
Numerical methods for dynamical systems
Julien Alexandre dit Sandretto

Department U2IS
ENSTA Paris
INF6561 2022-2023

Contents

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 2

Context
To cope with the increasing complexity of systems, more and more
models are used.
I Countless number of software used to help designing/verifiying

systems
Matlab/Simulink, Dymola, etc.

I These software heavily rely on numerical simulation methods
I Numerical simulation is a computer-aided method to solve

mathematical problems

Questions?
I What are their limits? (expressiveness, etc.)
I How do they work? (algorithms, properties, etc.)

Why should we trust these software?

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 3

Example Matlab/Simulink

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 4

Example Modelica

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 5

What do they do?

For each software, some kind of differential equations are solved:
ordinary differential equations (ode)

ẏ = f (t, y(t)) with y(0) = y0

differential-algebraic equations (dae)

F (t, y, ẏ) = 0 with y(0) = y0, ẏ(0) = y′0

Questions?
I How these equations are solved?
I What are the limits of the methods used to solve them?

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 6

Floating-point arithmetic

A few words about the Simulink’s solver
All the methodologies are centered around the numerical simulation of
the plant and the controller.

Idea
The main principle is to solve the differential equations used to describe
mechanical/electrical and controller model.

Remarks on solving mathematical problem on computers
It cannot be done without approximations !
I Error in the model.
I Error in the method to solve it (i.e., numerical integration methods)
I Error in data given by sensors.
I Error in the computation (i.e., floating-point arithmetic)

The engineer should be aware of such errors.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 7

Floating-point arithmetic

Floating-point arithmetic

A real number is represented by a floating-point number f such that:

r = S ·m · 2e

Se e1 e2 ee−1 Sm m1 mp−2 mp−1

Exponent (e bits) Mantissa (p bits)
For example, the set of floating-point numbers with a 2 bits exponent
(i.e.between −1 and 1) and a 3 bits mantissa is:

Axe réel
0 1/2 1 2 4

1.011 × 2
1

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 8

Floating-point arithmetic

Floating-Point Arithmetic
IEEE754-2008 Standard: representation (double precision: 64bits)

This Standard is implemented in almost every computer, it defines:
Encoding: floating-point numbers f = s.m.2e with
I s the sign (1 bit)
I e the exponent (10 bits ⇒ emin = −1022 and emax = −emin + 1)
I m the significant with p bits and an implicit bit (p = 53 bits)

if implicit bit is 1 ⇒ normal number
if implicit bit is 0 ⇒ subnormal number

Special values:
I NaN for undefined results e.g.

√
−1 (absorbing value)

I +∞ or −∞ for overflows
We also consider three important values which characterize F:

The relative rounding error unit: µ = 2−p

The smallest positive subnormal floating-point: σ = 2emin−p+1

The biggest positive floating-point: Σ = (2− 21−p)2emax

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 9

Floating-point arithmetic

Floating-Point Arithmetic
IEEE754-2008 Standard: arithmetic

Rounding modes: mainly towards ±∞, to the nearest (denoted by fl())
In particular, generation of overflow and zero are defined by:

∀x ∈ F, x > 0, fl(x) =

{
+0 if 0 < x ≤ σ/2
+∞ if x ≥ Σ

Arithmetic operations: have the correct rounding property.
More precisely, we have

fl(x � y) = (x � y)(1 + ε1) + ε2 with |ε1| ≤ µ and |ε2| ≤
1
2σ

with � ∈ {+,−,×,÷} (still true for √)
and
ε2 = 0 if � ∈ {+,−} or fl(x � y) is in normal range
ε1 = 0 if fl(x � y) is in subnormal range

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 10

Floating-point arithmetic

Floating-Point Arithmetic
IEEE754-2008 Standard: consequences

Fact
Nevertheless, floating-point numbers only approximate real numbers.

