

Validated simulation of DAEs
Julien Alexandre dit Sandretto

Department U2IS
ENSTA Paris
SSC310-2020

Guaranteed simulation of differential equations

Differential Algebraic Equations

Approach to simulate DAE

Examples

Recall of Ordinary differential equations

Given by

$$
y^{\prime}=f(y, t)
$$

Initial Value Problems

$$
y^{\prime}=f(y, t), \quad y(0)=y_{0}
$$

Numerical simulation of IVPs till a time t_{n}
Compute $y_{i} \approx y\left(t_{i}\right)$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$

Validated simulation of IVPs

Produces a list of boxes $\left[y_{i}\right]$ and $\left[\tilde{y}_{i}\right]$ such that

- $y\left(t_{i}\right) \in\left[y_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$
- $y(t) \in\left[\tilde{y}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

Method of Lohner

1. Find $\left[\tilde{y}_{i}\right]$ with Picard-Lindelof operator
2. Compute $\left[y_{i}\right]$ with a validated integration scheme: Taylor (Vnode-LP) or Runge-Kutta (Dynlbex)

Differential Algebraic Equations

General form: implicit
$F\left(t, y, y^{\prime}, \ldots\right)=0, t_{0} \leq t \leq t_{\text {end }}$
$y^{\prime}=$ DAE $1^{\text {st }}$ order, $y^{\prime \prime}=$ DAE $2^{\text {nd }}$, etc.
(all DAEs can be rewritten in DAE of $1^{\text {st }}$ order)
Hessenberg form: Semi-explicit (index: distance to ODE)

$$
\text { index 1: }\left\{\begin{array}{l}
y^{\prime}=f(t, x, y) \\
0=g(t, x, y)
\end{array}\right.
$$

$$
\text { index } 2:\left\{\begin{array}{c}
y^{\prime}=f(t, x, y) \\
0=g(t, x)
\end{array}\right.
$$

\Rightarrow Focus on Hessenberg index-1: Simulink, Modelica-like, etc.

Differential Algebraic Equations

General form: implicit
$F\left(t, y, y^{\prime}, \ldots\right)=0, t_{0} \leq t \leq t_{\text {end }}$
$y^{\prime}=$ DAE $1^{\text {st }}$ order, $y^{\prime \prime}=$ DAE $2^{\text {nd }}$, etc.
(all DAEs can be rewritten in DAE of $1^{\text {st }}$ order)
Hessenberg form: Semi-explicit (index: distance to ODE)

$$
\text { index 1: }\left\{\begin{array}{l}
y^{\prime}=f(t, x, y) \\
0=g(t, x, y)
\end{array}\right.
$$

$$
\text { index 2: }\left\{\begin{array}{c}
y^{\prime}=f(t, x, y) \\
0=g(t, x)
\end{array}\right.
$$

Some of dependent variables occur without their derivatives !
Different from ODE + constraint

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
0=g\left(y, y^{\prime}\right)
\end{array} \quad, t_{0} \leq t \leq t_{e n d}\right.
$$

\Rightarrow Direct with contractor approach

A basic example

System in Hessenberg index-1 form

$$
\left\{\begin{array}{c}
y^{\prime}=y+x+1 \\
(y+1) * x+2=0
\end{array} \quad y(0)=1.0 \text { and } x(0)=0.0\right.
$$

Simulation \Rightarrow stiffness (in general)

Simulation of a DAE

As ODE: a list of boxes $\left[y_{i}\right]$ and $\left[\tilde{y}_{i}\right]$ such that

- $y\left(t_{i}\right) \in\left[y_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$
- $y(t) \in\left[\tilde{y}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

Both validate

- $y^{\prime}\left(t_{i}\right) \in f\left(t_{i},\left[x_{i}\right],\left[y_{i}\right]\right)$
- $\exists x \in\left[x_{i}\right], \exists y \in\left[y_{i}\right]: g\left(t_{i}, x, y\right)=0$
- $y^{\prime}(t) \in f\left(t,\left[\tilde{x}_{i}\right],\left[\tilde{y}_{i}\right], \forall t \in\left[t_{i}, t_{i+1}\right]\right.$
- $\forall t \in\left[t_{i}, t_{i+1}\right], \exists x \in\left[\tilde{x}_{i}\right], \exists y \in\left[\tilde{y}_{i}\right]: g(t, x, y)=0$

