
Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part VI

Numerical methods for IVP-DAE

2 / 65

Part 6. Section 1
Introduction fo Differential Algebraic Equations

1 Introduction fo Differential Algebraic Equations

2 Notion of index for DAE

3 Index reduction

4 Sovability of IVP DAE

5 Initial Value Problem for DAE – solving methods

3 / 65

Definition of Differential Algebraic Equations (DAE)

We consider a differential system of equation

F (ẋ , x , t) =

F1(ẋ(t), x(t), t)
F2(ẋ(t), x(t), t)

...
Fn(ẋ(t), x(t), t)

 = 0

with ẋ(t), x(t) ∈ Rn.

This system is a DAE if the Jacobian matrix

∂F
∂ẋ is singular

4 / 65

Example of DAE

The following system is a DAE

x1 − ẋ1 + 1 = 0
ẋ1x2 + 2 = 0

⇒ F (ẋ , x , t) =
(

x1 − ẋ1 + 1
ẋ1x2 + 2

)
with x =

(
x1
x2

)
The Jacobian of F w.r.t. ẋ is

∂F
∂ẋ =

(
∂F1
∂ẋ1

∂F1
∂ẋ2

∂F2
∂ẋ1

∂F2
∂ẋ2

)
=
(
−1 0
x2 0

)
⇒ det

(
∂F
∂ẋ

)
= 0

Note in this example ẋ2 is not explicitly defined.

5 / 65

Example of DAE continued

Solving DAE is a hard challenge either symbolically or numerically.

Special DAE forms are usually considered: linear, Hessenberg form, etc.

Example, we rewrite the previous system
solving for ẋ1 the equation x1 − ẋ1 + 1 = 0⇒ ẋ1 = x1 + 1
Substitute ẋ1 in ẋ1x2 + 2 = 0 we get

ẋ1 = x1 + 1 Ordinary differential equation

(x1 + 1) x2 + 2 = 0 Algebraic equation

Note: this form of DAE is used in many engineering applications.
mechanical engineering, process engineering, electrical engineering, etc.
Usually: dynamics of the process + laws of conservation

6 / 65

Engineering examples of DAE - Chemical reaction

An isothermal continuous flow stirred-tank reactor1 (CSTR) with elementary
reactions:

A
 B → C

assuming
reactant A with a in-flow rate Fa and concentration CA0

Reversible reaction A
 B is much faster that B → C , i.e., k1 � k2

V̇ = Fa − F

ĊA =
Fa

V
(

CA0 − CA
)

− R1

ĊB = −
Fa

V
CB + R1 − R2

ĊC = −
Fa

C C
+ R2

0 = CA −
CB
Keq

0 = R2 − k2CB

1Control of Nonlinear DAE Systems with Applications to Chemical Processes
7 / 65

Engineering examples of DAE - Chemical reaction

R1 and R2 rates of reactions
F output flow
CA, CB and CC are concentrations of A, B and C .

Let

x = (V ,CA,CB ,CC)
z = (R1,R2)

we get

ẋ = f (x , z)
0 = g(x , z)

8 / 65

Engineering examples of DAE - Mechanical system

Pendulum
second Newton’s law

mẍ = −F
`

x

mÿ = mg F
`

y

Mechanical energy conservation

x2 + y 2 = `2

ẋ1 = x3

ẋ2 = x4

ẋ3 = −
F
`

x1

ẋ4 = g
F
`

x2

0 = x2
1 + x2

2 − `2

9 / 65

Engineering examples of DAE - Electrical system

Ohm’s law
CV̇C = iC , LV̇ = iL, VR = RiR

Kirchoff’s voltage and current laws
Conservation of current

iE = iR , iR = iC , iC = iL
Conservation of energy

VR + VL + VC + VE = 0

And we get

V̇C =
1
C

iL

V̇L =
1
L

iL

0 = VR + RiE
0 = VE + VR + VC + VL

0 = iL − iE

10 / 65

Engineering examples of DAE - Electrical system

Let
x = (VC ,VL,VR , iL, iE)

we have

ẋ =

1
C 0 0 0 0
0 1

L 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 x

0 =

(0 0 1 0 R
1 1 1 0 0
0 0 0 1 −1

)
x +

(0
1
0

)
VE

which is of the form

ẋ = Ax
0 = Bx + Dz

11 / 65

Method of Lines for PDE

Consider the linear PDE (diffusion equations)

∂u
∂t (x , t) = D ∂2u

∂x2 (x , t) with

{ u(x = x0, t) = ub

∂u
∂x (x = xf , t) = 0

and D a constant.

Using method of lines, we have with an equally spaced grid for x (finite
difference)

∂2u
∂x2 ≈

ui+1 − 2ui + ui−1

∆x2 +O
(

∆x2)
Hence, we get

dui

dt = D ui+1 − 2ui + ui−1

∆x2 for i = 1, 2, . . . ,M

12 / 65

Method of Lines for PDE

In other words, we get the system

u1 = ub

du2

dt = D u3 − 2u2 + ub

∆x2

du3

dt = D u4 − 2u3 + u2

∆x2

...
duM

dt = D uM+1 − 2uM + uM−1

∆x2

uM+1 = uM

Note uM+1 is outside of the grid so we add an extra constraints.