So when using floating-point numbers, we have to deal with:
Poor mathematical
properties
I No associativity

(for number of
operators > 2)

I No distributivity
I No inversion

Numerical instabilities
I Absorption:

if |x | ≤ µ|y | then fl(x + y) = fl(y)

I Catastrophic cancellation

Remark
Usually, results produced by floating-point arithmetic are sufficient for
classical algorithms.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 11

Floating-point arithmetic

Example: absorption

#i n c l u d e <s t d i o . h>

i n t main ()
{

f l o a t r1 = 1 0 . 0 ;
f l o a t r2 = 0 .0000004 ;
f l o a t r3 = 0 .0000003 ;

f l o a t t1 = r1 + r2 + r3 + r3 ;
f l o a t t2 = r2 + r3 + r3 + r1 ;

p r i n t f (” t1 = %f\nt2 = %f\n” , t1 , t2) ;

r e t u r n 0 ;
}

Results
I t1 = 10.0
I t2 = 10.000001

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 12

Floating-point arithmetic

Example: catastrophic cancellation

#i n c l u d e <s t d i o . h>

i n t main ()
{

double eps = 1e−14;
double x = 10 .0 + eps ;
double r = eps / (x − 1 0 . 0) ;

p r i n t f (” r=%f\n” , r) ;

r e t u r n 0 ;
}

Results
I Mathematical result 1.0
I r = 0.938250

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 13

Floating-point arithmetic

Example: inversion

#i n c l u d e <s t d i o . h>

i n t main ()
{

double r = s q r t (3 . 0) ;
double m = r ∗ r ;
p r i n t f (”m = %f\n” , m) ;

r e t u r n 0 ;
}

Results
I Mathematical result 3.0
I m = 2.99999999999999956

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 14

Floating-point arithmetic

A few words on NaN

Recall that NaN is a special value to represent non valid computation like√
−1.

Handle such values could be problematic:
I NaN is a absorbing element for arithmetic operations.

Comparison may be tricky
I x != NaN is true
I NaN != NaN is false

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 15

Floating-point arithmetic

Comparison trap: equality

#i n c l u d e <s t d i o . h>

i n t main () {
/∗ Exemple de F . de D inech in (m o d i f i e pour IA64) ∗/
i n t i ;
double r e f , i n d e x ;

r e f = 169 .0 f / 170 .0 f ;

f o r (i =0; i <250; i ++){
i n d e x = i ;
i f (r e f == (i n d e x / (i n d e x + 1))) { break ; }

}
p r i n t f (” i = %d\n” , i) ;

r e t u r n 0 ;
}

Solutions
x >= y && x <= y or better fabs(x−y) >= eps

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 16

Floating-point arithmetic

Conclusion: floating-point arithmetic

Strandard of representation of numbers in computer but still we may have
the apparent excess of precision is not exempt of numerical problems.
In particular, it requires some knowledge of the hardware, for example
x86 desktop CPU have 80bits long registers !!
The use of transcendental functions (e.g. sin, . . .) does not have the
correct rounding property!

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 17

Simulation engine in Simulink

A few words about the Simulink’s solver
The Mathworks methodology is centered around the numerical simulation
of the plant and the controller.

Idea
The main principle is to solve the differential equations used to describe
mechanical/electrical and controller model.

Remarks on solving mathematical problem on computers
It cannot be done without approximations !
I Error in the model.
I Error in the method to solve it.
I Error in data given by sensors.
I Error in the computation.

The engineer should be aware of such errors.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 18

Simulation engine in Simulink

A simple example: mathematical models
A semi-active suspension of a quarter-car model

A simple example: mathematical models

A semi-active suspension of a quarter-car model

Mass (m)
Sensor

k Controller
zb − zr

c(t)

zb

zr

m = 250 kg
k = 20000 N/m
cmax = 16000 N/m/s
cmin = 0

Mathematical model of the mechanical system

z̈b = − 1
m

�
k(zb − zr) + c(t)

�
.

Mathematical model of the controller

c(t) =

�
−cmax(zb − zr) if (zb − zr)(żb − żr) < 0
cmin if (zb − zr)(żb − żr) ≥ 0

.

8 / 1

I m = 250 kg
I k = 20000 N/m
I cmax = 16000 N/m/s
I cmin = 0

Mathematical model of the mechanical system

z̈b = − 1
m
(

k(zb − zr) + c(t)
)
.

