Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part V

Stability analysis

Part 5. Section 1

Introduction to stability of numerical methods

(1) Introduction to stability of numerical methods

2 Linear stability analysis for one-step methods
(3) Linear stability analysis for multi-step methods

4 Stiffness

Note: there are several kinds of stability.

From a generic point of view we have:

- Impose a certain conditions C_{p} on IVP which force the exact solution $x(t)$ to exhibit a certain stability
- Apply a numerical method on IVP
- Question: what conditions must be imposed on the method such that the approximate solution $\left(x_{n}\right)_{n \in \mathbb{N}}$ has the same stability property?

Total stability of IVP

Consider, a perturbed IVP

$$
\dot{\mathbf{y}}=f(t, \mathbf{y})+\delta(t) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}+\delta_{0} \quad \text { and } \quad t \in[0, b]
$$

($\left.\delta(t), \delta_{0}\right)$ denotes the perturbations

Definition: totally stable IVP

From

- $\left(\delta(t), \delta_{0}\right)$ and $\left(\delta^{*}(t), \delta_{0}^{*}\right)$ two perturbations
- $\mathbf{y}(t)$ and $\mathbf{y}^{*}(t)$ the associated solutions
if

$$
\begin{aligned}
& \forall t \in[0, b], \forall \varepsilon>0, \exists K>0 \\
& \qquad\left\|\delta(t)-\delta^{*}(t)\right\| \leq \varepsilon \wedge\left\|\delta_{0}-\delta_{0}^{*}\right\| \leq \varepsilon \Rightarrow\left\|\mathbf{y}(t)-\mathbf{y}^{*}(t)\right\| \leq K \varepsilon
\end{aligned}
$$

then IVP is totally stable.

We consider the application of numerical method on a perturbed IVP so we have a perturbed numerical scheme

Definition: zero-stability

From

- δ_{n} and δ_{n}^{*} two discrete-time perturbation
- \mathbf{y}_{n} and \mathbf{y}_{n}^{*} the associated numerical solution
if

$$
\begin{aligned}
& \forall n \in[0, N], \forall \varepsilon>0, \exists K>0, \forall h \in\left(0, h_{0}\right] \\
& \qquad\left\|\delta_{n}-\delta_{n}^{*}\right\| \leq \varepsilon \Rightarrow\left\|\mathbf{y}_{n}-\mathbf{y}_{n}^{*}\right\| \leq K \varepsilon
\end{aligned}
$$

then the method is zero-stable

In a different point of view, we want to solve $\dot{y}=0$ with $y(0)=y_{0}$ and so numerical method should produce as a solution $y(t)=y_{0}$. (It is obvious for RK methods)

First and second characteristic polynomials for linear multi-step methods are

$$
\rho(z)=\sum_{i=0}^{k} \alpha_{i} z^{i} \quad \text { and } \quad \sigma(z)=\sum_{i=0}^{k} \beta_{i} z^{i}
$$

Root condition

A linear multi-step method satisfies the root condition is the roots of the first characteristic polynomial ρ have modulus less than or equal to one and those of modulus one are simple.

Theorem

A multi-step method is zero stable is it satisfies the root condition.

Theorem

No zero-stable linear k-step method can have order exceeding $k+1$

We denote by $\Phi_{f}\left(t_{n}, \mathbf{y}_{n} ; h\right)$ a Runge-Kutta method such that

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \Phi_{f}\left(t_{n}, \mathbf{y}_{n} ; h\right)
$$

If Φ_{f} is such that

$$
\lim _{h \rightarrow 0} \Phi_{f}\left(t_{n}, \mathbf{y}_{n} ; h\right)=f\left(t_{n}, \mathbf{y}_{n}\right)
$$

then the Runge-Kutta method is consistent to the IVP.
As a consequence, the truncation error is such that:

$$
\lim _{h \rightarrow 0} \mathbf{y}\left(t_{n+1}\right)-\mathbf{y}_{n}-h \Phi_{f}\left(t_{n}, \mathbf{y}_{n} ; h\right)=0
$$

Consistency for s-stage RK methods

A necessary and sufficient condition is that

$$
\sum_{i=1}^{s} b_{i}=1
$$

A Runge-Kutta method is said convergent if

$$
\lim _{h \rightarrow 0} \mathbf{y}_{n}=\mathbf{y}\left(t_{n}\right)
$$

Part 5. Section 2

Linear stability analysis for one-step methods

(1) Introduction to stability of numerical methods
(2) Linear stability analysis for one-step methods
(3) Linear stability analysis for multi-step methods

4 Stiffness

Linear stability

We consider the IVP:

$$
\dot{y}=\lambda y \quad \text { with } \quad \lambda \in \mathbb{C}, \Re(\lambda)<0
$$

Applying a RK method, we get

$$
y_{n+1}=R(\hat{h}) y_{n} \quad \text { with } \quad \hat{h}=\lambda h
$$

$R(\hat{h})$ is called the stability function of the method.

