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IVP € 4
ENSTA

e panis

Recall our starting point is the IVP of ODE defined by
y=f(t,y) with y(0)=yo , (1)

for which we want the solution y(t;yo) given by numerical integration methods i.e. a
sequence of pairs (t;,y;) such that

yi =~ y(tiiyo) -
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Why do we consider discontinuities?
ENSTA

Need to model
» non-smooth behaviors, e.g., solid body in contact with each other Biorans

P interaction between computer and physics, e.g., control-command systems

» constraints on the system, e.g., robotic arm with limited space

Ball trajectory and the events
T T T
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Simulation with discontinuous systems [ S

e

There are two kinds of events:
> time event: only depending on time as sampling
> state event: depending on a particular value of the solution of ODE or DAE.
To handle these events we need to adapt the simulation algorithm.
» Time events are known before the simulation starting. Hence we can use the
step-size control to handle this.
> State event should be detect and handle on the fly. New algorithms are needed.
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[VP with discontinuities
ENSTA

e panis

An IVP for ODE with discontinuities is defined by

A(ty) ifg(t,y)>20 .
th y(0)=1yo , 2
{fg(t,y) otherwise w ¥(0) =yo )

for which we want the solution y(t;yo) given by numerical integration methods i.e. a
sequence of pairs (t;,y;) such that

yi = y(tiiyo) -
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Example: zero-crossing detection »

ENSTA
x4 Discon%itv locking
A simple example

W 1e paRIs
_ {ﬁ(t,y) if g(y) >0

f(t,y) otherwise

Legend
o Minor step state x
® Major step in X

~~% Search process
=« Zc value pair

«.-» Firsttrial step from Tn-1 to tn

——— Integration results

1 -
En-1[
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Zero-crossing event detection

Main steps

» Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [t,, tn + hn]?

> Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.

» Pass through the zero-crossing event in two steps:
P Set the next major output to the left bound of the bracket time.
P> Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events — 1

Detection of the event.
We check that
&(tn,¥n) - g(tat1,¥nt1) <O

We observe is there is a sign changement of the zero-crossing function g.
Remark this is a not robust method (is the sign changes twice for example)
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Zero-crossing event detection

Main steps

» Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [tn, t, + hn]?

> Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.

> Pass through the zero-crossing event in two steps:

P Set the next major output to the left bound of the bracket time.
P Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events — 2

Continuous extension (method dependent) to easily estimate state.
For example, ode23 uses Hermite interpolation

p(t) = (27'3 —3r2 4+ 1)y, + (7'3 —272 4 7)(t2 — t1)f(yn)
+ (=27 +37%)yni1 + (72 = ) (82 — 01)F(Yns1)

with 7 = t;t”
n
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Zero-crossing event detection

Main steps
» Detection of zero-crossing event

Is one of the zero-crossing changed its sign between [tn, t, + hn]?

> Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.

» Pass through the zero-crossing event in two steps:
P Set the next major output to the left bound of the bracket time.
P Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events — 2

The solve the equation
g(t,p(t)) =0

instead of g(t,y(t)) =0
Note: as this equation is 1D then algorithm as bisection or Brent's method can be

used instead of Newton's iteration.

€
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Zero-crossing event detection ENE;

e

Main steps

» Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [t,, t, + hn]?

> Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.

> Pass through the zero-crossing event in two steps:
P Set the next major output to the left bound of the bracket time.
> Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events — 3

Enclosing the time of event produce a time interval [t™, t™] for which we have

> the left limit of the solution y(t™)
> an approximation of the right limit of the solution y(t™) which is used as initial
condition for the second dynamics
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Simulation algorithm »

ENSTA

e

Data: f; the dynamic, f, the dynamic, g the zero-crossing function, yq initial condition, tg starting time, teq end
time, h integration step-size, tol
t<tg y<yo f <« fi whilet < t,,g do
Print(t, y) y1 < Euler(f,t,y,h) y» < Heun(f,t,y,h) if ComputeError(y;, y2) is smaller than tol then
if g(y) - g(y1) < 0 then
Compute p(t) fromy, f(y), y1 and f(y1) [t~ , t*] = FindZero (g(p(t))) Print (t+t—, p(t~))
fefhyepth) t—t4+t"

end
y <« y1 t< t+h h<« ComputeNewH (h,yi,y2)
end
h < h/2
end
Remark

One-step methods are more robust than multi-step in case of discontinuities (starting problem)
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Introduction to stability of numerical methods

Stability properties: a graphical view €4

ENSTA

e

Note: there are several kinds of stability.

Problem |—>| Impose Cp |<—>| Consequence x(t) |

Method |—>| Impose Cp, |<—>| Consequence xp |

From a generic point of view we have:
» Impose a certain conditions C, on IVP which force the exact solution x(t) to
exhibit a certain stability

» Apply a numerical method on IVP

» Question: what conditions must be imposed on the method such that the
approximate solution (xs)n,en has the same stability property?
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Introduction to stability of numerical methods

Total stability of IVP

Consider, a perturbed IVP
y=F(t,y)+5(t) with y(0)=yo+3d and te[o,b]
(6(t),d0) denotes the perturbations

Definition: totally stable IVP

From
> (4(t),d0) and (6*(t),d3) two perturbations
> y(t) and y*(t) the associated solutions

if

vt € [0, b], Ve > 0,3K > 0,
l6(t) —6*(t) I<en || do— o5 I< e =l y(t) —y*(t) I< Ke

then IVP is totally stable.

