

Introduction to interval analysis
Julien Alexandre dit Sandretto

ENSTA
Department U2IS
ENSTA Paris
SSC310-2020

Introduction

Interval Arithmetic
Interval-valued extension of Real functions
Constraint propagation
Bisection-subpaving
Branch \& Prune
Optimization with Branch \& Prune
Contractors
Branch \& Contract
For further
Bibliography
Do it yourself

Introduction

Rump polynomial
$f(a, b)=333.75 b^{6}+a^{2}\left(11 a^{2} b^{2}-b^{6}-121 b^{4}-2\right)+5.5 b^{8}+a /(2 b)$
If we compute $f(77617.0,33096.0)=$?
With floating number
$-1.18 \cdot 10^{21}$ (matlab) or $1.18 \cdot 10^{21}$ or 1.172 (depends on implementation)

With intervals
Roundoff is guaranteed $(1 / 3 \in[0.33 \ldots 3,0.33 \ldots 4])$ and thus $f(a, b) \in[-0.8273960599469,-0.8273960599467]$

Notations

- An interval $[x] \in \mathbb{R}:[x]=[\underline{x}, \bar{x}]=\{x \in \mathbb{R} \mid \underline{x} \leq x \leq \bar{x}\}$
- \underline{x} the lower bound and \bar{x} the upper bound
- $\mathrm{m}([x])$ the midpoint such that $\mathrm{m}([x])=\underline{x}+(\bar{x}-\underline{x}) / 2$
- $\mathrm{w}([x])$ the diameter of $[x]$ such that $\mathrm{w}([x])=\bar{x}-\underline{x}$
- A box (Cartesian product) $[\mathbf{x}] \in \mathbb{R}^{n}:[\mathbf{x}]=\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)^{T}$

Interval Arithmetic

- $[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}]=[\underline{x}+\underline{y}, \bar{x}+\bar{y}]$
- $[\underline{x}, \bar{x}]-[\underline{y}, \bar{y}]=[\underline{x}-\bar{y}, \bar{x}-\underline{y}]$
- $[\underline{x}, \bar{x}] *[\underline{y}, \bar{y}]=$
$[\min (\underline{x} * \underline{y}, \underline{x} * \bar{y}, \bar{x} * \underline{y}, \bar{x} * \bar{y}), \max (\underline{x} * \underline{y}, \underline{x} * \bar{y}, \bar{x} * \underline{y}, \bar{x} * \bar{y})]$
- $[\underline{x}, \bar{x}] /[\underline{y}, \bar{y}]=[\underline{x}, \bar{x}] *(1 /[\underline{y}, \bar{y}])$
- $1 /[\underline{y}, \bar{y}]=[\min (1 / \underline{y}, 1 / \bar{y}), \max (1 / \underline{y}, 1 / \bar{y})]$ if $0 \notin[\underline{y}, \bar{y}]$

Problem

$[x]-[x]=\{x-y \mid x \in[x], y \in[x]\}$

Example

$[x]=[2,3],[x]-[x]=$?

Interval Arithmetic

- $[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}]=[\underline{x}+\underline{y}, \bar{x}+\bar{y}]$
- $[\underline{x}, \bar{x}]-[\underline{y}, \bar{y}]=[\underline{x}-\bar{y}, \bar{x}-\underline{y}]$
- $[\underline{x}, \bar{x}] *[\underline{y}, \bar{y}]=$
$[\min (\underline{x} * \underline{y}, \underline{x} * \bar{y}, \bar{x} * \underline{y}, \bar{x} * \bar{y}), \max (\underline{x} * \underline{y}, \underline{x} * \bar{y}, \bar{x} * \underline{y}, \bar{x} * \bar{y})]$
- $[\underline{x}, \bar{x}] /[\underline{y}, \bar{y}]=[\underline{x}, \bar{x}] *(1 /[\underline{y}, \bar{y}])$
- $1 /[\underline{y}, \bar{y}]=[\min (1 / \underline{y}, 1 / \bar{y}), \max (1 / \underline{y}, 1 / \bar{y})]$ if $0 \notin[\underline{y}, \bar{y}]$

Problem

$[x]-[x]=\{x-y \mid x \in[x], y \in[x]\}$

Example

$[x]=[2,3],[x]-[x]=[2,3]-[2,3]=[-1,1] \neq 0$!

