

Validated simulation of ODEs
Julien Alexandre dit Sandretto

Department U2IS
ENSTA Paris
SSC310-2020

Initial Value Problem of Ordinary Differential Equations
Problem of integral computation
Picard-Lindelöf
Integration scheme
Problem of wrapping effect
Affine arithmetic
Stepsize controller
Validated integration in a contractor formalism
Additive constraints
Temporal constraints
Bibliography
Do it yourself

Initial Value Problem of Ordinary Differential Equations

Classical problem
Consider an IVP for ODE, over the time interval $[0, T]$

$$
\dot{\mathbf{y}}=f(\mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

This IVP has a unique solution $\mathbf{y}\left(t ; \mathbf{y}_{0}\right)$ if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz.
Interval IVP

$$
\dot{\mathbf{y}}=f(\mathbf{y}, p) \quad \text { with } \quad \mathbf{y}(0) \in\left[\mathbf{y}_{0}\right] \quad \text { and } \quad p \in[p]
$$

Numerical Integration

How compute $\mathbf{y}(t)=\mathbf{y}_{0}+\int_{0}^{t} f(\mathbf{y}(s)) d s$?
Goal of numerical integration

- Compute a sequence of time instants:

$$
t_{0}=0<t_{1}<\cdots<t_{n}=T
$$

- Compute a sequence of values: $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ such that

$$
\forall i \in[0, n], \quad \mathbf{y}_{i} \approx \mathbf{y}\left(t_{i} ; \mathbf{y}_{0}\right) .
$$

Goal of validated numerical integration

- Compute a sequence of time instants:

$$
t_{0}=0<t_{1}<\cdots<t_{n}=T
$$

- Compute a sequence of values: $\left[\mathbf{y}_{0}\right],\left[\mathbf{y}_{1}\right], \ldots,\left[\mathbf{y}_{n}\right]$ such that

$$
\forall i \in[0, n], \quad\left[\mathbf{y}_{i}\right] \ni \mathbf{y}\left(t_{i} ; \mathbf{y}_{0}\right) .
$$

Problem of integral computation

Discrete system given by $\mathbf{y}_{n+1}=\mathbf{y}_{n}+\int_{0}^{h} f(\mathbf{y}(s)) d s$
Bounding of $\int_{0}^{h} f(\mathbf{y}(s)) d s$
If $\mathbf{y}(s)$ is bounded s.t. $\mathbf{y}(s) \in[\mathbf{x}], \quad \forall s \in[0, h]$, then

$$
\int_{0}^{h} f([\mathbf{x}]) d s \subset[0, h] \cdot[f]([\mathbf{x}])
$$

How bound $\mathbf{y}(s)$?
Complex, it is what we are trying to compute !
We note by $\left[\tilde{\mathbf{y}}_{n}\right] \supset\left\{\mathbf{y}(s), s \in\left[t_{n}, t_{n+1}\right]\right\}$

Picard-Lindelöf (or Cauchy-Lipschitz)

Theorem (Banach fixed-point theorem)

Let (K, d) a complete metric space and let $g: K \rightarrow K$ a contraction that is for all x, y in K there exists $c \in] 0,1[$ such that $d(g(x), g(y)) \leqslant c \cdot d(x, y)$, then g has a unique fixed-point in K.

We consider the space of continuously differentiable functions $\mathcal{C}^{0}\left(\left[t_{j}, t_{j+1}\right], \mathbb{R}^{n}\right)$ and the Picard-Lindelof operator

$$
\begin{equation*}
\mathbf{p}_{\mathbf{f}}(\mathbf{y})=t \mapsto \mathbf{y}_{j}+\int_{t_{j}}^{t} \mathbf{f}(\mathbf{y}(s)) d s, \quad \text { with } \quad \mathbf{y}_{j}=\mathbf{y}\left(t_{j}\right) \tag{1}
\end{equation*}
$$

If this operator is a contraction then its solution is unique and its solution is the solution of IVP.