Hence we get a DAE

13 / 65

Method of Lines for PDE
P1: PHB
chap1 CUUS488/Griffiths 978 0 521 51986 1 December 18, 2008 19:43

An Introduction to the Method of Lines 15

Figure 1.1. MOL solution of Eq. (1.1) illustrating the origin of the method of lines

! Neumann BC at the right end, ux(x = 5, t) = 0 (spatial domain −5 ≤ x ≤ 5)
! Time domain 0 ≤ t ≤ 1
! Initial condition u(x, t = 0) = (1/2)e−(x−1)2 + e−(x+2)2

The MOL solution for the problem is shown in Figure (1.1). This numerical
solution was obtained using Matlab and the MOL library routine dss044 [7] with
the number of grid points M = 41 (so that the grid spacing is [5 − (−5)]/(41 − 1) =
0.25).

The result of Figure 1.1 matches very well the infinite-domain analytical solution

u(x, t) = 1
2
√

4Dt + 1

(
e

3(2x+1)
4Dt+1 + 2

)
e− (x+2)2

4Dt+1 (1.38)

This agreement is illustrated in Figure 1.2 where the analytical result has been super-
imposed on the MOL solution. This comparison illustrates an important distinction
between the analytical and numerical (MOL) solutions. The analytical solution is
for an infinite domain, −∞ ≤ x ≤ ∞, while the MOL solution is computed on a fi-
nite domain (as required by a computer), −5 ≤ x ≤ 5 [1]. The agreement between
the analytical and numerical solutions reflects the property that both solutions re-
main at essentially zero for u(x = −5, t) and u(x = 5, t) for t ≤ 1 as indicated in Fig-
ure 1.2.2

2 The exact analytical solution for the finite-domain problem is considerably more complicated than
Eq. (1.38) but could be derived by a finite Fourier sine transform ([8], pp. 405–415) or a Green’s
function ([9], pp. 48, 58).

14 / 65

Classification of DAE

Nonlinear DAE if it is of the form

F (ẋ , x , t) = 0

and it is nonlinear w.r.t. any one of ẋ , x , or t
Linear DAE if it is of the form

A(t)ẋ + B(t)x = c(t)

If A(t) ≡ A and B(t) ≡ B then the DAE is time-invariant
Semi-explicit DAE it is of the form

ẋ = f (t, x , z)
0 = g(t, x , z)

z is the algebraic variable and x is a differential/state variable
Fully implicit DAE it is of the form

F (ẋ , x , t) = 0

15 / 65

Classification of DAE - cont

Note any DAE can be written in a semi-explicit form.

Conversion of fully implicit form

F (ẋ , x , t) = 0 ẋ=z⇔
{

ẋ = z
0 = F (z, x , t)

Remark this transformation does not make the solution more easier to get

But useful in case of linear DAE, see next.

16 / 65

Classification of DAE - cont

Consider a linear time-invariant DAE

Aẋ + Bx + b(t) = 0

assuming that λA + B (matrix pencil) is not singular for some scalar λ.

Then it exists non-singular matrices G and H of size n × n such that:

GAH =
(

Im 0
0 N

)
and GBH =

(
J 0
0 In−m

)

Im is the identity matrix of size m ×m (m ≤ n)
In−m is the identity matrix of size (n −m)× (n −m)
N is a nilpotent matrix, i.e., ∃p ∈ N+,Np = 0
J ∈ Rm×m

17 / 65

Classification of DAE - cont

Hence

Aẋ + Bx + b(t) = 0⇔ (GAH)(H−1)ẋ + (GBH)(H−1)x + Gb(t) = 0

⇔
(

Im 0
0 N

)
H−1ẋ +

(
J 0
0 In−m

)
H−1x + Gb(t) = 0

⇔ with w(t) = H−1x(
Im 0
0 N

)
ẇ +

(
J 0
0 In−m

)
w + Gb(t) = 0

Let w = (w1,w2)T with w1 ∈ Rm and w2 ∈ Rn−m, b = (b1, b2)T we get

ẇ1 + Jw1 + b1(t) = 0
Nw1 + w2 + b2(t) = 0

From Nilpotency property, we get
ẇ1 = −Jw1 − b1(t)

0 = −(Np)−1w2 − (Np)−1b2(t)

18 / 65

Part 6. Section 2
Notion of index for DAE

1 Introduction fo Differential Algebraic Equations

2 Notion of index for DAE

3 Index reduction

4 Sovability of IVP DAE

5 Initial Value Problem for DAE – solving methods

19 / 65

Index of DAE

Remark
There are several definitions of an index.
Each measure a different aspect of the DAE.

Differential index (δ) measure the degree of singularity.
Perturbation index (π) measure the influence of numerical approximation.
etc.

Definition of differential index
The index of a DAE system F (ẋ , x , t) = 0 is the minimum number of times
certain equations in the DAE must be differentiated w.r.t. t, in order to
transform the problem into an ODE.