Mathematical model of the controller

c(t) =

{
−cmax(zb − zr) if (zb − zr)(żb − żr) < 0
cmin if (zb − zr)(żb − żr) ≥ 0

.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 19

Simulation engine in Simulink

A simple example: Simulink implementation – 1
Mathematical model of the mechanical system

z̈b = − 1
m
(

k(zb − zr) + c(t)
)
.

zb

relative_position
1

Integrator1

1
s

Integrator

1
s

Gain1

1/m

Gain

k

c(t)
2

road
1

dot_zbddot_zb

Integrator block
Associated to a first order dynamic system:{

ẏ(t) = input(t)

output(t) = y(t) with y(0) = y0

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 20

Simulation engine in Simulink

A simple example: Simulink implementation – 2
Mathematical model of the controller

c(t) =

{
−cmax(zb − zr) if (zb − zr)(żb − żr) < 0
cmin if (zb − zr)(żb − żr) ≥ 0

.

Implementation: (żb − żr) is given by differentiating the sensor output.

damping_force
1

c_min

0

c_max

cUnit Delay
z
1 Switch

 >= 0

Subtract
Product1ProductGain

K

relative_position
1

Discrete differentiation at rate 1/40 sec.
Closed-loop system
I Connect the output of the plant to the input of the controller.
I Connect the output of the controller to the input of the plant.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 20

Simulation engine in Simulink

Simulink as an equation-based programming language

Input/Output relation
Each block defines the time invariant relation between its input and its
output.

Library Blocks Representation Equations

Sources Input
1

Constant

1

In1

!1
`1 = in1

Constant
c

Constant

1

In1

!1

`1 = c

Arithmetic Add

Subtract

1

Gain

Add

!1
!2

!3

`3 = `1 + `2

Signal routing Switch Switch

!1
!2
!3

!4

`4 = if (pr (`2), `1, `3)

Continuous-time Integrator
1/s

Integrator

!1 !2

{`2 = x ; ẋ = `1; x(0) = init}

Discrete-time Unit Delay
z

1

Unit Delay

!2!1

{`2 = d ; d̄ =S `1; d(0) = init}

d̄ =S ` stands for at each t = kS, d = ` else it keeps its previous value.
Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language
Input/Output relation
Each block defines the time invariant relation between its input and its
output.

A core language of equations

e ::= r | ` | x | d | e1 � e2 | e1 ./ e2 | if
(
e1, e2, e3

)
(1)

eq ::= ` :=S e | ` := e | ẋ := e | d̄ :=S e (2)
p ::= eq | eq; p (3)

with
I r ∈ R, constant values;

I ` ∈ V, variables associated to a block output;

I x ∈ V, variables associated to continuous-time states;

I d ∈ V, variables associated to discrete-time states;

I � ∈ {+,−,×,÷}, arithmetic operations;

I ./∈ {<,≤, >,≥, =, <>}, relational operations;

I S is the set of all the sampling times.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language

zb

relative_position
1

Integrator1

1
s

Integrator

1
s

Gain1

1/m

Gain

k

c(t)
2

road
1

dot_zbddot_zb

1
2

312
13 14 15

x0 x1

damping_force
1

c_min

0

c_max

cUnit Delay
z
1 Switch

 >= 0

Subtract
Product1ProductGain

K

relative_position
1In red: evaluation

order of blocks 4
5 6 7

8

9

10 11

d
For each block in the evaluation order, a simple translation gives:
`1 = input
ẋ1 = `15

`2 = x1

`3 = `2 − `1

d̄ =S `3

`4 = d

`5 = `3 − `4

`6 = 1/40× `5

`7 = `3 × `6

`8 = 0
`9 = −16000
`10 = if `7 ≥ 0 then `8 else `9

`11 = `3 × `10

`12 = 20000× `3

`13 = −`12 − `11

`14 = 1/250× `13

ẋ0 = `14

`15 = x0
Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language
Kinds of equations
A Simulink model is made of four kinds of functions:
I the output function;
I the update function of discrete-time states;
I the update function of continuous-time states;

`1 = input
ẋ1 = `15

`2 = x1

`3 = `2 − `1

d̄ =S `3

`4 = d

`5 = `3 − `4

`6 = 1/40× `5

`7 = `3 × `6

`8 = 0
`9 = −16000
`10 = if `7 ≥ 0 then `8 else `9

`11 = `3 × `10

`12 = 20000× `3

`13 = −`12 − `11

`14 =
1

250 × `13

ẋ0 = `14

`15 = x0
Remark
These functions allow a state-space representation of a model.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language
Kinds of equations
A Simulink model is made of four kinds of functions:
I the output function;
I the update function of discrete-time states;
I the update function of continuous-time states;

`1 = input
ẋ1 = `15

`2 = x1

`3 = `2 − `1

d̄ =S `3

`4 = d

`5 = `3 − `4

`6 = 1/40× `5

`7 = `3 × `6

`8 = 0
`9 = −16000
`10 = if `7 ≥ 0 then `8 else `9

`11 = `3 × `10

`12 = 20000× `3

`13 = −`12 − `11

`14 =
1

250 × `13

ẋ0 = `14

`15 = x0
Notation
We denote this function by g(t, x,d) .