Stability function of RK methods

$$
R(\hat{h})=\frac{\operatorname{det}\left(I-\hat{h} A+\hat{h} \mathbb{1} b^{t}\right)}{\operatorname{det}(I-\hat{h} A)}
$$

So, $\lim _{n \rightarrow \infty} x_{n}=0$ when $|R(\hat{h})|<1$

Linear stability of ERK - 1

The stability function for s-stage $(s=1,2,3,4 \Rightarrow p=s)$ ERK is reduced to a polynomial function:

$$
R(\hat{h})=1+\hat{h}+\frac{1}{2!} \hat{h}^{2}+\cdots+\frac{1}{s!} \hat{h}^{s}
$$

The stability function for s-stage $(s>4 \Rightarrow p<s)$ ERK is reduced to a polynomial function:

$$
R(\hat{h})=1+\hat{h}+\frac{1}{2!} \hat{h}^{2}+\cdots+\frac{1}{p!} \hat{h}^{p}+\sum_{q=p+1}^{s} \gamma_{q} \hat{h}^{q}
$$

with γ_{q} depending only on the coefficients of the ERK methods.
For example,

- for RKF45 $(s=5$ and $p=4)$

$$
R(\hat{h})=1+\hat{h}+\frac{1}{2!} \hat{h}^{2}+\frac{1}{6} \hat{h}^{3}+\frac{1}{24} \hat{h}^{4}+\frac{1}{104} \hat{h}^{5}
$$

- DOPIR54 ($s=6$ and $p=5$)

$$
R(\hat{h})=1+\hat{h}+\frac{1}{2!} \hat{h}^{2}+\frac{1}{6} \hat{h}^{3}+\frac{1}{24} \hat{h}^{4}+\frac{1}{120} \hat{h}^{5}+\frac{1}{600} \hat{h}^{6}
$$

Part 5. Section 3
 Linear stability analysis for multi-step methods

(1) Introduction to stability of numerical methods

2 Linear stability analysis for one-step methods
(3) Linear stability analysis for multi-step methods

4 Stiffness

Linear stability of Adams-Bashworth methods

We consider the scalar linear IVP

$$
\dot{y}=\lambda y \quad \text { with } \quad \lambda \in \mathbb{C}, \Re(\lambda)<0
$$

For linear problem, the stability polynomial of a multi-step method is

$$
\pi(r, \hat{h})=\rho(r)-\hat{h} \sigma(r) \quad \text { with } \quad \hat{h}=\lambda h
$$

Linear stability of Adams-Moulton methods

We consider the scalar linear IVP

$$
\dot{y}=\lambda y \quad \text { with } \quad \lambda \in \mathbb{C}, \Re(\lambda)<0
$$

For linear problem, the stability polynomial of a multi-step method is

$$
\pi(r, \hat{h})=\rho(r)-\hat{h} \sigma(r) \quad \text { with } \quad \hat{h}=\lambda h
$$

Linear stability of Adams-Bashworth-Moulton methods

We consider the IVP:

$$
\dot{x}=\lambda x \quad \text { with } \quad \lambda \in \mathbb{C}, \Re(\lambda)<0
$$

Linear stability of BDF

We consider the scalar linear IVP

$$
\dot{y}=\lambda y \quad \text { with } \quad \lambda \in \mathbb{C}, \Re(\lambda)<0
$$

For linear problem, the stability polynomial of a multi-step method is

$$
\pi(r, \hat{h})=\rho(r)-\hat{h} \sigma(r) \quad \text { with } \quad \hat{h}=\lambda h
$$

Part 5. Section 4

Stiffness

(1) Introduction to stability of numerical methods

2 Linear stability analysis for one-step methods
(3) Linear stability analysis for multi-step methods
4) Stiffness

Problem 1

$$
\binom{\dot{y}_{1}}{\dot{y}_{2}}=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right)\binom{y_{1}}{y_{2}}+\binom{2 \sin (t)}{2(\cos (t)-\sin (t))}
$$