Remark: (differential) index can be seen as a measure of the distance between
the DAE and the corresponding ODE.

Remark: mathematical properties are lost with differentiation!

20 / 65

DAE and index

Definition of index
The differential index k of a sufficiently smooth DAE is the smallest k such
that:

F (ẋ , x , t) = 0
∂F
∂t (ẋ , x , t) = 0

...
∂kF
∂tk (ẋ , x , t) = 0

uniquely determines ẋ as a continuous function of (x, t).

21 / 65

Differential index and DAE – example

Let
ẋ1 = x1 + 1

(x1 + 1) x2 + 2 = 0
with x2 the algebraic variable.
Differentiation of g w.r.t. t,

d
dt g(x1, x2) = 0 ⇒ ẋ1x2 + (x1 + 1)ẋ2 = 0 ⇒ ẋ2 = − ẋ1x2

x11
= −x2

Only one differentiation is needed to define ẋ2, this DAE is index 1

Other examples,
CSTR is index 2
Pendulum is index 3

There are higher index DAEs (index > 1)

Index reduction is used to go from higher index to lower index DAE (cf Khalil
Ghorbal’s lecture)

22 / 65

DAE family and differential index

Index 0
ODE system ẋ = f (t, x(t))

Index 1
Algebraic equation y = q(t)

Index 1
DAE in Hessenberg form of index 1

ẋ = f (t, x , y)

0 = g (x , y) with ∂g
∂y is non-singular

23 / 65

Examples of differential index - cont.

Index 2
DAE in Hessenberg form of index 2

ẋ = f (t, x , y)

0 = g (t, x) with ∂g
∂x

∂f
∂y is non-singular

Index 3
DAE in Hessenberg form of index 3

ẋ = f (t, x , y , z)
ẏ = g (t, x , y)

0 = h(t, y) with ∂h
∂y

∂g
∂x

∂f
∂z is non-singular

e.g., mechanical systems

24 / 65

Perturbation index

The DAE has the perturbation index k along a solution x if k is the smallest
integer such that,

for all functions x(t) having the defect

f (ẋδ, xδ, t) = δ(t)

there exists an estimate

‖ x(t)− xδ(t) ‖≤ C
(
‖ x(t0)− xδ(t0) ‖ + max

t
‖ δ(t) ‖ +maxt ‖ δ′(t) ‖

+ · · ·+ max
t
‖ δ(k−1)(t) ‖

)
for a constant C > 0, if δ is small enough.

Property:

δ ≤ π ≤ δ + 1

25 / 65

Part 6. Section 3
Index reduction

1 Introduction fo Differential Algebraic Equations

2 Notion of index for DAE

3 Index reduction

4 Sovability of IVP DAE

5 Initial Value Problem for DAE – solving methods

26 / 65

RLC circuit

254 Chapter 7. Differential Algebraic Equations
U
0=
10

R=20

C
=1
.0
e-
6

L=
0.
00
15

Ground

R
=1
00

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

FIGURE 7.1. Schematic of electrical RLC circuit.

u2 = R2 · i2 (7.1c)

uL = L · diL
dt

(7.1d)

iC = C · duC

dt
(7.1e)

u0 = u1 + uC (7.1f)

uL = u1 + u2 (7.1g)

uC = u2 (7.1h)

i0 = i1 + iL (7.1i)

i1 = i2 + iC (7.1j)

As we wish to generate a state–space model, we define the outputs of the
integrators, uC and iL, as our state variables. These can thus be considered
known variables, for which no equations need to be found. In contrast, the
inputs of the integrators, duC/dt and diL/dt, are unknowns, for which
equations must be found. These are the state equations of the state–space
description.

The structure of these equations can be captured in the so–called struc-
ture incidence matrix. The structure incidence matrix lists the equations
in any order as rows, and the unknowns in any order as columns. If the ith

equation contains the jth variable, the element < i, j > of the structure
incidence matrix assumes a value of 1, otherwise it is set to 0. The structure
incidence matrix for the above set of equations could e.g. be written as:

u0 = f (t) (1)
u1 = R1i1 (2)
u2 = R2i2 (3)

uL = LdiL
dt (4)

iC = C duC

dt (5)

u0 = u1 + uC (6)
uL = u1 + u2 (7)
uC = u2 (8)
i0 = i1 + iL (9)
i1 = i2 + iC (10)

We want to compute a state-space form of this RLC circuit.

27 / 65

Structure incidence matrix

u0 i0 u1 i1 u2 i2 uL
diL
dt

duC
dt iC

Eq. (1) 1 0 0 0 0 0 0 0 0 0
Eq. (2) 0 0 1 1 0 0 0 0 0 0
Eq. (3) 0 0 0 0 1 1 0 0 0 0
Eq. (4) 0 0 0 0 0 0 1 1 0 0
Eq. (5) 0 0 0 0 0 0 0 0 1 1
Eq. (6) 1 0 1 0 0 0 0 0 0 0
Eq. (7) 0 0 1 0 1 0 1 0 0 0
Eq. (8) 0 0 0 0 1 0 0 0 0 0
Eq. (9) 0 1 0 1 0 0 0 0 0 0
Eq. (10) 0 0 0 1 0 1 0 0 0 1

Structure incidence matrix
Relation between equations (rows) and unknowns (columns)

if the i-th equation contains the j-th variable then the matrix coefficient
(i , j) contains 1 and 0 otherwise.