€

ENSTA

e panis
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Introduction to stability of numerical methods

Zero stability of numerical methods

We consider the application of numerical method on a perturbed IVP so we have a
perturbed numerical scheme

Definition: zero-stability
From
> §, and 4} two discrete-time perturbation

> y, and y}; the associated numerical solution
if

¥n € [0, N],Ve > 0,3K > 0,Vh € (0, ho]
| 6n—dp lISe=lyn—y; IS Ke

then the method is zero-stable

In a different point of view, we want to solve y = 0 with y(0) = yp and so numerical
method should produce as a solution y(t) = yp. (It is obvious for RK methods)

€

ENSTA

e
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Introduction to stability of numerical methods

Zero stability for multi-step methods

First and second characteristic polynomials for linear multi-step methods are

k k

p(z) = Z a;z' and o(z) = ZB;zi

i=0 i=0

Root condition

A linear multi-step method satisfies the root condition is the roots of the first
characteristic polynomial p have modulus less than or equal to one and those of
modulus one are simple.

Theorem

A multi-step method is zero stable is it satisfies the root condition.

Theorem

No zero-stable linear k-step method can have order exceeding k + 1

€

ENSTA

e

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 13



Introduction to stability of numerical methods

Consistency of numerical methods gsz

e panis

We denote by ®¢ (tn,yn; h) a Runge-Kutta method such that
Yo+l = ¥Yn + hd)f (tm Yn; h)

If ®¢ is such that
lim & (tna)’n; h) = f(tn,)’n) .
h—0

then the Runge-Kutta method is consistent to the IVP.
As a consequence, the truncation error is such that:

lim Y(tn+1) —Yn — h®¢ (tnayn; h) =0
h—0

Consistency for s-stage RK methods

A necessary and sufficient condition is that
s
b=
i=1
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Introduction to stability of numerical methods

€

Convergence of numerical methods [ St

e

A Runge-Kutta method is said convergent if

I!TO yn = y(tn)

Problem

Lipschitz
condition totally stable

consistency and Yn con-

zero-stability verges to y(t)
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Linear stability analysis for one-step methods

Linear stability »

ENSTA
e

We consider the IVP:
y=MAy with A€C,R(\) <0

Applying a RK method, we get
Yni1 = R(A)yn with h=Xh
R(h) is called the stability function of the method.

Stability function of RK methods

det ( — hA + hlb?)

R = 1= a)

S0, limy— 00 Xn = 0 when |R(h)| < 1
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Linear stability analysis for one-step methods

Linear stability of ERK — 1 »

The stability function for s-stage (s = 1,2,3,4 = p = s) ERK is reduced to a ENSTA
polynomial function:

1P PARIS

N L1, 1.
Ry =1+h+ S+ + Sh
s!

21
p=1 p=2
3 3
2 2
1 1
0 0
-1 -1
-2 -2
-3 -3
-3 2 -1 o 1 2 3 3 -2 -1 o0 1 2 3
p=3 p=4
3 3
2 2
1 1
0 0
-1 -1
-2 -2
-3 -3

-3 -z -I v T Z 3 -3 -z -I 0 1 Z 3
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Linear stability analysis for one-step methods

Linear stability of ERK — 1 »

ENSTA

e

The stability function for s-stage (s > 4 = p < s) ERK is reduced to a polynomial
function:

R(hy=1+h+ R+ —h"+ Z Yqh

1

1
2! q=p+1
with ~4 depending only on the coefficients of the ERK methods.
For example,

> for RKF45 (s =5 and p = 4)

1 1. 1 1 .
RA=1+h+ —F B+ =4 =5
(h) Tt T T 1
» DOPIR54 (s =6 and p = 5)
1 .
R(A)=1+h h2 h3 — R —h6
(A) tht e T +120 * %00
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Linear stability analysis for multi-step methods

Linear stability of Adams-Bashworth methods »

We consider the scalar linear IVP ENSTA
v =Xy with A€C,R(\) <0 B
For linear problem, the stability polynomial of a multi-step method is
n(r,h) = p(r) — ho(r) with h=Ah

Stability Domains of AB

-25 -2 -15 -1 -0.5 0 0.5
Re{A i}
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Linear stability analysis for multi-step methods

Linear stability of Adams-Moulton methods »

We consider the scalar linear IVP ENSTA
@ v oanis
y=Ay with Ae€C,R(\) <0 :

For linear problem, the stability polynomial of a multi-step method is
n(r,h) = p(r) — ho(r) with h=Ah

Stability Domains of AM

4 T T T T T
|
I
L T TS P2 4
3 s ~Z i
- N |
N
3,7 NI
2 2 ! b
, i
I
/
|
1 ! i 4
~ ! i
= 1 1
g 1
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1
= \ !
b i 4
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I
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Julien Alexandre dit Sandretto - Numericﬂe{e)thc]d} for dynamical systems January 4, 2023- 20



Linear stability analysis for multi-step methods

Linear stability of Adams-Bashworth-Moulton methods »

ENSTA
We consider the IVP: @ v oanis
x=Xx with AeC,R(\) <0 )

Stability Domains of ABM

Im{\ - i}

15 L L L L L
-25 -2 -15 -1 -0.5 0 0.5 1

Re{\- h}
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Linear stability analysis for multi-step methods

Linear stability of BDF »

We consider the scalar linear IVP ENSTA
e earis
y=Ay with Ae€C,R(\) <0 :
For linear problem, the stability polynomial of a multi-step method is

n(r,h) = p(r) — ho(r) with h=Ah

Stability Domains of BDF

10 -

Im{\-h}

-5 0
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Stiffness

€

Stiff versus non-stiff problems
ENSTA

e

Problem 1

()= 2) () Cateot o)

