T-coercivity: a practical tool for the study of variational formulations

Patrick Ciarlet

POEMS, ENSTA Paris, Institut Polytechnique de Paris, France

ENSTA
IP PARIS

ACOMEN, Aug. 31st, 2022

Outline

(1) What is T-coercivity?
(2) Stokes model
(3) Neutron diffusion model
(4) Further remarks
(5) Conclusion

What is T-coercivity?

A tool to study variational formulations

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.

What is T-coercivity?

A tool to study variational formulations

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.
(1) First, analyse the variational formulation theoretically:

- prove well-posedness;
- existence, uniqueness and continuous dependence of the solution with respect to the data.

What is T-coercivity?

A tool to study variational formulations

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)={ }_{W^{\prime}}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.
(1) First, analyse the variational formulation theoretically:

- prove well-posedness;
- existence, uniqueness and continuous dependence of the solution with respect to the data.
(2) Second, solve the variational formulation numerically:
- find suitable approximations;
- prove convergence.

What is T-coercivity?

A tool to study variational formulations

Abstract framework: Find $u \in V$ s.t. $\forall w \in W, a(u, w)={ }_{W^{\prime}}\langle f, w\rangle_{W}$. Approximate framework: Find $u_{\delta} \in V_{\delta}$ s.t. $\forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}$.
(1) First, analyse the variational formulation theoretically:

- prove well-posedness;
- existence, uniqueness and continuous dependence of the solution with respect to the data.
(2) Second, solve the variational formulation numerically:
- find suitable approximations;
- prove convergence.

Within the framework of T-coercivity, steps 1 and 2 are very strongly correlated!

What is T-coercivity?

As an abstract tool

Let

- V, W be Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}
$$

[Banach-Nečas-Babuška] The inf-sup condition writes

$$
\text { (isc) } \exists \alpha>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha\|v\|_{V} \text {. }
$$

What is T-coercivity?

As an abstract tool

Let

- V, W be Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}
$$

Definition (T-coercivity)

The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text { bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

NB. In other words, the form $a(\cdot, \mathrm{~T} \cdot)$ is coercive on $V \times V$.

What is T-coercivity?

As an abstract tool

Let

- V, W be Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=W^{\prime}\langle f, w\rangle_{W}
$$

Theorem (Well-posedness)

The three assertions below are equivalent:
(i) the Problem (VF) is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies (isc) and $\{w \in W \mid \forall v \in V, a(v, w)=0\}=\{0\}$;
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly: $w=\mathrm{T} u$ works!

What is T-coercivity?

As an abstract tool (simplified)

Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous, sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Solve
(VF) Find $u \in V$ s.t. $\forall w \in V, a(u, w)={ }_{V^{\prime}}\langle f, w\rangle_{V}$.

What is T-coercivity?

As an abstract tool (simplified)

Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous, sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=V_{V^{\prime}}\langle f, w\rangle_{V}
$$

Definition (T-coercivity, hermitian case)

The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2}
$$

What is T-coercivity?

As an abstract tool (simplified)

Let

- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous, sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Solve

$$
\text { (VF) Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=V^{\prime}\langle f, w\rangle_{V}
$$

Theorem (Well-posedness, hermitian case)

The three assertions below are equivalent:
(i) the Problem (VF) is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies (isc);
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

The operator T realises the inf-sup condition (isc) explicitly.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W_{W^{\prime}}\left\langle f, w_{\delta}\right\rangle_{W}
$$

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \quad \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}
$$

[Banach-Nečas-Babuška] The uniform discrete inf-sup condition writes

$$
\text { (udisc) } \exists \alpha_{\dagger}>0, \forall \delta>0, \forall v_{\delta} \in V_{\delta}, \sup _{w_{\delta} \in W_{\delta} \backslash\{0\}} \frac{\left|a\left(v_{\delta}, w_{\delta}\right)\right|}{\left\|w_{\delta}\right\|_{W}} \geq \alpha_{\dagger}\left\|v_{\delta}\right\|_{V}
$$

NB. When (udisc) is fulfilled, (VF) ${ }_{\delta}$ is well-posed for all $\delta>0$.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \quad \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)=W^{\prime}\left\langle f, w_{\delta}\right\rangle_{W}
$$

Definition (uniform T_{δ}-coercivity)

The form a is uniformly T_{δ}-coercive if

$$
\exists \alpha^{\star}, \beta^{\star}>0, \forall \delta>0, \exists \mathrm{~T}_{\delta} \in \mathcal{L}\left(V_{\delta}, W_{\delta}\right),\| \| \mathrm{T}_{\delta} \| \leq \beta^{\star} \text { and } \forall v_{\delta} \in V_{\delta},\left|a\left(v_{\delta}, \mathrm{T}_{\delta} v_{\delta}\right)\right| \geq \alpha^{\star}\left\|v_{\delta}\right\|_{V}^{2} .
$$

NB. When a is uniformly T_{δ}-coercive, (VF) $)_{\delta}$ is well-posed for all $\delta>0$.

What is T-coercivity?

As an approximation tool

Let

- $\left(V_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of V;
- $\left(W_{\delta}\right)_{\delta}$ be a family of finite dimensional subspaces of W.

Assume that $\operatorname{dim}\left(V_{\delta}\right)=\operatorname{dim}\left(W_{\delta}\right)$ for all $\delta>0$.
Solve

$$
(\mathrm{VF})_{\delta} \text { Find } u_{\delta} \in V_{\delta} \text { s.t. } \forall w_{\delta} \in W_{\delta}, a\left(u_{\delta}, w_{\delta}\right)={ }_{W^{\prime}}\left\langle f, w_{\delta}\right\rangle_{W}
$$

Theorem (Convergence)

Assume that the family $\left(V_{\delta}\right)_{\delta}$ fulfills the basic approximability property in V.
In addition, assume that
(i) either, the form $a(\cdot, \cdot)$ satisfies (udisc);
(ii) or, the form $a(\cdot, \cdot)$ is uniformly T_{δ}-coercive.