28 / 65

Structure incidence matrix - cont.

By default all equations are implicit (or acausal)

Two rules to choose the set of variables to solve
if an equations contains only a single unknown then we need that variable
to solve it (i.e., this equation is causal, e.g., Eq. (1))
If an unknown only appears in one equation, that equation must use to
solve it. E.g., Eq. (9) i0 only appears in that equation.

Apply iteratively these rules:
if a row only contains one 1, that equation needs to be solved for that
variable so eliminate both row and column
if a column only contains one 1, that variable needs to be solved for that
equation so eliminate both row and column

29 / 65

Structure digraph

Eq. (1)

Eq. (2)

Eq. (3)

Eq. (4)

Eq. (5)

Eq. (6)

Eq. (7)

Eq. (8)

Eq. (9)

Eq. (10)

u0

i0

u1

i1

u2

i2

uL

i̇L

u̇C

iC

Remark the number of equations must always equal to the number of variables.
30 / 65

Structure digraph - cont.

Building: There is a link between a node of equations and a node of variable is
this variable appears in that equation.

Finding which variable needs to be solved from which equations, is based on a
graph coloring algorithm (Tarjan)

When a variable is selected to be solved from an equation the link between
them is colored in red.
When a variable is known or when the equation in which it occurs is being
used to solve an other variable, the link is colored in blue

A causal equation has exactly one red link connected to it
An acausal equation has block or blue connected edges
A known variable has exactly one red input edge
An unknown variable has only black or blue input edges
No equation or variable has more than one red edges

31 / 65

Structure digraph - cont.

Rules to find variables and equations
For all acausal equations, if an equation has only one black line attached
to it, color that line red, follow it to the variable it points at, and color all
other connections ending in that variable in blue. Renumber the equation
using the lowest free number starting from 1.
For all unknown variables, if a variable has only one black line attached to
it, color that line red, follow it back to the equation it points at, and color
all other connections emanating from that equation in blue. Renumber the
equation using the highest free number starting from n, where n is the
number of equations.

These rules are applied recursively.

32 / 65

Structure digraph

After one iteration of the algorithm.

Eq. (1) – 1

Eq. (2)

Eq. (3)

Eq. (4) – 9

Eq. (5) – 8

Eq. (6)

Eq. (7)

Eq. (8) – 2

Eq. (9) – 10

Eq. (10)

u0

i0

u1

i1

u2

i2

uL

i̇L

u̇C

iC

33 / 65

Structure digraph

At the end of the algorithm

Eq. (1) – 1

Eq. (2) – 5

Eq. (3) – 3

Eq. (4) – 9

Eq. (5) – 8

Eq. (6) – 4

Eq. (7) – 7

Eq. (8) – 2

Eq. (9) – 10

Eq. (10) – 6

u0

i0

u1

i1

u2

i2

uL

i̇L

u̇C

iC

34 / 65

Structure digraph

At the end of the algorithm and the system of equations is written as

u0 = f (t) (11)
u2 = uC (12)
i2 = u2/R2 (13)

u1 = u0 − uC (14)
i1 = u1 R1 (15)
iC = i1 − i2 (16)
uL = u1 + u2 (17)

duC

dt = iC/C (18)

diL
dt = uL/L (19)

i0 = i1 + iL (20)

Note these equations are causal and in order to be evaluated.

35 / 65

Structure incidence matrix and Tarjan algorithm

u0 u2 i2 u1 i1 iC uL
diL
dt

duC
dt i0

Eq. (11) 1 0 0 0 0 0 0 0 0 0
Eq. (12) 0 1 0 0 0 0 0 0 0 0
Eq. (13) 0 1 1 0 0 0 0 0 0 0
Eq. (14) 1 0 0 1 0 0 0 0 0 0
Eq. (15) 0 0 0 1 1 0 0 0 0 0
Eq. (16) 0 0 1 0 1 1 0 0 0 0
Eq. (17) 0 1 0 1 0 0 1 0 0 0
Eq. (18) 0 0 0 0 0 1 0 1 0 0
Eq. (19) 0 0 0 0 0 0 1 0 1 0
Eq. (20) 0 0 0 0 1 0 0 0 0 1

Note 1 the matrix is lower triangular (Tarjan ⇔ matrix permutation)

Note 2 Tarjan algorithm has a linear complexity in the number of equations.
Also used in Pantelides algorithm

36 / 65

Algebraic loops

A tiny modification of the RLC circuit
260 Chapter 7. Differential Algebraic Equations

U
0=
10

R=20

L=
0.
00
15

Ground

R
=1
00

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL

FIGURE 7.5. Schematic of modified electrical RLC circuit.

