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IVP

Recall our starting point is the IVP of ODE defined by

ẏ = f (t, y) with y(0) = y0 , (1)

for which we want the solution y(t; y0) given by numerical integration methods i.e. a
sequence of pairs (ti , yi ) such that

yi ≈ y(ti ; y0) .
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Why do we consider discontinuities?
Need to model
I non-smooth behaviors, e.g., solid body in contact with each other
I interaction between computer and physics, e.g., control-command systems
I constraints on the system, e.g., robotic arm with limited space
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Simulation with discontinuous systems

There are two kinds of events:
I time event: only depending on time as sampling
I state event: depending on a particular value of the solution of ODE or DAE.

To handle these events we need to adapt the simulation algorithm.
I Time events are known before the simulation starting. Hence we can use the

step-size control to handle this.
I State event should be detect and handle on the fly. New algorithms are needed.
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IVP with discontinuities

An IVP for ODE with discontinuities is defined by

ẏ =

{
f1(t, y) if g(t, y) > 0
f2(t, y) otherwise

with y(0) = y0 , (2)

for which we want the solution y(t; y0) given by numerical integration methods i.e. a
sequence of pairs (ti , yi ) such that

yi ≈ y(ti ; y0) .
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Example: zero-crossing detection

Fig. 1. Zero crossing detection and location stages
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Fig. 2. Even roots problem

account, and when these are faster than the dynamics of
f , the even roots situation may arise.

One solution to this is to include the g dynamics in the
model dynamics so the numerical solver adjusts its step-
size when too large an error (this will be caused by even
zeros) is found (Park and Barton [1996]). Alternatively,

Fig. 3. Remove double zero crossing events

the sensitivity of the zero crossing function against the
discrete step size can be computed and used to drive the
step-size selection (Esposito et al. [2001]). In both cases,
additional computations are required during the numerical
integration.

Another method is to divide the intervals Tn−1 and tn into
several smaller intervals and evaluate the zero crossings
at the end of each interval. This method is called zero
crossing refinement and reduces the likelihood of the even
roots problem. Although this method does not guarantee
eliminating the problem, it is in general computationally
more efficient.

3.2 Double Detection

Another issue with zero crossing detection arises when
the zero crossing function g returns exactly 0 at the
right side TR of the bracket. Once this happens, the
solver first detects a ‘−To0’ event 1 within [TL, TR]. When
the simulation moves forwards from TR, a ’0To+’ event
between TR and T +

R may be detected. Thus, two events
(δ−To0 and δ0To+) are reported consecutively, instead of
one ‘-To+’ event. This is a problem if the detected event
triggers computation, because such computation will be
executed twice where it should only be executed once.

To remove ouble event detection, the event δ−To+ can be
defined as:

δUP = δ−To+ = δ−To+ | δ−To0 | δ0To+ (2)

where | is a logical disjunction (the OR operator). Suppose
an δ−To+ event (for example, a rising reset) is to be
detected and if δ−To0 and δ0To+ are detected consecutively,
these two events will be combined into one ‘−To+’ event,
as shown in Fig. 3.

3.3 Masked Even Roots

When there is more than one zero-crossing function in the
system, the even roots problem may cause a side effect
that is referred to as a masked even roots zero crossing. As

1 The notation to indicate the type of zero-crossing event first states
the original sign of the indicator function (‘-’, ‘0’, or ‘+’) then
includes the string ‘To’ and finally the new sign of the indicator
function.

A simple example

ẏ =

{
f1(t, y) if g(y) > 0
f2(t, y) otherwise

.
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step-size selection (Esposito et al. [2001]). In both cases,
additional computations are required during the numerical
integration.

Another method is to divide the intervals Tn−1 and tn into
several smaller intervals and evaluate the zero crossings
at the end of each interval. This method is called zero
crossing refinement and reduces the likelihood of the even
roots problem. Although this method does not guarantee
eliminating the problem, it is in general computationally
more efficient.

3.2 Double Detection

Another issue with zero crossing detection arises when
the zero crossing function g returns exactly 0 at the
right side TR of the bracket. Once this happens, the
solver first detects a ‘−To0’ event 1 within [TL, TR]. When
the simulation moves forwards from TR, a ’0To+’ event
between TR and T +

R may be detected. Thus, two events
(δ−To0 and δ0To+) are reported consecutively, instead of
one ‘-To+’ event. This is a problem if the detected event
triggers computation, because such computation will be
executed twice where it should only be executed once.

To remove ouble event detection, the event δ−To+ can be
defined as:

δUP = δ−To+ = δ−To+ | δ−To0 | δ0To+ (2)

where | is a logical disjunction (the OR operator). Suppose
an δ−To+ event (for example, a rising reset) is to be
detected and if δ−To0 and δ0To+ are detected consecutively,
these two events will be combined into one ‘−To+’ event,
as shown in Fig. 3.

3.3 Masked Even Roots

When there is more than one zero-crossing function in the
system, the even roots problem may cause a side effect
that is referred to as a masked even roots zero crossing. As

1 The notation to indicate the type of zero-crossing event first states
the original sign of the indicator function (‘-’, ‘0’, or ‘+’) then
includes the string ‘To’ and finally the new sign of the indicator
function.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 7



Zero-crossing event detection

Main steps
I Detection of zero-crossing event

Is one of the zero-crossing changed its sign between [tn, tn + hn]?
I Localization: if detection is true

Bracket the most recent zero-crossing time using bisection method.
I Pass through the zero-crossing event in two steps:

I Set the next major output to the left bound of the bracket time.
I Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 1
Detection of the event.
We check that

g(tn, yn) · g(tn+1, yn+1) < 0

We observe is there is a sign changement of the zero-crossing function g .
Remark this is a not robust method (is the sign changes twice for example)
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Zero-crossing event detection

Main steps
I Detection of zero-crossing event

Is one of the zero-crossing changed its sign between [tn, tn + hn]?
I Localization: if detection is true

Bracket the most recent zero-crossing time using bisection method.
I Pass through the zero-crossing event in two steps:

I Set the next major output to the left bound of the bracket time.
I Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 2
Continuous extension (method dependent) to easily estimate state.
For example, ode23 uses Hermite interpolation

p(t) = (2τ3 − 3τ2 + 1)yn + (τ3 − 2τ2 + τ)(t2 − t1)f (yn)

+ (−2τ3 + 3τ2)yn+1 + (τ3 − τ2)(t2 − t1)f (yn+1)

with τ = t−tn
hn
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Zero-crossing event detection

Main steps
I Detection of zero-crossing event

Is one of the zero-crossing changed its sign between [tn, tn + hn]?
I Localization: if detection is true

Bracket the most recent zero-crossing time using bisection method.
I Pass through the zero-crossing event in two steps:

I Set the next major output to the left bound of the bracket time.
I Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 2
The solve the equation

g(t, p(t)) = 0

instead of g(t, y(t)) = 0
Note: as this equation is 1D then algorithm as bisection or Brent’s method can be
used instead of Newton’s iteration.
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Zero-crossing event detection

Main steps
I Detection of zero-crossing event

Is one of the zero-crossing changed its sign between [tn, tn + hn]?
I Localization: if detection is true

Bracket the most recent zero-crossing time using bisection method.
I Pass through the zero-crossing event in two steps:

I Set the next major output to the left bound of the bracket time.
I Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 3
Enclosing the time of event produce a time interval [t−, t+] for which we have
I the left limit of the solution y(t−)

I an approximation of the right limit of the solution y(t+) which is used as initial
condition for the second dynamics
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Simulation algorithm

Data: f1 the dynamic, f2 the dynamic, g the zero-crossing function, y0 initial condition, t0 starting time, tend end
time, h integration step-size, tol

t ← t0 y← y0 f ← f1 while t < tend do
Print(t, y) y1 ← Euler(f ,t,y,h) y2 ← Heun(f ,t,y,h) if ComputeError(y1, y2) is smaller than tol then

if g(y) · g(y1) < 0 then
Compute p(t) from y, f (y), y1 and f (y1) [t−, t+] = FindZero (g(p(t))) Print (t + t−, p(t−))

f ← f2 y← p(t+) t ← t + t+

end
y← y1 t ← t + h h ← ComputeNewH (h, y1, y2)

end
h ← h/2

end

Remark
One-step methods are more robust than multi-step in case of discontinuities (starting problem)
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Introduction to stability of numerical methods

Stability properties: a graphical view

Note: there are several kinds of stability.