Simulation of a DAE

As ODE: a list of boxes $\left[y_{i}\right]$ and $\left[\tilde{y}_{i}\right]$ such that

- $y\left(t_{i}\right) \in\left[y_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$
- $y(t) \in\left[\tilde{y}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

But in addition: a list of boxes $\left[x_{i}\right]$ and $\left[\tilde{x}_{i}\right]$ such that

- $x\left(t_{i}\right) \in\left[x_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$
- $x(t) \in\left[\tilde{x}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

Both validate

- $y^{\prime}\left(t_{i}\right) \in f\left(t_{j},\left[x_{i}\right],\left[y_{i}\right]\right)$
- $\exists x \in\left[x_{i}\right], \exists y \in\left[y_{i}\right]: g\left(t_{i}, x, y\right)=0$
- $y^{\prime}(t) \in f\left(t,\left[\tilde{x}_{i}\right],\left[\tilde{y}_{i}\right], \forall t \in\left[t_{i}, t_{i+1}\right]\right.$
- $\forall t \in\left[t_{i}, t_{i+1}\right], \exists x \in\left[\tilde{x}_{i}\right], \exists y \in\left[\tilde{y}_{i}\right]: g(t, x, y)=0$

Simulation of a DAE

As ODE: a list of boxes $\left[y_{i}\right]$ and $\left[\tilde{y}_{i}\right]$ such that

- $y\left(t_{i}\right) \in\left[y_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$
- $y(t) \in\left[\tilde{y}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

But in addition: a list of boxes $\left[x_{i}\right]$ and $\left[\tilde{x}_{i}\right]$ such that

- $x\left(t_{i}\right) \in\left[x_{i}\right]$ with $t_{i} \in\left\{0, t_{1}, \ldots, t_{n}\right\}$
- $x(t) \in\left[\tilde{x}_{i}\right]$ for all $t \in\left[t_{i}, t_{i+1}\right]$

Both validate

- $y^{\prime}\left(t_{i}\right) \in f\left(t_{i},\left[x_{i}\right],\left[y_{i}\right]\right)$
- $\exists x \in\left[x_{i}\right], \exists y \in\left[y_{i}\right]: g\left(t_{i}, x, y\right)=0$
- $y^{\prime}(t) \in f\left(t,\left[\tilde{x}_{i}\right],\left[\tilde{y}_{i}\right]\right), \forall t \in\left[t_{i}, t_{i+1}\right]$
- $\forall t \in\left[t_{i}, t_{i+1}\right], \exists x \in\left[\tilde{x}_{i}\right], \exists y \in\left[\tilde{y}_{i}\right]: g(t, x, y)=0$

Based on Lohner two-step approach

Step 1- A priori enclosure of state and algebraic variables
How find the enclosure $[\tilde{x}]$ on integration step ?

Assume that $\frac{\partial g}{\partial x}$ is locally reversal
we are able to find the unique $x=\psi(y)$ (implicit function theorem), and then:

$$
y^{\prime}=f(\psi(y), y)
$$

and finally we could apply Picard-Lindelof to prove existence and uniqueness, but...

Based on Lohner two-step approach

Step 1- A priori enclosure of state and algebraic variables
How find the enclosure $[\tilde{x}]$ on integration step ?

Assume that $\frac{\partial g}{\partial x}$ is locally reversal
we are able to find the unique $x=\psi(y)$ (implicit function theorem), and then:

$$
y^{\prime}=f(\psi(y), y)
$$

and finally we could apply Picard-Lindelof to prove existence and uniqueness, but...