Then, $\lim _{\delta \rightarrow 0}\left\|u-u_{\delta}\right\|_{V}=0$.

What is T-coercivity?

Key idea

Use the knowledge on operator T to derive the discrete operators $\left(\mathrm{T}_{\delta}\right)_{\delta}$!

What is T-coercivity?

Can be applied to various types of variational formulations
(1) Coercive plus compact formulations. See for instance:

- with integral equations: Buffa-Costabel-Schwab'02 (Thm 7, called Θ-coercivity there), Buffa-Christiansen'03 (Cor. 4.2), Buffa-Christiansen'05 (Prop. 3.7), Buffa'05 (§§3-4).
- with volume equations: Hiptmair’02 (§5, " $(X+S)$-coercivity"), Buffa'05 (§§3-4), PC’ ${ }^{\prime} 12$ (elementary proofs...), book by Sayas-Brown-Hassell (2019) (§15.1).
(2) Formulations with sign-changing coefficients. See for instance:

```
- for scalar models: BonnetBenDhia-PC-Zwölf'10, Nicaise-Venel'11,
    BonnetBenDhia-Chesnel-PC'12', Chesnel-PC'13, Carvalho-Chesnel-PC'17,
    BonnetBenDhia-Carvalho-PC'18.
- for EM models: BonnetBenDhia-Chesnel-PC'14` (x2), PC'21
    Abstract T-coercivity only
```

(3) Mixed formulations.

- for the Stokes model: see below!
- for diffusion models: Jamelot-PC'13, see below!

What is T-coercivity?

Can be applied to various types of variational formulations
(1) Coercive plus compact formulations. See for instance

- with integral equations: Buffa-Costabel-Schwab'02 (Thm 7, called Θ-coercivity there) Buffa-Christiansen'03 (Cor. 4.2), Buffa-Christiansen'05 (Prop. 3.7), Buffa'05 (§§3-4)
- with volume equations: Hiptmair'02 (§5, " $(X+S)$-coercivity"), Buffa'05 (§§3-4), PC' 12 (elementary proofs...), book by Sayas-Brown-Hassell (2019) (§15.1)
(2) Formulations with sign-changing coefficients. See for instance:
- for scalar models: BonnetBenDhia-PC-Zwölf'10, Nicaise-Venel'11, BonnetBenDhia-Chesnel-PC' 12^{\dagger}, Chesnel-PC'13, Carvalho-Chesnel-PC'17, BonnetBenDhia-Carvalho-PC'18.
- for EM models: BonnetBenDhia-Chesnel-PC' 14^{\dagger} ($\times 2$), PC’ ${ }^{\prime} 21$.
\dagger Abstract T-coercivity only.
(3) Mixed formulations.
- for the Stokes model: see below!
- for diffusion models: Jamelot-PC'13, see below!

What is T-coercivity?

Can be applied to various types of variational formulations
(1) Coercive plus compact formulations. See for instance

- with integral equations: Buffa-Costabel-Schwab'02 (Thm 7, called Θ-coercivity there) Buffa-Christiansen'03 (Cor. 4.2), Buffa-Christiansen'05 (Prop. 3.7), Buffa'05 (§§3-4)
- with volume equations: Hiptmair'02 (§5, " $(X+S)$-coercivity"), Buffa'05 (§§3-4), PC' 12 (elementary proofs. .), book by Sayas-Brown-Hassell (2019) (§15.1).
(2) Formulations with sign-changing coefficients. See for instance
- for scalar models: BonnetBenDhia-PC-Zwölf'10, Nicaise-Venel'11.

BonnetBenDhia-Chesnel-PC'12 ${ }^{\dagger}$, Chesnel-PC'13, Carvalho-Chesnel-PC'17, BonnetBenDhia-Carvalho-PC'18.

- for EM models: BonnetBenDhia-Chesnel-PC'14 (x2), PC'21 Abstract T-coercivity only
(3) Mixed formulations.
- for the Stokes model: see below!
- for diffusion models: Jamelot-PC'13, see below!

Stokes model

(1) Let Ω be a domain of \mathbb{R}^{3}. The "simplest" Stokes equations write

$$
\left\{\begin{array}{l}
-\nu \Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\
\operatorname{div} \boldsymbol{u}=0 \text { in } \Omega \\
\boldsymbol{u}=0 \text { on } \partial \Omega
\end{array}\right.
$$

for some $\nu>0$ (viscosity).

Stokes model

(1) Assuming that $\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{1}(\Omega)\right)^{\prime}$, one analyses mathematically the model
(Stokes) $\quad\left\{\begin{array}{l}\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\ -\nu \Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\ \operatorname{div} \boldsymbol{u}=0 \text { in } \Omega .\end{array}\right.$

Stokes model

The model
(1) Assuming that $\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{1}(\Omega)\right)^{\prime}$, one analyses mathematically the model

$$
\text { (Stokes) } \quad\left\{\begin{array}{l}
\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\
-\nu \Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\
\operatorname{div} \boldsymbol{u}=0 \text { in } \Omega .
\end{array}\right.
$$

(2) The equivalent variational formulation writes
(FV-Stokes) $\left\{\begin{array}{l}\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\ \forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}: \nabla \boldsymbol{v} d \Omega-\int_{\Omega} p \operatorname{div} \boldsymbol{v} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{u} d \Omega=\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{f}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$

Stokes model

The model
(1) Assuming that $\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{1}(\Omega)\right)^{\prime}$, one analyses mathematically the model

$$
\text { (Stokes) } \quad\left\{\begin{array}{l}
\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\
-\nu \Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\
\operatorname{div} \boldsymbol{u}=0 \text { in } \Omega .
\end{array}\right.
$$

(2) The equivalent variational formulation writes
(FV-Stokes) $\left\{\begin{array}{l}\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\ \forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega), \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}: \nabla \boldsymbol{v} d \Omega-\int_{\Omega} p \operatorname{div} \boldsymbol{v} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{u} d \Omega=\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{f}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$
Question: how to prove well-posedness "easily"?