Interval counterpart of Picard-Lindelöf

With a first order integration scheme that is for $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a continuous function and $[\mathbf{a}] \subset \mathbb{\mathbb { R } ^ { n }}$, we have

$$
\begin{equation*}
\int_{\underline{a}}^{\bar{a}} f(s) d s \in(\underline{\mathbf{a}}-\overline{\mathbf{a}}) f([\mathbf{a}])=w([\mathbf{a}]) \mathbf{f}([\mathbf{a}]), \tag{2}
\end{equation*}
$$

we can define a simple enclosure function of Picard-Lindelöf such that

$$
\begin{equation*}
\left[\mathbf{p}_{\mathbf{f}}\right]([\mathbf{r}]) \stackrel{\text { def }}{=}\left[\mathbf{y}_{j}\right]+[0, h] \cdot \mathbf{f}([\mathbf{r}]) \tag{3}
\end{equation*}
$$

with $h=t_{j+1}-t_{j}$ the step-size. In consequence, if one can find $[\mathbf{r}]$ such that $\left[\mathbf{p}_{\mathbf{f}}\right]([\mathbf{r}]) \subseteq[\mathbf{r}]$ then $\left[\tilde{\mathbf{y}}_{j}\right] \subseteq[\mathbf{r}]$ by the Banach fixed-point theorem.

Interval counterpart of Picard-Lindelöf

We can then build the Lohner 2-steps method:

1. Find $\left[\tilde{\mathbf{y}}_{j}\right]$ and h_{j} with Picard-Lindelöf operator and Banach's theorem
2. Compute $\left[\mathbf{y}_{j+1}\right]$ with a validated integration scheme: Taylor or Runge-Kutta

It is important to obtain $\left[\tilde{\mathbf{y}}_{j}\right]$ and $\left[\mathbf{y}_{j+1}\right]$ as tight as possible Integration scheme at order higher than one: Taylor for example

Integration scheme

Two main approaches:

- Taylor series (Vnode, CAPD, etc.):
$\mathbf{y}_{j+1}=\mathbf{y}_{j}+\sum_{1}^{p} h^{i} f^{[i]}\left(\mathbf{y}_{j}\right)+\mathcal{O}\left(h^{p+1}\right)$ with $f^{[i]}$ the $i^{t h}$ term of serie expansion of f.
$\mathcal{O}\left(h^{p+1}\right)$ can be easily bounded by the Lagrange remainder of serie s.t. $\mathcal{O}\left(h^{p+1}\right)=f^{[p+1]}(\xi)$, with $\xi \in\left[\tilde{\mathbf{y}}_{j}\right]$, and then $\mathcal{O}\left(h^{p+1}\right) \in f^{[p+1]}\left(\tilde{\mathbf{y}}_{j}\right)$
- Runge-Kutta methods (DynIBEX):
$\mathbf{y}_{j+1}=\Phi\left(\mathbf{y}_{j}, f, p\right)+L T E$, with Φ any RK method and $L T E$ the local truncation error.

Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau

c_{1}	a_{11}	a_{12}	\cdots	$a_{1 s}$
\vdots	\vdots	\vdots		\vdots
c_{s}	$a_{s 1}$	$a_{s 2}$	\cdots	$a_{s s}$
	b_{1}	b_{2}	\cdots	b_{s}

Which induces the following recurrence:

$$
\mathbf{k}_{i}=f\left(t_{j}+c_{i} h_{j}, \quad \mathbf{y}_{j}+h \sum_{l=1}^{s} a_{i l} \mathbf{k}_{l}\right) \quad \mathbf{y}_{j+1}=\mathbf{y}_{j}+h \sum_{i=1}^{s} b_{i} \mathbf{k}_{i}
$$

- Explicit method (ERK) if $a_{i l}=0$ is $i \leqslant l$
- Diagonal Implicit method (DIRK) if $a_{i l}=0$ is $i \leqslant l$ and at least one $a_{i i} \neq 0$
- Implicit method (IRK) otherwise