Based on Lohner two-step approach

Step 1- A priori enclosure of state and algebraic variables

Solution

If we are able to find $[\tilde{x}]$ such that for each $y \in[\tilde{y}], \exists!x \in[\tilde{x}]: g(x, y)=0$, then $\exists!h$ on the neighborhood of [$\tilde{x}]$, and the solution of DAE \exists ! in [$[\tilde{y}]$ (Picard with $[\tilde{x}]$ as a parameter)

A novel operator Picard-Krawczyk $\mathcal{P K}$:
If $\binom{\mathcal{P}([\tilde{y}],[\tilde{x}])}{\mathcal{K}([\tilde{y}],[\tilde{x}])} \subset \operatorname{Int}\binom{[\tilde{y}]}{[\tilde{x}]}$ then \exists ! solution of DAE

- \mathcal{P} a Picard-Lindelof for $y^{\prime} \in f([\tilde{x}], y)$
- \mathcal{K} a parametrized preconditioned Krawczyk operator for $g(x, y)=0, \forall y \in[\tilde{y}]$

Parametric Krawczyk

Parametric preconditioned Krawczyk operator

$$
\begin{align*}
\mathcal{K}([\tilde{y}],[\tilde{x}])= & m([\tilde{x}])-C g(m([\tilde{x}]), m([\tilde{y}]))- \\
& \left(C \frac{\partial g}{\partial x}([\tilde{x}],[\tilde{y}])-I\right)([\tilde{x}]-m([\tilde{x}]))- \\
& C \frac{\partial g}{\partial y}(m([\tilde{x}]),[\tilde{y}])([\tilde{y}]-m([\tilde{y}])) \tag{1}
\end{align*}
$$

Parametric Krawczyk

Interval Newton operator
$\mathcal{N}([x])$:
repeat

$$
[A]=J([x])
$$

$$
[b]=F(\mathrm{~m}([x]))
$$

Solve $[A] s=[b]$ with a linear system solver method (Gauss elimination for example)

$$
[x]=[x] \cap s+\mathrm{m}([x])
$$

until Fixed point
If $\mathcal{N}([x]) \subset \operatorname{Int}([x])$, then F has a unique solution and this solution is in $\mathcal{N}([x])$

Parametric preconditioned Krawczyk

A better version of Newton, with parameter and preconditioning

Frobenius theorem

Let X and Y be Banach spaces, and $A \subset X, B \subset Y$ a pair of open sets. Let $F: A \times B \rightarrow L(X, Y)$
be a continuously differentiable function of the Cartesian product (which inherits a differentiable structure from its inclusion into $X \times Y$) into the space $\mathrm{L}(\mathrm{X}, \mathrm{Y})$ of continuous linear transformations of X into Y . A differentiable mapping $u: A \rightarrow B$ is a solution of the differential equation
$y^{\prime}=F(x, y)(1)$
if $u^{\prime}(x)=F(x, u(x))$ for all $x \in A$. The equation (1) is completely integrable if for each $\left(x_{0}, y_{0}\right) \in A \times B$, there is a neighborhood U of $x 0$ such that (1) has a unique solution $u(x)$ defined on U such that $u(x 0)=y 0$. The conditions of the Frobenius theorem depend on whether the underlying field is R or C. If it is R, then assume F is continuously differentiable. If it is C, then assume F is twice continuously differentiable. Then (1) is completely integrable at each point of $A \times B$ if and only if
$D_{1} F(x, y) \cdot\left(s_{1}, s_{2}\right)+D_{2} F(x, y) \cdot\left(F(x, y) \cdot s_{1}, s_{2}\right)=D_{1} F(x, y) \cdot\left(s_{2}, s_{1}\right)+D_{2} F(x, y) \cdot\left(F(x, y) \cdot s_{2}, s_{1}\right)$ for all $s 1, s 2 \in X$. Here D1 (resp. D2) denotes the partial derivative with respect to the first (resp. second) variable; the dot product denotes the action of the linear operator $F(x, y) \in L(X, Y)$, as well as the actions of the operators $D 1 F(x, y) \in L(X, L(X, Y))$ and $D 2 F(x, y) \in L(Y, L(X, Y))$.

Dieudonné, J (1969). Foundations of modern analysis. Academic Press.

Chapter 10.9.