Interval Arithmetic

- $[\underline{x}, \bar{x}]+[\underline{y}, \bar{y}]=[\underline{x}+\underline{y}, \bar{x}+\bar{y}]$
- $[\underline{x}, \bar{x}]-[\underline{y}, \bar{y}]=[\underline{x}-\bar{y}, \bar{x}-\underline{y}]$
- $[\underline{x}, \bar{x}] *[\underline{y}, \bar{y}]=$
$[\min (\underline{x} * \underline{y}, \underline{x} * \bar{y}, \bar{x} * \underline{y}, \bar{x} * \bar{y}), \max (\underline{x} * \underline{y}, \underline{x} * \bar{y}, \bar{x} * \underline{y}, \bar{x} * \bar{y})]$
- $[\underline{x}, \bar{x}] /[\underline{y}, \bar{y}]=[\underline{x}, \bar{x}] *(1 /[\underline{y}, \bar{y}])$
- $1 /[\underline{y}, \bar{y}]=[\min (1 / \underline{y}, 1 / \bar{y}), \max (1 / \underline{y}, 1 / \bar{y})]$ if $0 \notin[\underline{y}, \bar{y}]$

Problem

$[x]-[x]=\{x-y \mid x \in[x], y \in[x]\}$
Example

$$
\begin{aligned}
{[x]=[2,3],[x]-[x]=} & {[2,3]-[2,3]=[-1,1] \neq 0!} \\
& \Rightarrow \text { But } 0 \in[-1,1]
\end{aligned}
$$

Interval Arithmetic

Other issues

- Addition \neq Soustraction ${ }^{-1}$
- Multiplication \neq Division $^{-1}$
- Multiplication is sub-distributive wrt addition:

$$
x \times(y+z) \subset x \times y+x \times z
$$

But strong advantage
Always correct by inclusion! (even wrt roundoff errors)
General form
$[x] \diamond[y]=[\{x \diamond y \mid x \in[x], y \in[y]\}]=$
$[\min (\underline{x} \diamond \underline{y}, \underline{x} \diamond \bar{y}, \bar{x} \diamond \underline{y}, \bar{x} \diamond \bar{y}), \max (\underline{x} \diamond \underline{y}, \underline{x} \diamond \bar{y}, \bar{x} \diamond \underline{y}, \bar{x} \diamond \bar{y})]$

Interval extensions

of the elementary functions

By the help of monotonicity: cos, sin, exp, acoth, log, etc...
of the set operators

Intersection \cap

Interval-valued extension of Real functions

- Considering $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$, an extension or inclusion function is the interval function $[f]: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ if

$$
\forall[x] \in \mathbb{R}^{n}, f([x]) \subset[f]([x])
$$

- [f] is inclusion monotonic if

$$
[x] \subset[y] \Rightarrow[f]([x]) \subset[f]([y])
$$

Natural extension
Easy: replace each operators (*,-,+,/) and elementary functions by its interval counterpart !

Example

Evaluate with interval natural extention $f(x)=x(x+1)$, evaluate natural inclusion for $[x]=[-1,1]$

Example

Evaluate with interval natural extention $f(x)=x(x+1)$, evaluate natural inclusion for $[x]=[-1,1]$

$$
[f]_{N}([x])=[x]([x]+1)=[-2,2]
$$

Example

Evaluate with interval natural extention $f(x)=x(x+1)$, evaluate natural inclusion for $[x]=[-1,1]$

$$
[f]_{N}([x])=[x]([x]+1)=[-2,2]
$$

But in function of the syntax of the expression we can have different results!

$$
\begin{aligned}
& f(x)=x x+x \\
& f(x)=x^{2}+x
\end{aligned}
$$

Example

Evaluate with interval natural extention $f(x)=x(x+1)$, evaluate natural inclusion for $[x]=[-1,1]$

$$
[f]_{N}([x])=[x]([x]+1)=[-2,2]
$$

But in function of the syntax of the expression we can have different results!