Problem Impose Cp Consequence x(t)

Method Impose Cm Consequence xn

From a generic point of view we have:
I Impose a certain conditions Cp on IVP which force the exact solution x(t) to

exhibit a certain stability
I Apply a numerical method on IVP
I Question: what conditions must be imposed on the method such that the

approximate solution (xn)n∈N has the same stability property?
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Introduction to stability of numerical methods

Total stability of IVP

Consider, a perturbed IVP

ẏ = f (t, y) + δ(t) with y(0) = y0 + δ0 and t ∈ [0, b]

(δ(t), δ0) denotes the perturbations

Definition: totally stable IVP
From
I (δ(t), δ0) and (δ∗(t), δ∗0 ) two perturbations
I y(t) and y∗(t) the associated solutions

if

∀t ∈ [0, b],∀ε > 0,∃K > 0,
‖ δ(t)− δ∗(t) ‖≤ ε∧ ‖ δ0 − δ∗0 ‖≤ ε⇒‖ y(t)− y∗(t) ‖≤ Kε

then IVP is totally stable.
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Introduction to stability of numerical methods

Zero stability of numerical methods

We consider the application of numerical method on a perturbed IVP so we have a
perturbed numerical scheme

Definition: zero-stability
From
I δn and δ∗n two discrete-time perturbation
I yn and y∗n the associated numerical solution

if

∀n ∈ [0,N], ∀ε > 0, ∃K > 0, ∀h ∈ (0, h0]

‖ δn − δ∗n ‖≤ ε⇒‖ yn − y∗n ‖≤ Kε

then the method is zero-stable

In a different point of view, we want to solve ẏ = 0 with y(0) = y0 and so numerical
method should produce as a solution y(t) = y0. (It is obvious for RK methods)
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Introduction to stability of numerical methods

Zero stability for multi-step methods
First and second characteristic polynomials for linear multi-step methods are

ρ(z) =
k∑

i=0
αi z i and σ(z) =

k∑
i=0

βi z i

Root condition
A linear multi-step method satisfies the root condition is the roots of the first
characteristic polynomial ρ have modulus less than or equal to one and those of
modulus one are simple.

Theorem
A multi-step method is zero stable is it satisfies the root condition.

Theorem
No zero-stable linear k-step method can have order exceeding k + 1
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Introduction to stability of numerical methods

Consistency of numerical methods
We denote by Φf (tn, yn; h) a Runge-Kutta method such that

yn+1 = yn + hΦf (tn, yn; h)

If Φf is such that
lim
h→0

Φf (tn, yn; h) = f (tn, yn) .

then the Runge-Kutta method is consistent to the IVP.
As a consequence, the truncation error is such that:

lim
h→0

y(tn+1)− yn − hΦf (tn, yn; h) = 0

Consistency for s-stage RK methods
A necessary and sufficient condition is that

s∑
i=1

bi = 1
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Introduction to stability of numerical methods

Convergence of numerical methods

A Runge-Kutta method is said convergent if

lim
h→0

yn = y(tn)

Problem Lipschitz
condition

Problem
totally stable

Method consistency and
zero-stability

yn con-
verges to y(t)
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Linear stability analysis for one-step methods

Linear stability

We consider the IVP:
ẏ = λy with λ ∈ C,<(λ) < 0

Applying a RK method, we get

yn+1 = R(ĥ)yn with ĥ = λh

R(ĥ) is called the stability function of the method.

Stability function of RK methods

R(ĥ) =
det (I − ĥA + ĥ1lbt )

det (I − ĥA)

So, limn→∞ xn = 0 when |R(ĥ)| < 1
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Linear stability analysis for one-step methods

Linear stability of ERK – 1
The stability function for s-stage (s = 1, 2, 3, 4⇒ p = s) ERK is reduced to a
polynomial function:

R(ĥ) = 1 + ĥ +
1
2!

ĥ2 + · · ·+
1
s!

ĥs
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Figure 1: The absolute stability regions of explicit p-stage, pth-order
Runge–Kutta methods for 1 ! p ! 4 are plotted in complex hλ-space. The
absolute stability regions are shown in grey. The ordinate and abscissa are
Im(hλ) and Re(hλ) respectively. Notice that the size of the regions increases
with the order of the method.
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Linear stability analysis for one-step methods

Linear stability of ERK – 1

The stability function for s-stage (s > 4⇒ p < s) ERK is reduced to a polynomial
function:

R(ĥ) = 1 + ĥ +
1
2!

ĥ2 + · · ·+
1
p!

ĥp +
s∑

q=p+1
γq ĥq

with γq depending only on the coefficients of the ERK methods.
For example,
I for RKF45 (s = 5 and p = 4)

R(ĥ) = 1 + ĥ +
1
2!

ĥ2 +
1
6

ĥ3 +
1

24
ĥ4 +

1
104

ĥ5

I DOPIR54 (s = 6 and p = 5)

R(ĥ) = 1 + ĥ +
1
2!

ĥ2 +
1
6

ĥ3 +
1

24
ĥ4 +

1
120

ĥ5 +
1

600
ĥ6
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Linear stability analysis for multi-step methods

Linear stability of Adams-Bashworth methods
We consider the scalar linear IVP

ẏ = λy with λ ∈ C,<(λ) < 0

For linear problem, the stability polynomial of a multi-step method is

π(r , ĥ) = ρ(r)− ĥσ(r) with ĥ = λh4.5 Implicit Adams–Moulton Formulae 125
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FIGURE 4.1. Stability domains of explicit AB algorithms.

to oscillate. Worse, while higher–order polynomial interpolation may still be
acceptable, higher–order polynomial extrapolation is a disaster. These poly-
nomials have a tendency to deviate quickly from the approximated curve
outside the interpolation interval. Unfortunately, extrapolation is what nu-
merical integration is all about.

The previous paragraph indicates that the discovered shortcoming of
this class of algorithms will not be limited to the explicit Adams–Bashforth
methods, but is an inherent disease of all multi–step integration algorithms.

4.5 Implicit Adams–Moulton Formulae

Let us check whether we have more luck with implicit multi–step algo-
rithms. To this end, we again develop ẋ(t) into a Newton–Gregory backward
polynomial, however this time, we shall develop the polynomial around the
point tk+1.

ẋ(t) = fk+1 +

(
s

1

)
∇fk+1 +

(
s + 1

2

)
∇2fk+1 +

(
s + 2

3

)
∇3fk+1 + . . . (4.35)

We integrate again from time tk to time tk+1. However, this time, s = 0.0
corresponds to t = tk+1, thus, we need to integrate across the range s ∈
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Linear stability analysis for multi-step methods

Linear stability of Adams-Moulton methods
We consider the scalar linear IVP

ẏ = λy with λ ∈ C,<(λ) < 0

For linear problem, the stability polynomial of a multi-step method is

π(r , ĥ) = ρ(r)− ĥσ(r) with ĥ = λh4.6 Adams–Bashforth–Moulton Predictor–Corrector Formulae 127
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FIGURE 4.2. Stability domains of implicit AM algorithms.