Explicit methods

Interval extensions

1. Computation of $\mathbf{k}_{1}=f\left(\mathbf{y}_{j}\right), \mathbf{k}_{2}=f\left(\mathbf{y}_{j}+h \cdot a_{21} \cdot \mathbf{k}_{1}\right), \ldots$, $\mathbf{k}_{i}=f\left(\mathbf{y}_{j}+h \sum_{\ell=1}^{i-1} a_{i \ell} \mathbf{k}_{\ell}\right), \ldots, \mathbf{k}_{s}=f\left(\mathbf{y}_{j}+h \sum_{\ell=1}^{s-1} a_{s} \mathbf{k}_{\ell}\right)$
2. Computation of $\mathbf{y}_{j+1}=\mathbf{y}_{j}+h \sum_{i=1}^{s} b_{i} \mathbf{k}_{i}+$ LTE
\Rightarrow with interval arithmetic (natural extension)

Example of HEUN

0	0	0
1	1	0
	$1 / 2$	$1 / 2$

$\left[\mathbf{k}_{1}\right]=[f]\left(\left[\mathbf{y}_{j}\right]\right), \quad\left[\mathbf{k}_{2}\right]=[f]\left(\left[\mathbf{y}_{j}\right]+h\left[\mathbf{k}_{1}\right]\right)$,
$\left[\mathbf{y}_{j+1}\right]=\left[\mathbf{y}_{j}\right]+h\left(\left[\mathbf{k}_{1}\right]+\left[\mathbf{k}_{2}\right]\right) / 2$

Implicit Schemes

Example of Radau IIA

$1 / 3$	$5 / 12$	$-1 / 12$
1	$3 / 4$	$1 / 4$
	$3 / 4$	$1 / 4$

$$
\begin{aligned}
& {\left[\mathbf{k}_{1}\right]=[f]\left(\left[\mathbf{y}_{j}\right]+h\left(5\left[\mathbf{k}_{1}\right] / 12-\left[\mathbf{k}_{2}\right] / 12\right)\right),} \\
& {\left[\mathbf{k}_{2}\right]=[f]\left(\left[\mathbf{y}_{j}\right]+h\left(3\left[\mathbf{k}_{1}\right] / 4+\left[\mathbf{k}_{2}\right] / 4\right)\right.}
\end{aligned}
$$

We need to solve this system of implicit equations !

Solve implicit scheme with a contractor point of view

\mathbf{k}_{1} is the approximate of $f\left(\mathbf{y}\left(t_{j}+h / 3\right)\right)$, but by construction
$\mathbf{y}\left(t_{j}+h / 3\right) \in\left[\tilde{\mathbf{y}}_{j}\right]$, then $\left[\mathbf{k}_{1}\right] \subset f\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$ (same for \mathbf{k}_{2})

Algorithm based on contraction
Require: $f,\left[\tilde{\mathbf{y}}_{j}\right],\left[\mathbf{y}_{j}\right], L T E$
$\left[\mathbf{k}_{1}\right]=[f]\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$ and $\left[\mathbf{k}_{2}\right]=[f]\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$
while $\left[\mathbf{k}_{1}\right]$ or $\left[\mathbf{k}_{2}\right]$ improved do

$$
\left[\mathbf{k}_{1}\right]=\left[\mathbf{k}_{1}\right] \cap[f]\left(\left[\mathbf{y}_{j}\right]+h\left(5\left[k_{1}\right] / 12-\left[\mathbf{k}_{2}\right] / 12\right)\right)
$$

$$
\left[\mathbf{k}_{2}\right]=\left[\mathbf{k}_{2}\right] \cap[f]\left(\left[\mathbf{y}_{j}\right]+h\left(3\left[\mathbf{k}_{1}\right] / 4+\left[\mathbf{k}_{2}\right] / 4\right)\right.
$$

end while
$\left[\mathbf{y}_{j+1}\right]=\left[\mathbf{y}_{j}\right]+h\left(3\left[\mathbf{k}_{1}\right]+\left[\mathbf{k}_{2}\right]\right) / 4+$ LTE
return $\left[\mathbf{y}_{j+1}\right]$

How to compute the LTE ?

$$
\mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right)-\mathbf{y}_{n}=C \cdot\left(h^{p+1}\right) \quad \text { with } \quad C \in \mathbb{R}
$$

Order condition

This condition states that a method of Runge-Kutta family is of order p iff

- the Taylor expansion of the exact solution
- and the Taylor expansion of the numerical methods
have the same $p+1$ first coefficients.

