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Initial Value Problem of Ordinary Differential Equations

Initial Value Problem of
Ordinary Differential Equations

Classical problem
Consider an IVP for ODE, over the time interval [0,T ]

ẏ = f (y) with y(0) = y0

This IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz.

Interval IVP

ẏ = f (y, p) with y(0) ∈ [y0] and p ∈ [p]
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Initial Value Problem of Ordinary Differential Equations

Numerical Integration
How compute y(t) = y0 +

∫ t
0 f (y(s))ds ?

Goal of numerical integration
I Compute a sequence of time instants:

t0 = 0 < t1 < · · · < tn = T
I Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .

Goal of validated numerical integration
I Compute a sequence of time instants:

t0 = 0 < t1 < · · · < tn = T
I Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi ] 3 y(ti ; y0) .
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Problem of integral computation

Problem of integral computation

Discrete system given by yn+1 = yn +
∫ h

0 f (y(s))ds

Bounding of
∫ h

0 f (y(s))ds
If y(s) is bounded s.t. y(s) ∈ [x], ∀s ∈ [0, h], then∫ h

0
f ([x])ds ⊂ [0, h] · [f ]([x])

How bound y(s) ?
Complex, it is what we are trying to compute !
We note by [ỹn] ⊃ {y(s), s ∈ [tn, tn+1]}
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Picard-Lindelöf

Picard-Lindelöf (or Cauchy-Lipschitz)
Theorem (Banach fixed-point theorem)

Let (K , d) a complete metric space and let g : K → K a
contraction that is for all x , y in K there exists c ∈ ]0, 1[ such that
d (g(x), g(y)) 6 c · d(x , y) , then g has a unique fixed-point in K.

————
We consider the space of continuously differentiable functions
C0([tj , tj+1],Rn) and the Picard-Lindelöf operator

pf(y) = t 7→ yj +

∫ t

tj

f(y(s))ds , with yj = y(tj) (1)

If this operator is a contraction then its solution is unique and
its solution is the solution of IVP.
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Picard-Lindelöf

Interval counterpart of Picard-Lindelöf

With a first order integration scheme that is for f : Rn → Rn a
continuous function and [a] ⊂ IRn, we have∫ a

a
f (s)ds ∈ (a− a)f ([a]) = w([a])f([a]) , (2)

we can define a simple enclosure function of Picard-Lindelöf such
that

[pf ]([r])
def
= [yj ] + [0, h] · f([r]) , (3)

with h = tj+1 − tj the step-size. In consequence, if one can find [r]
such that [pf ]([r]) ⊆ [r] then [ỹj ] ⊆ [r] by the Banach fixed-point
theorem.
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Picard-Lindelöf

Interval counterpart of Picard-Lindelöf

We can then build the Lohner 2-steps method:
1. Find [ỹj ] and hj with Picard-Lindelöf

operator and Banach’s theorem
2. Compute [yj+1] with a validated integration

scheme: Taylor or Runge-Kutta ttj tj+1

[yj]
~

hj

[yj]

[yj+1]

It is important to obtain [ỹj ] and [yj+1] as tight as possible
Integration scheme at order higher than one: Taylor for example
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Integration scheme

Integration scheme

Two main approaches:
I Taylor series (Vnode, CAPD, etc.):

yj+1 = yj +
∑p

1 hi f [i](yj) +O(hp+1) with f [i] the i th term of
serie expansion of f .