Based on Lohner two-step approach

Step 2- Contraction of state and algebraic variables (at $t+h$)

Two contractors in a fixpoint:

- Contraction of $\left[y_{i+1}\right]$ (init $\left[\tilde{y}_{i}\right]$)
- $\left[\tilde{x}_{i}\right]$ as a parameter of function $f(t, x, y)$
\Rightarrow ODE (stiff + interval parameter)
\Rightarrow Radau IIA order 3 (fully Implicit Runge-Kutta, A-stable, efficiency for stiff and interval parameters)
- Contraction of $\left[x_{i+1}\right]$ (init $\left[\tilde{x}_{i}\right]$)
- $\left[y_{i+1}\right]$ as a parameter of function $g(x, y)$
\Rightarrow Constraint solving
\Rightarrow Krawczyk + forward/backward
(+ any other constraints, from physical context or Pantelides algorithm)

Recall on Radau methods

$$
y_{n+1}=y_{n}+h \sum_{i=1}^{s} b_{i} k_{i}, \quad k_{i}=f\left(t_{0}+c_{i} h, y_{0}+h \sum_{j=1}^{s} a_{i j} k_{j}\right)
$$

Butcher tableau Radau IIA order 3

$1 / 3$	$5 / 12$	$-1 / 12$
1	$3 / 4$	$1 / 4$
	$3 / 4$	$1 / 4$

Butcher tableau Radau IIA order 5

$\frac{2}{5}-\frac{\sqrt{6}}{10}$	$\frac{11}{45}-\frac{7 \sqrt{6}}{360}$	$\frac{37}{225}-\frac{169 \sqrt{6}}{1800}$	$-\frac{2}{225}+\frac{\sqrt{6}}{75}$
$\frac{2}{5}+\frac{\sqrt{6}}{10}$	$\frac{37}{225}+\frac{169 \sqrt{6}}{1800}$	$\frac{11}{45}+\frac{7 \sqrt{6}}{360}$	$-\frac{2}{225}-\frac{\sqrt{6}}{75}$
1	$\frac{4}{9}-\frac{\sqrt{6}}{36}$	$\frac{4}{9}+\frac{\sqrt{6}}{36}$	$\frac{1}{9}$
	$\frac{4}{9}-\frac{\sqrt{6}}{36}$	$\frac{4}{9}+\frac{\sqrt{6}}{36}$	$\frac{1}{9}$

Based on Lohner two-step approach

How to control the stepsize of integration scheme ?
Classical method: Constrained by the Picard success and an evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable
If x leads to a large evaluation of truncature error: too late!
Solution: force diameter of x grows slower than y
Empirical approach: to improve!

Based on Lohner two-step approach

How to control the stepsize of integration scheme ?
Classical method: Constrained by the Picard success and an evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable If x leads to a large evaluation of truncature error: too late!

Solution: force diameter of x grows slower than y
Empirical approach: to improve!

Based on Lohner two-step approach

How to control the stepsize of integration scheme ?
Classical method: Constrained by the Picard success and an evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable
If x leads to a large evaluation of truncature error: too late!
Solution: force diameter of x grows slower than y
Empirical approach: to improve!

A basic example

System in Hessenberg index-1 form
$\left\{\begin{array}{c}y^{\prime}=y+x+1 \\ (y+1) * x+2=0\end{array} \quad y(0)=1.0\right.$ and $x(0) \in[-2.0,2.0]$
(consistency: $x(0)=-1$)
Simulation till $\mathrm{t}=4 \mathrm{~s}$ (30 seconds of computation)

The classical example: Pendulum

$$
\begin{gathered}
\left\{\begin{array}{c}
p^{\prime}=u \\
q^{\prime}=v \\
m u^{\prime}=-p \lambda \\
m v^{\prime}=-q \lambda-g
\end{array}\right. \\
m\left(u^{2}+v^{2}\right)-g q-I^{2} \lambda=0
\end{gathered}
$$

$$
\left.(p, q, u, v)_{0}=(1,0,0,0) \text { et } \lambda_{0} \in[-0.1,0.1] \text { (consistency: } \lambda=0\right)
$$

Simulation till $\mathrm{t}=1 \mathrm{~s}$ (2 minutes of computation)

Pendulum with Dymola

Dynlbex:

Dymola:

ENSTA

Pantelides on pendulum

Pantelides

Algorithm for order reduction, formal differentiation and manipulation of equations

On pendulum problem

$$
\left\{\begin{array}{c}
p^{2}+q^{2}-l^{2}=0 \\
p * u+q * v=0 \\
m *\left(u^{2}+v^{2}\right)-g * q^{2}-l^{2} * p=0
\end{array}\right.
$$

\Rightarrow Constraints valid all the time !

Pendulum to 1.6 s , tol $=10^{-18}$

28 minutes...

With csp: 27 minutes...

