creation of the recursive function definition using Function. This
step computes the Function body and the final proof built with the theorem
generated at the previous step for the termination part.

The last point is exactly the same as for a termination proof using a well-
founded relation. This allows a code generation model as close as possible for
both kinds of proofs.

Figure 3 gives an overview of structure of the compilation of a function.
Grayed blocks are those generated by the compiler while white ones are the

code of the user.
User recursive function
+ proof of decreasing for each call
+ proof measure always >=0
I

Fig. 6. Global Structure of a Function with its Proof

4.2.1 Creation of the Relation Expected by Function
The dependency calculus of FoCaliZe, extended to termination proofs indicates
that the proof decl-depends on the declarations of length, app, partition,
length_pos, mes_decr_fst and mes_decr_snd. Hence these dependencies are first
A-lifted and lead to extra parameters (whose names are prefixed by abst_) for
the relation. Since Coq makes polymorphism explicit, the types of collection
parameters also must be A-lifted (here _p_A_T: Set for the parameter A).

The expected relation takes two arguments __x and __y which are tuples
bringing together all the arguments of the function. We use the same projec-
tion mechanism that in Subsection 3.2.2. Once components are extracted, there



remains to apply the user measure on them and compare the results with the
standard order on naturals (<, which is generated as _1t_, itself bound to the
corresponding Coq definition). The generated relation is given below (where
_amper__amper_ denotes the conjunction):

Definition gsort-wforder (_p_A_T : Set)
(abst_app : list__t _p_A_T -> list__t _p_A_T -> list__t _p_A_T)
(abst_length : list__t _p_A_T -> int__t)
(abst_partition : list__t _p_A_T -> _p_A_T ->
list__t _p_A_T * list__t _p_A_T)
(abst_length_pos
forall 1 : list__t _p_A_T, Is_true (_lt__eq_ O (abst_length 1)))
(abst_mes_decr_fst : ...) (abst_mes_decr_snd : ...) :=
(__x __y : list__t _p_A_T) : Prop :=
Is_true (_amper__amper_
(_1lt__eq_ 0 (abst_length __y))
(_1t_ (abst_length __x) (abst_length __y))).

4.2.2 Creation of the User-Side Termination Theorem

Next, the user termination proof must be generated. We find again the Section
mechanism used in 3.2.3 in order to keep Zenon in a first-order environment. The
shape of the generated code is very close to the one generated for termination
proofs by a relation and is shown below. Line numbers and proof steps refer to
the code given at Fig. 5

Section gsort.
Section Proof_of_gsort.
Variable _p_A_T, abst_app, abst_length, abst_partition
Hypothesis abst 1ength pos, abst_length_pos, abst_mes_decr_ fst
abst_mes_decr_snd ..
Section __E_1.
(* Step <1>1 line 3. *)
Theorem __E_1_LEMMA : forall ...,
Is_true ((_eq_ _) 1 (@ List.cons _p_A_T x r)) ->
Is_true ((_eq_ _) r (@ List.comns _p_A_T y q)) ->
Is_true ((_eq_ _) (abst_partition r x) p) ->

Is_true (_1lt_ (abst_length ((fst _ _) p)) (abst_length 1)).
(% ... Zenon proof term inlined here ... *)
End __E_1.

Section __E_2.
(% Step <1>2 line 9. *)
Theorem __E_2_LEMMA : forall ...,

Is_true ((_eq_ _) 1 (@ List.cons _p_A_T x r)) ->

Is_true ((_eq_ _) r (@ List.cons _p_ A_ y Q) ->

Is_true ((_eq_ _) (abst_partition r x) p) ->

Is_true (_1lt_ (abst_length ((snd _) p)) (abst_length 1)).
(* ... Zenon proof term inlined here ... *)

End E_2.