As in the case of the ABi algorithms, the results are disappointing. AM1
and AM2 are useful algorithms . . . but they were already known to us under
different names. Starting from the third–order, the stability domains of the
AMi algorithms loop again into the left–half λ ·h–plane. It is unclear to us
why we should want to pay the high price of Newton iteration, if we don’t
get a stiffly–stable technique after all.

4.6 Adams–Bashforth–Moulton
Predictor–Corrector Formulae

The ABi algorithms were rejected due to their miserably small stable re-
gions in the left–half λ · h–plane. The AMi algorithms, on the other hand,
were rejected because they are implicit, yet not stiffly–stable. Maybe all is
not lost yet. We can try a compromise between ABi and AMi. Let us con-
struct a predictor–corrector method with one step of ABi as a predictor,
and one step of AMi as a corrector. For example, the (third–order accurate)
ABM3 algorithm would look as follows:
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Linear stability analysis for multi-step methods

Linear stability of Adams-Bashworth-Moulton methods
We consider the IVP:

ẋ = λx with λ ∈ C,<(λ) < 04.7 Backward Difference Formulae 129
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FIGURE 4.3. Stability domains of predictor–corrector ABM algorithms.

Newton–Gregory backward polynomial in x(t) rather than in ẋ(t) around
the time instant tk+1. Thus:

x(t) = xk+1+

(
s

1

)
∇xk+1+

(
s + 1

2

)
∇2xk+1+

(
s + 2

3

)
∇3xk+1+. . . (4.44)

or:

x(t) = xk+1 +s∇xk+1 +

(
s2

2
+

s

2

)
∇2xk+1 +

(
s3

6
+

s2

2
+

s

3

)
∇3xk+1 + . . .

(4.45)
We now compute the derivative of Eq.(4.45)) with respect to time:

ẋ(t) =
1

h

[
∇xk+1 +

(
s +

1

2

)
∇2xk+1 +

(
s2

2
+ s +

1

3

)
∇3xk+1 + . . .

]

(4.46)
We evaluate Eq.(4.46) for s = 0.0, and obtain:

ẋ(tk+1) =
1

h

[
∇xk+1 +

1

2
∇2xk+1 +

1

3
∇3xk+1 + . . .

]
(4.47)

Multiplying Eq.4.47 with h, truncating after the cubic term, and expanding
the ∇–operators, we obtain:
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Linear stability analysis for multi-step methods

Linear stability of BDF
We consider the scalar linear IVP

ẏ = λy with λ ∈ C,<(λ) < 0

For linear problem, the stability polynomial of a multi-step method is

π(r , ĥ) = ρ(r)− ĥσ(r) with ĥ = λh4.8 Nyström and Milne Algorithms 131
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FIGURE 4.4. Stability domains of implicit BDF algorithms.

By evaluating Eq.(4.46) for s = −1.0, we can obtain a series of explicit
BDFi algorithms. Unfortunately, they are not useful, since they are all
unstable in the entire λ · h–plane.

4.8 Nyström and Milne Algorithms

There exist two more classes of multi–step techniques that are sometimes
talked about in the numerical ODE literature, the explicit Nyström tech-
niques [4.10], and the implicit Milne methods [4.10]. Let us derive them
and look at their stability behavior.

We start again out with Eq.(4.22). However this time, we integrate from
tk−1 to tk+1, thus, from s = −1.0 to s = +1.0. We find:

x(tk+1) = x(tk−1) + h

(
2fk +

1

3
∇2fk +

1

3
∇3fk + . . .

)
(4.51)

The term in ∇fk drops out. Truncating Eq.(4.51) after the cubic term and
expanding the ∇–operators, we obtain:

x(tk+1) = x(tk−1) +
h

3
(8fk − 5fk−1 + 4fk−2 − fk−3) (4.52)

which is the fourth–order Nyström algorithm, abbreviated as Ny4.
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Stiffness

Stiff versus non-stiff problems

Problem 1 (
ẏ1
ẏ2

)
=

(
−2 1
1 −2

)(
y1
y2

)
+

(
2 sin(t)

2(cos(t)− sin(t))

)
Problem 2 (

ẏ1
ẏ2

)
=

(
−2 1
998 −999

)(
y1
y2

)
+

(
2 sin(t)

999(cos(t)− sin(t))

)
Both have the same exact solution:(

y1(t)
y2(t)

)
= 2 exp(−t)

(
1
1

)
+

(
sin(t)
cos(t)

)
with initial values

(
y1(0)
y2(0)

)
=

(
2
3

)
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Stiffness

Simulation results
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Stiffness

Stiff linear ODE: a definition

We consider linear constant coefficients IVP of the form:

ẏ = Ay + φ(t)

assuming that all eigenvalues λ are such that <(λ) < 0
We denote by
I | <(λ) |= max1≤i≤n | <(λi ) |
I | <(λ) |= min1≤i≤n | <(λi ) |
I the stiffness ratio is defined by | <(λ) | / | <(λ) |

Stiffness definition - 1 (Lambert)
A linear constant coefficients system is stiff iff all eigenvalues are such that <(λ) < 0
and the stiffness ratio is large.
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Stiffness

Others stiffness definitions

Definition 2 (Lambert)
Stiffness occurs when stability requirements, rather than those of accuracy, constrain
the step size.

Definition 3 (Lambert)
Stiffness occurs when some components of the solution decay much more quickly than
others.

Global definition (Lambert)
If a numerical method with a finite region of absolute stability, applied to a system
with any initial values, if forced to use in a certain interval of integration a step size
which is excessively small in relation to the smoothness of the exact solution in that
interval, then the system is said to be stiff in that interval.
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Stiffness

Linear stability definition for stiff systems - 1

A-stability
A method is A-stable if Rs ⊇ {ĥ : <(ĥ) < 0}

A(α)-stability
A method is A(α)-stable, α ∈]0, π/2[, if Rs ⊇ {ĥ : −α < π − arg(ĥ) < α}

Stiffly stability
A method is stiffly stable if RS ⊇ R1 ∪R2 such that R1 = {ĥ : <(ĥ) < −a} and
R2 = {ĥ : −a ≤ <(ĥ) ≤ 0,−c ≤ =(ĥ) ≤ c} with a and c two positive real numbers.
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Stiffness

Linear stability definition for stiff systems - 2

L-stability
A one step method is L-stable if
I it is A-stable
I and when applied to stable scalar test equations ẏ = λy it yields

yn+1 = <(hλ)xn where | <(hλ) |→ 0 as <(hλ)→ −∞

Relation between the stability definitions
L-stability⇒ A-stability⇒ stiffly stability⇒ A(α)-stability
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Stiffness

Numerical methods for linear stiff problems
Runge-Kutta methods

Method Order Linear stability prop.
Gauss 2s A-stability

Radau IA, IIA 2s − 1 L-stability
Lobatto IIIA, IIIB 2s − 2 A-stability

Lobatto IIIC 2s − 2 L-stability

Theorems (Dahlquist barrier)
I Explicit RK cannot be A-stability or stiffly stability or A(α)-stability!
I Explicit linear multi-step method cannot be A-stable
I The order of an A-stable linear multi-step method cannot exceed 2
I The second order A stable multi-step method with the smallest error constant

(C3) is the Trapezoidal rule.

