Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part VIII

Numerical methods for IVP-DDE

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval $\left[0, t_{\text {end }}\right]$

$$
\dot{\mathbf{y}}=f(t, \mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

IVP has a unique solution $\mathbf{y}\left(t ; \mathbf{y}_{0}\right)$ if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz in \mathbf{y}

$$
\forall t, \forall \mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{n}, \exists L>0, \quad\left\|f\left(t, \mathbf{y}_{1}\right)-f\left(t, \mathbf{y}_{2}\right)\right\| \leq L\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\| .
$$

Goal of numerical integration

- Compute a sequence of time instants: $t_{0}=0<t_{1}<\cdots<t_{n}=t_{\text {end }}$
- Compute a sequence of values: $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ such that

$$
\forall \ell \in[0, n], \quad \mathbf{y}_{\ell} \approx \mathbf{y}\left(t_{\ell} ; \mathbf{y}_{0}\right)
$$

- s.t. $\mathbf{y}_{\ell+1} \approx \mathbf{y}\left(t_{\ell}+h ; \mathbf{y}_{\ell}\right)$ with an error $\mathcal{O}\left(h^{p+1}\right)$ where
- h is the integration step-size
- p is the order of the method

System of Delay Differential Equations (DDE)

$$
\begin{array}{lrl}
\dot{\mathbf{y}}(t) & =f(t, \mathbf{y}(t), \mathbf{y}(t-\tau)) & t_{0} \leqslant t \leqslant t_{\text {end }} \\
\mathbf{y}(t) & =\phi(t) & t \leqslant t_{0}
\end{array}
$$

System of Neutral Delay Differential Equations (NDDE)

$$
\begin{array}{lr}
\dot{\mathbf{y}}(t)=f(t, \mathbf{y}(t), \mathbf{y}(t-\tau), \dot{\mathbf{y}}(t-\sigma)) & t_{0} \leqslant t \leqslant t_{\text {end }} \\
\mathbf{y}(t)=\phi(t) & t \leqslant t_{0}
\end{array}
$$

Remark

For $t \geqslant t_{0}$ it can be that $t-\tau<t_{0}$ so an initial function $\phi(t)$ (history) is needed

We focus on DDE in this lecture.

Constant delay τ and σ are non-negative values
Variable or time dependant delay $\tau(t)$ and $\sigma(t)$
State dependant delay $\tau(t, y(t))$ and $\sigma(t, y(t))$
Remark: constant and time dependant delay are well studied in the literature. State variable is still an open problem.

Remark: We will focus on constant delays

It is related to Lipschitz property, in particular for

$$
\begin{aligned}
\dot{\mathbf{y}}(t) & =f(t, \mathbf{y}(t), \mathbf{y}(t-\tau(t, \mathbf{y}(t)), \dot{\mathbf{y}}(t-\sigma(t, \mathbf{y}(t))) & t_{0} \leqslant t \leqslant t_{\text {end }} \\
\mathbf{y}(t) & =\phi(t) & t \leqslant t_{0}
\end{aligned}
$$

if

$$
\inf _{\left[t_{0}, t_{f}\right] \times \mathbb{R}^{d}} \tau(t, x)=\tau_{0}>0 \quad \inf _{\left[t_{0}, t_{f}\right] \times \mathbb{R}^{d}} \sigma(t, x)=\sigma_{0}>0
$$

then problem reduces to IVP-ODE, on interval $\left[t_{0}, t_{0}+H\right.$] with
$H=\min \left(\tau_{0}, \sigma_{0}\right)$, such that

$$
\begin{aligned}
& \dot{\mathbf{y}}(t)=f\left(t, \mathbf{y}(t), \phi(t-\tau(t, \mathbf{y}(t))), \dot{\phi}(t-\sigma(t, \mathbf{y}(t))) \leqslant t_{\mathrm{end}}\right. \\
& \mathbf{y}(t)=\phi\left(t_{0}\right)
\end{aligned}
$$

This is named method of steps but it does not always work in particular when delays τ or σ vanishes around t^{*}

DDE is not an ODE

Consider the system in 1D

$$
\left\{\begin{array}{l}
\dot{y}(t)=-y(t-1), \quad t \geqslant 0 \\
y(t)=1, \quad t \leqslant 0
\end{array}\right.
$$

As $\dot{y}(0)^{-}=0$ and $\dot{y}(0)^{+}=-y(t-1)=-1$ the derivative function has a jump at $t=0$.

And the second derivative $\ddot{y}(t)$ is given by

$$
\ddot{y}=-\dot{y}(t-1)
$$

and so it has a jump at $t=1$.
The third derivative $y^{\prime \prime \prime}(t)$ has a jump at $t=2$ ans so forth.
$\tau(t)$ and $\sigma(t)$ are assumed continuous

- a jump discontinuity in \ddot{y} is named 1-level primary discontinuity
- a jump discontinuity in $y^{\prime \prime \prime}$ is named 2-level primary discontinuity
- ...