Section __E_3.
(% Step <1>3 line 16. *)
Theorem __E_3_LEMMA
forall 1 : (list__t _p_A_T), Is_true (_lt__eq_ O (abst_length 1)).
(* ... Zenon proof term inlined here ... *)
(* Theorem’s body. *)
Theorem for zenon gsort
(forall ...,
(Is_true ((_eq_ _) 1 (@ List.cons _p_A_T x r))) ->
(Is_true ((_eq_ _) r (@ List.cons _p_A_T y q))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
Is_true (_1t_ (abst_length ((snd _ _) p)) (abst_length 1)))
/\
(forall ...,



(Is_true ((_eq_ _) 1 (@ List.cons _p_A_T x r))) ->
(Is_true ((_eq_ _) r (@ List.cons _p_A_T y q))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
Is_true (_1lt_ (abst_length ((fst _ _) p)) (abst_length 1)))
/\
(forall __x, Is_true (_lt__eq_ O (abst_length __x))).
Proof.

generalize __E_3_LEMMA. generalize __E_2_LEMMA. generalize __E_1_LEMMA.
unfold is_well_founded. intros. SplitandAssumption. Qed.
End Proof_of_gsort.

Once each step of the proof but the concluding one has been generated, the
compiler detects that the concluding one refers to termination. It then generates
and proves the theorem for_zenon_gsort stating the termination obligations
as the user sees them: only dealing with the unique decreasing argument. This
theorem’s statement is the conjunction of all the decreasing lemmas and the po-
sitiveness of the measure introduced in 4.1. The proof generated by the compiler
is again very close to the one for a termination by a well-founded relation, and
uses the same automation techniques.

4.2.3 Creation of the Function-Side Termination Theorem

Since the user-side theorem is available, its counterpart as expected by Function
has to be emitted. Like for proofs by a relation in 3.2.4, this theorem states the
same proof obligations as the user-side theorem but dealing with the tuple of all
the arguments. This theorem requires the same Variable and Hypothesis as the
user-side one since the dependencies are the same. To lighten the presentation
we do not repeat them in the following generated code sample.

Theorem gsort_termination
(forall ...,
(Is_true ((_eq_ _) 1 (@ List.cons _p_A_T x r))) ->
(Is_true ((_eq_ _) r (@ List.cons _p_A_T y q))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
(gsort_wforder
_p_A_T abst_app abst_length abst_partition abst_length_pos

abst_mes_decr_fst abst_mes_decr_snd) ((snd _ _) p) 1)
/\
(forall ...,
(Is_true ((_eq_ _) 1 ((@ List.cons _p_A_T x r)))) ->
(Is_true ((_eq_ _) r ((@ List.cons _p_A_T y q)))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
(gsorty, forder
_p_A_T abst_app abst_length abst_partition abst_length_pos
abst_mes_decr_fst abst_mes_decr_snd) ((fst _ _) p) 1)
/\
(well_founded
(gsorty, forder

_p_A_T abst_app abst_length abst_partition abst_length_pos
abst_mes_decr_fst abst_mes_decr_snd)).
Proof.
unfold gsort_-wforder;simpl.
elim (for zenon_gsort _p_A_T abst_app abst_length abst_partition
abst_length_pos abst_mes_decr_fst abst_mes_decr_snd).
intro __user_decl.
intro __user_rem_dec_n_wf.
(* Separate decreasing obligations and well-foundation. *)
split. intros. apply coq_builtins.andb_intro; eauto.
split. intros. apply coq_builtins.andb_intro; eauto.
(* There, only remains the well-foundation obligation. *)



set (R := fun x y : int__t =>
Is_true (_amper__amper_ (_lt__eq_ 0 y) (_1lt_ x y))).
change (well_founded (fun __c __d : ((list__t _p_A_T)) =>

R (abst_length __c) (abst_length __d))).
apply wf_inverse_image.

apply wf_incl with (R2 := (fun x y : Z => 0 <=y /\ x < y)).
unfold inclusion, R.
unfold int__t, _amper__amper_, _lt__eq_, _lt_, bi__and_b, bi__int_leq,

bi__int_1t.

intros x y.

elim (Z_le_dec 0 y); intro; elim (Z_lt_dec x y); simpl; intros;

intuition. apply (Zwf_well_founded 0). Qed.

Again, the proof of the theorem is automatically generated by the compiler.
It also consists in separating the decreasing and well-foundedness obligations.
The interconnecting Coq script is more complex than for proofs by a relation.
In particular, in the first part about measure decreasing, the proof is not so
straightforward than previously because we have to deal with integers and the
< relation. The well-foundedness obligation proof follows the same scheme, it
relies on three library theorems, wf_inverse_image to deal with the relevant
projection, Zwf _well founded O which is the proof that the restriction of < to
the positive integers is a well-founded relation and wf_incl establishing that a
relation included in a well-founded one, is also well-founded.

