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Stability properties: a graphical view

Note: there are several kinds of stability.

Problem Impose Cp Consequence x(t)

Method Impose Cm Consequence xn

From a generic point of view we have:
Impose a certain conditions Cp on IVP which force the exact solution x(t)
to exhibit a certain stability
Apply a numerical method on IVP
Question: what conditions must be imposed on the method such that the
approximate solution (xn)n∈N has the same stability property?
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Total stability of IVP

Consider, a perturbed IVP

ẏ = f (t, y) + δ(t) with y(0) = y0 + δ0 and t ∈ [0, b]

(δ(t), δ0) denotes the perturbations

Definition: totally stable IVP
From

(δ(t), δ0) and (δ∗(t), δ∗0 ) two perturbations
y(t) and y∗(t) the associated solutions

if

∀t ∈ [0, b], ∀ε > 0, ∃K > 0,
‖ δ(t)− δ∗(t) ‖≤ ε∧ ‖ δ0 − δ∗0 ‖≤ ε⇒‖ y(t)− y∗(t) ‖≤ Kε

then IVP is totally stable.
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Zero stability of numerical methods

We consider the application of numerical method on a perturbed IVP so we
have a perturbed numerical scheme

Definition: zero-stability
From

δn and δ∗n two discrete-time perturbation
yn and y∗n the associated numerical solution

if

∀n ∈ [0,N],∀ε > 0, ∃K > 0, ∀h ∈ (0, h0]
‖ δn − δ∗n ‖≤ ε⇒‖ yn − y∗n ‖≤ Kε

then the method is zero-stable

In a different point of view, we want to solve ẏ = 0 with y(0) = y0 and so
numerical method should produce as a solution y(t) = y0. (It is obvious for RK
methods)
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Zero stability for multi-step methods

First and second characteristic polynomials for linear multi-step methods are

ρ(z) =
k∑

i=0

αiz i and σ(z) =
k∑

i=0

βiz i

Root condition
A linear multi-step method satisfies the root condition is the roots of the first
characteristic polynomial ρ have modulus less than or equal to one and those of
modulus one are simple.

Theorem
A multi-step method is zero stable is it satisfies the root condition.

Theorem
No zero-stable linear k-step method can have order exceeding k + 1
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Consistency of numerical methods

We denote by Φf (tn, yn; h) a Runge-Kutta method such that

yn+1 = yn + hΦf (tn, yn; h)

If Φf is such that
lim
h→0

Φf (tn, yn; h) = f (tn, yn) .

then the Runge-Kutta method is consistent to the IVP.

As a consequence, the truncation error is such that:

lim
h→0

y(tn+1)− yn − hΦf (tn, yn; h) = 0

Consistency for s-stage RK methods
A necessary and sufficient condition is that

s∑
i=1

bi = 1
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Convergence of numerical methods

A Runge-Kutta method is said convergent if

lim
h→0

yn = y(tn)

Problem Lipschitz
condition

Problem
totally stable

Method
consistency and

zero-stability
yn con-

verges to y(t)
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Linear stability

We consider the IVP:

ẏ = λy with λ ∈ C,<(λ) < 0

Applying a RK method, we get

yn+1 = R(ĥ)yn with ĥ = λh

R(ĥ) is called the stability function of the method.

Stability function of RK methods

R(ĥ) = det (I − ĥA + ĥ1lbt)
det (I − ĥA)

So, limn→∞ xn = 0 when |R(ĥ)| < 1
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Linear stability of ERK – 1

The stability function for s-stage (s = 1, 2, 3, 4⇒ p = s) ERK is reduced to a
polynomial function:

R(ĥ) = 1 + ĥ + 1
2! ĥ2 + · · ·+ 1

s! ĥs
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Figure 1: The absolute stability regions of explicit p-stage, pth-order
Runge–Kutta methods for 1 ! p ! 4 are plotted in complex hλ-space. The
absolute stability regions are shown in grey. The ordinate and abscissa are
Im(hλ) and Re(hλ) respectively. Notice that the size of the regions increases
with the order of the method.
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Linear stability of ERK – 1

The stability function for s-stage (s > 4⇒ p < s) ERK is reduced to a
polynomial function:

R(ĥ) = 1 + ĥ + 1
2! ĥ2 + · · ·+ 1

p! ĥp +
s∑

q=p+1

γq ĥq

with γq depending only on the coefficients of the ERK methods.