Stokes model

The model

(1) Assuming that $\boldsymbol{f} \in\left(\boldsymbol{H}_{0}^{1}(\Omega)\right)^{\prime}$, one analyses mathematically the model

$$
\text { (Stokes) } \quad\left\{\begin{array}{l}
\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\
-\nu \Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega \\
\operatorname{div} \boldsymbol{u}=0 \text { in } \Omega .
\end{array}\right.
$$

(2) The equivalent variational formulation writes
(FV-Stokes) $\left\{\begin{array}{l}\text { Find }(\boldsymbol{u}, p) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega) \text { such that } \\ \forall(\boldsymbol{v}, q) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega), \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}: \nabla \boldsymbol{v} d \Omega-\int_{\Omega} p \operatorname{div} \boldsymbol{v} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{u} d \Omega=\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{f}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$
Question: how to prove well-posedness "easily"?

Use T-coercivity for the Stokes model!

Stokes model

Constructive proof of well-posedness with T-coercivity - 1

Let

- $V=\boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$, endowed with the norm $\|(\boldsymbol{v}, q)\|_{V}=\left(|\boldsymbol{v}|_{1, \Omega}^{2}+\|q\|^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$;
${ }^{-}{ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}={ }_{\boldsymbol{H}^{-1}(\Omega)}\langle\boldsymbol{f}, \boldsymbol{w}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}-\int_{\Omega} r g d \Omega(g=0$ for Stokes $)$.

Stokes model

Constructive proof of well-posedness with T-coercivity - 1

Let

- $V=\boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$, endowed with the norm $\|(\boldsymbol{v}, q)\|_{V}=\left(|\boldsymbol{v}|_{1, \Omega}^{2}+\|q\|^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$;
- ${ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}={ }_{\boldsymbol{H}^{-1}(\Omega)}\langle\boldsymbol{f}, \boldsymbol{w}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}-\int_{\Omega} r g d \Omega$ ($g=0$ for Stokes).

The first goal is to prove the inf-sup condition, with the help of T-coercivity. NB. The form a is not coercive, because $a((0, q),(0, q))=0$ for $q \in L_{z m v}^{2}(\Omega)$.

Stokes model

Constructive proof of well-posedness with T-coercivity - 1

Let

- $V=\boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$, endowed with the norm $\|(\boldsymbol{v}, q)\|_{V}=\left(|\boldsymbol{v}|_{1, \Omega}^{2}+\|q\|^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$;
- ${ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}={ }_{\boldsymbol{H}^{-1}(\Omega)}\langle\boldsymbol{f}, \boldsymbol{w}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}-\int_{\Omega} r g d \Omega$ ($g=0$ for Stokes).

The first goal is to prove the inf-sup condition, with the help of T-coercivity. Given $(\boldsymbol{v}, q) \in V \backslash\{(0,0)\}$, we look for $\left(\boldsymbol{w}^{\star}, r^{\star}\right) \in V \backslash\{(0,0)\}$ with linear dependence such that

$$
\left|a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right| \geq \alpha\|(\boldsymbol{v}, q)\|_{V}\left\|\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right\|_{V},
$$

with $\alpha>0$ independent of (\boldsymbol{v}, q). In other words, T is defined by $\mathrm{T}((\boldsymbol{v}, q))=\left(\boldsymbol{w}^{\star}, r^{\star}\right)$.

Stokes model

Constructive proof of well-posedness with T-coercivity - 1

Let

- $V=\boldsymbol{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$, endowed with the norm $\|(\boldsymbol{v}, q)\|_{V}=\left(|\boldsymbol{v}|_{1, \Omega}^{2}+\|q\|^{2}\right)^{1 / 2}$;
- $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$;
${ }^{-}{ }_{V^{\prime}}\langle f,(\boldsymbol{w}, r)\rangle_{V}={ }_{\boldsymbol{H}^{-1}(\Omega)}\langle\boldsymbol{f}, \boldsymbol{w}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}-\int_{\Omega} r g d \Omega(g=0$ for Stokes $)$.
The first goal is to prove the inf-sup condition, with the help of T-coercivity. Given $(\boldsymbol{v}, q) \in V \backslash\{(0,0)\}$, we look for $\left(\boldsymbol{w}^{\star}, r^{\star}\right) \in V \backslash\{(0,0)\}$ with linear dependence such that

$$
\left|a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right| \geq \alpha\|(\boldsymbol{v}, q)\|_{V}\left\|\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right\|_{V}
$$

with $\alpha>0$ independent of (\boldsymbol{v}, q). Three steps:
(1) $q=0$;
(2) $\boldsymbol{v}=0$;
(3) General case.