The resulting equations are almost the same as before. Only the element
equation for the capacitor was replaced by a third element equation for a
resistor.

u0 = f(t) (7.5a)

u1 = R1 · i1 (7.5b)

u2 = R2 · i2 (7.5c)

u3 = R3 · i3 (7.5d)

uL = L · diL
dt

(7.5e)

u0 = u1 + u3 (7.5f)

uL = u1 + u2 (7.5g)

u3 = u2 (7.5h)

i0 = i1 + iL (7.5i)

i1 = i2 + i3 (7.5j)

The structure digraph for this new set of equations is presented in Fig.7.6.
Let us now apply the Tarjan algorithm to this structure digraph. Fig-

ure 7.7 shows the partially causalized structure digraph.
Unfortunately, the Tarjan algorithm stalls at this point. Every one of

the remaining acausal equations and every one of the remaining unknowns
has at least two black (solid) lines attached to it. Consequently, the DAE
system cannot be sorted entirely.

Let us read out the partially sorted equations. We shall only list on the

u0 = f (t) (21)
u1 = R1i1 (22)
u2 = R2i2 (23)
u3 = R3i3 (24)

uL = LdiL
dt (25)

u0 = u1 + u3 (26)
uL = u1 + u2 (27)
u3 = u2 (28)
i0 = i1 + iL (29)
i1 = i2 + i3 (30)

Note the capacitor is replaced by a resistor.

37 / 65

Algebraic loop - structure digraph

Eq. (21)

Eq. (22)

Eq. (23)

Eq. (24)

Eq. (25)

Eq. (26)

Eq. (27)

Eq. (28)

Eq. (29)

Eq. (30)

u0

i0

u1

i1

u2

i2

u3

i3

uL

i̇L

38 / 65

Algebraic loop - structure digraph - Tarjan

Eq. (21)

Eq. (22)

Eq. (23)

Eq. (24)

Eq. (25)

Eq. (26)

Eq. (27)

Eq. (28)

Eq. (29)

Eq. (30)

u0

i0

u1

i1

u2

i2

u3

i3

uL

i̇L

Remark after 2 iterations the Tarjan algorithm cannot progress any more.
39 / 65

Algebraic loop - structure digraph - Tarjan

u0 = f (t) (31)
u1 − R1i1 = 0 (32)
u2 − R2i2 = 0 (33)
u3 − R3i3 = 0 (34)

u1 + u3 = u0 (35)
u2 − u3 = 0 (36)

i1 − i2 − i3 = 0 (37)
uL = u1 + u2 (38)

diL
dt = uL/L (39)

i0 = i1 + iL (40)

Note The last six equations form an algebraic loop and cannot be sorted then
they must be solved all together.

40 / 65

Algebraic loop - structure digraph - Tarjan - cont

262 Chapter 7. Differential Algebraic Equations

uL = u1 + u2 (7.6h)

diL
dt

= uL/L (7.6i)

i0 = i1 + iL (7.6j)

The six remaining acausal equations form an algebraic loop. They need to
be solved together. The structure incidence matrix of the partially causal-
ized equation system takes the form:

S =

u0 u1 i1 u2 i2 u3 i3 uL
diL
dt

i0

Eq.(7.6a) 1 | 0 0 0 0 0 0 0 0 0
− + − − − − − − .

Eq.(7.6b) 0 | 1 1 0 0 0 0 | 0 0 0
Eq.(7.6c) 0 | 0 0 1 1 0 0 | 0 0 0
Eq.(7.6d) 0 | 0 0 0 0 1 1 | 0 0 0
Eq.(7.6e) 1 | 1 0 0 0 1 0 | 0 0 0
Eq.(7.6f) 0 | 0 0 1 0 1 0 | 0 0 0
Eq.(7.6g) 0 | 0 1 0 1 0 1 | 0 0 0

. − − − − − − + − .
Eq.(7.6h) 0 1 0 1 0 0 0 | 1 | 0 0

. − + − .
Eq.(7.6i) 0 0 0 0 1 0 0 1 | 1 | 0

. − + −
Eq.(7.6j) 0 0 1 0 0 0 0 0 0 | 1

(7.7)

Although the causalization algorithm has been unable to convert the
structure incidence matrix to a true lower–triangular form, it was at least
able to reduce it to a Block–Lower–Triangular (BLT) form. Furthermore,
the algorithm generates diagonal blocks of minimal sizes.

How can we deal with the algebraic loop? Since the model is linear, we
can write the loop equations in a matrix–vector form, and solve for the six
unknowns by a Gaussian elimination in six equations and six unknowns.

1 −R1 0 0 0 0
0 0 1 −R2 0 0
0 0 0 0 1 −R3

1 0 0 0 1 0
0 0 1 0 −1 0
0 1 0 −1 0 −1

·

u1

i1
u2

i2
u3

i3

=

0
0
0
u0

0
0

(7.8)

Had the model been nonlinear in the loop equations, we would have had
to use a Newton iteration.

