Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part VII

Numerical methods for BVP-ODE

Part 7. Section 1
 Introduction to Two-point Boundary Value Problems

(1) Introduction to Two-point Boundary Value Problems
(2) Numerical solution: shooting methods
(3) Finite difference approach
4. A few words on initial guess

Initial value problem (IVP)

Definition of IVP

$$
\dot{\mathbf{y}}=f(t, \mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

The IVP is autonomous if f does not explicitly depend on $t: \dot{\mathbf{y}}=f(\mathbf{y})$
Remark: we can always transform a non autonomous problem into an autonomous one.

Recipe to make IVP autonomous
It is sufficient to increase the dimension of the problem:

- adding an equation of the form $\dot{y}_{n+1}=1$ with $y_{n+1}(0)=0$
- substituting each occurrence of t by y_{n+1}.

Initial value problem (IVP)

Definition of IVP

$$
\dot{\mathbf{y}}=f(t, \mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

IVP has a unique solution if:

- f is continuous with respect to time t
- f is Lipschitz with respect to y that is:

$$
\forall t, \forall \mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{n}, \exists L>0, \quad\left\|f\left(t, \mathbf{y}_{1}\right)-f\left(t, \mathbf{y}_{2}\right)\right\| \leq L\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|
$$

Remark it is still true for piece-wise Lipschitz functions.
Remark the uniqueness is lost if continuity is only considered.
Solution are usually only numerically computed
Many numerical integration methods exist to solve IVP-ODE

Two-point Boundary Value Problems (BVP)

Definition of IVP for second order ODE

$$
\begin{equation*}
\ddot{\mathbf{y}}=f(t, \mathbf{y}, \dot{\mathbf{y}}) \quad \text { with } \quad \mathbf{A} \mathbf{y}(a)+\mathbf{B y}(b)=\boldsymbol{\alpha} \quad \text { and } \quad a \leqslant t \leqslant b . \tag{1}
\end{equation*}
$$

with

- $\mathbf{y} \in \mathbb{R}^{n}$
- \mathbf{A} and \mathbf{B} are matrices of dimension $n \times n$.
- $\boldsymbol{\alpha} \in \mathbb{R}^{n}$

Note: usually boundary conditions are given in a separated form

$$
\mathbf{A y}(a)=c_{1} \quad \text { and } \quad \mathbf{B y}(b)=c_{2}
$$

Different kinds of boundary conditions are considered

- Dirichelet or of first kind: $\mathbf{y}(a)=\alpha$ and $\mathbf{y}(b)=\beta$
- Neumann or of second kind: $\dot{\mathbf{y}}(a)=\alpha$ and $\dot{\mathbf{y}}(b)=\beta$
- Robin or Third or Mixed kind: $\boldsymbol{A}_{1} \mathbf{y}(a)+\mathbf{A}_{2} \dot{\boldsymbol{y}}(a)=\boldsymbol{\alpha}$ and $\mathbf{B}_{1} \mathbf{y}(b)+\mathbf{B}_{2} \dot{\mathbf{y}}(b)=\beta$.

Mathematical model

$$
\frac{d^{2} T}{d x^{2}}-\frac{h P}{k A}\left(T-T_{\infty}\right)=0 \quad \text { with } \quad T(x=0)=T_{0} \quad \text { and } \quad T(x=L)=T_{1}
$$

with

- h heat transfer coefficient
- k thermal conductivity
- P perimeter of the fin
- A cross section area of the fin
- T_{∞} ambient temperature

This study of existence and uniqueness are defined as the study of the roots of a certain equations over IVP-ODE.

In particular, we study

$$
\begin{align*}
\dot{\mathbf{u}} & =f(t, \mathbf{u}) \quad \text { and } \quad \mathbf{u}(a)=\mathbf{s} \tag{2a}\\
\Phi(s) & \equiv(\mathbf{A} \mathbf{s}+\mathbf{B u}(b ; \mathbf{s}))-\boldsymbol{\alpha}=0 \tag{2b}
\end{align*}
$$

with $\mathbf{u}(b ; \mathbf{s})$ is the solution of IVP-ODE at time b from initial condition \mathbf{s}.
Intuitively: if \mathbf{s}^{*} is the root of $\Phi(\mathbf{s})$ we expect that $\mathbf{u}\left(t ; \mathbf{s}^{*}\right)=\mathbf{y}(t)$ that is the solution of BVP-ODE.