Stokes model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: so choosing $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$ yields

$$
\left|a\left((\boldsymbol{v}, 0),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right|=\nu\|(\boldsymbol{v}, 0)\|_{V}\left\|\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right\|_{V}
$$

Stokes model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$.
(2) $a((0, q),(\boldsymbol{w}, r))=-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega$: according to eg. Girault-Raviart' 86 ,
$\exists C_{\text {div }}>0, \forall q \in L_{v m n}^{2}(\Omega), \exists \boldsymbol{w}_{q} \in \boldsymbol{H}_{0}^{1}(\Omega)$ such that $\operatorname{div} \boldsymbol{w}_{q}=q$, with $\left|\boldsymbol{w}_{q}\right|_{1, \Omega} \leq C_{\text {div }}\|q\|$.
So choosing $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(-\boldsymbol{w}_{q}, 0\right)$ yields

$$
\left|a\left((0, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)\right| \geq\|q\| \frac{\left|\boldsymbol{w}_{q}\right|_{1, \Omega}}{C_{\mathrm{div}}}=\frac{1}{C_{\mathrm{div}}}\|(0, q)\|_{V}\left\|\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right\|_{V} .
$$

Stokes model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$.
(2) $a((0, q),(\boldsymbol{w}, r))=-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(-\boldsymbol{w}_{q}, 0\right)$.
(3) General case: beginning with the linear combination $\boldsymbol{w}^{\star}=\lambda \boldsymbol{v}-\mu \boldsymbol{w}_{q}, \lambda, \mu>0$, one finds

$$
a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r\right)\right)=\lambda \nu|\boldsymbol{v}|_{1, \Omega}^{2}-\mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w}_{q} d \Omega-\int_{\Omega}(\lambda q+r) \operatorname{div} \boldsymbol{v} d \Omega+\mu\|q\|^{2} .
$$

Stokes model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$.
(2) $a((0, q),(\boldsymbol{w}, r))=-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(-\boldsymbol{w}_{q}, 0\right)$.
(3) General case: $\boldsymbol{w}^{\star}=\lambda \boldsymbol{v}-\mu \boldsymbol{w}_{q}, \lambda, \mu>0$. Next, $r^{\star}=-\lambda q$ leads to

$$
a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)=\lambda \nu|\boldsymbol{v}|_{1, \Omega}^{2}+\mu\|q\|^{2}-\mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w}_{q} d \Omega .
$$

Stokes model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \boldsymbol{\nabla} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$.
(2) $a((0, q),(\boldsymbol{w}, r))=-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(-\boldsymbol{w}_{q}, 0\right)$.
(3) General case: $\boldsymbol{w}^{\star}=\lambda \boldsymbol{v}-\mu \boldsymbol{w}_{q}, \lambda, \mu>0$. Next, $r^{\star}=-\lambda q$ leads to

$$
a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)=\lambda \nu|\boldsymbol{v}|_{1, \Omega}^{2}+\mu\|q\|^{2}-\mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w}_{q} d \Omega .
$$

Finally, the last term can be controlled by the first two terms, using Young's inequality.

Stokes model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$.
(2) $a((0, q),(\boldsymbol{w}, r))=-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(-\boldsymbol{w}_{q}, 0\right)$.
(3) General case: $\boldsymbol{w}^{\star}=\lambda \boldsymbol{v}-\mu \boldsymbol{w}_{q}, \lambda, \mu>0$. Next, $r^{\star}=-\lambda q$ leads to

$$
a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)=\lambda \nu|\boldsymbol{v}|_{1, \Omega}^{2}+\mu\|q\|^{2}-\mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w}_{q} d \Omega .
$$

Finally, the last term can be controlled by the first two terms, using Young's inequality. Eg., choose $(\lambda, \mu)=\left(\nu\left(C_{\text {div }}\right)^{2}, 1\right): \mathrm{T}((\boldsymbol{v}, q))=\left(\nu\left(C_{\text {div }}\right)^{2} \boldsymbol{v}-\boldsymbol{w}_{q},-\nu\left(C_{\text {div }}\right)^{2} q\right)$.

Stokes model

Recall $a((\boldsymbol{v}, q),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$.
(1) $a((\boldsymbol{v}, 0),(\boldsymbol{w}, r))=\nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w} d \Omega-\int_{\Omega} r \operatorname{div} \boldsymbol{v} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=(\boldsymbol{v}, 0)$.
(2) $a((0, q),(\boldsymbol{w}, r))=-\int_{\Omega} q \operatorname{div} \boldsymbol{w} d \Omega$: choose $\left(\boldsymbol{w}^{\star}, r^{\star}\right)=\left(-\boldsymbol{w}_{q}, 0\right)$.
(3) General case: $\boldsymbol{w}^{\star}=\lambda \boldsymbol{v}-\mu \boldsymbol{w}_{q}, \lambda, \mu>0$. Next, $r^{\star}=-\lambda q$ leads to

$$
a\left((\boldsymbol{v}, q),\left(\boldsymbol{w}^{\star}, r^{\star}\right)\right)=\lambda \nu|\boldsymbol{v}|_{1, \Omega}^{2}+\mu\|q\|^{2}-\mu \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v}: \nabla \boldsymbol{w}_{q} d \Omega .
$$

Finally, the last term can be controlled by the first two terms, using Young's inequality. Eg., choose $(\lambda, \mu)=\left(\nu\left(C_{\text {div }}\right)^{2}, 1\right): \mathrm{T}((\boldsymbol{v}, q))=\left(\nu\left(C_{\text {div }}\right)^{2} \boldsymbol{v}-\boldsymbol{w}_{q},-\nu\left(C_{\text {div }}\right)^{2} q\right)$. NB. Playing with Young's inequality, one finds that there is an "admissible" family of coefficients (λ, μ) that yield T-coercivity.

Stokes model

Constructive proof of well-posedness with T-coercivity - 3

Regarding the proof with T-coercivity, one can make several observations:
(1) The result of Girault-Raviart' 86 appears as a requirement to derive the inf-sup condition!
(2) The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν.
(3) The approach is easily transposed to the approximation, see below!