$$
\begin{array}{ll}
f(x)=x x+x & =[-2,2] \\
f(x)=x^{2}+x & =[-1,2]
\end{array}
$$

Interval-valued extension of Real functions

Centered inclusion function

$$
\left[f_{C}\right]([x]) \triangleq f(\mathrm{~m}([x]))+\left[J_{f}^{T}\right]([x])([x]-\mathrm{m}([x]))
$$

where $\left[J_{f}^{T}\right]([x])$ is an interval inclusion of the Jacobian matrix of f

Taylor inclusion function
Same as previous one, but at order 2

$$
\begin{aligned}
& {\left[f_{T}\right]([x]) \triangleq f(\mathrm{~m}([x]))+\left[J_{f}^{T}\right](\mathrm{m}([x]))([x]-\mathrm{m}([x]))+} \\
& \frac{1}{2}\left(([x]-\mathrm{m}([x]))^{2}\right)^{T}\left[H_{f}\right]([x])([x]-\mathrm{m}([x]))^{2}
\end{aligned}
$$

where $\left[H_{f}^{T}\right]([x])$ is an interval inclusion of the Hessian matrix of f

Comparison of interval extensions

Comparison (in general)

- Natural inclusion is competitive for the larger interval
- Taylor and centered are more efficient for smaller ones
- Taylor is always more efficient than centered, but more expensive computationally

Evaluation of $f(x)=4 x^{2}-2 x+\cos (x)$
$[x]=[-1,2.5]: f_{N}([x])=[-15.8,28] ; f_{C}([x])=[-31.4,34.5]$
$[x]=[1.1,1.4]: f_{N}([x])=[2.2,6.1] ; f_{C}([x])=[2.8,5.3]$

Constraint propagation

Forward / Backward propagation

Isolation of each variables, contraction of its domain, and propagate

Example

Consider the constraint $x_{3}=x_{1} x_{2}$, and the box $[\mathrm{x}]=[1,4] \times[1,4] \times[8,40]$ Constraint can be rewritten in three ways: $x_{1}=x_{3} / x_{2} ; x_{2}=x_{3} / x_{1} ; x_{3}=x_{1} x_{2}$ which can be seen as contractors:

- $\left(x_{3} / x_{2}\right) \cap x_{1}=[8,40] /[1,4] \cap[1,4]=[2,4]$
- $\left(x_{3} / x_{1}\right) \cap x_{2}=[2,4]$
- $\left(x_{1} x_{2}\right) \cap x_{3}=([1,4] \times[1,4]) \cap[8,40]=[8,16]$

The new domain of $[\mathbf{x}]$ is then $[2,4] \times[2,4] \times[8,16]$

Constraint propagation

Constraint Satisfaction Problem (CSP)

A (continuous or numerical) $\operatorname{CSP}(\mathcal{X}, \mathcal{D}, \mathcal{C})$ is defined as follows:

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables
- $\mathcal{D}=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right\}$ is a set of domains
- $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ is a set of constraints

Example of CSP
$\mathcal{H}:\left(\begin{array}{cc}\mathcal{X}: & \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \\ \mathcal{D}: & {[\mathbf{x}] \in[-10,10] \times[-10,10] \times[-1,1] \times[-1,1]} \\ \mathcal{C}: & \left\{x_{1}+2 x_{2}-x_{3}=0, \quad x_{1}-x_{2}-x_{4}=0\right\}\end{array}\right)$
Solving procedure
Forward / Backward on each constraint, propagate the result to the others, till a fixed point

Constraint propagation

Iterations of fwd/bwd

k	$\left[x_{1}\right](k)$	$\left[x_{2}\right](k)$	$\left[x_{3}\right](k)$	$\left[x_{4}\right](k)$
0	$[-10,10]$	$[-10,10]$	$[-1,1]$	$[-1,1]$
1	$[-6.5,6.5]$	$[-5.5,5.5]$	$[-1,1]$	$[-1,1]$
2	$[-4.75,4.75]$	$[-3.75,3.75]$	$[-1,1]$	$[-1,1]$
∞	$[-3,3]$	$[-2,2]$	$[-1,1]$	$[-1,1]$