Theorem

Let $f(t, \mathbf{u})$ be continuous on $a \leqslant t \leqslant b$ and $|\mathbf{u}|<\infty$ and satisfy Lipschitz condition on \mathbf{u}. Then the BVP-ODE (1) has as many solution as there are distinct root $\mathbf{s}=\mathbf{s}^{\nu}$ of (2b). These solutions are $\mathbf{y}(t)=\mathbf{u}\left(t, \mathbf{s}^{\nu}\right)$ the solution of (2a) with initial condition \mathbf{s}^{ν}.

Let $f(t, \mathbf{u})$ satisfy on $a \leqslant t \leqslant b,|\mathbf{u}|<\infty$
(1) $f(t, \mathbf{u})$ is continuous;
(1) $\frac{\partial f_{i}(t, \mathbf{u})}{\partial u_{j}}$ is continuous for $i, j=1,2, \ldots, n$;
(1) $\left\|\frac{\partial f(t, \mathbf{u})}{\partial \mathbf{u}}\right\|_{\infty} \leqslant k(t)$.

Furthermore, let the matrices \mathbf{A} and \mathbf{B} and the scalar function $k(t)$ satisfy
(1) $(\mathbf{A}+\mathbf{B})$ non-singular;
(2) $\int_{a}^{b} k(x) d x \leqslant \ln \left(1+\frac{\lambda}{m}\right)$ for some $0<\lambda<1$ with

$$
m=\left\|(\mathbf{A}+\mathbf{B})^{-1} \mathbf{B}\right\|_{\infty}
$$

Then the BVP-ODE (1) has a unique solution for each $\boldsymbol{\alpha}$.

Remark

It is not so easy

Examples of BVP-ODE

Initial problem

$$
\ddot{y}+y=0
$$

with conditions:

- $y(0)=0$ and $y\left(\frac{\pi}{2}\right)=1$ then there is a unique solution $\sin (t)$
- $y(0)=0$ and $y(\pi)=0$ then there is an infinite number of solutions $c_{1} \sin (t)$
- $y(0)=0$ and $y(\pi)=1$ there is no solution

Conclusion

BVP-ODE do not behave so nicely than IVP-ODE!

Part 7. Section 2
 Numerical solution: shooting methods

(1) Introduction to Two-point Boundary Value Problems
(2) Numerical solution: shooting methods
(3) Finite difference approach
4. A few words on initial guess

Simple shooting method to solve BVP-ODE 1D

Introductory example

$$
\ddot{y}=f(t, y, \dot{y}) \quad \text { with } \quad y(a)=\alpha \quad \text { and } \quad y(b)=\beta
$$

Transforming differential equation into first order

$$
\begin{aligned}
& \dot{y}_{1}=y_{2} \\
& \dot{y}_{2}=f\left(t, y_{1}, y_{2}\right)
\end{aligned}
$$

and we set the initial conditions:

$$
y_{1}(a)=\alpha \quad \text { and } \quad y_{2}(a)=s
$$

So we have to find s which is a root of $y_{1}(b ; s)-\beta=0$
Hence we can use any root finding algorithm to do so such as bisection or Newton-like methods

- Inputs:
- s_{1} such that $y_{1}\left(b ; s_{1}\right)-\beta<0$
- s_{2} such that $y_{1}\left(b ; s_{2}\right)-\beta>0$
- Process: compute center s_{c} of interval $\left[s_{1}, s_{2}\right]$, assuming $s_{1}<s_{2}$, solve IVP-ODE with s_{c}
- if $y_{1}\left(b ; s_{c}\right)-\beta<0$ then redo with interval $\left[s_{c}, s_{2}\right]$
- otherwise redo with interval $\left[s_{1}, s_{c}\right]$
until he width of interval is small enough

Remark

As in general $F(s)=y_{1}(b ; s)-\beta$ is continuously differentiable as $y_{1}\left(b ; s_{1}\right)$ is, Newton's method can be used.