Stokes model

Regarding the proof with T-coercivity, one can make several observations:
(1) The result of Girault-Raviart' 86 appears as a requirement to derive the inf-sup condition!
(2) The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν.
(3) The approach is easily transposed to the approximation, see below!

The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(\boldsymbol{V}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}_{0}^{1}(\Omega)$, resp. $\left(Q_{\delta}\right)_{\delta}$ of $L_{z m v}^{2}(\Omega)$, one can build an approximation of the Stokes model. Question: how to choose them?

Stokes model

Regarding the proof with T-coercivity, one can make several observations:
(1) The result of Girault-Raviart'86 appears as a requirement to derive the inf-sup condition!
(2) The T-coercivity approach is flexible, in the sense that one has at hand a family of operators T (depending on the chosen linear combination). Among others, one may "optimize" the value of the stability constant with respect to ν.
(3) The approach is easily transposed to the approximation, see below!

The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(\boldsymbol{V}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}_{0}^{1}(\Omega)$, resp. $\left(Q_{\delta}\right)_{\delta}$ of $L_{z m v}^{2}(\Omega)$, one can build an approximation of the Stokes model. Question: how to choose them?

Mimic the previous proof to guarantee uniform T_{δ}-coercivity for the Stokes model!

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 1

The discrete variational formulation writes
$(\text { FV-Stokes })_{\delta}\left\{\begin{array}{l}\text { Find }\left(\boldsymbol{u}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\ \forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta}: \nabla \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} d \Omega=\boldsymbol{H}^{-1}(\Omega)\left\langle\boldsymbol{f}, \boldsymbol{v}_{\delta}\right\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 1
The discrete variational formulation writes
(FV-Stokes) $)_{\delta}\left\{\begin{array}{l}\text { Find }\left(\boldsymbol{u}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\ \forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta}: \nabla \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} d \Omega=\boldsymbol{H}^{-1}(\Omega)\left\langle\boldsymbol{f}, \boldsymbol{v}_{\delta}\right\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$
Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \backslash\{(0,0)\}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}\left\|\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$.

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 1
The discrete variational formulation writes
$(\text { FV-Stokes })_{\delta}\left\{\begin{array}{l}\text { Find }\left(\boldsymbol{u}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\ \forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta}: \nabla \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} d \Omega={ }_{\boldsymbol{H}^{-1}(\Omega)}\left\langle\boldsymbol{f}, \boldsymbol{v}_{\delta}\right\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$
Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \backslash\{(0,0)\}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}\left\|\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$. Mimicking the T-coercivity approach, one chooses

$$
\boldsymbol{w}^{\star}=\nu\left(C_{\mathrm{div}}\right)^{2} \boldsymbol{v}_{\delta}-\boldsymbol{w}_{q_{\delta}} \text { and } r^{\star}=-\nu\left(C_{\mathrm{div}}\right)^{2} q_{\delta},
$$

with $\boldsymbol{w}_{q_{\delta}} \in \boldsymbol{H}_{0}^{1}(\Omega)$ such that $\operatorname{div} \boldsymbol{w}_{q_{\delta}}=q_{\delta}$, and $\left|\boldsymbol{w}_{q_{\delta}}\right|_{1, \Omega} \leq C_{\text {div }}\left\|q_{\delta}\right\|$.

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 1

The discrete variational formulation writes
(FV-Stokes) $)_{\delta}\left\{\begin{array}{l}\text { Find }\left(\boldsymbol{u}_{\delta}, p_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \text { such that } \\ \forall\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta}, \\ \nu \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u}_{\delta}: \nabla \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} p_{\delta} \operatorname{div} \boldsymbol{v}_{\delta} d \Omega-\int_{\Omega} q_{\delta} \operatorname{div} \boldsymbol{u}_{\delta} d \Omega=\boldsymbol{H}^{-1}(\Omega)\left\langle\boldsymbol{f}, \boldsymbol{v}_{\delta}\right\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)} .\end{array}\right.$
Given $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \backslash\{(0,0)\}$, we look for $\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right) \in \boldsymbol{V}_{\delta} \times Q_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(\boldsymbol{v}_{\delta}, q_{\delta}\right),\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)\right\|_{V}\left\|\left(\boldsymbol{w}_{\delta}^{\star}, r_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(\boldsymbol{v}_{\delta}, q_{\delta}\right)$. Mimicking the T-coercivity approach, one chooses

$$
\boldsymbol{w}^{\star}=\nu\left(C_{\text {div }}\right)^{2} \boldsymbol{v}_{\delta}-\boldsymbol{w}_{q_{\delta}} \text { and } r^{\star}=-\nu\left(C_{\text {div }}\right)^{2} q_{\delta},
$$

with $\boldsymbol{w}_{q_{\delta}} \in \boldsymbol{H}_{0}^{1}(\Omega)$ such that $\operatorname{div} \boldsymbol{w}_{q_{\delta}}=q_{\delta}$, and $\left|\boldsymbol{w}_{q_{\delta}}\right|_{1, \Omega} \leq C_{\text {div }}\left\|q_{\delta}\right\|$.
Difficulty: $\boldsymbol{w}_{q_{\delta}} \notin \boldsymbol{V}_{\delta}$ in general, whereas $\boldsymbol{v}_{\delta} \in \boldsymbol{V}_{\delta}$ and $r^{\star} \in Q_{\delta}$.

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^{+} \in \boldsymbol{V}_{\delta}$ such that $" \operatorname{div} \boldsymbol{w}_{\delta}^{+}=q_{\delta}$ ", and $\left|\boldsymbol{w}_{\delta}^{+}\right|_{1, \Omega} \leq C^{+}\left\|q_{\delta}\right\|$ with $C^{+}>0$ independent of δ, q_{δ}.