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language
Kinds of equations
A Simulink model is made of four kinds of functions:
I the output function;
I the update function of discrete-time states;
I the update function of continuous-time states;

`1 = input
ẋ1 = `15

`2 = x1

`3 = `2 − `1

d̄ =S `3

`4 = d

`5 = `3 − `4

`6 = 1/40× `5

`7 = `3 × `6

`8 = 0
`9 = −16000
`10 = if `7 ≥ 0 then `8 else `9

`11 = `3 × `10

`12 = 20000× `3

`13 = −`12 − `11

`14 =
1

250 × `13

ẋ0 = `14

`15 = x0
Notation
We denote this function by fd(t, x,d) = g(t, x , d) |d̄=S` .

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language
Kinds of equations
A Simulink model is made of four kinds of functions:
I the output function; (2 versions: major g and minor g̃)
I the update function of discrete-time states;
I the update function of continuous-time states;

`1 = input
ẋ1 = `15

`2 = x1

`3 = `2 − `1

d̄ =S `3

`4 = d

`5 = `3 − `4

`6 = 1/40× `5

`7 = `3 × `6

`8 = 0
`9 = −16000
`10 = if `7 ≥ 0 then `8 else `9

`11 = `3 × `10

`12 = 20000× `3

`13 = −`12 − `11

`14 =
1

250 × `13

ẋ0 = `14

`15 = x0
Notation
We denote this function by fx(t, x,d) = g̃(t, x , d) |ḋ=S`

.
Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Simulink as an equation-based programming language

Kinds of equations
A Simulink model is made of four kinds of functions:
I the output function;
I the update function of discrete-time states;
I the update function of continuous-time states;

Hidden equations: the 5th kind
Some blocks are associated to equations to detect zero-crossing events
(only with variable step solvers).

Notation
We denote a zero-crossing equation fz (t, x , d) .

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 21

Simulation engine in Simulink

Overview of numerical simulation
Goal: computing the temporal evolution of the system.
The steps of the Simulink’s simulation engine
Input: x0, d0, t0, h0;
n = 0;
loop until tn ≥ tend

evaluate g(tn, xn,dn) ;
update d′ = fd (tn, xn,dn) ;
solve ẋ(t) = fx (t, x(t),dn) over interval [tn, tn + hn] to get x(tn + hn) ;
find zero crossing ;
compute hn+1 ;
compute tn+1 ;
dn+1 = d′ ; xn+1 = x(tn + hn) ; n = n + 1 ;

end loop
Remarks

I Major steps: evaluation of g produces the simulation results at tn.
I Minor steps: evaluations of g̃ are used as intermediate computations between tn

and tn + hn.
Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 22

Simulation engine in Simulink

Overview of numerical simulation
The temporal evolution of the system depends on a set of parameters.

Parameters (a sample)
A Simulink model is described by a set of parameters:
I t0= 0 start time of the simulation;
I tend= 10 stop time of the simulation;
I numerical integration methods with an absolute tolerance

(atol= 10−6), a relative tolerance (rtol= 10−3);
I minimal (hmin= 0.2) and maximal (hmax= 5) integration step-size;
I zero-crossing method: adaptive or non adaptive;
I zero-crossing tolerance (zctol= 10× 128× eps).

