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Guaranteed simulation of differential equations

Recall of Ordinary differential equations

Given by

y ′ = f (y , t)

Initial Value Problems

y ′ = f (y , t), y(0) = y0

Numerical simulation of IVPs till a time tn

Compute yi ≈ y(ti) with ti ∈ {0, t1, . . . , tn}
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Guaranteed simulation of differential equations

Validated simulation of IVPs
Produces a list of boxes [yi ] and [ỹi ] such that

I y(ti) ∈ [yi ] with ti ∈ {0, t1, . . . , tn}
I y(t) ∈ [ỹi ] for all t ∈ [ti , ti+1]

Method of Lohner
1. Find [ỹi ] with Picard-Lindelof operator
2. Compute [yi ] with a validated integration scheme : Taylor

(Vnode-LP) or Runge-Kutta (DynIbex)

ttj tj+1

[yj]
~

hj

[yj]

[yj+1]
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Differential Algebraic Equations

Differential Algebraic Equations
General form: implicit
F (t, y , y ′, ...) = 0, t0 ≤ t ≤ tend
y ′ = DAE 1st order, y ′′ = DAE 2nd , etc.
(all DAEs can be rewritten in DAE of 1st order)

Hessenberg form: Semi-explicit (index: distance to ODE)�
�

�
index 1 :

{
y ′ = f (t, x , y)
0 = g(t, x , y)

�
�

�
index 2 :

{
y ′ = f (t, x , y)

0 = g(t, x)

⇒ Focus on Hessenberg index-1: Simulink, Modelica-like, etc.
Different from ODE + constraint{

y ′ = f (t, y)
0 = g(y , y ′)

, t0 ≤ t ≤ tend

⇒ Direct with contractor approach
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y ′ = f (t, x , y)
0 = g(t, x , y)

�
�

�
index 2 :

{
y ′ = f (t, x , y)

0 = g(t, x)

Some of dependent variables occur without their derivatives !
Different from ODE + constraint{

y ′ = f (t, y)
0 = g(y , y ′)

, t0 ≤ t ≤ tend

⇒ Direct with contractor approach
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Differential Algebraic Equations

A basic example

System in Hessenberg index-1 form{
y ′ = y + x + 1

(y + 1) ∗ x + 2 = 0 y(0) = 1.0 and x(0) = 0.0

Simulation ⇒ stiffness (in general)
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Differential Algebraic Equations

Simulation of a DAE
As ODE: a list of boxes [yi ] and [ỹi ] such that

I y(ti) ∈ [yi ] with ti ∈ {0, t1, . . . , tn}
I y(t) ∈ [ỹi ] for all t ∈ [ti , ti+1]

But in addition: a list of boxes [xi ] and [x̃i ] such that
I x(ti) ∈ [xi ] with ti ∈ {0, t1, . . . , tn}
I x(t) ∈ [x̃i ] for all t ∈ [ti , ti+1]

Both validate
I y ′(ti) ∈ f (ti , [xi ], [yi ])

I ∃x ∈ [xi ],∃y ∈ [yi ] : g(ti , x , y) = 0
I y ′(t) ∈ f (t, [x̃i ], [ỹi ]),∀t ∈ [ti , ti+1]

I ∀t ∈ [ti , ti+1],∃x ∈ [x̃i ],∃y ∈ [ỹi ] : g(t, x , y) = 0
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Differential Algebraic Equations
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Approach to simulate DAE

Based on Lohner two-step approach

Step 1- A priori enclosure of state and algebraic variables

How find the enclosure [x̃ ] on integration step ?

Assume that ∂g
∂x is locally reversal

we are able to find the unique x = ψ(y) (implicit function
theorem), and then:

y ′ = f (ψ(y), y)
and finally we could apply Picard-Lindelof to prove existence and
uniqueness, but...
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Step 1- A priori enclosure of state and algebraic variables

How find the enclosure [x̃ ] on integration step ?

Assume that ∂g
∂x is locally reversal

we are able to find the unique x = ψ(y) (implicit function
theorem), and then:

y ′ = f (ψ(y), y)
and finally we could apply Picard-Lindelof to prove existence and
uniqueness, but... �� ��ψ is unknown !
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Approach to simulate DAE

Based on Lohner two-step approach

Step 1- A priori enclosure of state and algebraic variables

Solution
If we are able to find [x̃ ] such that
for each y ∈ [ỹ ],∃!x ∈ [x̃ ] : g(x , y) = 0, then ∃!h on the
neighborhood of [x̃ ], and the solution of DAE ∃! in [ỹ ] (Picard
with [x̃ ] as a parameter)

A novel operator Picard-Krawczyk PK:

If
(
P([ỹ ], [x̃ ])
K([ỹ ], [x̃ ])

)
⊂ Int

(
[ỹ ]
[x̃ ]

)
then ∃! solution of DAE

I P a Picard-Lindelof for y ′ ∈ f ([x̃ ], y)
I K a parametrized preconditioned Krawczyk operator for

g(x , y) = 0,∀y ∈ [ỹ ]
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Approach to simulate DAE