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^{+} \in \boldsymbol{V}_{\delta}$ such that $" \operatorname{div} \boldsymbol{w}_{\delta}^{+}=q_{\delta}$ ", and $\left|\boldsymbol{w}_{\delta}^{+}\right|_{1, \Omega} \leq C^{+}\left\|q_{\delta}\right\|$ with $C^{+}>0$ independent of δ, q_{δ}.

As a matter of fact, choosing $\boldsymbol{w}_{\delta}^{\star}=\nu\left(C^{+}\right)^{2} \boldsymbol{v}_{\delta}-\boldsymbol{w}_{\delta}^{+}$and $r_{\delta}^{\star}=-\nu\left(C^{+}\right)^{2} q_{\delta}$ immediately yields the uniform discrete inf-sup condition!

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^{+} \in \boldsymbol{V}_{\delta}$ such that " $\operatorname{div} \boldsymbol{w}_{\delta}^{+}=q_{\delta}$ ", and $\left|\boldsymbol{w}_{\delta}^{+}\right|_{1, \Omega} \leq C^{+}\left\|q_{\delta}\right\|$ with $C^{+}>0$ independent of δ, q_{δ}.

As a matter of fact, choosing $\boldsymbol{w}_{\delta}^{\star}=\nu\left(C^{+}\right)^{2} \boldsymbol{v}_{\delta}-\boldsymbol{w}_{\delta}^{+}$and $r_{\delta}^{\star}=-\nu\left(C^{+}\right)^{2} q_{\delta}$ immediately yields the uniform discrete inf-sup condition! How so? Just add ${ }_{\delta} s$ to the previous computations!

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

Find $\boldsymbol{w}_{\delta}^{+} \in \boldsymbol{V}_{\delta}$ such that $" \operatorname{div} \boldsymbol{w}_{\delta}^{+}=q_{\delta}$ ", and $\left|\boldsymbol{w}_{\delta}^{+}\right|_{1, \Omega} \leq C^{+}\left\|q_{\delta}\right\|$ with $C^{+}>0$ independent of δ, q_{δ}.

In other words, one is looking for pairs of discrete spaces $\left(\boldsymbol{V}_{\delta}, Q_{\delta}\right)_{\delta}$ such that

$$
\begin{aligned}
& \exists C_{\pi}>0, \forall \delta, \exists \pi_{\delta} \in \mathcal{L}\left(\boldsymbol{H}_{0}^{1}(\Omega), \boldsymbol{V}_{\delta}\right) \text { with the properties } \\
& \forall \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad\left|\pi_{\delta} \boldsymbol{v}\right|_{1, \Omega} \leq C_{\pi}|\boldsymbol{v}|_{1, \Omega} ; \\
& \forall \boldsymbol{v}
\end{aligned} \in \boldsymbol{H}_{0}^{1}(\Omega), \quad \forall q_{\delta}^{\prime} \in Q_{\delta}, \quad \int_{\Omega} q_{\delta}^{\prime} \operatorname{div}\left(\pi_{\delta} \boldsymbol{v}\right) d \Omega=\int_{\Omega} q_{\delta}^{\prime} \operatorname{div} \boldsymbol{v} d \Omega .
$$

to set $\boldsymbol{w}_{\delta}^{+}=\pi_{\delta} \boldsymbol{w}_{q_{\delta}}$

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

${ }^{5}$ Find $\boldsymbol{w}_{\delta}^{+} \in \boldsymbol{V}_{\delta}$ such that ${ }^{\prime} \operatorname{div} \boldsymbol{w}_{\delta}^{+}=q_{\delta}$ ", and $\left|\boldsymbol{w}_{\delta}^{+}\right|_{1, \Omega} \leq C^{+}\left\|q_{\delta}\right\|$ with $C^{+}>0$ independent of δ, q_{δ}.

By browsing the book by Boffi-Brezzi-Fortin (2013), one finds that:

- the MINI finite element of order $k \geq 1$ does the job!

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 2

How to overcome this difficulty to be able to conclude the proof?

${ }^{5}$ Find $\boldsymbol{w}_{\delta}^{+} \in \boldsymbol{V}_{\delta}$ such that ${ }^{\prime} \operatorname{div} \boldsymbol{w}_{\delta}^{+}=q_{\delta}$ ", and $\left|\boldsymbol{w}_{\delta}^{+}\right|_{1, \Omega} \leq C^{+}\left\|q_{\delta}\right\|$ with $C^{+}>0$ independent of δ, q_{δ}.

By browsing the book by Boffi-Brezzi-Fortin (2013), one finds that:

- the MINI finite element of order $k \geq 1$ does the job!
- the Taylor-Hood finite element of order $k \geq 1$ does the job!

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 3
Regarding the proof with uniform T_{δ}-coercivity, one can make further observations:
(1) The so-called Fortin lemma appears "naturally" in the proof.
(2) One needs to have some knowledge of finite element spaces.
(3) The proof is "simple"!

Stokes model

Constructive proof of convergence with uniform T_{δ}-coercivity - 3

Regarding the proof with uniform T_{δ}-coercivity, one can make further observations:
(1) The so-called Fortin lemma appears "naturally" in the proof.
(2) One needs to have some knowledge of finite element spaces.
(3) The proof is "simple"!

T-coercivity and uniform T_{δ}-coercivity are indeed strongly correlated for the Stokes model!

Outline

(1) What is T-coercivity?

