Numerical methods for dynamical systems

Homework no 4

Goal(s)

* Implementation of one-step methods for discontinuous dynamocal systems
\star Simulation of a few number of systems

For the next exercises, we will consider different dynamical systems to test the method. In particular, we will consider - F4

$$
\dot{y}=\left\{\begin{array}{lll}
-\frac{2}{21}-\frac{120(t-5)}{1+4(t-5)^{2}} & \text { if } & t \leqslant 10 \\
-2 y & \text { if } & t>10
\end{array}\right.
$$

with $y(0)=1.0$ and the simulation end time is 20 seconds.

- Boucing ball

$$
\begin{aligned}
& \dot{y}_{1}=y_{2} \\
& \dot{y}_{2}=-9.81
\end{aligned} \quad \text { if } \quad\left(y_{1} \leqslant 0 \wedge y_{2}<0\right) \Rightarrow\binom{y_{1}}{y_{2}}=\binom{0.0}{-0.8 y_{2}}
$$

with $y_{1}(0)=10$ and $y_{2}(0)=15.0$. Warning : in this system after detecting the event it is necessary to apply a reset function which will change the state vectors. Final simulation time is 20 (or less)

- F1

$$
\begin{aligned}
& \dot{y}_{1}=y_{2} \\
& \dot{y}_{2}=\left\{\begin{array}{lll}
2 a y_{2}-\left(\pi^{2}+a^{2}\right) y_{1}+1 & \text { if } & \lfloor t\rfloor \\
2 a y_{2}-\left(\pi^{2}+a^{2}\right) y_{1}-1 & \text { if even } & \lfloor t\rfloor
\end{array}\right. \text { is odd }
\end{aligned}
$$

with $a=0.1, y_{1}(0)=0$ and $y_{2}(0)=0$, the final simulation time is 20 seconds.
We recall in Algorithm 1
Data : f_{1} the dynamic, f_{2} the dynamic, g the zero-crossing function, \mathbf{y}_{0} initial condition, t_{0} starting time, $t_{\text {end }}$ end time, h integration step-size, tol
$t \leftarrow t_{0} ;$
$\mathbf{y} \leftarrow \mathbf{y}_{0}$;
$f \leftarrow f_{1}$;
while $t<t_{\text {end }}$ do
$\operatorname{Print}(t, \mathbf{y})$;
$y_{1} \leftarrow \operatorname{Euler}(f, t, \mathbf{y}, h) ;$
$y_{2} \leftarrow \operatorname{Heun}(f, t, \mathbf{y}, h)$;
if ComputeError $\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ is smaller than tol then
if $g(\mathbf{y}) \cdot g\left(\mathbf{y}_{1}\right)<0$ then
Compute $p(t)$ from $\mathbf{y}, f(\mathbf{y}), \mathbf{y}_{1}$ and $f\left(\mathbf{y}_{1}\right)$;
$\left[t^{-}, t^{+}\right]=$FindZero $(g(p(t)))$;
Print $\left(t+t^{-}, p\left(t^{-}\right)\right.$);
$f \leftarrow f_{2}$;
$\mathbf{y} \leftarrow p\left(t^{+}\right) ;$
$t \leftarrow t+t^{+} ;$
end
$\mathbf{y} \leftarrow \mathbf{y}_{1}$;
$t \leftarrow t+h$;
$h \leftarrow$ ComputeNewH $\left(h, \mathbf{y}_{1}, \mathbf{y}_{2}\right) ;$
end
$h \leftarrow h / 2$
end
Algorithme 1 : Pseudo code of simulation engine with one-step variable step-size method with discontinuous dynamical systems

Exercise 1 - Implementation

Question 1

We consider a second adaptive Runge-Kutta method which is the Bogacki-Shampine method. Its Butcher tableau is

The integration methods is defined by

$$
\begin{aligned}
\mathbf{k}_{1} & =f\left(t_{n}, \mathbf{y}_{n}\right) \\
\mathbf{k}_{2} & =f\left(t_{n}+\frac{1}{2} h_{n}, \mathbf{y}_{n}+\frac{1}{2} h_{n} \mathbf{k}_{1}\right) \\
\mathbf{k}_{3} & =f\left(t_{n}+\frac{3}{4} h_{n}, \mathbf{y}_{n}+\frac{3}{4} h_{n} \mathbf{k}_{2}\right) \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+h_{n}\left(\frac{2}{9} \mathbf{k}_{1}+\frac{1}{3} \mathbf{k}_{2}+\frac{4}{9} \mathbf{k}_{3}\right) \\
\mathbf{k}_{4} & =f\left(t_{n}+h_{n}, \mathbf{y}_{n+1}\right) \\
\mathbf{z}_{n+1} & =\mathbf{y}_{n}+h_{n}\left(\frac{7}{24} \mathbf{k}_{1}+\frac{1}{4} k_{2}+\frac{1}{3} \mathbf{k}_{3}+\frac{1}{8} \mathbf{k}_{4}\right)
\end{aligned}
$$

Implement this method (with the computeNewH method)

Question 2

Implement of method to compute a polynomial interpolation of the solution $y(t)$ by using Hermite's Cubic Splines
https://en.wikipedia.org/wiki/Cubic_Hermite_spline

Question 3

Implement a method to search for zeros of univariate functions. In particular, we will use Secant method defined by

$$
x_{i+1}=x_{i}+\frac{x_{i}-x_{i-1}}{f\left(x_{i}\right)-f\left(x_{i-1}\right)} f\left(x_{i}\right)
$$

It requieres two initial values x_{0} and x_{1} which shall enclose the solution.

Question 4

Solve the problems with your simulation engine.

To SUBMIT

- A small report should be sent summarize the answers to the questions.
- This report should be associated to the source code.

Send the archive containing the report and the source codes in a mail which title is
[numerical methods for dynamical systems] FIRSTNAME LASTNAME
to alexandre.chapoutot@ensta-paris.fr
before the next lecture, Friday October 16, 2020.