Are algebraic loops a rarity in physical system modeling? Unfortunately,
DAE systems containing algebraic loops are much more common than those
that can be sorted completely by the Tarjan algorithm. Furthermore, the
algebraic loops can be of frightening dimensions. For example when model-
ing mechanical Multi–Body Systems (MBS) [7.16, 7.18] containing closed
kinematic loops, there immediately result highly nonlinear algebraic loops
in hundreds if not thousands of unknowns and equations.

Algebraic loops deserve special treatment:
in case of linear system: Gauss elimination
otherwise: Newton algorithm

Algebraic loops are very frequent in multi-body dynamics.

41 / 65

Structural singularity elimination

282 Chapter 7. Differential Algebraic Equations

U
0=
10

+

-

R

C1 C2
U0

i0

u1

i1

u2

i2
uR

FIGURE 7.20. Schematic of electrical circuit with two capacitors in parallel.

u0 = uR + u1 (7.54e)

u2 = u1 (7.54f)

i0 = i1 + i2 (7.54g)

If we choose u1 and u2 as state variables, then both u1 and u2 are considered
known variables, and Eq.(7.54f) has no unknown left. Thus, it must be
considered a constraint equation.

There are several different ways, how this problem can be solved [7.4].
We can turn the causality around on one of the capacitive equations, solving
e.g. for the variable i2, instead of du2/dt. Consequently, the solver has to
solve for du2/dt instead of u2, thus the integrator has been turned into a
differentiator.

In the model equations, u2 must be considered an unknown, whereas
du2/dt is considered a known variable. The equations can now easily be
brought into causal form:

u0 = f(t) (7.55a)

i2 = C2 · du2

dt
(7.55b)

u2 = u1 (7.55c)

uR = u0 − u1 (7.55d)

i0 =
1

R
· uR (7.55e)

i1 = i0 − i2 (7.55f)

du1

dt
=

1

C1
· i1 (7.55g)

with the block diagram as shown in Fig.7.21.

u0 = f (t) (41)
uR = Ri0 (42)

i1 = C1
du1

dt (43)

u2 = C2
du2

dt (44)

u0 = uR + u1 (45)
u2 = u1 (46)
i0 = i1 + i2 (47)

If the state variables are u1 and u2 then Eq. (46) is a constraint (a variable as
only blue edges in the structure digraph).

Pantelides algorithm can can be used to handle this situation

42 / 65

Pantelides and structural singularity elimination

If u2 = u1 is true for all t then

du2

dt = du1

dt for all t (48)

Idea use symbolic differentiation to compute Eq. (48) and replace the
constraint by its derivative. Hence,

u0 = f (t) (49)
uR = Ri0 (50)

i1 = C1
du1

dt (51)

u2 = C2
du2

dt (52)

u0 = uR + u1 (53)
du2

dt = du1

dt (54)

i0 = i1 + i2 (55)

Using Tarjan algorithm we get an algebraic loop but we know how to deal with.

43 / 65

Pantelides and structural singularity elimination

Structurally singular systems are also known as higher index problems.
an index-0 contains neither algebraic loop nor structural singularities
index 1 contains algebraic loops but no structural singularities

Pantelides is a symbolic index reduction algorithm. One application reduces
the index by 1.

44 / 65

Issues of index reduction

Issues
Consistent initial conditions finding initial value for differential and
algebraic variables may be very difficult.
For

F (ẋ , x , t) = 0

x0 is a consistent initial value, if there exists a smooth solution that fulfills
x(0) = x0 and this solution is defined for all t.
E.g., semi-explicit DAE with only x(0) = x0 what about the algebraic
variable?

Drift off effect when applying index reduction the solution of the lower
index DAE may not be of the original index.

In consequence, tools/methods to solve DAE should
provide automatic index reduction
be able to find consistent initial values

e.g., Dymola/Modelica

45 / 65

Example of consistent initial value

Let

u̇ = −0.5(u + v) + q1(t)
0 = 0.5(u − v)− q2(t)

If u(0) is given we can determine v(0) = u(0)− 2q2(0) and so u̇(0).

Set u = y1 + y2 and v = y1 − y2 we get

ẏ1 + ẏ2 = −y1 + q1(t)
0 = y2 − q2(t)

For consistency we must have y2(0) = q2(0) but we can choose y1(0) arbitrarily
but we cannot determine ẏ1(0) without using ẏ2(0) = q̇2(0).

46 / 65

Example of drift off effect

Going from index 3 pendulum to index 2 by differentiating the constraint
x2

1 + x2
2 − `2 = 0 leads to

ẋ1 = x3 (56)
ẋ2 = x4 (57)

ẋ3 = −F
`

x1 (58)

ẋ4 = g F
`

x2 (59)

0 = x1x3 + x2x4 (60)

28 3. PROJECTION METHODS

0 p2x p2y l2

specifying the manifold drawn as the solid curve. The index-2 formulation
had the algebraic equation Eq. 3.5

0 pxvx pyvy

This equation only specifies that the velocity vx vy should be orthogonal to
the position vector px py . This is illustrated by the dashed curves in Figure 3.2.

m

l

FIGURE 3.2. Expanding set of solutions due to index reduction
and illustration of the drift-off phenomenon

We could say that by doing index reduction, we expanded the solution set of
the original system to include not only the solutions moving on the solid line, but
also all the solutions moving in “parallel” to the solid line.