For the particular case of BDF
I BF1 and BDF2 are L-stable
I other BDF(3-4-5-6) are A(α)-stable
I BF6 has a very narrow stability area, it is not used in practice
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Introduction fo Differential Algebraic Equations

Definition of Differential Algebraic Equations (DAE)

We consider a differential system of equation

F (ẋ , x , t) =


F1(ẋ(t), x(t), t)
F2(ẋ(t), x(t), t)

...
Fn(ẋ(t), x(t), t)

 = 0

with ẋ(t), x(t) ∈ Rn.
This system is a DAE if the Jacobian matrix

∂F
∂ẋ

is singular
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Introduction fo Differential Algebraic Equations

Example of DAE

The following system is a DAE

x1 − ẋ1 + 1 = 0
ẋ1x2 + 2 = 0

⇒ F (ẋ , x , t) =

(
x1 − ẋ1 + 1

ẋ1x2 + 2

)
with x =

(
x1
x2

)

The Jacobian of F w.r.t. ẋ is

∂F
∂ẋ

=

 ∂F1
∂ẋ1

∂F1
∂ẋ2

∂F2
∂ẋ1

∂F2
∂ẋ2

 =

(
−1 0
x2 0

)
⇒ det

(
∂F
∂ẋ

)
= 0

Note in this example ẋ2 is not explicitly defined.
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Introduction fo Differential Algebraic Equations

Example of DAE continued

Solving DAE is a hard challenge either symbolically or numerically.
Special DAE forms are usually considered: linear, Hessenberg form, etc.

Example, we rewrite the previous system
I solving for ẋ1 the equation x1 − ẋ1 + 1 = 0⇒ ẋ1 = x1 + 1
I Substitute ẋ1 in ẋ1x2 + 2 = 0 we get

ẋ1 = x1 + 1 Ordinary differential equation

(x1 + 1) x2 + 2 = 0 Algebraic equation

Note: this form of DAE is used in many engineering applications.
I mechanical engineering, process engineering, electrical engineering, etc.
I Usually: dynamics of the process + laws of conservation
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Chemical reaction
An isothermal continuous flow stirred-tank reactor1 (CSTR) with elementary reactions:

A
 B → C

assuming
I reactant A with a in-flow rate Fa and concentration CA0
I Reversible reaction A
 B is much faster that B → C , i.e., k1 � k2

V̇ = Fa − F

ĊA =
Fa

V
(
CA0 − CA

)
− R1

ĊB = −
Fa

V
CB + R1 − R2

ĊC = −
Fa

C C
+ R2

0 = CA −
CB
Keq

0 = R2 − k2CB

1Control of Nonlinear DAE Systems with Applications to Chemical Processes
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Chemical reaction

I R1 and R2 rates of reactions
I F output flow
I CA, CB and CC are concentrations of A, B and C .

Let

x = (V ,CA,CB ,CC )

z = (R1,R2)

we get

ẋ = f (x , z)

0 = g(x , z)
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Mechanical system

Pendulum
I second Newton’s law

mẍ = −
F
`

x

mÿ = mg
F
`

y

I Mechanical energy conservation

x2 + y2 = `2

ẋ1 = x3

ẋ2 = x4

ẋ3 = −
F
`

x1

ẋ4 = g
F
`

x2

0 = x2
1 + x2

2 − `2
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Electrical system
Ohm’s law

CV̇C = iC , LV̇ = iL,VR = RiR

Kirchoff’s voltage and current laws
I Conservation of current

iE = iR , iR = iC , iC = iL

I Conservation of energy

VR + VL + VC + VE = 0
And we get

V̇C =
1
C

iL

V̇L =
1
L

iL

0 = VR + RiE
0 = VE + VR + VC + VL

0 = iL − iE
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Introduction fo Differential Algebraic Equations

Engineering examples of DAE - Electrical system
Let

x = (VC ,VL,VR , iL, iE )

we have

ẋ =


1
C 0 0 0 0
0 1

L 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 x

0 =

0 0 1 0 R
1 1 1 0 0
0 0 0 1 −1

 x +

0
1
0

VE

which is of the form

ẋ = Ax
0 = Bx + Dz
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Introduction fo Differential Algebraic Equations

Method of Lines for PDE

Consider the linear PDE (diffusion equations)

∂u
∂t

(x , t) = D
∂2u
∂x2 (x , t) with


u(x = x0, t) = ub

∂u
∂x

(x = xf , t) = 0

and D a constant.
Using method of lines, we have with an equally spaced grid for x (finite difference)

∂2u
∂x2 ≈

ui+1 − 2ui + ui−1
∆x2 +O

(
∆x2)

Hence, we get

dui
dt

= D
ui+1 − 2ui + ui−1

∆x2 for i = 1, 2, . . . ,M
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Introduction fo Differential Algebraic Equations

Method of Lines for PDE

In other words, we get the system

u1 = ub

du2
dt

= D
u3 − 2u2 + ub

∆x2

du3
dt

= D
u4 − 2u3 + u2

∆x2

...
duM
dt

= D
uM+1 − 2uM + uM−1

∆x2

uM+1 = uM

Note uM+1 is outside of the grid so we add an extra constraints.
Hence we get a DAE

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 39



Introduction fo Differential Algebraic Equations

Method of Lines for PDE

P1: PHB
chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 15

Figure 1.1. MOL solution of Eq. (1.1) illustrating the origin of the method of lines

! Neumann BC at the right end, ux(x = 5, t) = 0 (spatial domain −5 ≤ x ≤ 5)
! Time domain 0 ≤ t ≤ 1
! Initial condition u(x, t = 0) = (1/2)e−(x−1)2 + e−(x+2)2

The MOL solution for the problem is shown in Figure (1.1). This numerical
solution was obtained using Matlab and the MOL library routine dss044 [7] with
the number of grid points M = 41 (so that the grid spacing is [5 − (−5)]/(41 − 1) =
0.25).

The result of Figure 1.1 matches very well the infinite-domain analytical solution

u(x, t) = 1
2
√

4Dt + 1

(
e

3(2x+1)
4Dt+1 + 2

)
e− (x+2)2

4Dt+1 (1.38)

This agreement is illustrated in Figure 1.2 where the analytical result has been super-
imposed on the MOL solution. This comparison illustrates an important distinction
between the analytical and numerical (MOL) solutions. The analytical solution is
for an infinite domain, −∞ ≤ x ≤ ∞, while the MOL solution is computed on a fi-
nite domain (as required by a computer), −5 ≤ x ≤ 5 [1]. The agreement between
the analytical and numerical solutions reflects the property that both solutions re-
main at essentially zero for u(x = −5, t) and u(x = 5, t) for t ≤ 1 as indicated in Fig-
ure 1.2.2

2 The exact analytical solution for the finite-domain problem is considerably more complicated than
Eq. (1.38) but could be derived by a finite Fourier sine transform ([8], pp. 405–415) or a Green’s
function ([9], pp. 48, 58).
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Introduction fo Differential Algebraic Equations

Classification of DAE
I Nonlinear DAE if it is of the form

F (ẋ , x , t) = 0

and it is nonlinear w.r.t. any one of ẋ , x , or t
I Linear DAE if it is of the form

A(t)ẋ + B(t)x = c(t)

If A(t) ≡ A and B(t) ≡ B then the DAE is time-invariant
I Semi-explicit DAE it is of the form

ẋ = f (t, x , z)

0 = g(t, x , z)

z is the algebraic variable and x is a differential/state variable
I Fully implicit DAE it is of the form

F (ẋ , x , t) = 0
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Introduction fo Differential Algebraic Equations

Classification of DAE - cont

Note any DAE can be written in a semi-explicit form.