Consequence

The LTE is the difference of Lagrange remainders of two Taylor expansions

A quick view of Runge-Kutta order condition theory

Starting from $\mathbf{y}^{(q)}=(f(\mathbf{y}))^{(q-1)}$ and with the Chain rule, we have High order derivatives of exact solution \mathbf{y}

$$
\begin{array}{rlr}
\dot{\mathbf{y}} & =f(\mathbf{y}) & \\
\ddot{\mathbf{y}} & =f^{\prime}(\mathbf{y}) \dot{\mathbf{y}} & f^{\prime}(\mathbf{y}) \text { is a linear map } \\
\mathbf{y}^{(3)} & =f^{\prime \prime}(\mathbf{y})(\dot{\mathbf{y}}, \dot{\mathbf{y}})+f^{\prime}(\mathbf{y}) \ddot{\mathbf{y}} & f^{\prime \prime}(\mathbf{y}) \text { is a bi-linear map } \\
\mathbf{y}^{(4)} & =f^{\prime \prime \prime}(\mathbf{y})(\dot{\mathbf{y}}, \dot{\mathbf{y}}, \dot{\mathbf{y}})+3 f^{\prime \prime}(\mathbf{y})(\ddot{\mathbf{y}}, \dot{\mathbf{y}})+f^{\prime}(\mathbf{y}) \mathbf{y}^{(3)} & f^{\prime \prime \prime}(\mathbf{y}) \text { is a tri-linear map } \\
\mathbf{y}^{(5)} & =f^{(4)}(\mathbf{y})(\dot{\mathbf{y}}, \dot{\mathbf{y}}, \dot{\mathbf{y}}, \dot{\mathbf{y}})+6 f^{\prime \prime \prime}(\mathbf{y})(\ddot{\mathbf{y}}, \dot{\mathbf{y}}, \dot{\mathbf{y}}) & \vdots \\
& +4 f^{\prime \prime}(\mathbf{y})\left(\mathbf{y}^{(3)}, \dot{\mathbf{y}}\right)+3 f^{\prime \prime}(\mathbf{y})(\ddot{\mathbf{y}}, \ddot{\mathbf{y}})+f^{\prime}(\mathbf{y}) \mathbf{y}^{(4)} &
\end{array}
$$

A quick view of Runge-Kutta order condition theory

Inserting the value of $\dot{\mathbf{y}}, \ddot{\mathbf{y}}, \ldots$, we have:
High order derivatives of exact solution \mathbf{y}

$$
\begin{aligned}
\dot{\mathbf{y}} & =f \\
\ddot{\mathbf{y}} & =f^{\prime}(f) \\
\mathbf{y}^{(3)} & =f^{\prime \prime}(f, f)+f^{\prime}\left(f^{\prime}(f)\right) \\
\mathbf{y}^{(4)} & =f^{\prime \prime \prime}(f, f, f)+3 f^{\prime \prime}\left(f^{\prime} f, f\right)+f^{\prime}\left(f^{\prime \prime}(f, f)\right)+f^{\prime}\left(f^{\prime}\left(f^{\prime}(f)\right)\right)
\end{aligned}
$$

- Elementary differentials, such as $f^{\prime \prime}(f, f)$, are denoted by $F(\tau)$

Remark a tree structure is made apparent in these computations

A quick view of Runge-Kutta order condition theory

Rooted trees

- f is a leaf
- f^{\prime} is a tree with one branch, $\ldots, f^{(k)}$ is a tree with k branches

Example

$$
f^{\prime \prime}\left(f^{\prime} f, f\right) \quad \text { is associated to }
$$

Remark: this tree is not unique e.g., symmetry

A quick view of Runge-Kutta order condition theory
Theorem 1 (Butcher, 1963)
The q th derivative of the exact solution is given by

$$
\mathbf{y}^{(q)}=\sum_{r(\tau)=q} \alpha(\tau) F(\tau)\left(\mathbf{y}_{0}\right) \quad \text { with } \quad \begin{aligned}
& r(\tau) \text { the order of } \tau \text { i.e., number of nodes } \\
& \alpha(\tau) \text { a positive integer }
\end{aligned}
$$