\Rightarrow Fixed point reached, but too large!
Solution
Bisection: Divide and rule! (without solution loss)
$[x](1) \in([-10,0] ;[-10,10] ;[-1,1] ;[-1,1])$
$[x](2) \in([0,10] ;[-10,10] ;[-1,1] ;[-1,1])$
And start again :

$$
\begin{aligned}
& {[\mathbf{x}](1) \in([-1.5,0] ;[-0.5,1] ;[-1,1] ;[-1,1])} \\
& {[\mathbf{x}](2) \in([0,1.5] ;[-1,0.5] ;[-1,1] ;[-1,1])} \\
& \quad \Rightarrow[\mathbf{x}]=[\mathbf{x}](1) \cup[\mathbf{x}](2)=([-1.5,1.5] ;[-1,1] ;[-1,1] ;[-1,1])
\end{aligned}
$$

Bisection-subpaving

How represent a set \mathcal{S} ?

With two subpavings (without overlaping): $\underline{\mathcal{S}} \subset \mathcal{S} \subset \overline{\mathcal{S}}$

Volume: $\operatorname{Vol}(\underline{\mathcal{S}})<\operatorname{Vol}(\mathcal{S})<\operatorname{Vol}(\overline{\mathcal{S}})$ $N \nearrow$ implies $\operatorname{Vol}(\underline{\mathcal{S}}) \nearrow$ and $\operatorname{Vol}(\overline{\mathcal{S}}) \searrow$, then better surrounding !

Bisection-subpaving

Paving of set

Start by initial domain and bisect till the required accuracy
Different way to bisect a box

- Always on the same dimension
- Round Robin
- Largest First
- Smear (wrt to impact on function evaluation)
- In two or more sub boxes
- At the middle or not (90%-10\%)
- etc...

Branch \& Prune

The algorithm for solving $f(\mathcal{X})=\mathcal{Y}$ from $[X]_{0}$ (SIVIA)
Require: Stack $=\emptyset$, Stack $_{a c c}=\emptyset$, Stack $_{\text {rej }}=\emptyset$, Stack $_{\text {unc }}=\emptyset,[X]_{0} \subset \mathbb{R}^{n}$ Push $[X]_{0}$ in Stack while Stack $\neq \emptyset$ do

Pop a $[X]$ from Stack
if $[f]([X]) \subset[Y]$ then Push $[X]$ in Stackacc
else if $[f]([X]) \cap[Y]=\emptyset$ then
Push $[X]$ in Stack rej
else if width $([X])>\tau$ then
$\left(\left[X_{\text {left }}\right],\left[X_{\text {right }}\right]\right)=\operatorname{Bisect}([X]$,
Push $\left[X_{\text {left }}\right]$ in Stack
Push $\left[X_{\text {right }}\right]$ in Stack
else

Push [X] in Stackunc
end if
end while

Optimization with Branch \& Prune

With a basic cost on X
Optimization by ordering the stack:

- $\left(\left[X_{\text {left }}\right],\left[X_{\text {right }}\right]\right)=\operatorname{Bisect}([X])$
- If $\operatorname{Cost}\left(\left[X_{\text {left }}\right]\right)<\operatorname{Cost}\left(\left[X_{\text {right }}\right]\right)$
- PushFront $\left[X_{l e f t}\right]$ and PushBack $\left[X_{\text {right }}\right]$
- else PushBack $\left[X_{l e f t}\right]$ and PushFront $\left[X_{\text {right }}\right]$

Then the first solution minimizes the cost and valids the constraints

Contractors

Formalism of contractors
Contracting a CSP \mathcal{H} : replacing $[x]$ by a smaller domain $\left[x^{\prime}\right]$, s.t. solution set stays unchanged: $\mathcal{S} \subset\left[x^{\prime}\right] \subset[x]$
Properties of contractors:

- Contractance: $\forall[x], C([x]) \subset[x]$
- Correctness: $\forall[x],[x] \cap \mathcal{S} \subset C([x])$

Contractors can be combined: $C_{1}\left(C_{2}([x])\right)$ or embeded $C_{1}\left(C_{2},[x]\right)$
Most used

- $\operatorname{Ctc}_{f w d / b w d}([x])$, based on constraint propagation
- $\operatorname{Ctc}_{N}([x])$, based on Newton method (for square problem)
- Ctc $_{\text {FixedPoint }}($ Ctc, $[x])$, which calls Ctc till a fixed point
- Ctc $_{\text {cid }}($ Ctc, $[x])$, which slices $[x]$, calls Ctc on each sub-boxes, and return the union of results

Branch \& Contract

The algorithm for solving $f(x)=0$ from $[X]_{0}$
Require: Stack $=\emptyset$, Stack $_{\text {acc }}=\emptyset,[X]_{0} \subset \mathbb{R}^{n}$

```
Push \([X]_{0}\) in Stack
while Stack \(\neq \emptyset\) do
    Pop a \([X]\) from Stack
    \([X]:=\operatorname{Ctc}([X])\)
    if \([X] \neq \emptyset\) then
        if width \(([X])<\tau\) then
        Push \([X]\) in Stack \({ }_{\text {acc }}\)
        else
        \(\left(\left[X_{\text {left }}\right],\left[X_{\text {right }}\right]\right)=\operatorname{Bisect}([X])\)
        Push \(\left[X_{l e f t}\right]\) in Stack
        Push [ \(X_{\text {right }}\) ] in Stack
        end if
    end if
end while
```

Heurisitic of bisection and choice of contractor (w.r.t. problem) !

For further

- Branch and Bound algorithm
- Inner boxes
- Quantifiers \forall, \exists
- Existence and uniqueness proof (last course)
- Overconstrained systems
- Q-intersection
- Many problems in interval analysis are NP-hard
- Distance between boxes (Hausdorff)
- Validated integration (next courses)
- etc...

Bibliography

- Applied Interval Analysis - Jaulin et al. - 2001 - Springer
- Introduction to Interval Analysis - Moore et al. - 2003 - SIAM
- Interval Analysis - Moore - 1966-Prentice-hall
- Interval methods for systems of equations - Neumaier - 1990Cambridge press
- Global optimization using interval analysis - Hansen - 2003 Marcel Dekker
- Introduction à l'arithmétique par intervalles - Revol - 2004 -http://perso.ens-lyon.fr/nathalie.revol/polys/ ArithIntervalles.pdf
- Documentation of lbex http://www.ibex-lib.org/doc/

Configuration to start quickly

Download exo_empty.cpp and makefile, then in a terminal:
>> export PKG_CONFIG_PATH=/home/uei/chapoutot/Public/share/pkgconfig
>> make exo_empty
>> ./exo_empty

Do it yourself

Solve the CSP:

$$
\mathcal{H}:\left(\begin{array}{c}
x_{1}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=6 ; \\
x_{2}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=6 ; \\
x_{3}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=6 ; \\
x_{4}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=6 ; \\
x_{1} * x_{2} * x_{3} * x_{4} * x_{5}=1 ; \\
x_{i} \in[-1 e 8,1 e 8]
\end{array}\right)
$$

As fast as possible!

Do it yourself

- Write a function $f(x)=0$ in Ibex
- Build a contractor CtcFwdBwd
- Write a Branch\&Contract
- Choose the Bisector
- Print solutions
- Optional: clean the solution set (3 solutions)

Do it yourself

Proove that the following CSP has no solution:

$$
\mathcal{H}:\left(\begin{array}{c}
x_{1}-x_{2}=0 \\
x_{1}^{2}+x_{2}^{2}-1=0 \\
x_{2}-\sin \left(\pi x_{1}\right)=0 \\
x_{1}-\sin \left(\pi x_{2}\right)=0 \\
x_{2}-x_{1}^{2}=0 \\
x_{1} \in[0,1], x_{2} \in[0,1]
\end{array}\right)
$$

In the simplest manner!