Conversion of fully implicit form

F (ẋ , x , t) = 0 ẋ=z⇔
{

ẋ = z
0 = F (z, x , t)

Remark this transformation does not make the solution more easier to get
But useful in case of linear DAE, see next.
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Introduction fo Differential Algebraic Equations

Classification of DAE - cont

Consider a linear time-invariant DAE

Aẋ + Bx + b(t) = 0

assuming that λA + B (matrix pencil) is not singular for some scalar λ.
Then it exists non-singular matrices G and H of size n × n such that:

GAH =

(
Im 0
0 N

)
and GBH =

(
J 0
0 In−m

)

I Im is the identity matrix of size m ×m (m ≤ n)
I In−m is the identity matrix of size (n −m)× (n −m)

I N is a nilpotent matrix, i.e., ∃p ∈ N+,Np = 0
I J ∈ Rm×m
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Introduction fo Differential Algebraic Equations

Classification of DAE - cont
Hence

Aẋ + Bx + b(t) = 0⇔ (GAH)(H−1)ẋ + (GBH)(H−1)x + Gb(t) = 0

⇔
(

Im 0
0 N

)
H−1ẋ +

(
J 0
0 In−m

)
H−1x + Gb(t) = 0

⇔ with w(t) = H−1x(
Im 0
0 N

)
ẇ +

(
J 0
0 In−m

)
w + Gb(t) = 0

Let w = (w1,w2)T with w1 ∈ Rm and w2 ∈ Rn−m, b = (b1, b2)T we get

ẇ1 + Jw1 + b1(t) = 0
Nw1 + w2 + b2(t) = 0

From Nilpotency property, we get
ẇ1 = −Jw1 − b1(t)

0 = −(Np)−1w2 − (Np)−1b2(t)
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Notion of index for DAE

Index of DAE

Remark
There are several definitions of an index.
Each measure a different aspect of the DAE.
I Differential index (δ) measure the degree of singularity.
I Perturbation index (π) measure the influence of numerical approximation.
I etc.

Definition of differential index
The index of a DAE system F (ẋ , x , t) = 0 is the minimum number of times certain
equations in the DAE must be differentiated w.r.t. t, in order to transform the
problem into an ODE.

Remark: (differential) index can be seen as a measure of the distance between the
DAE and the corresponding ODE.
Remark: mathematical properties are lost with differentiation!
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Notion of index for DAE

DAE and index

Definition of index
The differential index k of a sufficiently smooth DAE is the smallest k such that:

F (ẋ , x , t) = 0
∂F
∂t

(ẋ , x , t) = 0

...
∂kF
∂tk (ẋ , x , t) = 0

uniquely determines ẋ as a continuous function of (x, t).
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Notion of index for DAE

Differential index and DAE – example

Let
ẋ1 = x1 + 1

(x1 + 1) x2 + 2 = 0

with x2 the algebraic variable.
Differentiation of g w.r.t. t,

d
dt

g(x1, x2) = 0 ⇒ ẋ1x2 + (x1 + 1)ẋ2 = 0 ⇒ ẋ2 = −
ẋ1x2
x11

= −x2

Only one differentiation is needed to define ẋ2, this DAE is index 1
Other examples,
I CSTR is index 2
I Pendulum is index 3

There are higher index DAEs (index > 1)
Index reduction is used to go from higher index to lower index DAE (cf Khalil
Ghorbal’s lecture)
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Notion of index for DAE

DAE family and differential index

Index 0
ODE system ẋ = f (t, x(t))

Index 1
Algebraic equation y = q(t)

Index 1
DAE in Hessenberg form of index 1

ẋ = f (t, x , y)

0 = g (x , y) with
∂g
∂y

is non-singular
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Notion of index for DAE

Examples of differential index - cont.

Index 2
DAE in Hessenberg form of index 2

ẋ = f (t, x , y)

0 = g (t, x) with
∂g
∂x

∂f
∂y

is non-singular

Index 3
DAE in Hessenberg form of index 3

ẋ = f (t, x , y , z)

ẏ = g (t, x , y)

0 = h(t, y) with
∂h
∂y

∂g
∂x

∂f
∂z

is non-singular

e.g., mechanical systems
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Notion of index for DAE

Perturbation index

The DAE has the perturbation index k along a solution x if k is the smallest integer
such that,
for all functions x(t) having the defect

f (ẋδ, xδ, t) = δ(t)

there exists an estimate

‖ x(t)− xδ(t) ‖≤ C
(
‖ x(t0)− xδ(t0) ‖ + max

t
‖ δ(t) ‖ +maxt ‖ δ′(t) ‖

+ · · ·+ max
t
‖ δ(k−1)(t) ‖

)
for a constant C > 0, if δ is small enough.

Property:
δ ≤ π ≤ δ + 1
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Index reduction

RLC circuit

254 Chapter 7. Differential Algebraic Equations

U
0=
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L
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i0 u1

i1

u2
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uC

iC

uL

iL

FIGURE 7.1. Schematic of electrical RLC circuit.

u2 = R2 · i2 (7.1c)

uL = L · diL
dt

(7.1d)

iC = C · duC

dt
(7.1e)

u0 = u1 + uC (7.1f)

uL = u1 + u2 (7.1g)

uC = u2 (7.1h)

i0 = i1 + iL (7.1i)

i1 = i2 + iC (7.1j)

As we wish to generate a state–space model, we define the outputs of the
integrators, uC and iL, as our state variables. These can thus be considered
known variables, for which no equations need to be found. In contrast, the
inputs of the integrators, duC/dt and diL/dt, are unknowns, for which
equations must be found. These are the state equations of the state–space
description.

The structure of these equations can be captured in the so–called struc-
ture incidence matrix. The structure incidence matrix lists the equations
in any order as rows, and the unknowns in any order as columns. If the ith

equation contains the jth variable, the element < i, j > of the structure
incidence matrix assumes a value of 1, otherwise it is set to 0. The structure
incidence matrix for the above set of equations could e.g. be written as:

u0 = f (t) (3)
u1 = R1i1 (4)
u2 = R2i2 (5)

uL = L
diL
dt

(6)

iC = C
duC
dt

(7)

u0 = u1 + uC (8)
uL = u1 + u2 (9)
uC = u2 (10)
i0 = i1 + iL (11)
i1 = i2 + iC (12)

We want to compute a state-space form of this RLC circuit.
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Index reduction

Structure incidence matrix



u0 i0 u1 i1 u2 i2 uL
diL
dt

duC
dt iC

Eq. (3) 1 0 0 0 0 0 0 0 0 0
Eq. (4) 0 0 1 1 0 0 0 0 0 0
Eq. (5) 0 0 0 0 1 1 0 0 0 0
Eq. (6) 0 0 0 0 0 0 1 1 0 0
Eq. (7) 0 0 0 0 0 0 0 0 1 1
Eq. (8) 1 0 1 0 0 0 0 0 0 0
Eq. (9) 0 0 1 0 1 0 1 0 0 0
Eq. (10) 0 0 0 0 1 0 0 0 0 0
Eq. (11) 0 1 0 1 0 0 0 0 0 0
Eq. (12) 0 0 0 1 0 1 0 0 0 1



Structure incidence matrix
Relation between equations (rows) and unknowns (columns)
I if the i-th equation contains the j-th variable then the matrix coefficient (i , j)

contains 1 and 0 otherwise.
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Index reduction

Structure incidence matrix - cont.

By default all equations are implicit (or acausal)
Two rules to choose the set of variables to solve
I if an equations contains only a single unknown then we need that variable to

solve it (i.e., this equation is causal, e.g., Eq. (3))
I If an unknown only appears in one equation, that equation must use to solve it.

E.g., Eq. (11) i0 only appears in that equation.
Apply iteratively these rules:
I if a row only contains one 1, that equation needs to be solved for that variable

so eliminate both row and column
I if a column only contains one 1, that variable needs to be solved for that

equation so eliminate both row and column
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Index reduction

Structure digraph
Eq. (3)

Eq. (4)

Eq. (5)

Eq. (6)

Eq. (7)

Eq. (8)

Eq. (9)

Eq. (10)

Eq. (11)

Eq. (12)

u0

i0

u1

i1

u2

i2

uL

i̇L

u̇C

iC

Remark the number of equations must always equal to the number of variables.
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Index reduction

Structure digraph - cont.