(2) Stokes model
(3) Neutron diffusion model
(4) Further remarks
(5) Conclusion

Further remarks

Neutron diffusion model

The model

(1) Let Ω be a domain of \mathbb{R}^{3}. The basic brick of neutron diffusion writes

$$
\left\{\begin{array}{l}
-\operatorname{div} \mathbb{D} \nabla u+\sigma u=S_{f} \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

or, equivalently, with the additional unknown $\boldsymbol{p}=-\mathbb{D} \nabla u$,

$$
\left\{\begin{array}{l}
\operatorname{div} \boldsymbol{p}+\sigma u=S_{f} \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

for some uniformly positive symmetric tensor $\boldsymbol{x} \mapsto \mathbb{D}(\boldsymbol{x})$ (diffusion tensor), and uniformly positive $\boldsymbol{x} \mapsto \sigma(\boldsymbol{x})$ (macroscopic absorption cross section).

Neutron diffusion model

(1) Assuming that $S_{f} \in L^{2}(\Omega)$, one analyses mathematically the model

$$
\text { (Diffusion) } \quad\left\{\begin{array}{l}
\text { Find }(u, \boldsymbol{p}) \in H_{0}^{1}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\
\operatorname{div} \boldsymbol{p}+\sigma u=S_{f} \text { in } \Omega \\
\mathbb{D}^{-1} \boldsymbol{p}+\nabla u=0 \text { in } \Omega .
\end{array}\right.
$$

Neutron diffusion model

The model

(1) Assuming that $S_{f} \in L^{2}(\Omega)$, one analyses mathematically the model

$$
\text { (Diffusion) } \quad\left\{\begin{array}{l}
\text { Find }(u, \boldsymbol{p}) \in H_{0}^{1}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\
\operatorname{div} \boldsymbol{p}+\sigma u=S_{f} \text { in } \Omega \\
\mathbb{D}^{-1} \boldsymbol{p}+\nabla u=0 \text { in } \Omega .
\end{array}\right.
$$

(2) After elementary manipulations, the equivalent variational formulation writes
(FV-Diffusion) $\left\{\begin{array}{l}\text { Find }(u, \boldsymbol{p}) \in L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\ \forall(w, \boldsymbol{r}) \in L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega), \\ \int_{\Omega}\left(-\mathbb{D}^{-1} \boldsymbol{p} \cdot \boldsymbol{r}+u \operatorname{div} \boldsymbol{r}+w \operatorname{div} \boldsymbol{p}+\sigma u w\right) d \Omega=\int_{\Omega} S_{f} w d \Omega .\end{array}\right.$

Neutron diffusion model

The model

(1) Assuming that $S_{f} \in L^{2}(\Omega)$, one analyses mathematically the model

$$
\text { (Diffusion) } \quad\left\{\begin{array}{l}
\text { Find }(u, \boldsymbol{p}) \in H_{0}^{1}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\
\operatorname{div} \boldsymbol{p}+\sigma u=S_{f} \text { in } \Omega \\
\mathbb{D}^{-1} \boldsymbol{p}+\nabla u=0 \text { in } \Omega .
\end{array}\right.
$$

(2) After elementary manipulations, the equivalent variational formulation writes
(FV-Diffusion) $\left\{\begin{array}{l}\text { Find }(u, \boldsymbol{p}) \in L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\ \forall(w, \boldsymbol{r}) \in L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega), \\ \int_{\Omega}\left(-\mathbb{D}^{-1} \boldsymbol{p} \cdot \boldsymbol{r}+u \operatorname{div} \boldsymbol{r}+w \operatorname{div} \boldsymbol{p}+\sigma u w\right) d \Omega=\int_{\Omega} S_{f} w d \Omega .\end{array}\right.$
Question: how to prove well-posedness "easily"?

Neutron diffusion model

The model

(1) Assuming that $S_{f} \in L^{2}(\Omega)$, one analyses mathematically the model

$$
\text { (Diffusion) } \quad\left\{\begin{array}{l}
\text { Find }(u, \boldsymbol{p}) \in H_{0}^{1}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\
\operatorname{div} \boldsymbol{p}+\sigma u=S_{f} \text { in } \Omega \\
\mathbb{D}^{-1} \boldsymbol{p}+\nabla u=0 \text { in } \Omega .
\end{array}\right.
$$

(2) After elementary manipulations, the equivalent variational formulation writes

$$
\text { (FV-Diffusion) }\left\{\begin{array}{l}
\text { Find }(u, \boldsymbol{p}) \in L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \text { such that } \\
\forall(w, \boldsymbol{r}) \in L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega) \\
\int_{\Omega}\left(-\mathbb{D}^{-1} \boldsymbol{p} \cdot \boldsymbol{r}+u \operatorname{div} \boldsymbol{r}+w \operatorname{div} \boldsymbol{p}+\sigma u w\right) d \Omega=\int_{\Omega} S_{f} w d \Omega .
\end{array}\right.
$$

Question: how to prove well-posedness "easily"?

Use T-coercivity for the neutron diffusion model!

Neutron diffusion model

Constructive proof of well-posedness with T-coercivity - 1

Let

- $V=L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega)$, endowed with the norm $\|(v, \boldsymbol{q})\|_{V}=\left(\|v\|^{2}+\|\boldsymbol{q}\|_{\boldsymbol{H}(\operatorname{div} ; \Omega)}^{2}\right)^{1 / 2} ;$
- $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$;
- ${ }_{V^{\prime}}\langle f, w\rangle_{V}=\int_{\Omega} S_{f} w d \Omega$.

Neutron diffusion model

Constructive proof of well-posedness with T-coercivity - 1

Let

- $V=L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega)$, endowed with the norm $\|(v, \boldsymbol{q})\|_{V}=\left(\|v\|^{2}+\|\boldsymbol{q}\|_{\boldsymbol{H}(\operatorname{div} ; \Omega)}^{2}\right)^{1 / 2}$;
- $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$;
- ${ }_{V^{\prime}}\langle f, w\rangle_{V}=\int_{\Omega} S_{f} w d \Omega$.