O(hp+1) can be easily bounded by the Lagrange remainder of
serie s.t. O(hp+1) = f [p+1](ξ), with ξ ∈ [ỹj ], and then
O(hp+1) ∈ f [p+1](ỹj)

I Runge-Kutta methods (DynIBEX):
yj+1 = Φ(yj , f , p) + LTE , with Φ any RK method and LTE
the local truncation error.
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Integration scheme

Runge-Kutta methods
s-stage Runge-Kutta methods are described by a Butcher tableau

c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs
i

j

Which induces the following recurrence:

ki = f
(

tj + ci hj , yj + h
s∑

l=1
ailkl

)
yj+1 = yj + h

s∑
i=1

biki

I Explicit method (ERK) if ail = 0 is i 6 l
I Diagonal Implicit method (DIRK) if ail = 0 is i 6 l and at

least one aii 6= 0
I Implicit method (IRK) otherwise
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Integration scheme

Explicit methods

Interval extensions
1. Computation of k1 = f (yj), k2 = f (yj + h · a21 · k1), . . . ,

ki = f (yj + h
∑i−1

`=1 ai`k`), . . . , ks = f (yj + h
∑s−1

`=1 as`k`)
2. Computation of yj+1 = yj + h

∑s
i=1 biki + LTE

⇒ with interval arithmetic (natural extension)

Example of HEUN
0 0 0
1 1 0

1/2 1/2

[k1] = [f ]([yj ]), [k2] = [f ]([yj ] + h[k1]),
[yj+1] = [yj ] + h([k1] + [k2])/2
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Integration scheme

Implicit Schemes

Example of Radau IIA
1/3 5/12 −1/12

1 3/4 1/4
3/4 1/4

[k1] = [f ]([yj ] + h(5[k1]/12− [k2]/12)),
[k2] = [f ]([yj ] + h(3[k1]/4 + [k2]/4)

We need to solve this system of implicit equations !
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Integration scheme

Solve implicit scheme with a contractor point of view

k1 is the approximate of f (y(tj + h/3)), but by construction
y(tj + h/3) ∈ [ỹj ], then [k1] ⊂ f ([ỹj ]) (same for k2)

Algorithm based on contraction
Require: f , [ỹj ], [yj ], LTE

[k1] = [f ]([ỹj ]) and [k2] = [f ]([ỹj ])
while [k1] or [k2] improved do

[k1] = [k1] ∩ [f ]([yj ] + h(5[k1]/12− [k2]/12))
[k2] = [k2] ∩ [f ]([yj ] + h(3[k1]/4 + [k2]/4)

end while
[yj+1] = [yj ] + h(3[k1] + [k2])/4 + LTE
return [yj+1]
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Integration scheme

How to compute the LTE ?

y(tn; yn−1)− yn = C ·
(
hp+1) with C ∈ R.

Order condition
This condition states that a method of Runge-Kutta family is of
order p iff
I the Taylor expansion of the exact solution
I and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of two
Taylor expansions
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Integration scheme

A quick view of Runge-Kutta order condition theory

Starting from y(q) = (f (y))(q−1) and with the Chain rule, we have

High order derivatives of exact solution y

ẏ = f (y)

ÿ = f ′(y)ẏ f ′(y) is a linear map
y(3) = f ′′(y)(ẏ, ẏ) + f ′(y)ÿ f ′′(y) is a bi-linear map
y(4) = f ′′′(y)(ẏ, ẏ, ẏ) + 3f ′′(y)(ÿ, ẏ) + f ′(y)y(3) f ′′′(y) is a tri-linear map

y(5) = f (4)(y)(ẏ, ẏ, ẏ, ẏ) + 6f ′′′(y)(ÿ, ẏ, ẏ)
...

+ 4f ′′(y)(y(3), ẏ) + 3f ′′(y)(ÿ, ÿ) + f ′(y)y(4)

...
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Integration scheme

A quick view of Runge-Kutta order condition theory
Inserting the value of ẏ, ÿ, . . . , we have:

High order derivatives of exact solution y

ẏ = f
ÿ = f ′(f )

y(3) = f ′′(f , f ) + f ′(f ′(f ))

y(4) = f ′′′(f , f , f ) + 3f ′′(f ′f , f ) + f ′(f ′′(f , f )) + f ′(f ′(f ′(f )))

...