Problem 2

$$
\binom{\dot{y}_{1}}{\dot{y}_{2}}=\left(\begin{array}{cc}
-2 & 1 \\
998 & -999
\end{array}\right)\binom{y_{1}}{y_{2}}+\binom{2 \sin (t)}{999(\cos (t)-\sin (t))}
$$

Both have the same exact solution:

$$
\binom{y_{1}(t)}{y_{2}(t)}=2 \exp (-t)\binom{1}{1}+\binom{\sin (t)}{\cos (t)} \quad \text { with initial values }\binom{y_{1}(0)}{y_{2}(0)}=\binom{2}{3}
$$

Simulation results

(b) Problem 1, RKF45; $N=60$.

(d) Problem 1, 2-stage Gauss; $N=29$.

(c) Problem 2, RKF45; $N=3373$.

(e) Problem 2,2-stage Gauss; $N=24$.

We consider linear constant coefficients IVP of the form:

$$
\dot{\mathbf{y}}=A \mathbf{y}+\phi(t)
$$

assuming that all eigenvalues λ are such that $\Re(\lambda)<0$
We denote by

- | $\Re(\bar{\lambda})\left|=\max _{1 \leq i \leq n}\right| \Re\left(\lambda_{i}\right) \mid$
- | $\Re(\underline{\lambda})\left|=\min _{1 \leq i \leq n}\right| \Re\left(\lambda_{i}\right) \mid$
- the stiffness ratio is defined by $|\Re(\bar{\lambda})| /|\Re(\underline{\lambda})|$

Stiffness definition - 1 (Lambert)

A linear constant coefficients system is stiff iff all eigenvalues are such that $\Re(\lambda)<0$ and the stiffness ratio is large.

Definition 2 (Lambert)

Stiffness occurs when stability requirements, rather than those of accuracy, constrain the step size.

Definition 3 (Lambert)

Stiffness occurs when some components of the solution decay much more quickly than others.

Global definition (Lambert)

If a numerical method with a finite region of absolute stability, applied to a system with any initial values, if forced to use in a certain interval of integration a step size which is excessively small in relation to the smoothness of the exact solution in that interval, then the system is said to be stiff in that interval.

A-stability

A method is \mathbf{A}-stable if $\mathcal{R}_{s} \supseteq\{\hat{h}: \Re(\hat{h})<0\}$

$A(\alpha)$-stability

A method is $A(\alpha)$-stable, $\alpha \in] 0, \pi / 2\left[\right.$, if $\mathcal{R}_{s} \supseteq\{\hat{h}:-\alpha<\pi-\arg (\hat{h})<\alpha\}$

Stiffly stability

A method is stiffly stable if $\mathcal{R}_{S} \supseteq \mathcal{R}_{1} \cup \mathcal{R}_{2}$ such that $\mathcal{R}_{1}=\{\hat{h}: \Re(\hat{h})<-a\}$ and $\mathcal{R}_{2}=\{\hat{h}:-a \leq \Re(\hat{h}) \leq 0,-c \leq \Im(\hat{h}) \leq c\}$ with a and c two positive real numbers.

L-stability

A one step method is L-stable if

- it is A-stable
- and when applied to stable scalar test equations $\dot{y}=\lambda y$ it yields

$$
y_{n+1}=\Re(h \lambda) x_{n} \quad \text { where } \quad|\Re(h \lambda)| \rightarrow 0 \text { as } \Re(h \lambda) \rightarrow-\infty
$$

Relation between the stability definitions

L-stability $\Rightarrow A$-stability \Rightarrow stiffly stability $\Rightarrow A(\alpha)$-stability

Runge-Kutta methods

Method	Order	Linear stability prop.
Gauss	$2 s$	A-stability
Radau IA, IIA	$2 s-1$	L-stability
Lobatto IIIA, IIIB	$2 s-2$	A-stability
Lobatto IIIC	$2 s-2$	L-stability

Theorems (Dahlquist barrier)

- Explicit RK cannot be A-stability or stiffly stability or $A(\alpha)$-stability!
- Explicit linear multi-step method cannot be A-stable
- The order of an A-stable linear multi-step method cannot exceed 2
- The second order A stable multi-step method with the smallest error constant $\left(C_{3}\right)$ is the Trapezoidal rule.

For the particular case of BDF

- BF1 and BDF2 are L-stable
- other $\operatorname{BDF}(3-4-5-6)$ are $A(\alpha)$-stable
- BF6 has a very narrow stability area, it is not used in practice

