
Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part IV

Numerical methods for discontinuous IVP-ODE

2 / 9

IVP

Recall our starting point is the IVP of ODE defined by

ẏ = f (t, y) with y(0) = y0 , (1)

for which we want the solution y(t; y0) given by numerical integration methods
i.e. a sequence of pairs (ti , yi) such that

yi ≈ y(ti ; y0) .

3 / 9

Why do we consider discontinuities?

Need to model
non-smooth behaviors, e.g., solid body in contact with each other
interaction between computer and physics, e.g., control-command systems
constraints on the system, e.g., robotic arm with limited space

4 / 9

Simulation with discontinuous systems

There are two kinds of events:
time event: only depending on time as sampling
state event: depending on a particular value of the solution of ODE or
DAE.

To handle these events we need to adapt the simulation algorithm.
Time events are known before the simulation starting. Hence we can use
the step-size control to handle this.
State event should be detect and handle on the fly. New algorithms are
needed.

5 / 9

IVP with discontinuities

An IVP for ODE with discontinuities is defined by

ẏ =
{

f1(t, y) if g(t, y) > 0
f2(t, y) otherwise

with y(0) = y0 , (2)

for which we want the solution y(t; y0) given by numerical integration methods
i.e. a sequence of pairs (ti , yi) such that

yi ≈ y(ti ; y0) .

6 / 9

Example: zero-crossing detection

Fig. 1. Zero crossing detection and location stages

!

zero crossing

refinement points

integration points

Fig. 2. Even roots problem

account, and when these are faster than the dynamics of
f , the even roots situation may arise.

One solution to this is to include the g dynamics in the
model dynamics so the numerical solver adjusts its step-
size when too large an error (this will be caused by even
zeros) is found (Park and Barton [1996]). Alternatively,

Fig. 3. Remove double zero crossing events

the sensitivity of the zero crossing function against the
discrete step size can be computed and used to drive the
step-size selection (Esposito et al. [2001]). In both cases,
additional computations are required during the numerical
integration.

Another method is to divide the intervals Tn−1 and tn into
several smaller intervals and evaluate the zero crossings
at the end of each interval. This method is called zero
crossing refinement and reduces the likelihood of the even
roots problem. Although this method does not guarantee
eliminating the problem, it is in general computationally
more efficient.

3.2 Double Detection

Another issue with zero crossing detection arises when
the zero crossing function g returns exactly 0 at the
right side TR of the bracket. Once this happens, the
solver first detects a ‘−To0’ event 1 within [TL, TR]. When
the simulation moves forwards from TR, a ’0To+’ event
between TR and T +

R may be detected. Thus, two events
(δ−To0 and δ0To+) are reported consecutively, instead of
one ‘-To+’ event. This is a problem if the detected event
triggers computation, because such computation will be
executed twice where it should only be executed once.

To remove ouble event detection, the event δ−To+ can be
defined as:

δUP = δ−To+ = δ−To+ | δ−To0 | δ0To+ (2)

where | is a logical disjunction (the OR operator). Suppose
an δ−To+ event (for example, a rising reset) is to be
detected and if δ−To0 and δ0To+ are detected consecutively,
these two events will be combined into one ‘−To+’ event,
as shown in Fig. 3.

3.3 Masked Even Roots

When there is more than one zero-crossing function in the
system, the even roots problem may cause a side effect
that is referred to as a masked even roots zero crossing. As

1 The notation to indicate the type of zero-crossing event first states
the original sign of the indicator function (‘-’, ‘0’, or ‘+’) then
includes the string ‘To’ and finally the new sign of the indicator
function.

A simple example

ẏ =
{

f1(t, y) if g(y) > 0
f2(t, y) otherwise

.

Legend

Fig. 1. Zero crossing detection and location stages

!

zero crossing

refinement points

integration points

Fig. 2. Even roots problem

account, and when these are faster than the dynamics of
f , the even roots situation may arise.

One solution to this is to include the g dynamics in the
model dynamics so the numerical solver adjusts its step-
size when too large an error (this will be caused by even
zeros) is found (Park and Barton [1996]). Alternatively,

Fig. 3. Remove double zero crossing events

the sensitivity of the zero crossing function against the
discrete step size can be computed and used to drive the
step-size selection (Esposito et al. [2001]). In both cases,
additional computations are required during the numerical
integration.