) _ (2 1 ny o 2ssin(t)
y2) \998 —999 ) \y» 999(cos(t) — sin(t))
Both have the same exact solution:

(y1(t)) = 2exp(—t) G) + (zg‘s((?)) with initial values (;gg;) = (g)

Problem 2

y2(t)
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Stiffness

Simulation results

€
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Lo e
"
%
+
" '
\z:\
% L ‘
Lo A f"w*tb
+ + + + +
4 + + A +
+ ¥ + s + .
t -~ +. + Y ——— .
by " ¥ ¥ e Y \
+ + + + ' N
+ + oy . . " .
] + + +
*. + +. + .
Frat bt LI L
(b) Problem 1, RKF45; N = 60. (c) Problem 2, RKF45; N = 3373.‘ L
+ .
+ +
N L
* +
4, ‘.
":»4 * R ¢ 4 |
+ t + ++
L . . *+++++++ + N . +t 4’-:,1[]
* + + +* + + + + Lt
* + + + + L+
- + + “~ b . ran
+ T +
* .t + + P . .
+ + + + + t + .
tat et L et .t vt

4
(d) Problem 1, 2-stage Gauss; A = 29. (e) Problem 2, 2-stage Gauss; V=24.

AR
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Stiffness

Stiff linear ODE: a definition €4

ENSTA

e panis

We consider linear constant coefficients IVP of the form:
y = Ay + §(t)

assuming that all eigenvalues X are such that R(\) < 0
We denote by

> | RQ) |= maxi<icn | ROV |

> [ RQ) = minici<a | R(A) |

> the stiffness ratio is defined by | R(\) | / | R(Q) |

Stiffness definition - 1 (Lambert)

A linear constant coefficients system is stiff iff all eigenvalues are such that £(A\) < 0
and the stiffness ratio is large.
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Stiffness

Others stiffness definitions E’

ENSTA

e

Definition 2 (Lambert)

Stiffness occurs when stability requirements, rather than those of accuracy, constrain
the step size.

Definition 3 (Lambert)

Stiffness occurs when some components of the solution decay much more quickly than
others.

Global definition (Lambert)

If a numerical method with a finite region of absolute stability, applied to a system
with any initial values, if forced to use in a certain interval of integration a step size
which is excessively small in relation to the smoothness of the exact solution in that
interval, then the system is said to be stiff in that interval.
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Stiffness

Linear stability definition for stiff systems - 1

A-stability
A method is A-stable if Rs D {h: R(h) < 0}

A(«)-stability

A method is A(a)-stable, o €]0,7/2], if Rs 2 {h: —a <7 — arg(h) < a}

Stiffly stability
A method is stiffly stable if Rs D R; U Ry such that Ry = {h: R(h) < —a} and

Ro = {h: —a<R(h) <0,—c < S(h) < ¢} with a and ¢ two positive real numbers.

ENSTA
D e eanis
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Stiffness

€

Linear stability definition for stiff systems - 2
ENSTA

e panis

L-stability
A one step method is L-stable if

> it is A-stable
» and when applied to stable scalar test equations y = \y it yields

Yn+1 = R(AN)xn  where | R(hX) |= 0 as R(hA) — —c0

Relation between the stability definitions

L-stability = A-stability = stiffly stability = A(«)-stability
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Stiffness

Numerical methods for linear stiff problems

Runge-Kutta methods
Method Order  Linear stability prop.
Gauss 2s A-stability
Radau IA, 1A 2s—1 L-stability
Lobatto IlIA, IlIB 25 —2 A-stability
Lobatto I1IC 2s —2 L-stability

Theorems (Dahlquist barrier)

»> Explicit RK cannot be A-stability or stiffly stability or A(«)-stability!
» Explicit linear multi-step method cannot be A-stable

» The order of an A-stable linear multi-step method cannot exceed 2
| 4

The second order A stable multi-step method with the smallest error constant
(G3) is the Trapezoidal rule.

For the particular case of BDF

» BF1 and BDF2 are L-stable

» other BDF(3-4-5-6) are A(«)-stable

» BF6 has a very narrow stability area, it is not used in practice

€

ENSTA
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Introduction fo Differential Algebraic Equations

Definition of Differential Algebraic Equations (DAE) [®

e panis

We consider a differential system of equation
Fl():((t)vx(t)> t)
FZ(X(t)7 X(t)v t)

F(x,x,t) = =0

Fa(x(2), x(t), £)

with x(t), x(t) € R".
This system is a DAE if the Jacobian matrix

—— is singular
1
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Introduction fo Differential Algebraic Equations

Example of DAE €4

ENSTA

e panis

The following system is a DAE

—-x+1=0 — X
“ . Xl =  F(,x,t)= (Xl. X1+1) with x = <X1)
x1xp +2=0

The Jacobian of F w.r.t. x is

o (28 o8 Lo oF

[ ) (- B

ox |\ o om _(X2 0) = det(ax)_o
o5 O

Note in this example X is not explicitly defined.
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Introduction fo Differential Algebraic Equations

Example of DAE continued

Solving DAE is a hard challenge either symbolically or numerically.
Special DAE forms are usually considered: linear, Hessenberg form, etc.

Example, we rewrite the previous system
» solving for x; the equation x; — %1 +1=0= % =x1 +1

> Substitute X1 in x1x2 +2 = 0 we get

X1 =x1+1 Ordinary differential equation

(x1+1)x+2=0 Algebraic equation

Note: this form of DAE is used in many engineering applications.
» mechanical engineering, process engineering, electrical engineering, etc.