Building: There is a link between a node of equations and a node of variable is this
variable appears in that equation.
Finding which variable needs to be solved from which equations, is based on a graph
coloring algorithm (Tarjan)
I When a variable is selected to be solved from an equation the link between

them is colored in red.
I When a variable is known or when the equation in which it occurs is being used

to solve an other variable, the link is colored in blue

I A causal equation has exactly one red link connected to it
I An acausal equation has block or blue connected edges
I A known variable has exactly one red input edge
I An unknown variable has only black or blue input edges
I No equation or variable has more than one red edges
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Index reduction

Structure digraph - cont.

Rules to find variables and equations
I For all acausal equations, if an equation has only one black line attached to it,

color that line red, follow it to the variable it points at, and color all other
connections ending in that variable in blue. Renumber the equation using the
lowest free number starting from 1.

I For all unknown variables, if a variable has only one black line attached to it,
color that line red, follow it back to the equation it points at, and color all other
connections emanating from that equation in blue. Renumber the equation using
the highest free number starting from n, where n is the number of equations.

These rules are applied recursively.
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Index reduction

Structure digraph
After one iteration of the algorithm.

Eq. (3) – 1

Eq. (4)

Eq. (5)

Eq. (6) – 9

Eq. (7) – 8

Eq. (8)

Eq. (9)

Eq. (10) – 2

Eq. (11) – 10

Eq. (12)

u0

i0

u1

i1

u2

i2

uL

i̇L

u̇C

iC
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Index reduction

Structure digraph
At the end of the algorithm

Eq. (3) – 1

Eq. (4) – 5

Eq. (5) – 3

Eq. (6) – 9

Eq. (7) – 8

Eq. (8) – 4

Eq. (9) – 7

Eq. (10) – 2

Eq. (11) – 10

Eq. (12) – 6

u0

i0

u1

i1

u2

i2

uL

i̇L

u̇C

iC
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Index reduction

Structure digraph

At the end of the algorithm and the system of equations is written as

u0 = f (t) (13)
u2 = uC (14)
i2 = u2/R2 (15)

u1 = u0 − uC (16)
i1 = u1 R1 (17)
iC = i1 − i2 (18)
uL = u1 + u2 (19)

duC
dt

= iC/C (20)

diL
dt

= uL/L (21)

i0 = i1 + iL (22)

Note these equations are causal and in order to be evaluated.
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Index reduction

Structure incidence matrix and Tarjan algorithm



u0 u2 i2 u1 i1 iC uL
diL
dt

duC
dt i0

Eq. (13) 1 0 0 0 0 0 0 0 0 0
Eq. (14) 0 1 0 0 0 0 0 0 0 0
Eq. (15) 0 1 1 0 0 0 0 0 0 0
Eq. (16) 1 0 0 1 0 0 0 0 0 0
Eq. (17) 0 0 0 1 1 0 0 0 0 0
Eq. (18) 0 0 1 0 1 1 0 0 0 0
Eq. (19) 0 1 0 1 0 0 1 0 0 0
Eq. (20) 0 0 0 0 0 1 0 1 0 0
Eq. (21) 0 0 0 0 0 0 1 0 1 0
Eq. (22) 0 0 0 0 1 0 0 0 0 1


Note 1 the matrix is lower triangular (Tarjan ⇔ matrix permutation)
Note 2 Tarjan algorithm has a linear complexity in the number of equations. Also
used in Pantelides algorithm
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Index reduction

Algebraic loops

A tiny modification of the RLC circuit

260 Chapter 7. Differential Algebraic Equations
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FIGURE 7.5. Schematic of modified electrical RLC circuit.

The resulting equations are almost the same as before. Only the element
equation for the capacitor was replaced by a third element equation for a
resistor.

u0 = f(t) (7.5a)

u1 = R1 · i1 (7.5b)

u2 = R2 · i2 (7.5c)

u3 = R3 · i3 (7.5d)

uL = L · diL
dt

(7.5e)

u0 = u1 + u3 (7.5f)

uL = u1 + u2 (7.5g)

u3 = u2 (7.5h)

i0 = i1 + iL (7.5i)

i1 = i2 + i3 (7.5j)

The structure digraph for this new set of equations is presented in Fig.7.6.
Let us now apply the Tarjan algorithm to this structure digraph. Fig-

ure 7.7 shows the partially causalized structure digraph.
Unfortunately, the Tarjan algorithm stalls at this point. Every one of

the remaining acausal equations and every one of the remaining unknowns
has at least two black (solid) lines attached to it. Consequently, the DAE
system cannot be sorted entirely.

Let us read out the partially sorted equations. We shall only list on the

u0 = f (t) (23)
u1 = R1i1 (24)
u2 = R2i2 (25)
u3 = R3i3 (26)

uL = L
diL
dt

(27)

u0 = u1 + u3 (28)
uL = u1 + u2 (29)
u3 = u2 (30)
i0 = i1 + iL (31)
i1 = i2 + i3 (32)

Note the capacitor is replaced by a resistor.
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Index reduction

Algebraic loop - structure digraph

Eq. (23)

Eq. (24)

Eq. (25)

Eq. (26)

Eq. (27)

Eq. (28)

Eq. (29)

Eq. (30)

Eq. (31)

Eq. (32)

u0

i0

u1

i1

u2

i2

u3

i3

uL

i̇L
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Index reduction

Algebraic loop - structure digraph - Tarjan
Eq. (23)

Eq. (24)

Eq. (25)

Eq. (26)

Eq. (27)

Eq. (28)

Eq. (29)

Eq. (30)

Eq. (31)

Eq. (32)

u0

i0

u1

i1

u2

i2

u3

i3

uL

i̇L

Remark after 2 iterations the Tarjan algorithm cannot progress any more.
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Index reduction

Algebraic loop - structure digraph - Tarjan

u0 = f (t) (33)
u1 − R1i1 = 0 (34)
u2 − R2i2 = 0 (35)
u3 − R3i3 = 0 (36)

u1 + u3 = u0 (37)
u2 − u3 = 0 (38)

i1 − i2 − i3 = 0 (39)
uL = u1 + u2 (40)

diL
dt

= uL/L (41)

i0 = i1 + iL (42)

Note The last six equations form an algebraic loop and cannot be sorted then they
must be solved all together.
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Index reduction

Algebraic loop - structure digraph - Tarjan - cont

262 Chapter 7. Differential Algebraic Equations

uL = u1 + u2 (7.6h)

diL
dt

= uL/L (7.6i)

i0 = i1 + iL (7.6j)

The six remaining acausal equations form an algebraic loop. They need to
be solved together. The structure incidence matrix of the partially causal-
ized equation system takes the form:

S =




u0 u1 i1 u2 i2 u3 i3 uL
diL
dt

i0

Eq.(7.6a) 1 | 0 0 0 0 0 0 0 0 0
− + − − − − − − .

Eq.(7.6b) 0 | 1 1 0 0 0 0 | 0 0 0
Eq.(7.6c) 0 | 0 0 1 1 0 0 | 0 0 0
Eq.(7.6d) 0 | 0 0 0 0 1 1 | 0 0 0
Eq.(7.6e) 1 | 1 0 0 0 1 0 | 0 0 0
Eq.(7.6f) 0 | 0 0 1 0 1 0 | 0 0 0
Eq.(7.6g) 0 | 0 1 0 1 0 1 | 0 0 0

. − − − − − − + − .
Eq.(7.6h) 0 1 0 1 0 0 0 | 1 | 0 0

. − + − .
Eq.(7.6i) 0 0 0 0 1 0 0 1 | 1 | 0

. − + −
Eq.(7.6j) 0 0 1 0 0 0 0 0 0 | 1




(7.7)

Although the causalization algorithm has been unable to convert the
structure incidence matrix to a true lower–triangular form, it was at least
able to reduce it to a Block–Lower–Triangular (BLT) form. Furthermore,
the algorithm generates diagonal blocks of minimal sizes.