4.2.4 Creation of the Recursive Function Definition Using Function
The Coq Function can now be generated, using the generated relation. Exactly
in the same way as for proofs with a relation, the compiler ensures the glue
to build the final proof, taking benefit from the theorem generated in 4.2.3. In
particular, the final soldering Coq script is exactly the same as for a termination
proof with a relation.

Note that because of dependencies in the user code that were A-lifted, gsort_wforder
had some extra arguments. They must be instantiated to provide Function with
a correct relation in its wf clause. This is done by applying qsort_wforder to the
effective methods definitions computed by the late-binding resolution (_p-A_T,
abst_length, etc). Below is shown the final and complete code of the compiled
function gsort.

Function gsort (__arg: (list__t _p_A_T))
{wf (qsort_wforder _p_A_T abst_app abst_length abst_partition
abst_length_pos abst_mes_decr_fst abst_mes_decr_snd) __arg}:
list__t _p_A_T :=
match __arg with (1) =>
match 1 with
| List.nil => @ List.nil _p_A_T
| List.cons x r =>
match r with
| List.nil => 1
| List.cons y q =>

let p := abst_partition r x in
abst_app (gsort ((fst _ _) p))
(@ List.cons _p_A_T x ((gsort ((snd _ _) p))))
end
end
end.
Proof.
elim gsort_termination.
intros __for_function_decl __for_function_rem_dec_n_wf.



elim __for_function_rem_dec_n_wf. clear __for_function_rem_dec_n_wf.

intros __for_function_dec2 __for_function_rem_dec_n_wf.

split. intros. eapply __for_function_decl ; eauto || (apply coq_builtins.
EqTrue_is_true; assumption) || (apply coq_builtins.IsTrue_eq_false2;
assumption) || (apply coq_builtins.syntactic_equal_refl).

split.intros. eapply __for_function_dec2 ; eauto || ... (* Same than above.
*)

(¥ Remaining well-foundation... *)

assumption. Qed.

Figure 4 gives a detailed structure of the complete compilation of a function
f whose termination relies on a measure m. Grayed blocks are those generated
by the compiler while white ones are the code of the user.

letrec f (..., X, ...) = ...

termination proof = measure m on X ...
Definition f_wforder (..., a, ...) (..., b, ...) == (** User—side theorem *)
0<=m (b) Am (a) < m (b) Theorem for_zenon_f: all x y,

i 1 mC)<m& A (*Reccall I *)
7
Y

(* Function—side theorem *)

I

! e

i m(.)<mX)A\ (*Reccalln*)
Theorem f_termination: all ... b ..., ! 0<=m (y)
£ wforder (..)b A (*Rec call I *) =

. I

L

I

I

I

I

f_wforder (...)bA  (*Rec call n *)

well_founded f_wforder

proof = : - T Function f
e proo

Fig. 7. Detailed Structure of a Function with its Proof

5 Limitations and Perspectives

The termination proofs as described in this paper are available in the FoCaliZe
repository. A “toolbox” containing some low-level theorems proved in Coq is also
available to “manually” wrap a measure in a well-founded relation.

Termination proofs using lexicographic orders are currently under study.
Again, we want to stick to our approach that provides the user with some comfort
for termination proofs. The compiler will have to generate itself the lexicogra-
phic order and its well-foundedness proof from the user’s orders and their own
well-foundedness proofs.

Some known limitations exist. Termination proofs being based on the Coq
construct Function, only methods of species and toplevel functions are sup-
ported. Local recursive functions cannot be handled this way. Nested recursion
is also not supported: the construct Function does also not. Mutual recursive
functions cannot be compiled with the present scheme. Although encodings exist
to deal with such functions, several issues already appear: what are the proof
obligations to impose to the user, how strong will they be impacted by the en-
coding, how understandable will these obligations become, how to mix several
termination proof schemes?



