Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris master CPS IP Paris

2020-2021

Part IV

Numerical methods for discontinuous IVP-ODE

Recall our starting point is the IVP of ODE defined by

$$\dot{\mathbf{y}} = f(t, \mathbf{y})$$
 with $\mathbf{y}(0) = \mathbf{y}_0$, (1)

for which we want the solution $\mathbf{y}(t; \mathbf{y}_0)$ given by numerical integration methods i.e. a sequence of pairs (t_i, \mathbf{y}_i) such that

 $\mathbf{y}_i pprox \mathbf{y}(t_i; \mathbf{y}_0)$.

Why do we consider discontinuities?

Need to model

- non-smooth behaviors, e.g., solid body in contact with each other
- interaction between computer and physics, e.g., control-command systems
- constraints on the system, e.g., robotic arm with limited space

Simulation with discontinuous systems

There are two kinds of events:

- time event: only depending on time as sampling
- state event: depending on a particular value of the solution of ODE or DAE.

To handle these events we need to adapt the simulation algorithm.

- Time events are known before the simulation starting. Hence we can use the step-size control to handle this.
- State event should be detect and handle on the fly. New algorithms are needed.

An IVP for ODE with discontinuities is defined by

$$\dot{\mathbf{y}} = \begin{cases} f_1(t, \mathbf{y}) & \text{if } g(t, \mathbf{y}) \ge 0\\ f_2(t, \mathbf{y}) & \text{otherwise} \end{cases} \quad \text{with} \quad \mathbf{y}(0) = \mathbf{y}_0 \ , \tag{2}$$

for which we want the solution $\mathbf{y}(t; \mathbf{y}_0)$ given by numerical integration methods i.e. a sequence of pairs (t_i, \mathbf{y}_i) such that

$$\mathbf{y}_i pprox \mathbf{y}(t_i; \mathbf{y}_0)$$
 .

Example: zero-crossing detection

A simple example

$$\dot{\mathbf{y}} = egin{cases} f_1(t,\mathbf{y}) & ext{if } g(\mathbf{y}) \geqslant 0 \ f_2(t,\mathbf{y}) & ext{otherwise} \end{cases}$$

Legend

- Minor step state x
- Major step in X
- ✓ Search process
 - 📲 Zc value pair
- 、→> First trial step from Tn-1 to tn
 - Integration results

Main steps

- **Detection** of zero-crossing event Is one of the zero-crossing changed its sign between $[t_n, t_n + h_n]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
 - Set the next major output to the left bound of the bracket time.
 - Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events -1

Detection of the event. We check that

$$g(t_n,\mathbf{y}_n)\cdot g(t_{n+1},\mathbf{y}_{n+1})<0$$

We observe is there is a sign changement of the zero-crossing function g.

Remark this is a not robust method (is the sign changes twice for example)

Main steps

- **Detection** of zero-crossing event Is one of the zero-crossing changed its sign between $[t_n, t_n + h_n]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
 - Set the next major output to the left bound of the bracket time.
 - Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events - 2

Continuous extension (method dependent) to easily estimate state. For example, ode23 uses Hermite interpolation

$$p(t) = (2\tau^3 - 3\tau^2 + 1)\mathbf{y}_n + (\tau^3 - 2\tau^2 + \tau)(t_2 - t_1)f(\mathbf{y}_n) + (-2\tau^3 + 3\tau^2)\mathbf{y}_{n+1} + (\tau^3 - \tau^2)(t_2 - t_1)f(\mathbf{y}_{n+1})$$

with $\tau = \frac{t-t_n}{h_n}$

Main steps

- **Detection** of zero-crossing event Is one of the zero-crossing changed its sign between $[t_n, t_n + h_n]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
 - Set the next major output to the left bound of the bracket time.
 - Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events -2

The solve the equation

$$g(t,p(t))=0$$

instead of g(t, y(t)) = 0

Note: as this equation is 1D then algorithm as bisection or Brent's method can be used instead of Newton's iteration.

Main steps

- **Detection** of zero-crossing event Is one of the zero-crossing changed its sign between $[t_n, t_n + h_n]$?
- Localization: if detection is true Bracket the most recent zero-crossing time using bisection method.
- Pass through the zero-crossing event in two steps:
 - Set the next major output to the left bound of the bracket time.
 - Reset the solver with the state estimate at the right bound of bracket time.

Ingredients for zero-crossing events - 3

Enclosing the time of event produce a time interval $[t^-, t^+]$ for which we have

- the left limit of the solution $\mathbf{y}(t^{-})$
- an approximation of the right limit of the solution $\mathbf{y}(t^+)$ which is used as initial condition for the second dynamics

Simulation algorithm

Data: f_1 the dynamic, f_2 the dynamic, g the zero-crossing function, y_0 initial condition, t_0 starting time, t_{end} end time, h integration step-size, tol $t \leftarrow t_0;$ $\mathbf{v} \leftarrow \mathbf{v}_0$: $f \leftarrow f_1$; while $t < t_{end}$ do $Print(t, \mathbf{y})$; $y_1 \leftarrow \operatorname{Euler}(f, t, \mathbf{y}, h);$ $y_2 \leftarrow \text{Heun}(f, t, \mathbf{y}, h);$ if ComputeError (y_1, y_2) is smaller than tol then if $g(\mathbf{y}) \cdot g(\mathbf{y}_1) < 0$ then Compute p(t) from y, f(y), y_1 and $f(y_1)$; $[t^-, t^+] = \operatorname{FindZero} (g(p(t)));$ Print $(t + t^{-}, p(t^{-}));$ $f \leftarrow f_2;$ $\mathbf{y} \leftarrow p(t^+);$ $t \leftarrow t + t^+$; end $\mathbf{y} \leftarrow \mathbf{y}_1;$ $t \leftarrow t + h;$ $h \leftarrow \text{ComputeNewH}(h, \mathbf{v}_1, \mathbf{v}_2)$: end $h \leftarrow h/2$

end

Remark

One-step methods are more robust than multi-step in case of discontinuities (starting problem)