How can we deal with the algebraic loop? Since the model is linear, we
can write the loop equations in a matrix–vector form, and solve for the six
unknowns by a Gaussian elimination in six equations and six unknowns.




1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1




·




u1

i1
u2

i2
u3

i3




=




0
0
0
u0

0
0




(7.8)

Had the model been nonlinear in the loop equations, we would have had
to use a Newton iteration.

Are algebraic loops a rarity in physical system modeling? Unfortunately,
DAE systems containing algebraic loops are much more common than those
that can be sorted completely by the Tarjan algorithm. Furthermore, the
algebraic loops can be of frightening dimensions. For example when model-
ing mechanical Multi–Body Systems (MBS) [7.16, 7.18] containing closed
kinematic loops, there immediately result highly nonlinear algebraic loops
in hundreds if not thousands of unknowns and equations.

Algebraic loops deserve special treatment:
I in case of linear system: Gauss elimination
I otherwise: Newton algorithm

Algebraic loops are very frequent in multi-body dynamics.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 65



Index reduction

Structural singularity elimination

282 Chapter 7. Differential Algebraic Equations

U
0=
10

+

-

R

C1 C2
U0

i0

u1

i1

u2

i2
uR

FIGURE 7.20. Schematic of electrical circuit with two capacitors in parallel.

u0 = uR + u1 (7.54e)

u2 = u1 (7.54f)

i0 = i1 + i2 (7.54g)

If we choose u1 and u2 as state variables, then both u1 and u2 are considered
known variables, and Eq.(7.54f) has no unknown left. Thus, it must be
considered a constraint equation.

There are several different ways, how this problem can be solved [7.4].
We can turn the causality around on one of the capacitive equations, solving
e.g. for the variable i2, instead of du2/dt. Consequently, the solver has to
solve for du2/dt instead of u2, thus the integrator has been turned into a
differentiator.

In the model equations, u2 must be considered an unknown, whereas
du2/dt is considered a known variable. The equations can now easily be
brought into causal form:

u0 = f(t) (7.55a)

i2 = C2 · du2

dt
(7.55b)

u2 = u1 (7.55c)

uR = u0 − u1 (7.55d)

i0 =
1

R
· uR (7.55e)

i1 = i0 − i2 (7.55f)

du1

dt
=

1

C1
· i1 (7.55g)

with the block diagram as shown in Fig.7.21.

u0 = f (t) (43)
uR = Ri0 (44)

i1 = C1
du1
dt

(45)

u2 = C2
du2
dt

(46)

u0 = uR + u1 (47)
u2 = u1 (48)
i0 = i1 + i2 (49)

If the state variables are u1 and u2 then Eq. (48) is a constraint (a variable as only
blue edges in the structure digraph).
Pantelides algorithm can can be used to handle this situation
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Index reduction

Pantelides and structural singularity elimination
If u2 = u1 is true for all t then

du2
dt

=
du1
dt

for all t (50)

Idea use symbolic differentiation to compute Eq. (50) and replace the constraint by its
derivative. Hence,

u0 = f (t) (51)
uR = Ri0 (52)

i1 = C1
du1
dt

(53)

u2 = C2
du2
dt

(54)

u0 = uR + u1 (55)
du2
dt

=
du1
dt

(56)

i0 = i1 + i2 (57)

Using Tarjan algorithm we get an algebraic loop but we know how to deal with.
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Index reduction

Pantelides and structural singularity elimination

Structurally singular systems are also known as higher index problems.
I an index-0 contains neither algebraic loop nor structural singularities
I index 1 contains algebraic loops but no structural singularities

Pantelides is a symbolic index reduction algorithm. One application reduces the index
by 1.

Julien Alexandre dit Sandretto - Numerical methods for dynamical systems January 4, 2023- 68



Index reduction

Issues of index reduction

Issues
I Consistent initial conditions finding initial value for differential and algebraic

variables may be very difficult.
For

F (ẋ , x , t) = 0

x0 is a consistent initial value, if there exists a smooth solution that fulfills
x(0) = x0 and this solution is defined for all t.
E.g., semi-explicit DAE with only x(0) = x0 what about the algebraic variable?

I Drift off effect when applying index reduction the solution of the lower index
DAE may not be of the original index.

In consequence, tools/methods to solve DAE should
I provide automatic index reduction
I be able to find consistent initial values

e.g., Dymola/Modelica
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Index reduction

Example of consistent initial value

Let

u̇ = −0.5(u + v) + q1(t)

0 = 0.5(u − v)− q2(t)

If u(0) is given we can determine v(0) = u(0)− 2q2(0) and so u̇(0).
Set u = y1 + y2 and v = y1 − y2 we get

ẏ1 + ẏ2 = −y1 + q1(t)

0 = y2 − q2(t)

For consistency we must have y2(0) = q2(0) but we can choose y1(0) arbitrarily but
we cannot determine ẏ1(0) without using ẏ2(0) = q̇2(0).
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Index reduction

Example of drift off effect

Going from index 3 pendulum to index 2 by differentiating the constraint
x2

1 + x2
2 − `2 = 0 leads to

ẋ1 = x3 (58)
ẋ2 = x4 (59)

ẋ3 = −
F
`

x1 (60)

ẋ4 = g
F
`

x2 (61)

0 = x1x3 + x2x4 (62)

28 3. PROJECTION METHODS

0 p2x p2y l2

specifying the manifold drawn as the solid curve. The index-2 formulation
had the algebraic equation Eq. 3.5

0 pxvx pyvy

This equation only specifies that the velocity vx vy should be orthogonal to
the position vector px py . This is illustrated by the dashed curves in Figure 3.2.

m

l

FIGURE 3.2. Expanding set of solutions due to index reduction
and illustration of the drift-off phenomenon

We could say that by doing index reduction, we expanded the solution set of
the original system to include not only the solutions moving on the solid line, but
also all the solutions moving in “parallel” to the solid line.

Illustrated on Figure 3.2, as the piecewise linear curve, is also the drift-off
phenomenon. When numerically advancing the solution, the next point is found
with respect to the index-2 restriction. The index-2 restriction says, that we shall
move in “parallel” with the solid line (along the dashed lines), and not as the
index-3 restriction says, to move on the solid line. Therefore the solution slowly
moves away from (drifts off) the solid line - although “trying” to move in parallel
with it.

Comment: When solving a system the consequence of drift of is not necessar-
ily “worse” than the normal global error. It is though obvious that at least from
a “cosmetic” point of view a solution to the pendulum system with shortening
length of the pendulum looks bad. But using the model for other purposes might
be indifferent to drift-off compared to the global error.

Comments:
I solid line curve is the result of index 3 pendulum problem
I Constraint (62) says the velocity should orthogonal to the position. Index

reduction increase the space of solution with dashed line curves
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Sovability of IVP DAE

A small theory of DAE

For ODE, we have a theorem applying on a large class of problem proving the
existence and unicity of the solution
No such theorem exists for DAE
Instead we have some theorems of solvability of different kinds of DAE
I Linear constant coefficient DAE
I Linear time varying coefficient DAE
I Non-linear DAE
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Sovability of IVP DAE

Solvability of DAE

Definition
Let I be an open sub-interval of R, Ω a connected open subset of R2m+1, and F a
differentiable function from Ω to Rm. Then the DAE F (ẋ , x , t) = 0 is solvable on I in
Ω if there is an r -dimensional family of solutions φ(t, c) defined on a connected open
set I × Ω̃, Ω̃ ⊂ Rr , such that

1. φ(t, c) is defined on all of I for each c ∈ Ω̃

2. (φ′(t, c), φ(t, c), t) ∈ Ω for (t, c) ∈ I × Ω̃

3. If ψ(t) is any other solution with (ψ′(t, c), ψ(t, c), t) ∈ Ω then ψ(t) = φ(t, c)
for some c ∈ Ω̃

4. The graph of φ as a function of (t, c) is an r + 1-dimensional manifold.
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Sovability of IVP DAE

Solvability of linear constant constant DAE

Let
Aẋ + Bx = f

And consider the matrix pencil λA + B
A matrix pencil is regular if det(λA + B) is not identically zero as a function of λ.