Consequence
There are several semantics of Simulink, i.e., several possible output for
one model.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 22

Introduction solving ODE

Differential equations

Many classes
I Ordinary Differential Equations (ODE)

ẏ(t) = f(t, y(t))

I Differential-Algebraic equations (DAE)

ẏ(t) = f(t, y(t), x(t))

0 = g(t, y(t), x(t))

I Delay Differential Equations (DDE)

ẏ(t) = f(t, y(t), y(t − τ))

I and others: partial differential equations, etc.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 23

Introduction solving ODE

Solving ordinary differential equations

We consider the problem:
ẏ = f (t, y)

with
I n is the dimension of the problem
I ẏ = dy

dt is the derivative of y w.r.t. time t.
I f : R× Rn → Rn

Example {
ẏ1 = −y2

ẏ2 = y1

Remark: it may be have an infinite number of solutions.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 24

Introduction solving ODE

Initial value problem (IVP)

Definition of IVP
ẏ = f (t, y) with y(0) = y0

The IVP is autonomous if f does not explicitly depend on t: ẏ = f (y)

I High order vs first order

ÿ = f (y, ẏ)⇔
(

ẏ1
ẏ2

)
=

(
y2

f (y1, y2)

)
with y1 = y and y2 = ẏ .

I Non-autonomous vs autonomous

ẏ = f(t, y)⇔ ż =

(
ṫ
ẏ

)
=

(
1

f(t, y)

)
= g(z) .

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 25

Introduction solving ODE

Initial value problem (IVP)

Definition of IVP
ẏ = f (t, y) with y(0) = y0

IVP has a unique solution if:
I f is continuous with respect to time t
I f is Lipschitz with respect to y that is:

∀t,∀y1, y2 ∈ Rn,∃L > 0, ‖ f (t, y1)− f (t, y2) ‖ ≤ L ‖ y1 − y2 ‖

Remark it is still true for piece-wise Lipschitz functions.
Remark the uniqueness is lost if continuity is only considered.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 26

Introduction solving ODE

Ordinary differential equations

We focus on the continuous-time evolution function:

ẏ = f (t, y) with y(0) = y0 . (1)

Usually, solution y(t; y0) of Equation (1) is studied using numerical
integration scheme inducing a recurrence of the form:

yk+1 = F(tk , hk , yk+1, yk , yk−1, . . . , yk−p)

such that yk−i ≈ y(tk−i ; y0) i = 0, . . . , p . (2)

It exists a huge amount of methods whose main features are:
I explicit (yk+1 is not considered) or implicit method;
I single-step (p = 0) or multi-step method.
I with fixed (h does not depend on k) or variable step-size;

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 27

Introduction solving ODE

Goal of numerical integration

Recall, we consider IVP (initial value problem):

ẏ = f (t, y) with y(0) = y0 . (3)

This problem admits a unique solution y(t; y0) on R,
if f : R× Rn × Rn is continuous in t and Lipschitz in y that is:

∀t,∀y1, y2 ∈ Rn,∃L > 0, ‖ f (t, y1)− f (t, y2) ‖≤ L ‖ y1 − y2 ‖ .

Goal
I Compute a sequence of time instants t0 ≤ t1 ≤ · · · ≤ tn

I Compute a sequence of values y0, y1, . . . , yn such that

∀i ∈ [1, n], yi ≈ y(ti ; yi−1) .

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 28

Introduction solving ODE

Example: Euler’s method
Consider a simple IVP:

ẋ = −x3

2 with x(0) = 1 .

The exact solution is x(t) = 1√
1+t .

We consider two fixed-step methods (Euler and Heun) that is they
compute the sequence of time instants such that ti+1 = ti + h.
I The Euler’s method computes the sequence of values

xi+1 = xi + h ×−x3
i
2

I The Heun’s method computes the sequence of values:

k1 = xi + h ×−x3
i
2

xi+1 = xi +
h
2 ×

((
−x3

i
2

)
+

(
−k3

1
2

))
Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 29

Introduction solving ODE

Example: Euler’s method

−0.5 0 0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

t

x(
t)

=
−

1
√

1+
t

exact
Euler: h = 0.75
Euler: h = 0.25
Heun: h = 0.75

Remark: precision vs performance in the application of Euler’s method.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 29

Introduction solving ODE

Summary on ODEs

There is a huge amount of work on the study of IVP for ODE
A lot of numerical methods exits, e.g., Runge-Kutta, Adams-Bashworth,
. . .
In the next lectures, we will review
I the main numerical algorithms to solve IVP for ODE
I the main features of such methods, e.g., stability, convergence, etc.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 3, 2023- 30

	Contents
	Introduction
	Floating-point arithmetic
	Simulation engine in Simulink
	Introduction solving ODE