In that case, we uses the recurrence

$$
s_{i+1}=s_{i}+\frac{F\left(s_{i}\right)}{F^{\prime}\left(s_{i}\right)}
$$

to generate initial conditions to the IVP-ODE

$$
\begin{aligned}
& \dot{y}_{1}=y_{2} \\
& \dot{y}_{2}=f\left(t, y_{1}, y_{2}\right)
\end{aligned} \quad \text { with } \quad y_{1}(a)=\alpha \quad \text { and } \quad y_{2}(a)=s_{i}
$$

Note that, the derivative F^{\prime} of F is

$$
F^{\prime}(s)=\frac{\partial y_{1}(t ; s)}{\partial s}
$$

Theorem

Let $f(t, \mathbf{y})$ be Lipschitz in \mathbf{y} on $R=a \leqslant t \leqslant b$ and $|\mathbf{y}|<\infty$. And let the Jacobian of f w.r.t. y have continuous element on R that is the n-th order matrix

$$
\mathbf{J}(t, \mathbf{y}) \equiv \frac{\partial f(t, \mathbf{y})}{\partial \mathbf{y}}=\left(\frac{\partial f_{i}(t, \mathbf{y})}{\partial \mathbf{y}_{i}}\right)
$$

is continuous on R. Then for any $\boldsymbol{\alpha}$ the solution $\mathbf{y}(t ; \boldsymbol{\alpha})$ is continuously differentiable. Moreover, the derivative of $\frac{\partial \mathbf{y}(t ; \boldsymbol{\alpha})}{\partial \alpha_{i}} \equiv \boldsymbol{\xi}(t)$ is the solution on $[a, b]$ of the linear system

$$
\dot{\boldsymbol{\xi}}(t)=\mathbf{J}(t, \mathbf{y}) \boldsymbol{\xi}(t) \quad \text { with } \quad \boldsymbol{\xi}(a)=\mathbf{e}_{k}=(0,0, \ldots, 1, \ldots, 0)
$$

Remark: for applying Newton-based method for BVP-ODE 1D

- an augmented IVP-ODE with variational equation may be considered
- a finite difference approach may also be used

We want to solve

$$
F(s)=y_{1}(b ; s)-\beta=0
$$

To avoid complex computation using variational equations, a finite difference may be used

$$
\Delta F\left(s_{i}\right)=\frac{F\left(s_{i}+\Delta s_{i}\right)-\left(F\left(s_{i}\right)\right.}{\Delta s_{i}}
$$

then the following recurrence may be used

$$
s_{i+1}=s_{i}+\frac{F\left(s_{i}\right)}{\Delta F\left(s_{i}\right)}
$$

Remark computing $\Delta F\left(s_{i}\right)$ involves solving IVP-ODE.

Full nonlinear BVP-ODE

$$
\begin{aligned}
\dot{\mathbf{y}} & =f(t, \mathbf{y}) \\
a & \leqslant t \leqslant b \\
g(\mathbf{y}(a), \mathbf{y}(b)) & =\mathbf{0} \quad(m n o n-l i n e a r ~ e q u a t i o n s)
\end{aligned}
$$

Using translation to IVP-ODE we need to solve

$$
F(\mathbf{s}) \equiv g(\mathbf{s}, y(b ; \mathbf{s}))=0
$$

Remark Newton's method has to be used to solve non-linear systems of equations!

Comment

Shooting methods are very "simple" methods to solve BVP but they cannot address all the classes of BVP-ODE.

Note some numerical stability problems can be appeared with simple shooting method especially when b is large.

Idea of multiple shooting method

Consider more tight interval on which doing the shooting. So it is applied on a mesh

$$
a=t_{0}<t_{2}<\cdots<t_{N}=b
$$

So solve IVP-ODE on each sub-interval $\left[t_{i}, t_{i+1}\right]$ and add continuity constraints on the pieces of solution

With this methods we have to solve

$$
\begin{aligned}
\dot{\mathbf{y}}_{i} & =f\left(t, \mathbf{y}_{i}\right) \quad \text { with } \quad t_{i-1}<t<t_{i} \\
\mathbf{y}\left(t_{i-1}\right) & =\mathbf{c}_{i-1}
\end{aligned}
$$

Then the solution of BVP-ODE $\mathbf{y}(t)$ will be defined by piece such that

$$
\mathbf{y}(t)=\mathbf{y}_{i}(t) \text { for } t_{i-1}<t<t_{i}, i=1,2, \ldots, N
$$

where

$$
\begin{aligned}
\mathbf{y}\left(t_{i-1}\right) & =\mathbf{c}_{i-1} \\
g\left(\mathbf{c}_{0}, \mathbf{y}_{N}\left(b ; \mathbf{c}_{N-1}\right)\right) & =\mathbf{0}
\end{aligned}
$$

In consequence with have to solve a system of dimension $\mathrm{Nm} \times \mathrm{Nm}$.