» Usually: dynamics of the process + laws of conservation

€

ENSTA
© e eanis
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Chemical reaction

€

ENSTA

An isothermal continuous flow stirred-tank reactor! (CSTR) with elementary reactiol @ e eanis

A=B—C

assuming

> reactant A with a in-flow rate F; and concentration Cy,
» Reversible reaction A = B is much faster that B — C, i.e., ki > ko

V=F.—F
. F
Ca=-2(Cay—Ca)— R
v

. F,
Cg=—-—-—2Cg+ R —R
B v B+ R 2
. F,
Cc=—--— +R
c CC+ 2

C
0=Ca— -2

Keg
0=Ry— ko Cg
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Chemical reaction gsz

e panis

» R; and R» rates of reactions

» F output flow
» Cp, Cg and C¢ are concentrations of A, B and C.

Let
X = (V7 CA7 C37 CC)
z= (R, R2)
we get
x = f(x,z)
0=g(x,2)
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Mechanical system »

ENSTA
© e pamis
Pendulum
> second Newton's law » Mechanical energy conservation
mi:—ix Xty =10
14
. F
my = mg—
Y g 7 y
X1 = X3
X‘2 = X4
F
X3 =——x
3 7
. F
X4 = 8—X2 - X
14 ~— -
0=>x2+x3 —¢2 T
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Electrical system gsﬁ

Ohm'’s law
e eams

CVc=ic, LV =i, Vgr=Rig

Kirchoff’s voltage and current laws

» Conservation of current

ie=ig, ir=lc, ic=1iL
» Conservation of energy

Ve+Vi+Vc+ VE=0

And we get

. 1

Ve = —i

C C’L

. 1

Vi =-—i

L L’L

0= Vg + Rig
0=Vg+Vr+Vc+V,
O ==
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Electrical system »

ENSTA
Let @ 1e paris
x = (Vc, Vi, VR, i, iE)
we have
1
¢ 0 0 0O
0 f 00 0
x=10 0 0 0 0]x
0O 0 0 0 O
0O 0 0 0 O
0 01 0 R 0
0=(1 1 1 0 O |x+|[1] Ve
0 0 01 -1 0
which is of the form
x = Ax
0=Bx+ Dz
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Introduction fo Differential Algebraic Equations

€

Method of Lines for PDE
ENSTA

e panis

Consider the linear PDE (diffusion equations)
u(x = xp, t) = up

2
7(x t)=D (x t) with %(X_Xf,t)_o

and D a constant.
Using method of lines, we have with an equally spaced grid for x (finite difference)

@ L Uiyl — 2ui + uj—1 Lo (Axg)

ax2 Ax?
Hence, we get
dus 1 — 2u .
ui :DU’H—LH_U’I for i=1,2,....,M
dt Ax?
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Introduction fo Differential Algebraic Equations

Method of Lines for PDE

In other words, we get the system

U = up
duy uz — 2up + up
2 _pB e
dt Ax?

dus ug — 2u3 + up
8 _p el T2
dt Ax?

duy plm+1 = 2up + up—1
dt Ax?
up+1 = Uy

Note up4; is outside of the grid so we add an extra constraints.
Hence we get a DAE

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems
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Introduction fo Differential Algebraic Equations

€

Method of Lines for PDE
ENSTA

e panis
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Introduction fo Differential Algebraic Equations

Classification of DAE

» Nonlinear DAE if it is of the form
F(x,x,t) =0

and it is nonlinear w.r.t. any one of X, x, or t

» Linear DAE if it is of the form
A(t)x + B(t)x = c(t)

If A(t) = A and B(t) = B then the DAE is time-invariant
» Semi-explicit DAE it is of the form

x = f(t,x, z)
0=g(t,x,2)

z is the algebraic variable and x is a differential/state variable

» Fully implicit DAE it is of the form

F(x,x,t) =0

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems
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Introduction fo Differential Algebraic Equations

Classification of DAE - cont

Note any DAE can be written in a semi-explicit form.

Conversion of fully implicit form

xX=z

F(x,x,t) =0 &
(%, 1) {O:F(z,x,t)

Remark this transformation does not make the solution more easier to get
But useful in case of linear DAE, see next.
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Introduction fo Differential Algebraic Equations

Classification of DAE - cont

Consider a linear time-invariant DAE

AX + Bx + b(t) =0

assuming that AA 4+ B (matrix pencil) is not singular for some scalar A.

Then it exists non-singular matrices G and H of size n X n such that:
_(Ilm O _(Jd 0
GAH = (0 N) and GBH = (0 Infm)

Im is the identity matrix of size m x m (m < n)

In—m is the identity matrix of size (n — m) x (n — m)
N is a nilpotent matrix, i.e., 3p € NT, NP =0

J 6 Rmxm

vvyyvyy
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Introduction fo Differential Algebraic Equations

€

Classification of DAE - cont
ENSTA

e panis

Hence
Ax + Bx + b(t) = 0 < (GAH)(H 1) + (GBH)(H Y)x 4+ Gb(t) =0

] 0 1. J 0 _
©(6" N)H 1XJF(O /n_m)H b+ Gb(r) =0

o with  w(t) = H !x

Im .
(O ,?I)W+((JJ 0 )W+Gb(t):0

Let w = (w1, w2)T with wy € R™ and wy € R"™™, b = (b, bo) 7T we get

w1 + Jwy + bi(t) =0
Nw; + wyr + b2(t) =0

From Nilpotency property, we get
wp = —Jwyg — bl(t)
0= —(NP)~twn — (NP) " ho(t)
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Notion of index for DAE

Index of DAE [»

ENSTA

e eanis

Remark

There are several definitions of an index.
Each measure a different aspect of the DAE.