For example,
for RKF45 (s = 5 and p = 4)

R(ĥ) = 1 + ĥ + 1
2! ĥ2 + 1

6 ĥ3 + 1
24 ĥ4 + 1

104 ĥ5

DOPIR54 (s = 6 and p = 5)

R(ĥ) = 1 + ĥ + 1
2! ĥ2 + 1

6 ĥ3 + 1
24 ĥ4 + 1

120 ĥ5 + 1
600 ĥ6
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Linear stability of Adams-Bashworth methods

We consider the scalar linear IVP
ẏ = λy with λ ∈ C,<(λ) < 0

For linear problem, the stability polynomial of a multi-step method is
π(r , ĥ) = ρ(r)− ĥσ(r) with ĥ = λh4.5 Implicit Adams–Moulton Formulae 125
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FIGURE 4.1. Stability domains of explicit AB algorithms.

to oscillate. Worse, while higher–order polynomial interpolation may still be
acceptable, higher–order polynomial extrapolation is a disaster. These poly-
nomials have a tendency to deviate quickly from the approximated curve
outside the interpolation interval. Unfortunately, extrapolation is what nu-
merical integration is all about.

The previous paragraph indicates that the discovered shortcoming of
this class of algorithms will not be limited to the explicit Adams–Bashforth
methods, but is an inherent disease of all multi–step integration algorithms.

4.5 Implicit Adams–Moulton Formulae

Let us check whether we have more luck with implicit multi–step algo-
rithms. To this end, we again develop ẋ(t) into a Newton–Gregory backward
polynomial, however this time, we shall develop the polynomial around the
point tk+1.

ẋ(t) = fk+1 +

(
s

1

)
∇fk+1 +

(
s + 1

2

)
∇2fk+1 +

(
s + 2

3

)
∇3fk+1 + . . . (4.35)

We integrate again from time tk to time tk+1. However, this time, s = 0.0
corresponds to t = tk+1, thus, we need to integrate across the range s ∈
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Linear stability of Adams-Moulton methods

We consider the scalar linear IVP
ẏ = λy with λ ∈ C,<(λ) < 0

For linear problem, the stability polynomial of a multi-step method is
π(r , ĥ) = ρ(r)− ĥσ(r) with ĥ = λh4.6 Adams–Bashforth–Moulton Predictor–Corrector Formulae 127
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FIGURE 4.2. Stability domains of implicit AM algorithms.

As in the case of the ABi algorithms, the results are disappointing. AM1
and AM2 are useful algorithms . . . but they were already known to us under
different names. Starting from the third–order, the stability domains of the
AMi algorithms loop again into the left–half λ ·h–plane. It is unclear to us
why we should want to pay the high price of Newton iteration, if we don’t
get a stiffly–stable technique after all.

4.6 Adams–Bashforth–Moulton
Predictor–Corrector Formulae

The ABi algorithms were rejected due to their miserably small stable re-
gions in the left–half λ · h–plane. The AMi algorithms, on the other hand,
were rejected because they are implicit, yet not stiffly–stable. Maybe all is
not lost yet. We can try a compromise between ABi and AMi. Let us con-
struct a predictor–corrector method with one step of ABi as a predictor,
and one step of AMi as a corrector. For example, the (third–order accurate)
ABM3 algorithm would look as follows:
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Linear stability of Adams-Bashworth-Moulton methods

We consider the IVP:

ẋ = λx with λ ∈ C,<(λ) < 0

4.7 Backward Difference Formulae 129
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FIGURE 4.3. Stability domains of predictor–corrector ABM algorithms.

Newton–Gregory backward polynomial in x(t) rather than in ẋ(t) around
the time instant tk+1. Thus:

x(t) = xk+1+

(
s

1

)
∇xk+1+

(
s + 1

2

)
∇2xk+1+

(
s + 2

3

)
∇3xk+1+. . . (4.44)

or:

x(t) = xk+1 +s∇xk+1 +

(
s2

2
+

s

2

)
∇2xk+1 +

(
s3

6
+

s2

2
+

s

3

)
∇3xk+1 + . . .

(4.45)
We now compute the derivative of Eq.(4.45)) with respect to time:

ẋ(t) =
1

h

[
∇xk+1 +

(
s +

1

2

)
∇2xk+1 +

(
s2

2
+ s +

1

3

)
∇3xk+1 + . . .

]

(4.46)
We evaluate Eq.(4.46) for s = 0.0, and obtain:

ẋ(tk+1) =
1

h

[
∇xk+1 +

1

2
∇2xk+1 +

1

3
∇3xk+1 + . . .

]
(4.47)

Multiplying Eq.4.47 with h, truncating after the cubic term, and expanding
the ∇–operators, we obtain:
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Linear stability of BDF

We consider the scalar linear IVP
ẏ = λy with λ ∈ C,<(λ) < 0

For linear problem, the stability polynomial of a multi-step method is
π(r , ĥ) = ρ(r)− ĥσ(r) with ĥ = λh4.8 Nyström and Milne Algorithms 131
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FIGURE 4.4. Stability domains of implicit BDF algorithms.