Illustrated on Figure 3.2, as the piecewise linear curve, is also the drift-off
phenomenon. When numerically advancing the solution, the next point is found
with respect to the index-2 restriction. The index-2 restriction says, that we shall
move in “parallel” with the solid line (along the dashed lines), and not as the
index-3 restriction says, to move on the solid line. Therefore the solution slowly
moves away from (drifts off) the solid line - although “trying” to move in parallel
with it.

Comment: When solving a system the consequence of drift of is not necessar-
ily “worse” than the normal global error. It is though obvious that at least from
a “cosmetic” point of view a solution to the pendulum system with shortening
length of the pendulum looks bad. But using the model for other purposes might
be indifferent to drift-off compared to the global error.

Comments:
solid line curve is the result of index 3 pendulum problem
Constraint (60) says the velocity should orthogonal to the position. Index
reduction increase the space of solution with dashed line curves

47 / 65

Part 6. Section 4
Sovability of IVP DAE

1 Introduction fo Differential Algebraic Equations

2 Notion of index for DAE

3 Index reduction

4 Sovability of IVP DAE

5 Initial Value Problem for DAE – solving methods

48 / 65

A small theory of DAE

For ODE, we have a theorem applying on a large class of problem proving the
existence and unicity of the solution

No such theorem exists for DAE

Instead we have some theorems of solvability of different kinds of DAE
Linear constant coefficient DAE
Linear time varying coefficient DAE
Non-linear DAE

49 / 65

Solvability of DAE

Definition
Let I be an open sub-interval of R, Ω a connected open subset of R2m+1, and
F a differentiable function from Ω to Rm. Then the DAE F (ẋ , x , t) = 0 is
solvable on I in Ω if there is an r -dimensional family of solutions φ(t, c)
defined on a connected open set I × Ω̃, Ω̃ ⊂ Rr , such that

1 φ(t, c) is defined on all of I for each c ∈ Ω̃
2 (φ′(t, c), φ(t, c), t) ∈ Ω for (t, c) ∈ I × Ω̃
3 If ψ(t) is any other solution with (ψ′(t, c), ψ(t, c), t) ∈ Ω then
ψ(t) = φ(t, c) for some c ∈ Ω̃

4 The graph of φ as a function of (t, c) is an r + 1-dimensional manifold.

50 / 65

Solvability of linear constant constant DAE

Let
Aẋ + Bx = f

And consider the matrix pencil λA + B

A matrix pencil is regular if det(λA + B) is not identically zero as a function of
λ.

Theorem
The linear constant coefficient DAE is solvable if and only if λA + B is regular
pencil.

Note: the degree of nilpotency of the matrix N used in the decomposition is
also the index number of the DAE.

51 / 65

Conclusion

DAE are a generalisation of ODE but
there is no general theorem to prove existence of the solution of DAE
differentiation used to index reduction can introduce singularities
the class of numerical methods used to solve DAE is rather small compare
to ODE.

52 / 65

Part 6. Section 5
Initial Value Problem for DAE – solving methods

1 Introduction fo Differential Algebraic Equations

2 Notion of index for DAE

3 Index reduction

4 Sovability of IVP DAE

5 Initial Value Problem for DAE – solving methods

53 / 65

IVP for DAE

We will consider DAE in Hessenberg form of index 1

ẏ = f (t, y, z)

0 = g (y, z) with ∂g
∂z is non-singular

with z(0) = z0 and y(0) = y0

and sometimes, DAE of the following form can be considered

Mẏ(t) = f (y(t))

M is known as the Mass Matrix

54 / 65

Relation between DAE and stiff ODE

Singularly perturbed ODE systems are of the form

ẏ = f (t, y, z) (61)
εż = g(t, z, y) (62)

When ε = 0 then we get a DAE but Eq. (61) is usually stiff.
DAE can be seen as infinitely stiff.

Consequence
not all numerical method to solve ODE can be used to solve DAE!

we want A-stable methods (event L-stable) but stiffly stable is enough (as for
BDF)

55 / 65

State-space method to solve DAE index 1

ẏ = f (t, y, z)

0 = g (y, z) with ∂g
∂z is non-singular

with z(0) = z0 and y(0) = y0

By Implicit function theorem there exists (at leat locally) a function G(y) such
that

z = G(y)

By substitution we can have

ẏ = f (t, y,G(y))

which can be solved by any method for IVP ODE but
you lose the structure of the problem
G is not so simple to get

56 / 65

ε-embedding approach – Runge-Kutta case

ẏ = f (t, y, z)

εż = g (y, z) with ∂g
∂z is non-singular

with z(0) = z0 and y(0) = y0

Applying a Runge-Kutta method,

Yni = yn + h
s∑

j=1

aij f (Ynj,Znj)