> Differential index (§) measure the degree of singularity.
> Perturbation index (7) measure the influence of numerical approximation.

> etc.

Definition of differential index

The index of a DAE system F (x, x,t) = 0 is the minimum number of times certain
equations in the DAE must be differentiated w.r.t. t, in order to transform the
problem into an ODE.

Remark: (differential) index can be seen as a measure of the distance between the
DAE and the corresponding ODE.
Remark: mathematical properties are lost with differentiation!
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Notion of index for DAE

€

DAE and index
ENSTA

e panis

Definition of index
The differential index k of a sufficiently smooth DAE is the smallest k such that:

F(%,x,t) =0
Z—f(k,x,t) =0
OkF .
W(X’X’t) =0

uniquely determines x as a continuous function of (x, t).
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Notion of index for DAE

Differential index and DAE — example

Let
x1=x1+1

xa+1)x+2=0

with x» the algebraic variable.
Differentiation of g w.r.t. t,

d . . . X1X2
—g(x,x)=0 = Xx+xi+l)e=0 = H=—-—7"=-x
dt x1
Only one differentiation is needed to define X», this DAE is index 1
Other examples,
> CSTRis index 2
» Pendulum is index 3
There are higher index DAEs (index > 1)
Index reduction is used to go from higher index to lower index DAE (cf Khalil
Ghorbal's lecture)

€

ENSTA

e

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 47



Notion of index for DAE

DAE family and differential index »

ENSTA

e panis

Index O
ODE system x = f (t, x(t))

Index 1

Algebraic equation y = ¢(t)

Index 1

DAE in Hessenberg form of index 1
x=1f(t,xy)

13)
0=g(x,y) with % s non-singular
Oy
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Notion of index for DAE

Examples of differential index - cont.

Index 2
DAE in Hessenberg form of index 2
x=1f(t,x,y)
Og Of
0=g(t,x) with 8T s non-singular
Ox Oy
Index 3
DAE in Hessenberg form of index 3
>.< = f(t’X7.y7z)
y=g(t,x,y)
h f
0= h(t,y) with 9h 0g of is non-singular
Jy Ox 0z

e.g., mechanical systems
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Notion of index for DAE

Perturbation index

The DAE has the perturbation index k along a solution x if k is the smallest integer
such that,
for all functions x(t) having the defect

f(xs,xs,t) = &(t)
there exists an estimate
| x(t) — xs(t) [I< C (II x(to) = xs(to) || +max [[ 6(t) || +maxe [| 8'(t) ||
oo max | 66D (e) )
for a constant C > 0, if § is small enough.

Property:

§<m<d+1

€
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Index reduction

RLC circuit

up = f(t)
up = Ryiy
) i = Raip
10
2l di
u =L—
. dt
duc
Uo Ic CT
ic t
o ug = uy + uc
u =u+u
c we L 1+ u2
uc = up
o = i1 +iL
» i1 = i
T 1 2+ ic

We want to compute a state-space form of this RLC circuit.
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Index reduction

Structure incidence matrix E’

ENSTA

e eanis
u o o i U2 U % % ic
Ee.(3) {1 0 0 0 0 0 O O O O
Eq.(4) [0 0 1 1. 0 0 0 0 0 0
Eq.(5) |0 0 0 0 1 1 0 0 0 O
Eq.(6) |0 0 0 0 0 0 1 1 0 O
Eq.(7) [0 o o o0 0o 0o 0o o 1 1
Eq.(8) [1 o 1 0o o o 0o 0o 0 o0
Eq.(9) [0 o0 1 0o 1 0o 1 0 0 o0
Eq. (10) 0O 0 0O O 1 0 o 0 0 0
Eq.(11) |0 1 0 1 0 0 0 0 0 0
Eq.(12) \0 0 0 1 0 1 0 0 0 1

Structure incidence matrix

Relation between equations (rows) and unknowns (columns)

> if the i-th equation contains the j-th variable then the matrix coefficient (i, )
contains 1 and 0 otherwise.
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Index reduction

Structure incidence matrix - cont. ENE;

e

By default all equations are implicit (or acausal)
Two rules to choose the set of variables to solve

» if an equations contains only a single unknown then we need that variable to
solve it (i.e., this equation is causal, e.g., Eq. (3))

» If an unknown only appears in one equation, that equation must use to solve it.
E.g., Eq. (11) ip only appears in that equation.

Apply iteratively these rules:

» if a row only contains one 1, that equation needs to be solved for that variable
so eliminate both row and column

» if a column only contains one 1, that variable needs to be solved for that
equation so eliminate both row and column
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Index reduction

€

Structure digraph
ENSTA
Eq. (3) e

Remark the number of equations must_always eaual to the number of variables.
January 4, 2023- 54
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Index reduction

Structure digraph - cont. »

ENSTA

e

Building: There is a link between a node of equations and a node of variable is this
variable appears in that equation.
Finding which variable needs to be solved from which equations, is based on a graph
coloring algorithm (Tarjan)
» When a variable is selected to be solved from an equation the link between
them is colored in red.

