Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part IV

Numerical methods for discontinuous IVP-ODE

Recall our starting point is the IVP of ODE defined by

$$
\begin{equation*}
\dot{\mathbf{y}}=f(t, \mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}, \tag{1}
\end{equation*}
$$

for which we want the solution $\mathbf{y}\left(t ; \mathbf{y}_{0}\right)$ given by numerical integration methods i.e. a sequence of pairs $\left(t_{i}, y_{i}\right)$ such that

$$
\mathbf{y}_{i} \approx \mathbf{y}\left(t_{i} ; \mathbf{y}_{0}\right) .
$$

Why do we consider discontinuities?

Need to model

- non-smooth behaviors, e.g., solid body in contact with each other
- interaction between computer and physics, e.g., control-command systems
- constraints on the system, e.g., robotic arm with limited space

There are two kinds of events:

- time event: only depending on time as sampling
- state event: depending on a particular value of the solution of ODE or DAE.

To handle these events we need to adapt the simulation algorithm.

- Time events are known before the simulation starting. Hence we can use the step-size control to handle this.
- State event should be detect and handle on the fly. New algorithms are needed.

An IVP for ODE with discontinuities is defined by

$$
\dot{\mathbf{y}}=\left\{\begin{array}{ll}
f_{1}(t, \mathbf{y}) & \text { if } g(t, \mathbf{y}) \geqslant 0 \tag{2}\\
f_{2}(t, \mathbf{y}) & \text { otherwise }
\end{array} \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0},\right.
$$

for which we want the solution $\mathbf{y}\left(t ; \mathbf{y}_{0}\right)$ given by numerical integration methods i.e. a sequence of pairs $\left(t_{i}, \mathbf{y}_{i}\right)$ such that

$$
\mathbf{y}_{i} \approx \mathbf{y}\left(t_{i} ; \mathbf{y}_{0}\right)
$$

A simple example

$$
\dot{\mathbf{y}}= \begin{cases}f_{1}(t, \mathbf{y}) & \text { if } g(\mathbf{y}) \geqslant 0 \\ f_{2}(t, \mathbf{y}) & \text { otherwise }\end{cases}
$$

Legend

- Minor step state x
- Major step in X
\sim Search process
$\Rightarrow \quad \mathrm{Zc}$ value pair
. $->$ First trial step from $\mathrm{Tn}-1$ to tn
—— Integration results

Main steps

- Detection of zero-crossing event Is one of the zero-crossing changed its sign between $\left[t_{n}, t_{n}+h_{n}\right]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
- Set the next major output to the left bound of the bracket time.
- Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events - 1

Detection of the event.
We check that

$$
g\left(t_{n}, \mathbf{y}_{n}\right) \cdot g\left(t_{n+1}, \mathbf{y}_{n+1}\right)<0
$$

We observe is there is a sign changement of the zero-crossing function g.
Remark this is a not robust method (is the sign changes twice for example)

Main steps

- Detection of zero-crossing event Is one of the zero-crossing changed its sign between $\left[t_{n}, t_{n}+h_{n}\right]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
- Set the next major output to the left bound of the bracket time.
- Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events - 2

Continuous extension (method dependent) to easily estimate state. For example, ode23 uses Hermite interpolation

$$
\begin{aligned}
p(t)=\left(2 \tau^{3}-3 \tau^{2}+1\right) \mathbf{y}_{n}+\left(\tau^{3}\right. & \left.-2 \tau^{2}+\tau\right)\left(t_{2}-t_{1}\right) f\left(\mathbf{y}_{n}\right) \\
& +\left(-2 \tau^{3}+3 \tau^{2}\right) \mathbf{y}_{n+1}+\left(\tau^{3}-\tau^{2}\right)\left(t_{2}-t_{1}\right) f\left(\mathbf{y}_{n+1}\right)
\end{aligned}
$$

with $\tau=\frac{t-t_{n}}{h_{n}}$

Main steps

- Detection of zero-crossing event Is one of the zero-crossing changed its sign between $\left[t_{n}, t_{n}+h_{n}\right]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
- Set the next major output to the left bound of the bracket time.
- Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events - 2

The solve the equation

$$
g(t, p(t))=0
$$

instead of $g(t, y(t))=0$
Note: as this equation is 1D then algorithm as bisection or Brent's method can be used instead of Newton's iteration.

Main steps

- Detection of zero-crossing event Is one of the zero-crossing changed its sign between $\left[t_{n}, t_{n}+h_{n}\right]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
- Set the next major output to the left bound of the bracket time.
- Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events - 3

Enclosing the time of event produce a time interval $\left[t^{-}, t^{+}\right]$for which we have

- the left limit of the solution $\mathbf{y}\left(t^{-}\right)$
- an approximation of the right limit of the solution $\mathbf{y}\left(t^{+}\right)$which is used as initial condition for the second dynamics

Simulation algorithm

```
Data: \(f_{1}\) the dynamic, \(f_{2}\) the dynamic, \(g\) the zero-crossing function, \(y_{0}\) initial condition, \(t_{0}\)
        starting time, \(t_{\text {end }}\) end time, \(h\) integration step-size, tol
\(t \leftarrow t_{0}\);
\(\mathrm{y} \leftarrow \mathrm{y}_{0}\);
\(f \leftarrow f_{1}\);
while \(t<t_{\text {end }}\) do
    Print \((t, \mathbf{y})\);
    \(y_{1} \leftarrow \operatorname{Euler}(f, t, \mathbf{y}, h)\);
    \(y_{2} \leftarrow \operatorname{Heun}(f, t, \mathbf{y}, h)\);
    if ComputeError \(\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)\) is smaller than tol then
        if \(g(\mathbf{y}) \cdot g\left(\mathbf{y}_{1}\right)<0\) then
            Compute \(p(t)\) from \(\mathbf{y}, f(\mathbf{y}), \mathbf{y}_{1}\) and \(f\left(\mathbf{y}_{1}\right)\);
            \(\left[t^{-}, t^{+}\right]=\)FindZero \((g(p(t)))\);
            Print \(\left(t+t^{-}, p\left(t^{-}\right)\right.\));
            \(f \leftarrow f_{2}\);
            \(\mathbf{y} \leftarrow p\left(t^{+}\right)\);
            \(t \leftarrow t+t^{+} ;\)
        end
        \(\mathbf{y} \leftarrow \mathbf{y}_{1}\);
        \(t \leftarrow t+h\);
        \(h \leftarrow\) ComputeNewH \(\left(h, \mathbf{y}_{1}, \mathbf{y}_{2}\right)\);
    end
    \(h \leftarrow h / 2\)
end
```


Remark

One-step methods are more robust than multi-step in case of discontinuities (starting problem)