Multiple shooting methods - cont'

In summary we have to solve

$$
H(\mathbf{c})=\mathbf{0}
$$

So Newton's method has to be used

$$
\begin{aligned}
& A \delta^{\eta}=-H\left(c^{\eta}\right) \quad \text { with } \quad A=\left.\frac{\partial H}{\partial c}\right|_{c^{\eta}} \\
& c^{\eta+1}=c^{\eta}+\delta^{\eta}
\end{aligned}
$$

and A has particular structure

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-\mathbf{Y}_{1}\left(t_{1}\right) & \mathbf{I} & & & \\
& -\mathbf{Y}_{2}\left(t_{2}\right) & \mathbf{I} & & \\
& & \ddots & \ddots & \\
\mathbf{B}_{a} & & & -\mathbf{Y}_{N-1}\left(t_{N-1}\right) & \mathbf{I} \\
& & & & \mathbf{B}_{b} \mathbf{Y}_{N}(b)
\end{array}\right]
$$

Summary

This multiple shooting approach is more robust than simple shooting approach but it is more computer expensive.

Part 7. Section 3
 Finite difference approach

(1) Introduction to Two-point Boundary Value Problems
(2) Numerical solution: shooting methods
(3) Finite difference approach
4) A few words on initial guess

We consider the boundary problem

$$
\begin{aligned}
\ddot{y} & =f(t, y, \dot{y}) & \\
y(a) & =\alpha & y(b)=\beta
\end{aligned}
$$

If u, v, and w are continuous and $v(t)>0$ on $[a, b]$ then this problem has a unique solution.

Idea of the methods

Discretized the ODE

We will consider an equidistant partition of $[a, b]$ into $m+1$ pieces $\left[t_{k}, t_{k+1}\right]$ for $k=0,1, \ldots, m$ is performed

$$
t_{k}=a+k h, \quad k=0,1, \ldots, m+1, \quad \text { and } \quad h=\frac{b-a}{m+1}
$$

$$
\ddot{y}=f(t, y, \dot{y}) \equiv u(t)+v(t) y(t)+w(t) \dot{y}(t)
$$

Applying finite difference on that equation we have

$$
\begin{aligned}
y_{0} & =\alpha \\
\frac{y_{k+1}-2 y_{k}+y_{k-1}}{h^{2}} & =u_{k}+v_{k} y_{k}+w_{k} \frac{y_{k+1}-y_{k-1}}{2 h}, \quad k=0,1, \ldots, m \\
y_{m+1} & =\beta
\end{aligned}
$$

where $u_{k}=u\left(t_{k}\right)$
The linear system is tridiagonal as can be seen by rewriting the system

$$
\begin{aligned}
y_{0} & =\alpha \\
\left(-1-\frac{w_{k}}{2} h\right) y_{k-1}+\left(2+h^{2} v_{k}\right) y_{k}+\left(-1+\frac{w_{k}}{2} h\right) y_{k+1} & =-h^{2} u_{k}, \quad k=0,1, \ldots, m \\
y_{m+1} & =\beta
\end{aligned}
$$

Linear case cont'

In matrix form we have

$$
\begin{gathered}
\left(\begin{array}{ccccc}
2+h^{2} v_{1} & -1+\frac{w_{1}}{2} h & 0 & \cdots & 0 \\
-1-\frac{w_{2}}{2} h & 2+h^{2} v_{2} & -1+\frac{w_{2}}{2} h & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & -1-\frac{w_{m-1}}{2} h & 2+h^{2} v_{m-1} & -1+\frac{w_{m-1}}{2} h \\
0 & \ldots & 0 & -1-\frac{w_{m}}{2} h & 2+h^{2} v_{m}
\end{array}\right) \times\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m-1} \\
y_{m}
\end{array}\right) \\
\\
\end{gathered}
$$

Solution of tridiagonal linear system can be efficiently solved if it has the diagonal dominant property that is

$$
\left|2+h^{2} v_{k}\right|>\left|1+\frac{h}{2} w_{k}\right|+\left|1-\frac{h}{2} w_{k}\right|
$$

This inequality is satisfied if $v_{k}>0$ and the discretization is such that
$\left|\frac{h}{2} w_{k}\right|<1$

