
DynIbex-2.0: The User Guide 1

Julien Alexandre dit Sandretto, Alexandre Chapoutot, Olivier Mullier
ENSTA ParisTech, Palaiseau, France

{alexandre, chapoutot, mullier}@ensta.fr

November 8, 2018

1This research benefited from the support of the “Chair Complex Systems Engi-
neering – Ecole Polytechnique, THALES, DGA, FX, DASSAULT AVIATION, DCNS
Research, ENSTA ParisTech, Télécom ParisTech, Fondation ParisTech, FDO ENSTA”

Abstract

This document aims to present the release for DynIbex done in October 2018.
It presents the main methods, the new features and the results of the experi-
mentations on the Vericomp database.

Contents

1 Main methods 2
1.1 Objects initialisation . 2

1.1.1 Equation . 2
1.1.2 Initial value problems . 3
1.1.3 Simulation . 4

1.2 Simulation and options . 4
1.3 Constraints on tube . 5

2 New feature 7
2.1 Local Truncation Error Computation 7
2.2 Zonotopic simulation . 7

3 Experimentations 8

1

Chapter 1

Main methods

This chapter gathers the main methods proposed in DynIbex.

1.1 Objects initialisation

The main objects are as follow.

1.1.1 Equation

The Ibex constructors Variable and Function are used to define the differential
equation. For example, the Ordinary Differential Equation (ODE) ẏ = f(y)
defined as follows: {

ẏ1 = 2.0 ∗ y1 ∗ (1.0− y2)

ẏ2 = −y2 ∗ (1.0− y1)
(1.1)

can be declared in DynIbex such that:

Variable y(2);

Function ydot(y, Return(2.0 * y[0]*(1.0 - y[1]),

-y[1] * (1.0 - y[0])));

A Differential Algebraic Equation (DAE) ẏ = f(y, x); g(y, x) = 0 defined as
follows:

ẏ1 = y2 + x1

ẏ2 = y1 − y2 ∗ x1
ẏ3 = y1 ∗ y3 − x2
y1 − x2 = 0

y2 − 2 ∗ x1 = 0

(1.2)

can be declared in DynIbex such that:

Variable x(2);

Variable y(3);

Function ydot = Function(y,x,Return(y[1]+x[0],

2

y[0]-y[1]*x[0],

y[0]*y[2]-x[1]));

Function g = Function(y,x,Return(y[0]-x[1],

y[1]-2*x[0]));

1.1.2 Initial value problems

Two classes are available to declare an initial value problem (IVP): one for the
ODEs and one for the DAEs.

For Ordinary Differential Equations

The class to be used is ivp ode. The constructor comes with 5 parameters:

• the ODE, a Function

• the initial time, a double, generally 0.0

• the initial value, an IntervalVector or an Affine2Vector

• a set of constraints for a constrained ODE, an Array<NumConstraint>

(Optional)

• the method used to compute the local truncation error, options are AUTODIF,
SYMBOLIC or AUTO. See section “new feature” for more details (optional)

A simple example is, with the ODE declared previsouly:

IntervalVector yinit(2);

yinit[0] = Interval(1.0);

yinit[1] = Interval(0);

ivp_ode problem = ivp_ode(ydot,0.0,yinit);

For a constrained ODE ẏ = f(y);h(y) = 0, defined by:
ẏ1 = −y2
ẏ2 = y1

y21 + y22 = 1.0

(1.3)

the following code can be written:

Variable y(2);

Function ydot(y, Return(-y[1],

y[0]));

NumConstraint csp1(y,sqr(y[0])+sqr(y[1]) -1.0 = 0);

Array<NumConstraint> csp(csp1);

ivp_ode problem = ivp_ode(ydot,0.0,yinit,csp);

3

For Differential Algebraic Equations

The class to be used is ivp dae h1. Only the DAEs in Hessenberg form of
index 1 are available. The constructor comes with 6 parameters:

• the differential part of the DAE, a Function

• the constraint part of the DAE, a Function

• the initial time, a double, generally 0.0

• the initial value for the variable y, an IntervalVector or an Affine2Vector

• the initial value for the variable x, an IntervalVector or an Affine2Vector

• a set of constraints for a constrained DAE, an Array<NumConstraint>

(Optional)

A simple example is, with the DAE declared previsouly:

ivp_dae_h1 problem = ivp_dae_h1(ydot,g,0.0,yinit,xinit);

1.1.3 Simulation

The most important class in DynIbex is simulation. It constructs and contains
the result of a validated simulation. The constructor comes with 5 parameters:

• the initial value problem, ivp ode or ivp dae h1

• the final time to reach by the simulation, a double

• a method for the integration scheme, the available ones are: IMIDPOINT,
RADAU3, HEUN, TAYLOR4, LA3, LC3, RK4, RADAU3 DAE (this method is only
for DAEs), RADAU5, GL4, GL6, KUTTA3 (optional, RK4 by default)