Another method is to divide the intervals Tn−1 and tn into
several smaller intervals and evaluate the zero crossings
at the end of each interval. This method is called zero
crossing refinement and reduces the likelihood of the even
roots problem. Although this method does not guarantee
eliminating the problem, it is in general computationally
more efficient.

3.2 Double Detection

Another issue with zero crossing detection arises when
the zero crossing function g returns exactly 0 at the
right side TR of the bracket. Once this happens, the
solver first detects a ‘−To0’ event 1 within [TL, TR]. When
the simulation moves forwards from TR, a ’0To+’ event
between TR and T +

R may be detected. Thus, two events
(δ−To0 and δ0To+) are reported consecutively, instead of
one ‘-To+’ event. This is a problem if the detected event
triggers computation, because such computation will be
executed twice where it should only be executed once.

To remove ouble event detection, the event δ−To+ can be
defined as:

δUP = δ−To+ = δ−To+ | δ−To0 | δ0To+ (2)

where | is a logical disjunction (the OR operator). Suppose
an δ−To+ event (for example, a rising reset) is to be
detected and if δ−To0 and δ0To+ are detected consecutively,
these two events will be combined into one ‘−To+’ event,
as shown in Fig. 3.

3.3 Masked Even Roots

When there is more than one zero-crossing function in the
system, the even roots problem may cause a side effect
that is referred to as a masked even roots zero crossing. As

1 The notation to indicate the type of zero-crossing event first states
the original sign of the indicator function (‘-’, ‘0’, or ‘+’) then
includes the string ‘To’ and finally the new sign of the indicator
function.

7 / 9

Zero-crossing event detection

Main steps
Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [tn, tn + hn]?
Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.
Pass through the zero-crossing event in two steps:

Set the next major output to the left bound of the bracket time.
Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 1
Detection of the event.
We check that

g(tn, yn) · g(tn+1, yn+1) < 0

We observe is there is a sign changement of the zero-crossing function g .

Remark this is a not robust method (is the sign changes twice for example)

8 / 9

Zero-crossing event detection

Main steps
Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [tn, tn + hn]?
Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.
Pass through the zero-crossing event in two steps:

Set the next major output to the left bound of the bracket time.
Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 2
Continuous extension (method dependent) to easily estimate state.
For example, ode23 uses Hermite interpolation

p(t) = (2τ3 − 3τ2 + 1)yn + (τ3 − 2τ2 + τ)(t2 − t1)f (yn)

+ (−2τ3 + 3τ2)yn+1 + (τ3 − τ2)(t2 − t1)f (yn+1)

with τ = t−tn
hn

8 / 9

Zero-crossing event detection

Main steps
Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [tn, tn + hn]?
Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.
Pass through the zero-crossing event in two steps:

Set the next major output to the left bound of the bracket time.
Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 2
The solve the equation

g(t, p(t)) = 0

instead of g(t, y(t)) = 0

Note: as this equation is 1D then algorithm as bisection or Brent’s method can
be used instead of Newton’s iteration.

8 / 9

Zero-crossing event detection

Main steps
Detection of zero-crossing event
Is one of the zero-crossing changed its sign between [tn, tn + hn]?
Localization: if detection is true
Bracket the most recent zero-crossing time using bisection method.
Pass through the zero-crossing event in two steps:

Set the next major output to the left bound of the bracket time.
Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events – 3
Enclosing the time of event produce a time interval [t−, t+] for which we have

the left limit of the solution y(t−)
an approximation of the right limit of the solution y(t+) which is used as
initial condition for the second dynamics

8 / 9

Simulation algorithm

Data: f1 the dynamic, f2 the dynamic, g the zero-crossing function, y0 initial condition, t0
starting time, tend end time, h integration step-size, tol

t ← t0;
y← y0;
f ← f1;
while t < tend do

Print(t, y);
y1 ← Euler(f ,t,y,h);
y2 ← Heun(f ,t,y,h);
if ComputeError(y1, y2) is smaller than tol then

if g(y) · g(y1) < 0 then
Compute p(t) from y, f (y), y1 and f (y1);
[t−, t+] = FindZero (g(p(t)));
Print (t + t−, p(t−));
f ← f2;
y← p(t+);
t ← t + t+;

end
y← y1;
t ← t + h;
h← ComputeNewH (h, y1, y2);

end
h← h/2

end

Remark
One-step methods are more robust than multi-step in case of discontinuities (starting problem)

9 / 9

	Numerical methods for discontinuous IVP-ODE