We can do the same for the numerical solution
Theorem 2 (Butcher, 1963)
The q th derivative of the numerical solution is given by
$\mathbf{y}_{1}^{(q)}=\sum_{r(\tau)=q} \gamma(\tau) \phi(\tau) \alpha(\tau) F(\tau)\left(\mathbf{y}_{0}\right)$ with $\begin{aligned} & \gamma(\tau) \text { a positive integer } \\ & \phi(\tau) \text { depending on a Butcher tableau }\end{aligned}$
Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff $\phi(\tau)=\frac{1}{\gamma(\tau)} \quad \forall \tau, r(\tau) \leqslant p$

LTE formula for explicit and implicit Runge-Kutta

From Th. 1 and Th. 2, if a Runge-Kutta has order p then

$$
\begin{array}{r}
\mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right)-\mathbf{y}_{n}=\frac{h^{p+1}}{(p+1)!} \sum_{r(\tau)=p+1} \alpha(\tau)[1-\gamma(\tau) \phi(\tau)] F(\tau)(\mathbf{y}(\xi)) \\
\xi \in\left[t_{n-1}, t_{n}\right]
\end{array}
$$

- $\alpha(\tau)$ and $\gamma(\tau)$ are positive integer (with some combinatorial meaning)
- $\phi(\tau)$ function of the coefficients of the RK method,

Example

Note: $\mathbf{y}(\xi)$ may be over-approximated using Interval Picard-Lindelöf operator.

Implementation of LTE formula

Elementary differentials
$F(\tau)(\mathbf{y})=f^{(m)}(\mathbf{y})\left(F\left(\tau_{1}\right)(\mathbf{y}), \ldots, F\left(\tau_{m}\right)(\mathbf{y})\right) \quad$ for $\quad \tau=\left[\tau_{1}, \ldots, \tau_{m}\right]$
translate as a sum of partial derivatives of f associated to sub-trees
Notations

- n the state-space dimension
- p the order of a Rung-Kutta method

Two ways of computing $F(\tau)$

1. Direct form: complexity $\mathcal{O}\left(n^{p+1}\right)$
2. Factorized form: complexity $\mathcal{O}\left(n(p+1)^{\frac{5}{2}}\right)$ based on Automatic Differentiation

Wrapping effect

Consider the following IIVP: $\binom{\dot{y}_{1}}{\dot{y}_{2}}=\binom{-y_{2}}{y_{1}}$ with $y_{1}(0) \in[-1,1], y_{2}(0) \in[10,11]$. Exact solution is

$$
\mathbf{y}(t)=A(t) \mathbf{y}_{0} \quad \text { with } \quad A(t)=\left(\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right)
$$

We compute periodically at $t=\frac{\pi}{4} n$ with $n=1, \ldots, 4$

Wrapping effect comparison (black: initial, green: interval, blue: interval from QR, red: zonotope from affine)

Solution to wrapping effect

One solution is the centered form of Taylor series, coupled with QR
Taylor integration
$\left[\mathbf{y}_{j+1}\right]=\left[\mathbf{y}_{j}\right]+\sum_{i=1}^{N-1} h^{i} f^{[i-1]}\left(\left[\mathbf{y}_{j}\right]\right)+h^{N} f^{[N-1]}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$ Each $f^{[i-1]}\left(\left[\mathbf{y}_{j}\right]\right)$ evaluated in centered form:

$$
f^{[i-1]}\left(\mathrm{m}\left(\left[\mathbf{y}_{j}\right]\right)\right)+J\left(\left[\mathbf{y}_{j}\right]\right)^{T}\left(\left[\mathbf{y}_{j}\right]-\mathrm{m}\left(\left[\mathbf{y}_{j}\right]\right)\right)
$$

and a QR-decomposition of J is used to reduce the wrapping effect. . .