Parametric Krawczyk

Parametric preconditioned Krawczyk operator

K([ỹ ], [x̃ ]) = m([x̃ ])− Cg(m([x̃ ]),m([ỹ ]))−

(C ∂g
∂x ([x̃ ], [ỹ ])− I)([x̃ ]−m([x̃ ]))−

C ∂g
∂y (m([x̃ ]), [ỹ ])([ỹ ]−m([ỹ ])) (1)
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Approach to simulate DAE

Parametric Krawczyk

Interval Newton operator
N ([x ]) :

repeat
[A] = J([x ])
[b] = F (m([x ]))
Solve [A]s = [b] with a linear system solver method (Gauss
elimination for example)
[x ] = [x ] ∩ s +m([x ])

until Fixed point
If N ([x ]) ⊂ Int([x ]), then F has a unique solution and this solution
is in N ([x ])

Parametric preconditioned Krawczyk
A better version of Newton, with parameter and preconditioning
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Approach to simulate DAE

Frobenius theorem

Let X and Y be Banach spaces, and A ⊂ X , B ⊂ Y a pair of open sets. Let
F : A× B → L(X , Y )
be a continuously differentiable function of the Cartesian product (which inherits a differentiable structure from its
inclusion into X × Y ) into the space L(X,Y) of continuous linear transformations of X into Y. A differentiable
mapping u : A→ B is a solution of the differential equation
y′ = F (x, y) (1)
if u′(x) = F (x, u(x)) for all x ∈ A. The equation (1) is completely integrable if for each (x0, y0) ∈ A× B, there
is a neighborhood U of x0 such that (1) has a unique solution u(x) defined on U such that u(x0)=y0. The
conditions of the Frobenius theorem depend on whether the underlying field is R or C. If it is R, then assume F is
continuously differentiable. If it is C, then assume F is twice continuously differentiable. Then (1) is completely
integrable at each point of A× B if and only if
D1F (x, y) · (s1, s2) + D2F (x, y) · (F (x, y) · s1, s2) = D1F (x, y) · (s2, s1) + D2F (x, y) · (F (x, y) · s2, s1) for all
s1, s2 ∈ X . Here D1 (resp. D2) denotes the partial derivative with respect to the first (resp. second) variable; the
dot product denotes the action of the linear operator F (x, y) ∈ L(X , Y ), as well as the actions of the operators
D1F (x, y) ∈ L(X , L(X , Y )) and D2F (x, y) ∈ L(Y , L(X , Y )).

Dieudonné, J (1969). Foundations of modern analysis. Academic Press.
Chapter 10.9.
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Approach to simulate DAE

Based on Lohner two-step approach

Step 2- Contraction of state and algebraic variables (at t + h)
Two contractors in a fixpoint:

I Contraction of [yi+1] (init [ỹi ])
I [x̃i ] as a parameter of function f (t, x , y)
⇒ ODE (stiff + interval parameter)
⇒ Radau IIA order 3 (fully Implicit Runge-Kutta, A-stable,

efficiency for stiff and interval parameters)
I Contraction of [xi+1] (init [x̃i ])

I [yi+1] as a parameter of function g(x , y)
⇒ Constraint solving
⇒ Krawczyk + forward/backward

(+ any other constraints, from physical context or Pantelides
algorithm)
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Approach to simulate DAE

Recall on Radau methods

yn+1 = yn + h
∑s

i=1 biki , ki = f
(

t0 + cih, y0 + h
∑s

j=1 aijkj
)

Butcher tableau Radau IIA order 3
1/3 5/12 -1/12

1 3/4 1/4
3/4 1/4

Butcher tableau Radau IIA order 5
2
5 −

√
6

10
11
45 −

7
√

6
360

37
225 −

169
√

6
1800 − 2

225 +
√

6
75

2
5 +

√
6

10
37

225 + 169
√

6
1800

11
45 + 7

√
6

360 − 2
225 −

√
6

75
1 4

9 −
√

6
36

4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9
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Approach to simulate DAE

Based on Lohner two-step approach

How to control the stepsize of integration scheme ?
Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable
If x leads to a large evaluation of truncature error: too late !

Solution: force diameter of x grows slower than y
Empirical approach: to improve !
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Examples

A basic example

System in Hessenberg index-1 form{
y ′ = y + x + 1

(y + 1) ∗ x + 2 = 0 y(0) = 1.0 and x(0) ∈ [−2.0, 2.0]

(consistency: x(0) = −1)

Simulation till t=4s (30 seconds of computation)
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Examples

The classical example: Pendulum
p′ = u
q′ = v

mu′ = −pλ
mv ′ = −qλ− g

m(u2 + v2)− gq − l2λ = 0

(p, q, u, v)0 = (1, 0, 0, 0) et λ0 ∈ [−0.1, 0.1] (consistency: λ = 0)
Simulation till t=1s (2 minutes of computation)
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Examples

Pendulum with Dymola

DynIbex: Dymola:
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Examples

Pantelides on pendulum

Pantelides
Algorithm for order reduction, formal differentiation and
manipulation of equations

On pendulum problem
p2 + q2 − l2 = 0
p ∗ u + q ∗ v = 0

m ∗ (u2 + v2)− g ∗ q2 − l2 ∗ p = 0

⇒ Constraints valid all the time !
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Examples

Pendulum to 1.6s, tol = 10−18

28 minutes...

With csp: 27 minutes...
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