» When a variable is known or when the equation in which it occurs is being used
to solve an other variable, the link is colored in blue

A causal equation has exactly one red link connected to it

An acausal equation has block or blue connected edges

A known variable has exactly one red input edge

An unknown variable has only black or blue input edges

vyVVvyvYyVvyy

No equation or variable has more than one red edges
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Index reduction

Structure digraph - cont. »

ENSTA

e

Rules to find variables and equations

» For all acausal equations, if an equation has only one black line attached to it,
color that line red, follow it to the variable it points at, and color all other
connections ending in that variable in blue. Renumber the equation using the
lowest free number starting from 1.

» For all unknown variables, if a variable has only one black line attached to it,
color that line red, follow it back to the equation it points at, and color all other
connections emanating from that equation in blue. Renumber the equation using
the highest free number starting from n, where n is the number of equations.

These rules are applied recursively.
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Index reduction

€

Structure digraph ENSTA

After one iteration of the algorithm.
© e pamis

Eq. (3) - 1

Eq. (11) - 10
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Index reduction

€

Structure digraph
At the end of the algorithm iNSTA

Eq. 3) - 1

Eq. (11) - 10
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Index reduction

Structure digraph

At the end of the algorithm and the system of equations is written as

uo
2

i2

uy

i

ic
ug
duc
dt
di;
dt
i

£(t)

uc
u2/R2
up — uc
u; R1
i1 — b
uyp + up

ic/C

UL/L

i+

Note these equations are causal and in order to be evaluated.
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Index reduction

Structure incidence matrix and Tarjan algorithm »

ENSTA

@ 1e paris
up uy b uy B ic u % ds—f io
Eq.(13) /1 0 0 0 0 0 0O O 0 O
Eq.(14) [ 0 1 0 0o 0o 0 0 0 0 O
Eq. (15 0 1 1 0 0 0 0 O O O
Eq.(16) | 1 0 0 1 0 0 0O 0O O O
Eq.(17) | 0 0 0 1 1 0 0 0O 0 O
Eq.(18) | 0 0 1 0 1 1 0 0O 0 ©
Eq.(199| 0 1 0 1 0 0 1 0 0 O
Eq. (20) 0o 0 0 0 0O 1 o0 1 0 0
Eq.(21) {0 0 0 0 0 0 1 0O 1 O
Eq. (22) o 0 0 o0 1 0 0 O 0 1

Note 1 the matrix is lower triangular (Tarjan < matrix permutation)
Note 2 Tarjan algorithm has a linear complexity in the number of equations. Also
used in Pantelides algorithm
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Index reduction

Algebraic loops »

ENSTA
D e eanis
A tiny modification of the RLC circuit
ug = f(t) (23)
u1 = Riip (24)
uy = Roip (25)
u3 = R3i3 (26)
di
u = Ld—tL (27)
up = u1 + u3 (28)
u=u +w (29)
uz3 = up (30)
io=ih+1i (31)
h=hh+i (32)

Note the capacitor is replaced by a resistor.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 61



Index reduction

Algebraic loop - structure digraph [ St

) 1p paris
Eq. (23) '
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Index reduction
Algebraic loop - structure digraph - Tarjan

Eq. (23)

Remark after 2 iterations the Tarjan algorithm cannot progress any more.
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Index reduction

Algebraic loop - structure digraph - Tarjan »

ENSTA

@ e eams
up = f(t) (33)
uy—Riii =0 (34)
up — Ryip =0 (35)
uz3 — R3i3 =0 (36)
up+u3 = up (37)
u —uz3 =0 (38)
ih1—ih—i3=0 (39)
up =u +up (40)
% =u/L (41)
io=1#h+ i (42)

Note The last six equations form an algebraic loop and cannot be sorted then they
must be solved all together.
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Index reduction

Algebraic loop - structure digraph - Tarjan - cont »

ENSTA

© e pamis
. . . difg, .
uq wy i1 wp g ug i3 ur, Tt i0
Eq.(7.6a) 1 | 0 0 0 0 0 0 0 0 0

_ + — _ — _ — _ .
Eq.(7.6b) 0 | 1 1 0 0 0 0 | 0 0 0
Eq.(7.6c) 0 | 0 0 1 1 0 0 | 0 0 0
Eq.(7.6d) 0 | 0 0 0 0 1 1 | 0 0 0
Eq.(7.6¢) 1 | 1 0 0o 0 1 0 | o0 0 0
g = Ea.(7.60) 0 | 0 0 1 0 1 0 | 0 0 0
Bq.(7.68) o | o 1 o 1 0 1 | o 0 0
e
Eq.(7.6h) 0 1 0 1 0 o0 o0 | 1 | o0 0
. — + —
Eq.(7.61) 0 o 0 © 1 0 0 1 | 1 | 0
— + —
Eq.(7.6)) 0 0 1 0 0 0 0 0 | 1
(7.7)

Algebraic loops deserve special treatment:
» in case of linear system: Gauss elimination
» otherwise: Newton algorithm

Algebraic loops are very frequent in multi-body dynamics.
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Index reduction

Structural singularity elimination

ug = f(t)
ur = Riy
. duy
ih= ClI
dup

uz = ZW
up = UR + U1
uz = ux

ip =i+ i

€

ENSTA

e

(43)
(44)

(45)

If the state variables are u; and u> then Eq. (48) is a constraint (a variable as only

blue edges in the structure digraph).
Pantelides algorithm can can be used to handle this situation

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems

January 4, 2023- 66



Index reduction

Pantelides and structural singularity elimination ES’
ENSTA
If up = uy is true for all t then @ oams
dua _din oo (50)
dt dt

Idea use symbolic differentiation to compute Eq. (50) and replace the constraint by its
derivative. Hence,

ug = f(t) (51)
ug = Rip (52)
duq
h=Cy— 53
=G (53)
duy
=G— 54
u =G (54)
ugp = UR +n (55)
dup _ duy (56)
dt dt
io=1h+i (57)

Using Tarjan algorithm we get an algebraic loop but we know how to deal with.
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Index reduction

€

Pantelides and structural singularity elimination [ St

e panis

Structurally singular systems are also known as higher index problems.