Geometric sense
Consists on a rotation of the evaluation. But in $\mathcal{O}\left(n^{3}\right)$

Another solution: Affine arithmetic

A different arithmetic than interval
Represented by an affine form \hat{x} (also called a zonotope):

$$
\hat{x}=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i}
$$

where α_{i} real numbers, α_{0} the center, and ε_{i} are intervals $[-1,1]$

Geometric sense

Represents a zonotope, a convex polytope with central symmetry (not affected by rotation !)

Affine arithmetic

An interval $a=\left[a_{1}, a_{2}\right]$ in affine form:
$\hat{x}=\alpha_{0}+\alpha_{1} \varepsilon$ with $\alpha_{0}=\left(a_{1}+a_{2}\right) / 2$ and $\alpha_{1}=\left(a_{2}-a_{1}\right) / 2$.
Usual operations: $\hat{x}=\alpha_{0}+\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i}$ and $\hat{y}=\beta_{0}+\sum_{i=1}^{n} \beta_{i} \varepsilon_{i}$, then with $a, b, c \in \mathbb{R}$

$$
a \hat{x}+b \hat{y}+c=\left(a \alpha_{0}+b \beta_{0}+c\right)+\sum_{i=1}^{n}\left(a \alpha_{i}+b \beta_{i}\right) \varepsilon_{i}
$$

Multiplication creates new noise symbols:

$$
\hat{x} \times \hat{y}=\alpha_{0} \alpha_{1}+\sum_{i=1}^{n}\left(\alpha_{i} \beta_{0}+\alpha_{0} \beta_{i}\right) \varepsilon_{i}+\nu \varepsilon_{n+1}
$$

where $\nu=\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right) \times\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\right)$ over-approximates the error of linearization.
Other operations, like sin, exp, are evaluated using either the Min-Range method or a Chebychev approximation

Enclosure part of the algorithm

```
Compute \(\tilde{\mathbf{y}}_{1}=P L\left(\tilde{\mathbf{y}}_{0}\right)\)
iter \(=1\)
while ( \(\tilde{\mathbf{y}}_{1} \not \subset \tilde{\mathbf{y}}_{0}\) ) and (iter \(<\operatorname{size}(\mathbf{f})+1\) ) do
    \(\tilde{\mathbf{y}}_{0}=\tilde{\mathbf{y}}_{1}\)
    Compute \(\tilde{\mathbf{y}}_{1}\) with \(P L\left(\tilde{\mathbf{y}}_{0}\right)\)
    iter \(=\) iter +1
end while
if ( \(\tilde{\mathbf{y}}_{1} \subset \tilde{\mathbf{y}}_{0}\) ) then
    Compute Ite \(=\operatorname{LTE}\left(\tilde{\mathbf{y}}_{1}\right)\)
    if lte \(>\) tol then
        \(h=h / 2\), restart
    end if
else
    \(h=h / 2\), restart
end if
```

Stepsize h decreases but never increases: Zenon problem

Stepsize controller

If first step is achieved with success, multiply h by a factor function of method order and LTE:

$$
f a c=\left(\frac{\mathrm{tol}}{\mathrm{LTE}}\right)^{\frac{1}{p}}
$$

Validated integration in a contractor formalism

Contractor for $\left[\tilde{\mathbf{y}}_{j}\right]$
After Picard-lindelöf contractance obtained :
$\operatorname{Ctc}_{P L}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right) \triangleq\left[\tilde{\mathbf{y}}_{j}\right] \cap \operatorname{PL}\left(\left[\mathbf{y}_{j}\right],\left[\tilde{\mathbf{y}}_{j}\right]\right)$ till a fixed point
Contractor for $\left[\mathbf{y}_{j+1}\right]$
$\operatorname{Ctc}_{R K}\left(\left[\mathbf{y}_{j+1}\right]\right) \triangleq\left[\mathbf{y}_{j+1}\right] \cap \operatorname{RK}\left(\left[\mathbf{y}_{j}\right]\right)+\operatorname{LTE}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$

Additive constraints

For constraint valid all the time

$$
\forall t, g(\mathbf{y}(t))=0
$$

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:

- $\operatorname{Ctc}_{F B}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right) \cap \operatorname{Ctc} c_{P L}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$
- $\operatorname{Ctc}_{F B}\left(\left[\mathbf{y}_{j+1}\right]\right) \cap \operatorname{Ctc}_{R K}\left(\left[\mathbf{y}_{j+1}\right]\right)$

Additive constraints

For constraint valid all the time

$$
\forall t, g(\mathbf{y}(t))=0
$$

Coming from mechanical constraints, energy conservation, etc.