By evaluating Eq.(4.46) for s = −1.0, we can obtain a series of explicit
BDFi algorithms. Unfortunately, they are not useful, since they are all
unstable in the entire λ · h–plane.

4.8 Nyström and Milne Algorithms

There exist two more classes of multi–step techniques that are sometimes
talked about in the numerical ODE literature, the explicit Nyström tech-
niques [4.10], and the implicit Milne methods [4.10]. Let us derive them
and look at their stability behavior.

We start again out with Eq.(4.22). However this time, we integrate from
tk−1 to tk+1, thus, from s = −1.0 to s = +1.0. We find:

x(tk+1) = x(tk−1) + h

(
2fk +

1

3
∇2fk +

1

3
∇3fk + . . .

)
(4.51)

The term in ∇fk drops out. Truncating Eq.(4.51) after the cubic term and
expanding the ∇–operators, we obtain:

x(tk+1) = x(tk−1) +
h

3
(8fk − 5fk−1 + 4fk−2 − fk−3) (4.52)

which is the fourth–order Nyström algorithm, abbreviated as Ny4.
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Stiffness

1 Introduction to stability of numerical methods

2 Linear stability analysis for one-step methods

3 Linear stability analysis for multi-step methods

4 Stiffness

19 / 26



Stiff versus non-stiff problems

Problem 1 (
ẏ1
ẏ2

)
=
(
−2 1
1 −2

)(
y1
y2

)
+
(

2 sin(t)
2(cos(t)− sin(t))

)
Problem 2(

ẏ1
ẏ2

)
=
(
−2 1
998 −999

)(
y1
y2

)
+
(

2 sin(t)
999(cos(t)− sin(t))

)
Both have the same exact solution:(

y1(t)
y2(t)

)
= 2 exp(−t)

(
1
1

)
+
(

sin(t)
cos(t)

)
with initial values

(
y1(0)
y2(0)

)
=
(

2
3

)
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Simulation results
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Stiff linear ODE: a definition

We consider linear constant coefficients IVP of the form:

ẏ = Ay + φ(t)

assuming that all eigenvalues λ are such that <(λ) < 0

We denote by
| <(λ) |= max1≤i≤n | <(λi ) |
| <(λ) |= min1≤i≤n | <(λi ) |
the stiffness ratio is defined by | <(λ) | / | <(λ) |

Stiffness definition - 1 (Lambert)
A linear constant coefficients system is stiff iff all eigenvalues are such that
<(λ) < 0 and the stiffness ratio is large.
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Others stiffness definitions

Definition 2 (Lambert)
Stiffness occurs when stability requirements, rather than those of accuracy,
constrain the step size.

Definition 3 (Lambert)
Stiffness occurs when some components of the solution decay much more
quickly than others.

Global definition (Lambert)
If a numerical method with a finite region of absolute stability, applied to a
system with any initial values, if forced to use in a certain interval of integration
a step size which is excessively small in relation to the smoothness of the exact
solution in that interval, then the system is said to be stiff in that interval.
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Linear stability definition for stiff systems - 1

A-stability
A method is A-stable if Rs ⊇ {ĥ : <(ĥ) < 0}

A(α)-stability

A method is A(α)-stable, α ∈]0, π/2[, if Rs ⊇ {ĥ : −α < π − arg(ĥ) < α}

Stiffly stability
A method is stiffly stable if RS ⊇ R1 ∪R2 such that R1 = {ĥ : <(ĥ) < −a}
and R2 = {ĥ : −a ≤ <(ĥ) ≤ 0,−c ≤ =(ĥ) ≤ c} with a and c two positive real
numbers.
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Linear stability definition for stiff systems - 2

L-stability
A one step method is L-stable if

it is A-stable
and when applied to stable scalar test equations ẏ = λy it yields

yn+1 = <(hλ)xn where | <(hλ) |→ 0 as <(hλ)→ −∞

Relation between the stability definitions

L-stability⇒ A-stability⇒ stiffly stability⇒ A(α)-stability
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Numerical methods for linear stiff problems

Runge-Kutta methods

Method Order Linear stability prop.
Gauss 2s A-stability

Radau IA, IIA 2s − 1 L-stability
Lobatto IIIA, IIIB 2s − 2 A-stability

Lobatto IIIC 2s − 2 L-stability

Theorems (Dahlquist barrier)
Explicit RK cannot be A-stability or stiffly stability or A(α)-stability!
Explicit linear multi-step method cannot be A-stable
The order of an A-stable linear multi-step method cannot exceed 2
The second order A stable multi-step method with the smallest error
constant (C3) is the Trapezoidal rule.

For the particular case of BDF
BF1 and BDF2 are L-stable
other BDF(3-4-5-6) are A(α)-stable
BF6 has a very narrow stability area, it is not used in practice
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