Theorem
The linear constant coefficient DAE is solvable if and only if λA + B is regular pencil.

Note: the degree of nilpotency of the matrix N used in the decomposition is also the
index number of the DAE.
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Sovability of IVP DAE

Conclusion

DAE are a generalisation of ODE but
I there is no general theorem to prove existence of the solution of DAE
I differentiation used to index reduction can introduce singularities
I the class of numerical methods used to solve DAE is rather small compare to

ODE.
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Initial Value Problem for DAE – solving methods

IVP for DAE

We will consider DAE in Hessenberg form of index 1

ẏ = f (t, y, z)

0 = g (y, z) with
∂g
∂z

is non-singular

with z(0) = z0 and y(0) = y0

and sometimes, DAE of the following form can be considered

Mẏ(t) = f (y(t))

M is known as the Mass Matrix
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Initial Value Problem for DAE – solving methods

Relation between DAE and stiff ODE

Singularly perturbed ODE systems are of the form

ẏ = f (t, y, z) (63)
εż = g(t, z, y) (64)

When ε = 0 then we get a DAE but Eq. (63) is usually stiff.
DAE can be seen as infinitely stiff.

Consequence
not all numerical method to solve ODE can be used to solve DAE!
we want A-stable methods (event L-stable) but stiffly stable is enough (as for BDF)
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Initial Value Problem for DAE – solving methods

State-space method to solve DAE index 1

ẏ = f (t, y, z)

0 = g (y, z) with
∂g
∂z

is non-singular

with z(0) = z0 and y(0) = y0

By Implicit function theorem there exists (at leat locally) a function G(y) such that

z = G(y)

By substitution we can have
ẏ = f (t, y,G(y))

which can be solved by any method for IVP ODE but
I you lose the structure of the problem
I G is not so simple to get
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Initial Value Problem for DAE – solving methods

ε-embedding approach – Runge-Kutta case

ẏ = f (t, y, z)

εż = g (y, z) with
∂g
∂z

is non-singular

with z(0) = z0 and y(0) = y0

Applying a Runge-Kutta method,

Yni = yn + h
s∑

j=1
aij f (Ynj,Znj)

εZni = εzn + h
s∑

j=1
aij g(Ynj,Znj)

yn+1 = yn + h
s∑

i=1
bi f (Yi ,Zi )

εzn+1 = εzn + h
s∑

i=1
bi g(Yi ,Zi )
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Initial Value Problem for DAE – solving methods

ε-embedding approach - Runge-Kutta case – cont’
Applying a Runge-Kutta method,

Yni = yn + h
s∑

j=1
aij f (Ynj,Znj)

εZni = εzn + h
s∑

j=1
aij g(Ynj,Znj)

yn+1 = yn + h
s∑

i=1
bi f (Yi ,Zi )

εzn+1 = εzn + h
s∑

i=1
bi g(Yi ,Zi )

assuming the matrix A of coefficients aij is non singular,

hg(Yni,Zni) = ε
s∑

j=1
ωij (Ynj − zn) with ωij = (aij )

−1
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Initial Value Problem for DAE – solving methods

ε-embedding approach - Runge-Kutta case – cont’

From

hg(Yni,Zni) = ε
s∑

j=1
ωij (Ynj − zn) with ωij = (aij )

−1

we get,

Yni = yn + h
s∑

j=1
aij f (Ynj,Znj)

0 = g (Yni,Zni)

yn+1 = yn + h
s∑

i=1
bi f (Yi ,Zi )

zn+1 =

1−
s∑

i,j=1
biωij

 zn +
s∑

i,j=1
biωij Znj independence wrt ε

Remark: this approach can lead to numerical divergence as the solution may not
respect the constraint g(y , z) = 0
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Initial Value Problem for DAE – solving methods

ε-embedding approach/State-space method

Approximating state-space method can be reached by the formula

Yni = yn + h
s∑

j=1
aij f (Ynj,Znj)

0 = g (Yni,Zni)

yn+1 = yn + h
s∑

i=1
bi f (Yi ,Zi )

0 = g(yn+1, zn+1)

Remarks
I For stiffly accurate methods (see next slide) ε-embedding method and

state-space method are identical
I ε-embedding method can be generalized to other classes of DAE index 1 (mass

matrix form or implicit form)
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Initial Value Problem for DAE – solving methods

Solving DAE with Runge-Kutta methods
A Runge-Kutta is defined by its Butcher tableau

c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)

Remark
For DAE, we only consider fully implicit Runge-Kutta methods which are L-stable,
with A non-singular and with bj = asj (j = 1, 2, . . . , s).
The most used method are Backward Euler’s method and Radau IIA order 5.

Remark:
I the last condition bj = asj is good as the last step of RK method is not applied

on algebraic variable.
I Stiffly accurate is sufficient for semi-explicit index 1 but not for higher index
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Initial Value Problem for DAE – solving methods

Multi-step methods

Recall: single-step methods solve IVP using one value yn and some values of f .
A multi-step method approximate solution yn+1 of IVP using k previous values of the
solution yn, yn−1, . . . , yn−k−1.
Different methods implement this approach
I Adams-Bashworth method (explicit)
I Adams-Moulton method (implicit)
I Backward Difference Method (implicit)

The general form of such method is

k∑
j=0

αj yn+j = h
k∑

j=0
βj f (tn+j , yn+j ) .

with αj and βj some constants and αk = 1 and |α0|+ |β0| 6= 0
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Initial Value Problem for DAE – solving methods

Solving DAE with multi-step methods
We consider

ẏ = f (t, y, z)

0 = g (y, z) with
∂g
∂z

is non-singular

with z(0) = z0 and y(0) = y0

by using ε-embedding method.

ẏ = f (t, y, z)

εż = g (y, z) with
∂g
∂z

is non-singular

with z(0) = z0 and y(0) = y0

Applying, multi-step method, we get

k∑
i=0

αi yn+i = h
k∑

i=0
βi f (yn+i , zn+i )

ε
k∑

i=0
αi zn+i = h

k∑
i=0

βi g(yn+i , zn+i )
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Initial Value Problem for DAE – solving methods

ε-embedding method – multi-step case - cont’
Applying, multi-step method, we get

k∑
i=0

αi yn+i = h
k∑

i=0
βi f (yn+i , zn+i )

ε
k∑

i=0
αi zn+i = h

k∑
i=0

βi g(yn+i , zn+i )

and setting ε = 0 we get

k∑
i=0

αi yn+i = h
k∑

i=0
βi f (yn+i , zn+i )

0 = h
k∑

i=0
βi g(yn+i , zn+i )

A state-space method can be applied by using

k∑
i=0

αi yn+i = h
k∑

i=0
βi f (yn+i , zn+i )

0 = g(yn+k , zn+k )
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Initial Value Problem for DAE – solving methods

Solving DAE index 1 with BDF

For BDF one has
1

hβ0

k∑
i=0

αi yn+i = f (yn+k , zn+k )

0 = g(yn+k , zn+k )

Remarks
I we still need stiffly accurate method so BDF has to be considered
I Can be applied on DAE index 2 also

Convergence
m-step BDF with m < 6 converge; i.e.,

y(ti )− yi ≤ O(hm) and z(ti )− zi ≤ O(hm)

for consistent initial values.
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