I Elementary differentials , such as f ′′(f , f ), are denoted
by F (τ)

Remark a tree structure is made apparent in these computations
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Integration scheme

A quick view of Runge-Kutta order condition theory

Rooted trees
I f is a leaf
I f ′ is a tree with one branch, . . . , f (k) is a tree with k branches

Example

f ′′(f ′f , f ) is associated to

f ′′
f f ′

f

Remark: this tree is not unique e.g., symmetry
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Integration scheme

A quick view of Runge-Kutta order condition theory
Theorem 1 (Butcher, 1963)
The qth derivative of the exact solution is given by

y(q) =
∑

r(τ)=q

α(τ)F (τ)(y0) with r(τ) the order of τ i.e., number of nodes
α(τ) a positive integer

We can do the same for the numerical solution

Theorem 2 (Butcher, 1963)
The qth derivative of the numerical solution is given by

y(q)1 =
∑

r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(y0) with γ(τ) a positive integer
φ(τ) depending on a Butcher tableau

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff φ(τ) = 1

γ(τ) ∀τ, r(τ) 6 p
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Integration scheme

LTE formula for explicit and implicit Runge-Kutta
From Th. 1 and Th. 2, if a Runge-Kutta has order p then

y(tn; yn−1)−yn =
hp+1

(p + 1)!

∑
r(τ)=p+1

α(τ) [1− γ(τ)φ(τ)] F (τ)(y(ξ))

ξ ∈ [tn−1, tn]

I α(τ) and γ(τ) are positive integer (with some combinatorial
meaning)

I φ(τ) function of the coefficients of the RK method,
Example

φ
( )

is associated to
s∑

i ,j=1
bi aijcj with cj =

s∑
k=1

ajk

Note: y(ξ) may be over-approximated using Interval
Picard-Lindelöf operator.
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Integration scheme

Implementation of LTE formula
Elementary differentials

F (τ)(y) = f (m)(y) (F (τ1)(y), . . . ,F (τm)(y)) for τ = [τ1, . . . , τm]

translate as a sum of partial derivatives of f associated to sub-trees

Notations
I n the state-space dimension
I p the order of a Rung-Kutta method

Two ways of computing F (τ)
1. Direct form: complexity O(np+1)

2. Factorized form: complexity O(n(p + 1)
5
2 ) based on

Automatic Differentiation
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Problem of wrapping effect

Wrapping effect
Consider the following IIVP:

(
ẏ1
ẏ2

)
=

(
−y2
y1

)
with y1(0) ∈ [−1, 1], y2(0) ∈ [10, 11]. Exact solution is

y(t) = A(t)y0 with A(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
We compute periodically at t = π

4 n with n = 1, . . . , 4

Wrapping effect comparison
(black: initial, green: interval,
blue: interval from QR, red:
zonotope from affine)
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Problem of wrapping effect

Solution to wrapping effect

One solution is the centered form of Taylor series, coupled with QR

Taylor integration
[yj+1] = [yj ] +

∑N−1
i=1 hi f [i−1]([yj ]) + hN f [N−1]([ỹj ])

Each f [i−1]([yj ]) evaluated in centered form:

f [i−1](m([yj ])) + J([yj ])
T ([yj ]−m([yj ])) ,

and a QR-decomposition of J is used to reduce the wrapping
effect. . .

Geometric sense
Consists on a rotation of the evaluation. But in O(n3)
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Problem of wrapping effect

Another solution: Affine arithmetic

A different arithmetic than interval
Represented by an affine form x̂ (also called a zonotope):

x̂ = α0 +
n∑

i=1
αiεi

where αi real numbers, α0 the center, and εi are intervals [−1, 1]

Geometric sense
Represents a zonotope, a convex polytope with central symmetry
(not affected by rotation !)
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Affine arithmetic

Affine arithmetic
An interval a = [a1, a2] in affine form:
x̂ = α0 + α1ε with α0 = (a1 + a2)/2 and α1 = (a2 − a1)/2.
Usual operations: x̂ = α0 +

∑n
i=1 αiεi and ŷ = β0 +

∑n
i=1 βiεi ,

then with a, b, c ∈ R

ax̂ + bŷ + c = (aα0 + bβ0 + c) +
n∑

i=1
(aαi + bβi )εi .