εZni = εzn + h
s∑

j=1

aijg(Ynj,Znj)

yn+1 = yn + h
s∑

i=1

bi f (Yi ,Zi)

εzn+1 = εzn + h
s∑

i=1

big(Yi ,Zi)

57 / 65

ε-embedding approach - Runge-Kutta case – cont’

Applying a Runge-Kutta method,

Yni = yn + h
s∑

j=1

aij f (Ynj,Znj)

εZni = εzn + h
s∑

j=1

aijg(Ynj,Znj)

yn+1 = yn + h
s∑

i=1

bi f (Yi ,Zi)

εzn+1 = εzn + h
s∑

i=1

big(Yi ,Zi)

assuming the matrix A of coefficients aij is non singular,

hg(Yni,Zni) = ε

s∑
j=1

ωij (Ynj − zn) with ωij = (aij)−1

58 / 65

ε-embedding approach - Runge-Kutta case – cont’

From

hg(Yni,Zni) = ε

s∑
j=1

ωij (Ynj − zn) with ωij = (aij)−1

we get,

Yni = yn + h
s∑

j=1

aij f (Ynj,Znj)

0 = g (Yni,Zni)

yn+1 = yn + h
s∑

i=1

bi f (Yi ,Zi)

zn+1 =

(
1−

s∑
i,j=1

biωij

)
zn +

s∑
i,j=1

biωijZnj independence wrt ε

Remark: this approach can lead to numerical divergence as the solution may
not respect the constraint g(y , z) = 0

59 / 65

ε-embedding approach/State-space method

Approximating state-space method can be reached by the formula

Yni = yn + h
s∑

j=1

aij f (Ynj,Znj)

0 = g (Yni,Zni)

yn+1 = yn + h
s∑

i=1

bi f (Yi ,Zi)

0 = g(yn+1, zn+1)

Remarks
For stiffly accurate methods (see next slide) ε-embedding method and
state-space method are identical
ε-embedding method can be generalized to other classes of DAE index 1
(mass matrix form or implicit form)

60 / 65

Solving DAE with Runge-Kutta methods

A Runge-Kutta is defined by its Butcher tableau

c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)

Remark
For DAE, we only consider fully implicit Runge-Kutta methods which are
L-stable, with A non-singular and with bj = asj (j = 1, 2, . . . , s).

The most used method are Backward Euler’s method and Radau IIA order 5.

Remark:
the last condition bj = asj is good as the last step of RK method is not
applied on algebraic variable.
Stiffly accurate is sufficient for semi-explicit index 1 but not for higher
index

61 / 65

Multi-step methods

Recall: single-step methods solve IVP using one value yn and some values of f .

A multi-step method approximate solution yn+1 of IVP using k previous
values of the solution yn, yn−1, . . . , yn−k−1.

Different methods implement this approach
Adams-Bashworth method (explicit)
Adams-Moulton method (implicit)
Backward Difference Method (implicit)

The general form of such method is

k∑
j=0

αjyn+j = h
k∑

j=0

βj f (tn+j , yn+j) .

with αj and βj some constants and αk = 1 and |α0|+ |β0| 6= 0

62 / 65

Solving DAE with multi-step methods

We consider
ẏ = f (t, y, z)

0 = g (y, z) with ∂g
∂z is non-singular

with z(0) = z0 and y(0) = y0

by using ε-embedding method.

ẏ = f (t, y, z)

εż = g (y, z) with ∂g
∂z is non-singular

with z(0) = z0 and y(0) = y0

Applying, multi-step method, we get

k∑
i=0

αi yn+i = h
k∑

i=0

βi f (yn+i , zn+i)

ε

k∑
i=0

αi zn+i = h
k∑

i=0

βig(yn+i , zn+i)

63 / 65

ε-embedding method – multi-step case - cont’

Applying, multi-step method, we get
k∑

i=0

αi yn+i = h
k∑

i=0

βi f (yn+i , zn+i)

ε

k∑
i=0

αi zn+i = h
k∑

i=0

βig(yn+i , zn+i)

and setting ε = 0 we get
k∑

i=0

αi yn+i = h
k∑

i=0

βi f (yn+i , zn+i)

0 = h
k∑

i=0

βig(yn+i , zn+i)

A state-space method can be applied by using
k∑

i=0

αi yn+i = h
k∑

i=0

βi f (yn+i , zn+i)

0 = g(yn+k , zn+k)

64 / 65

Solving DAE index 1 with BDF

For BDF one has
1

hβ0

k∑
i=0

αi yn+i = f (yn+k , zn+k)

0 = g(yn+k , zn+k)
Remarks

we still need stiffly accurate method so BDF has to be considered
Can be applied on DAE index 2 also

Convergence
m-step BDF with m < 6 converge; i.e.,

y(ti)− yi ≤ O(hm) and z(ti)− zi ≤ O(hm)

for consistent initial values.

65 / 65

	Numerical methods for IVP-DAE
	Introduction fo Differential Algebraic Equations
	Notion of index for DAE
	Index reduction
	Sovability of IVP DAE
	Initial Value Problem for DAE – solving methods