» an index-0 contains neither algebraic loop nor structural singularities

» index 1 contains algebraic loops but no structural singularities
Pantelides is a symbolic index reduction algorithm. One application reduces the index
by 1.
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Index reduction

Issues of index reduction E’
ENSTA
@ 1e paris

Issues

» Consistent initial conditions finding initial value for differential and algebraic
variables may be very difficult.

For
F(x,x,t) =0

Xo is a consistent initial value, if there exists a smooth solution that fulfills
x(0) = xp and this solution is defined for all t.
E.g., semi-explicit DAE with only x(0) = xo what about the algebraic variable?

> Drift off effect when applying index reduction the solution of the lower index
DAE may not be of the original index.
In consequence, tools/methods to solve DAE should
> provide automatic index reduction
» be able to find consistent initial values

e.g., Dymola/Modelica
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Index reduction

Example of consistent initial value

Let

o= —0.5(u+v)+ qi(t)
=0.5(u—v) — q2(t)

If u(0) is given we can determine v(0) = u(0) — 2g2(0) and so 1(0).
Set u=y; +y» and v =y; — yo we get

yi+y2=—y1+ aqlt)
0=y —qa(t)

For consistency we must have y>(0) = ¢2(0) but we can choose y;(0) arbitrarily but
we cannot determine y;(0) without using y2(0) = §2(0).

€
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e panis
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Index reduction

Example of drift off effect €4

ENSTA

D e eanis

Going from index 3 pendulum to index 2 by differentiating the constraint
x2 + x2 — €2 =0 leads to

X1 = X3 (58)
X'2 = X4 (59)
F
X3 =——x1 (60)
y4
. F
X4 = ngQ (61)
0 = x1x3 + x2x4 (62)
m
Comments:

> solid line curve is the result of index 3 pendulum problem

> Constraint (62) says the velocity should orthogonal to the position. Index
reduction increase the space of solution with dashed line curves
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Sovability of IVP DAE

A small theory of DAE

For ODE, we have a theorem applying on a large class of problem proving the
existence and unicity of the solution

No such theorem exists for DAE
Instead we have some theorems of solvability of different kinds of DAE

» Linear constant coefficient DAE
» Linear time varying coefficient DAE
» Non-linear DAE
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Sovability of IVP DAE

Solvability of DAE »
ENSTA

e

Definition
Let Z be an open sub-interval of R, Q a connected open subset of R2™t1 and F a
differentiable function from Q to R™. Then the DAE F(x, x,t) = 0 is solvable on Z in
Q if there is an r-dimensional family of solutions ¢(t, c) defined on a connected open
set Z X Q, 2 C R", such that

1. ¢(t,c) is defined on all of Z for each c € {

2. (¢(t,¢), ¢(t, c), t) € Qfor (t,c) € T x

3. If 9(t) is any other solution with (¢'(t, c),¥(t, c), t) € Q then ¥(t) = ¢(t,c)

for some ¢ € Q
4. The graph of ¢ as a function of (t, c) is an r + 1-dimensional manifold.
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Sovability of IVP DAE

Solvability of linear constant constant DAE »

ENSTA

e panis

Let
Ax+ Bx = f

And consider the matrix pencil NA + B
A matrix pencil is regular if det(AA + B) is not identically zero as a function of A.

Theorem

The linear constant coefficient DAE is solvable if and only if AA 4 B is regular pencil.

Note: the degree of nilpotency of the matrix N used in the decomposition is also the
index number of the DAE.
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Sovability of IVP DAE

Conclusion

DAE are a generalisation of ODE but
» there is no general theorem to prove existence of the solution of DAE
» differentiation used to index reduction can introduce singularities
» the class of numerical methods used to solve DAE is rather small compare to

ODE.
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Initial Value Problem for DAE — solving methods

IVP for DAE

We will consider DAE in Hessenberg form of index 1

y="~f(ty,2)
- .
0=g(y,z) with 3 non-singular
z

with z(0) =29 and y(0)=1yo
and sometimes, DAE of the following form can be considered
My(t) = f(y(t))

M is known as the Mass Matrix
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Initial Value Problem for DAE — solving methods

Relation between DAE and stiff ODE € 4

ENSTA
© e pamis
Singularly perturbed ODE systems are of the form
y=1f(t,y,2) (63)
ez = g(t,2,y) (64)

When ¢ = 0 then we get a DAE but Eq. (63) is usually stiff.
DAE can be seen as infinitely stiff.