Multiplication creates new noise symbols:

x̂ × ŷ = α0α1 +
n∑

i=1
(αiβ0 + α0βi )εi + νεn+1 ,

where ν = (
∑n

i=1 |αi |)× (
∑n

i=1 |βi |) over-approximates the error
of linearization.
Other operations, like sin, exp, are evaluated using either the
Min-Range method or a Chebychev approximation
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Stepsize controller

Enclosure part of the algorithm
Compute ỹ1 = PL(ỹ0)
iter = 1
while (ỹ1 6⊂ ỹ0) and (iter < size(f) + 1) do

ỹ0 = ỹ1
Compute ỹ1 with PL(ỹ0)
iter = iter + 1

end while
if (ỹ1 ⊂ ỹ0) then

Compute lte = LTE(ỹ1)
if lte > tol then

h = h/2, restart
end if

else
h = h/2, restart

end if

Stepsize h decreases but never
increases: Zenon problem

Stepsize controller
If first step is achieved with success, multiply h by a factor
function of method order and LTE:

fac =

(
tol

LTE

) 1
p
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Validated integration in a contractor formalism

Validated integration in a contractor formalism

Contractor for [ỹj ]

After Picard-lindelöf contractance obtained :
CtcPL([ỹj ]) , [ỹj ] ∩ PL([yj ], [ỹj ]) till a fixed point

Contractor for [yj+1]

CtcRK ([yj+1]) , [yj+1] ∩ RK ([yj ]) + LTE([ỹj ])
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Additive constraints

Additive constraints

For constraint valid all the time

∀t, g(y(t)) = 0

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:
I CtcFB([ỹj ]) ∩ CtcPL([ỹj ])

I CtcFB([yj+1]) ∩ CtcRK ([yj+1])
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Additive constraints

Additive constraints

For constraint valid all the time

∀t, g(y(t)) = 0

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:
I CtcFB([ỹj ]) ∩ CtcPL([ỹj ])

I CtcFB([yj+1]) ∩ CtcRK ([yj+1])

But ? The second one is often a bad idea, lost of noise symbols !
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Additive constraints

Additive constraints

For constraint valid all the time

∀t, g(y(t)) = 0

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:
I CtcFB([ỹj ]) ∩ CtcPL([ỹj ])

I CtcFB([yj+1]) ∩ CtcRK ([yj+1])

But ? The second one is often a bad idea, lost of noise symbols !
Because intersection of zonotopes is not a zonotope...
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Temporal constraints

Temporal constraints

OK-1

NOK-4

NOK-3

OK-2

OK-1: safe zone, OK-2: Goal, NOK-3: obstacle, NOK-4: forbidden
zone at a given time, ...
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Temporal constraints

Temporal constraints

Constraint Satisfaction Differential Problem (CSDP)
With a tube R(t), such that y(t) ∈ R(t),∀t (obtained with
validated simulation:

Verbal property CSDP translation
Stay in A (until τ) R(t) ⊂ Int(A),∀t (t < τ)
In A at τ R(τ) ⊂ Int(A)
Has crossed A (before τ) ∃t,R(t) ∩�A 6= ∅ (t < τ)
Go out A (before τ) ∃t,R(t) ∩�A = ∅ (t < τ)
Has reached A R(T ) ∩�A 6= ∅
Finish in A R(T ) ⊂ Int(A)
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Do it yourself

Do it yourself
Consider an IVP - Van der Pol oscillator

ẏ =

(
y1

µ(1− y2
0 )y1 − y0

)
with µ = 1 and y(0) = (2; 0)T

To Do
Compute the simulation of this ivp with DynIbex !
I Write a function, an IVP, launch simulation till t = 10s
I Export and plot the result (with vibes or matlab)
I Find the “best” method and precision to obtain a nice picture
I Play with µ (0.2, 2, etc.)
I What do you see after µ ≥ 5 ?
I What do you need to change ?
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