Remark that the solution becomes smoother and smoother as the primary discontinuity level increases.

Solution of example

It is important to have a continuous solution of the ODE in order to get values of the solution at time $t-\tau$ for instance.

As previously seen (cf lecture on discontinuous simulation), we can build a polynomial approximation using $\mathbf{y}_{n}, f\left(\mathbf{y}_{n}\right), \mathbf{y}_{n+1}$ and $f\left(\mathbf{y}_{n+1}\right)$. The accuracy of the approach is interesting with only order 2 RK.

For DDE, we have to find high accurate continuous extension of the solution a.k.a. CERK (Continuous extension Runge-Kutta methods)

Recall that an explicit Runge-Kutta method is defined by:

$$
\begin{equation*}
\mathbf{k}_{i}=f\left(t_{n}+c_{i} h_{n}, \mathbf{y}_{n}+h \sum_{j=1}^{i-1} a_{i j} \mathbf{k}_{j}\right) \quad \mathbf{y}_{n+1}=\mathbf{y}_{n}+h \sum_{i=1}^{s} b_{i} \mathbf{k}_{i} \tag{1}
\end{equation*}
$$

They are built from order condition which relates the Taylor expansion of the true solution and the Taylor expansion of the numerical solution.

What we want is

$$
\eta\left(t_{n}+\theta h_{n}\right)=y_{n}+h_{n} \sum_{i=1}^{s} b_{i}(\theta) k_{i} \quad 0 \leqslant \theta \leqslant 1
$$

$b_{i}(\theta)$ are polynomials of a suitable degree such that

$$
b_{i}(0)=0 \quad \text { and } \quad b_{i}(1)=b_{i} \quad i=1, \ldots, s
$$

interpolants of the first class are defined by only using intermediate steps k_{i} used to define the RK method
interpolants of the second class are defined by adding extra stages

Theorem: interpolants of the first class
Every RK methods (explicit and implicit) of order $p \geqslant 1$ has a continuous extension $\eta(t)$ of order (and degree) $q=1, \ldots,\lfloor p+1\rfloor$

\section*{Midpoint rule
 | $\frac{1}{2}$ | $\frac{1}{2}$ |
| :--- | :--- |
| | 1 |
 $b_{1}(\theta)=\theta$}

Gauss's method

$$
\begin{aligned}
\mathbf{k}_{1} & =f\left(t_{n}+\left(\frac{1}{2}-\frac{\sqrt{3}}{6}\right) h_{n}, \quad \mathbf{y}_{n}+h\left(\frac{1}{4} \mathbf{k}_{1}+\left(\frac{1}{4}-\frac{\sqrt{3}}{6}\right) \mathbf{k}_{2}\right)\right) \\
\mathbf{k}_{2} & =f\left(t_{n}+\left(\frac{1}{2}+\frac{\sqrt{3}}{6}\right) h_{n}, \quad \mathbf{y}_{n}+h\left(\left(\frac{1}{4}+\frac{\sqrt{3}}{6}\right) \mathbf{k}_{1}+\frac{1}{4} \mathbf{k}_{2}\right)\right) \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+h\left(\frac{1}{2} \mathbf{k}_{1}+\frac{1}{2} \mathbf{k}_{2}\right) \\
b_{1}(\theta) & =-\frac{\sqrt{3}}{2} \theta\left(\theta-1-\frac{\sqrt{3}}{3}\right) \text { and } \\
b_{2}(\theta) & =\frac{\sqrt{3}}{2} \theta\left(\theta-1+\frac{\sqrt{3}}{3}\right)
\end{aligned}
$$

Interpolants of the second class

Why adding new stages? To reach

$$
\max _{0 \leqslant \theta \leqslant 1}\left|y_{n+1}\left(t_{n}+\theta h_{n}\right)-\eta\left(t_{n}+\theta h_{n}\right)\right|=\mathcal{O}\left(h_{n}^{p+1}\right)
$$

We will consider CERK methods which will have the FSAL property but adding new stages to reach a given order of the numerical approximation and a given order of the continuous approximation will have some limitations.

order	stages
1	1
2	2
3	4
4	6
5	8
6	11

Example of order 3

- $b_{1}(\theta)=\frac{41}{72} \theta^{3}-\frac{65}{48} \theta^{2}+\theta$
- $b_{2}(\theta)=-\frac{529}{576} \theta^{3}-\frac{529}{344} \theta^{2}$
- $b_{3}(\theta)=-\frac{125}{192} \theta^{3}-\frac{125}{128} \theta^{2}$
- $b_{4}(\theta)=\theta^{3}-\theta^{2}$