A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:

- $\operatorname{Ctc}_{F B}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right) \cap \operatorname{Ctc}_{P L}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$
- $\operatorname{Ctc}_{F B}\left(\left[\mathbf{y}_{j+1}\right]\right) \cap \operatorname{Ctc}_{R K}\left(\left[\mathbf{y}_{j+1}\right]\right)$

But? The second one is often a bad idea, lost of noise symbols !

Additive constraints

For constraint valid all the time

$$
\forall t, g(\mathbf{y}(t))=0
$$

Coming from mechanical constraints, energy conservation, etc.
A new contractor
Based on Fwd/Bwd contractor on g combined with previous Ctc:

- $\operatorname{Ctc}_{F B}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right) \cap \operatorname{Ctc}_{P L}\left(\left[\tilde{\mathbf{y}}_{j}\right]\right)$
- $\operatorname{Ctc}_{F B}\left(\left[\mathbf{y}_{j+1}\right]\right) \cap \operatorname{Ctc}_{R K}\left(\left[\mathbf{y}_{j+1}\right]\right)$

But? The second one is often a bad idea, lost of noise symbols ! Because intersection of zonotopes is not a zonotope...

Temporal constraints

OK-1: safe zone, OK-2: Goal, NOK-3: obstacle, NOK-4: forbidden zone at a given time, ...

Temporal constraints

Constraint Satisfaction Differential Problem (CSDP)

With a tube $R(t)$, such that $y(t) \in R(t), \forall t$ (obtained with validated simulation:

Verbal property	CSDP translation
Stay in \mathcal{A} (until $\tau)$	$R(t) \subset \operatorname{Int}(\mathcal{A}), \forall t(t<\tau)$
In \mathcal{A} at τ	$R(\tau) \subset \operatorname{Int}(\mathcal{A})$
Has crossed \mathcal{A} (before $\tau)$	$\exists t, R(t) \cap \square \mathcal{A} \neq \emptyset(t<\tau)$
Go out \mathcal{A} (before $\tau)$	$\exists t, R(t) \cap \square \mathcal{A}=\emptyset(t<\tau)$
Has reached \mathcal{A}	$R(T) \cap \square \mathcal{A} \neq \emptyset$
Finish in \mathcal{A}	$R(T) \subset \operatorname{Int}(\mathcal{A})$

Bibliography

- Solving Ordinary Differential Equations I: Nonstiff Problems Hairer et al. - 2009 - Springer
- Coefficients for the study of Runge-Kutta integration processes - Butcher - 1963-Journal of the Australian Mathematical Society
- Interval Analysis - Moore - 1966 - Prentice-hall
- Validated solutions of initial value problems for ordinary differential equations - Nedialkov et al. - 1999-Appl. Math. and Comp.
- Validated Explicit and Implicit Runge-Kutta Methods Sandretto et al. - 2016 - Reliable Computing
- Dynlbex-http:
//perso.ensta-paristech.fr/~chapoutot/dynibex/

Do it yourself

Consider an IVP - Van der Pol oscillator

$$
\dot{y}=\binom{y_{1}}{\mu\left(1-y_{0}^{2}\right) y_{1}-y_{0}}
$$

with $\mu=1$ and $y(0)=(2 ; 0)^{T}$
To Do
Compute the simulation of this ivp with Dynlbex !

- Write a function, an IVP, launch simulation till $t=10 \mathrm{~s}$
- Export and plot the result (with vibes or matlab)
- Find the "best" method and precision to obtain a nice picture
- Play with μ ($0.2,2$, etc.)
- What do you see after $\mu \geq 5$?
- What do you need to change ?