Finite difference produces

$$
\begin{aligned}
y_{0} & =\alpha \\
\frac{y_{k+1}-2 y_{k}+y_{k-1}}{h^{2}} & =f\left(t_{k}, y_{k}, \frac{y_{k+1}-y_{k-1}}{2 h}\right) \quad k=0,1, \ldots, m \\
y_{m+1} & =\beta
\end{aligned}
$$

and one gets

$$
\begin{aligned}
2 y_{1}-y_{2}+h^{2} f\left(t_{1}, y_{1}, \frac{y_{2}-\alpha}{2 h}\right)-\alpha & =0 \\
-y_{k-1}+2 y_{k}-y_{k+1}+h^{2} f\left(t_{k}, y_{k}, \frac{y_{k+1}-y_{k-1}}{2 h}\right) & =0 \quad k=2, \ldots, m-1 \\
-y_{m-1}+2 y_{m}+h^{2} f\left(t_{m}, y_{m}, \frac{\beta-y_{m-1}}{2 h}\right)-\beta & =0
\end{aligned}
$$

this system has a unique solution if $h<\frac{2}{M}$ where M is such that $f_{z}(t, y, z) \mid<M$ for all $(t, y, z) \in\{[1, b]]-,\infty, \infty\left[^{2}\right.$

We can solve this system with Newton-like methods such that

$$
\begin{aligned}
J\left(\mathbf{y}^{[i]}\right) u & =-F\left(\mathbf{y}^{[i]}\right) \\
\mathbf{y}^{[i+1]} & =\mathbf{y}^{[i]}+u
\end{aligned}
$$

with the tridiagonal Jacobian matrix defined by

$$
J(\mathbf{y})_{k \ell}=\left\{\begin{aligned}
-1+\frac{h}{2} f_{z}\left(t_{k}, y_{k}, \frac{y_{k+1}-y_{k-1}}{2 h}\right), k & =\ell-1, \ell=2, \ldots, m \\
2+h^{2} f_{y}\left(t_{k}, y_{k}, \frac{y_{k+1}-y_{k-1}}{2 h}\right), k & =\ell, \ell=1, \ldots, m \\
-1+\frac{h}{2} f_{z}\left(t_{k}, y_{k}, \frac{y_{k+1}-y_{k-1}}{2 h}\right), k & =\ell, \ell=1, \ldots, m-1
\end{aligned}\right.
$$

Remark we need a good initial guess to apply Newton method

Part 7. Section 4
 A few words on initial guess

(1) Introduction to Two-point Boundary Value Problems
(2) Numerical solution: shooting methods
(3) Finite difference approach
4) A few words on initial guess

Many methods to solve BVP-ODE require an initial guess to start the computation (Newton like approach) but for nonlinear problems it is difficult.

One common approach is to used Homotopy continuation methods. The idea is to transform continuously a simpler (e.g., linear) problem to solve to our nonlinear problem to solve.

First we need to introduce a parameter α so ODE is transformed into

$$
\dot{y}=f(t, y, \alpha)
$$

This parameterization is such that $\alpha=1$ is our original problem and $\alpha 0$ is our simpler problem.
-set $\alpha_{0}=0$ and initial mesh $x_{0}^{0}<x_{1}^{0} \cdots x_{N_{0}}^{0}$;
-invoke the BV solver to determine the discrete solution on this mesh, $\left(y_{0}^{0}, y_{1}^{0} \cdots y_{N_{0}}^{0}\right) ;$
-set $j=0$;
-Repeat until ($\alpha_{j}=1$ or all attempts fail);
-choose the next value, α_{j+1};
-choose the initial mesh for the next problem, $x_{0}^{j+1}, x_{1}^{j+1} \cdots x_{N_{j+1}}^{j+1}$;
(Usually this mesh will be equal to or a refinement of $x_{0}^{j}, x_{1}^{j} \cdots x_{N_{j}}^{j}$)
-choose an initial guess for the solution at $x_{0}^{j+1}, x_{1}^{j+1} \cdots x_{N_{j+1}}^{j+1}$;
This will involve referring to $y_{0}^{j}, y_{1}^{j} \cdots y_{N_{j}}^{j}$. -invoke BV solver on problem determined by α_{j+1} with initial
mesh and corresponding initial guess $y_{0}^{j+1}, y_{1}^{j+1} \cdots y_{N_{j+1}}^{j+1}$;
-if (BV solver was successfull) then

$$
\text { -set } j=j+1 ;
$$

-else
-consider reducing α_{j+1} for the next attempted step;
-end Repeat