• a threshold on the LTE, the absolute tolerance, a double (optional, by
default 10−6)

• an initial step-size, a double (optional, by default 0.001)

A simple example is, with the IVP with ODE declared previsouly:

simulation simu(&problem,8.0,LC3,1e-10);

and for DAE:

simulation simu(&problem,0.5,RADAU3_DAE, 1e-14);

1.2 Simulation and options

The main method of DynIbex from the class simulation is run simulation().
It computes the solution of the initial value problem and stores the result (a
tube). Following the previous exemple, the computation of a validated simula-
tion is launched by:

simu.run_simulation();

4

Few methods on a simulation object allow to tune the simulation:

• active monotony() and inactive monotony() to choose to exploit or
not the local monotony of the system to reduce the diameter of the boxes
in the tube (it could increase the computation time).

• getHmin() and setHmin() to set and get the minimal stepsize authorized
by the integration scheme

• getHmax() and setHmax() to set and get the maximal stepsize authorized
by the integration scheme

Some methods allow to access to a specific element of the computed tube:

• IntervalVector get last() and Affine2Vector get last aff() to ac-
ces to the last element in a box or in a zonotope

• IntervalVector get(double t) returns a box containing y(t)

• IntervalVector get(Interval t) returns a box containing y(τ), τ ∈ t

• IntervalVector get tight(double t) returns a box containing y(t) af-
ter an additional integration scheme to reduce as much as possible the
diameter of the solution

• IntervalVector get attractor() returns a box contained in the next
box (possibly an attractor)

• IntervalVector get domain() returns the domain covered by the simu-
lation (the hull of {y(τ), τ ∈ [t0, T]})

It is also easy to export the result of a simulation in a file with the following
methods:

• void export2d yn(const char* filename, int a, int b) exports the
dimension a and b of each discretized instant

• void export3d yn(const char* filename, int a, int b, int c) ex-
ports the dimension a, b and c of each discretized instant

• void export1d yn(const char* filename, int a) exports the dimen-
sion a of each discretized instant

• void export y0(const char* filename) exports the Picard boxes

• void export yn(const char* filename) export all dimensions off dis-
cretized boxes wrt time

1.3 Constraints on tube

This section gathers the methods used in the constraint satisfaction differential
problem as proposed in [2]. The available methods are:

• bool finished in(IntervalVector y final) checks if the final solution
is included in a box

5

• bool finished in(std::list<IntervalVector> *stack) checks if final
solution is included in at least one box of a list

• bool has crossed(IntervalVector y) checks if the tube crosses a box

• Interval has crossed when(IntervalVector& y) returns the first in-
stant (in an interval) when the tube crosses a box

• bool has crossed before(IntervalVector& y, double time) tests if
the tube crosses a box before a given time

• bool stayed in(IntervalVector y hull) checks if the tube stays in a
box

• bool go out(IntervalVector y hull) checks if at least one element of
the tube is outside a box

• bool stayed in till(IntervalVector y hull, double t) checks if the
tube stays in a box till a given time

• bool has reached(IntervalVector y final) checks if the final solution
crosses a box

• bool has reached(std::list<IntervalVector> *stack) checks if the
final solution crosses at least one box of a list

• double one in(std::list<IntervalVector> *stack) checks if one so-
lution is inside at least one box of a list (return the instant or −1)

6

Chapter 2

New feature

2.1 Local Truncation Error Computation

A guaranteed set-membership simulation of an ordinary differential equation
requires to bound the local truncation error (LTE) of the method. The previ-
ous version provided such bound using symbolic derivation. This new version
features the computation of the LTE using algorithmic differentiation (A.K.A.
automatic differentiation). Using the result of the work in [1], computation of
the LTE is chosen between symbolic and algorithmic differentiation according
to the dimension of the ordinary differential equation state space.

2.2 Zonotopic simulation

From the first version, DynIbex uses zonotopes to compute the solution of dif-
ferential equations. Nevertheless, it was not easy to construct a zonotope and
provide it as initial state. We add the following method to initialize a zonotope
with a specific center, a list of noise symbols and a garbage:
initialize(double x0, std::list<std::pair<int,double> > xn,

Interval xg)

Combined with the getter Affine2Vector get last aff(), it is now easy
to give a zonotope as initial state and collect a zonotope as final state.

7

Chapter 3

Experimentations

8

Bibliography

[1] Olivier Mullier, Alexandre Chapoutot, and Julien Alexandre dit Sandretto.
Validated computation of the local truncation error of runge–kutta methods
with automatic differentiation. Optimization Methods and Software, pages
1–11, 2018.

[2] Julien Alexandre Dit Sandretto, Alexandre Chapoutot, and Olivier Mullier.
Formal verification of robotic behaviors in presence of bounded uncertainties.
In First IEEE International Conference on Robotic Computing, IRC 2017,
Taichung, Taiwan, April 10-12, 2017, pages 81–88, 2017.

9