Consequence

not all numerical method to solve ODE can be used to solve DAE!
we want A-stable methods (event L-stable) but stiffly stable is enough (as for BDF)
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Initial Value Problem for DAE — solving methods

€

State-space method to solve DAE index 1
ENSTA

e panis

y="~1(ty,2)
. Og . .
0=g(y,z) with —= is non-singular
0z
with  z(0) =29 and y(0)=1yo

By Implicit function theorem there exists (at leat locally) a function G(y) such that
z=G(y)

By substitution we can have
y = f(t,y,G(y))

which can be solved by any method for IVP ODE but
» you lose the structure of the problem

» G is not so simple to get
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Initial Value Problem for DAE — solving methods

e-embedding approach — Runge-Kutta case »

ENSTA

e

y="f(ty.2)
. . og . .
ez=g(y,z) with — is non-singular
0z
with 2(0) =z and y(0) = yo
Applying a Runge-Kutta method,

s
Yi=yn+h Z a,-jf(Ynj, an)
=1

s
elni =€zp + hz aij8(Ynj, Znj)
Jj=1

s
Yoi1 =Yo+h>_ bif(Yi,Zi)
i=1

s
EZp41 = €Zp + hz I:),'g(Y,'7 Z,)
i=1
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Initial Value Problem for DAE — solving methods

e-embedding approach - Runge-Kutta case — cont’ »

ENSTA

e panis

Applying a Runge-Kutta method,

s
Yni=Yyn+h Z a,-jf(Ynj, an)
Jj=1

s
e, =€z, + hz a,-jg(Ynj, an)
j=1

s
Yni1 =Yn+h > bif(Yi, Zi)
i=1

s
E€Zpy1 = €Zn + hz b,'g(Y,'7 Z,')
i=1

assuming the matrix A of coefficients aj;; is non singular,

hg(Yni, Zni) = aZw,-j (Ynj — Zn) with wijj = (a,-j)’l
=1
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Initial Value Problem for DAE — solving methods

€

e-embedding approach - Runge-Kutta case — cont’ [t

e panis

From

s
hg(Yni, Zni) = 5Zw,-_,- (Ynj —zn) with wj= (a,:,-)_1
j=1

we get,

s
Yoi=yn+hY_ aif (Yo, Zn)
j=1

0= g(Ynh Zni)

s
Yni1 =Yn+h > bif(Yi, Zi)
i=1

s s
=|1- E biwij | zn + E bjwjjZ,j independence wrt €
ij=1 ij=1

Zpt1

Remark: this approach can lead to numerical divergence as the solution may not
respect the constraint g(y,z) =0
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Initial Value Problem for DAE — solving methods

e-embedding approach /State-space method ENE;

e

Approximating state-space method can be reached by the formula

s
Yni =Yn+ hz a,-jf(Ynj, an)
=1

0 =g (Yni, Zni)

s
Yni1 =Yn+h > bif(Yi,Z;)
i=1

0= g(Yn+1, Zn+l)

Remarks
> For stiffly accurate methods (see next slide) e-embedding method and
state-space method are identical
> c-embedding method can be generalized to other classes of DAE index 1 (mass

matrix form or implicit form)
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Initial Value Problem for DAE — solving methods

€

Solving DAE with Runge-Kutta methods
ENSTA

e

A Runge-Kutta is defined by its Butcher tableau

1 ai ain o als
Cs | ds1  ds2 - dss
b by e bs
/ / ’ ;
by by .- b, (optional)

Remark

For DAE, we only consider fully implicit Runge-Kutta methods which are L-stable,
with A non-singular and with b; = a5; (j =1,2,...,s).

The most used method are Backward Euler’s method and Radau IIA order 5.

Remark:
> the last condition b; = ag; is good as the last step of RK method is not applied

on algebraic variable.
> Stiffly accurate is sufficient for semi-explicit index 1 but not for higher index
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Initial Value Problem for DAE — solving methods

Multi-step methods €4

ENSTA

e

Recall: single-step methods solve IVP using one value y, and some values of f.
A multi-step method approximate solution y, 1 of IVP using k previous values of the

solution yn, Yn—1, -+, ¥Yn—k—1-
Different methods implement this approach

» Adams-Bashworth method (explicit)
» Adams-Moulton method (implicit)
»> Backward Difference Method (implicit)

The general form of such method is
Kk k
> aiynrj =h>_ Bif(tar Ynt)) -
j=0 j=0

with o and §; some constants and o, =1 and |ag| + |Bo| # O
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Initial Value Problem for DAE — solving methods

Solving DAE with multi-step methods

We consider ]
y="~(ty,2)

0,

0=g(y,z) with % s non-singular
0z

with z(0) =zg and y(0)=1yo
by using e-embedding method.

y="~f(ty,2)

. . Og . .

ez =g(y,z) with B non-singular

z

with z(0) =2zp and y(0)=yo

Applying, multi-step method, we get

K K
D aiynri =hY_ Bif (Yntisznti)

i=0 i=0

K K
€ Z Qizpyi = h Z Big&(Yn+i>Znti)
i=0 i=0
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Initial Value Problem for DAE — solving methods

e-embedding method — multi-step case - cont’ »
Applying, multi-step method, we get ENSTA

K K
D iynsi=hy_ Bif (Yn+iszn+i)
i=0 i=0

e panis

K K
€Y aizpii=hy_ Big(ynti znti)

i=0 i=0

and setting € = 0 we get
k k
> aiynri =hY_ Bif (Yntirzati)
i=0 i=0

k
0=h Z Big(yn+i» zn+i)

i=0

A state-space method can be applied by using

K K
> aiyari =h> Bif (Yntisznti)

i=0 i=0
0 = g(Ynt+k>Zntk)
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Initial Value Problem for DAE — solving methods

Solving DAE index 1 with BDF

For BDF one has
k

rﬁ() ; AiYnti = f(Yn+k7 Zn+k)
0= g(Ynik>Znik)

Remarks
» we still need stiffly accurate method so BDF has to be considered

» Can be applied on DAE index 2 also

Convergence

m-step BDF with m < 6 converge; i.e.,
y(t) —yi <O(h™) and z(t;)) —z; < O(h™)

for consistent initial values.
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