Aside the kinds of termination proofs, it is not fully clear how to provide
late-binding at the termination level. In FoCaliZe, definitions can use methods
only declared. The dependency calculus allows A-lifting late-bound symbols. The
termination proof of a recursive function is part of its definition, hence delaying
the proof means delaying the function definition. The simplest solution would
be to consider the function as a simple signature until its proof is provided. This
would however delay other proofs depending on the definition of the function,
despite the termination proof is not relevant for them. Indeed, either the function
terminates and other functions are not interested in its termination, or it does
not terminate, and the complete logical model is possibly inconsistent.

Finally, only one of the function’s parameters can be used to prove decreasing.
There is no particular obstacle for this extension, it is only an implementation
matter. This restriction only impacts proofs by a measure (which could use seve-
ral parameters), since such an extension for orders directly leads to lexicographic
orders.

6 Related Work

Our work is in line with those about the definition of recursive functions in theo-
rem provers, and more precisely the proposals made to facilitate the definition
and reasoning with general recursive functions. All these propositions allow some
separation of the computational and logical parts, as we do. As said previously,
we would like to go a step further in this direction and defer a termination proof.

TFL [19], implemented for both HOL4 and Isabelle, allows the definition
and reasoning about total recursive programs written in a purely functional
manner. In this context, establishing the termination of a function requires the
introduction of a well-founded relation (proved as such) and the proof that the
arguments of the recursive calls decrease according to this relation.

Coq provides the Function package [5] that allows one to define recursive
functions in a way close to TFL. It relies on previous work done on termination by
Balaa and Bertot [4]. The main strength concerns induction principles automa-
tically generated from the algorithmic definition of the function, e.g. functional
induction. We decided to compile our - non structural - recursive functions to
Coq functions defined with Function because of traceability. Except for the usual
modifications due to the compilation of dependencies and the proof obligations
part, the text of the FoCaliZe recursive function and the Coq one are very close.
Furthermore the fixpoint equation generated by Function and by the FoCaLiZe
compiler for Zenon reasoning are again very close. Another compilation choice
would have been to bypass Function and its limitations altogether and generate
Coq definitions on top of the basic Coq Wf package that provides a well-founded
induction principle. We could also have used Bertot and Komendantsky’s ap-
proach [6] to general recursion. As said previously, the shapes of both definitions
in Coq and FoCalLiZe would have been too different and furthermore it would
have been more difficult to generate the proofs.



In [15], Krauss provides a way to define general well-founded recursion in Isa-
belle. It is based on principles close to those used by Function in Coq, and goes
further in some directions (nested recursion, mutual recursion and partiality).
The main strength of this work is the advances in the automation of termina-
tion proofs. It can prove automatically termination of a certain class of functions
by searching for a suitable lexicographic combination of size measures [10]. The
termination for another class is handled by using the Size-Change principle [14].
This principle is also used in [13] to provide a tool that automatically determines
whether one or mutually recursive functions terminate. This approach allows for
a local increasing of recursive arguments. FoCaliZe does not intend to automa-
tically find proofs: it lets this task to an external prover thanks to some hints
given by the user. Moreover, it is yet unclear how to generate a Coq term from
such a termination proof.

More generally, Bove, Krauss and Sozeau review in [9] different techniques
that have been proposed to formalize partial and general recursive functions in
interactive theorem provers.

7 Conclusion

This work integrates in FoCaliZe means to prove the termination of recursive
functions that are not only structural. It brings the ability to state a well-founded
relation or a measure and write the termination proof using the usual FoCal-
iZe proofs shape: with a hierarchical structure and using the Zenon automated
theorem prover to relieve the user. Proof obligations are indicated to the user
by the compiler, which avoids tedious errors and the need to guess what proof
obligations the compiler is expecting. The proofs done by the user are based on
the usual termination proof obligations for a well-founded relation or a measure,
and ask the user only to consider the decreasing argument of his function. This
point of view is indeed the one always used for handmade proofs and it would
be annoying to ask the user to cope with all the other arguments since they are
of no interest for the termination.

Termination proofs can transparently involve late-bound methods (i.e. me-
thods that are only declared, e.g. properties used in proof obligations or even the
measure or the well-founded relation) thanks to the A-lifting mechanism used by
FoCaliZe.

A more general compilation scheme seems required to solve the pending issues
and have a more unified code generation model. But this scheme remains to be
found. However, the current work is already an appreciable help for the user
and a first step toward a more global problem. It already allowed to write some
previously assumed termination proofs of the FoCaLiZe standard library.
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