Again, the first goal is to prove the inf-sup condition, with the help of T-coercivity.
NB. The form a is not coercive, because $|a((0, \boldsymbol{q}),(0, \boldsymbol{q}))|=\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{q} d \Omega$ controls $\|\boldsymbol{q}\|^{2}$, but not $\|\boldsymbol{q}\|_{\boldsymbol{H}(\mathrm{div} ; \Omega)}^{2}$.

Neutron diffusion model

Let

- $V=L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega)$, endowed with the norm $\|(v, \boldsymbol{q})\|_{V}=\left(\|v\|^{2}+\|\boldsymbol{q}\|_{\boldsymbol{H}(\mathrm{div} ; \Omega)}^{2}\right)^{1 / 2}$;
- $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$;
- ${ }_{V^{\prime}}\langle f, w\rangle_{V}=\int_{\Omega} S_{f} w d \Omega$.

Again, the first goal is to prove the inf-sup condition, with the help of T-coercivity. Given $(v, \boldsymbol{q}) \in V \backslash\{(0,0)\}$, we look for $\left(w^{\star}, \boldsymbol{r}^{\star}\right) \in V \backslash\{(0,0)\}$ with linear dependence such that

$$
\left|a\left((v, \boldsymbol{q}),\left(w^{\star}, \boldsymbol{r}^{\star}\right)\right)\right| \geq \alpha\|(v, \boldsymbol{q})\|_{V}\left\|\left(w^{\star}, \boldsymbol{r}^{\star}\right)\right\|_{V}
$$

with $\alpha>0$ independent of (v, \boldsymbol{q}).

Neutron diffusion model

Let

- $V=L^{2}(\Omega) \times \boldsymbol{H}(\operatorname{div} ; \Omega)$, endowed with the norm $\|(v, \boldsymbol{q})\|_{V}=\left(\|v\|^{2}+\|\boldsymbol{q}\|_{\boldsymbol{H}(\operatorname{div} ; \Omega)}^{2}\right)^{1 / 2}$;
- $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$;
- ${ }_{V^{\prime}}\langle f, w\rangle_{V}=\int_{\Omega} S_{f} w d \Omega$.

Again, the first goal is to prove the inf-sup condition, with the help of T-coercivity. Given $(v, \boldsymbol{q}) \in V \backslash\{(0,0)\}$, we look for $\left(w^{\star}, \boldsymbol{r}^{\star}\right) \in V \backslash\{(0,0)\}$ with linear dependence such that

$$
\left|a\left((v, \boldsymbol{q}),\left(w^{\star}, \boldsymbol{r}^{\star}\right)\right)\right| \geq \alpha\|(v, \boldsymbol{q})\|_{V}\left\|\left(w^{\star}, \boldsymbol{r}^{\star}\right)\right\|_{V}
$$

with $\alpha>0$ independent of (v, \boldsymbol{q}). Again, three steps:
(1) $\boldsymbol{q}=0$;
(2) $v=0$ and \boldsymbol{q} such that $\operatorname{div} \boldsymbol{q}=0$;
(3) General case.

Neutron diffusion model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$.
One finds that (skipping the details)
(1) $a((v, 0),(w, \boldsymbol{r}))=\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} \sigma v w d \Omega$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(v, 0)$.
(2) $a((0, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega($ with $\operatorname{div} \boldsymbol{q}=0)$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(0,-\boldsymbol{q})$.
(3) General case:

Neutron diffusion model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$.
One finds that
(1) $a((v, 0),(w, \boldsymbol{r}))=\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} \sigma v w d \Omega$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(v, 0)$.
(2) $a((0, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega($ with $\operatorname{div} \boldsymbol{q}=0)$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(0,-\boldsymbol{q})$.
(3) General case: beginning with $\boldsymbol{r}^{\star}=-\boldsymbol{q}$, one finds

$$
a\left((v, \boldsymbol{q}),\left(w, \boldsymbol{r}^{\star}\right)\right)=\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{q} d \Omega+\int_{\Omega}(w-v) \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega .
$$

Neutron diffusion model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$.
One finds that
(1) $a((v, 0),(w, \boldsymbol{r}))=\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} \sigma v w d \Omega$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(v, 0)$.
(2) $a((0, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega($ with $\operatorname{div} \boldsymbol{q}=0)$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(0,-\boldsymbol{q})$.
(3) General case: $\boldsymbol{r}^{\star}=-\boldsymbol{q}$. Next, $w^{\star}=\alpha\left(v+\sigma^{-1} \operatorname{div} \boldsymbol{q}\right), \alpha>0$ leads to

$$
\begin{aligned}
a\left((v, \boldsymbol{q}),\left(w^{\star}, \boldsymbol{r}^{\star}\right)\right)= & \int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{q} d \Omega+\int_{\Omega} \sigma^{-1}(\operatorname{div} \boldsymbol{q})^{2} d \Omega+\alpha \int_{\Omega} \sigma v^{2} d \Omega \\
& +(2 \alpha-1) \int_{\Omega} v \operatorname{div} \boldsymbol{q} d \Omega
\end{aligned}
$$

Neutron diffusion model

Constructive proof of well-posedness with T-coercivity - 2
Recall $a((v, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega+\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} w \operatorname{div} \boldsymbol{q} d \Omega+\int_{\Omega} \sigma v w d \Omega$.
One finds that
(1) $a((v, 0),(w, \boldsymbol{r}))=\int_{\Omega} v \operatorname{div} \boldsymbol{r} d \Omega+\int_{\Omega} \sigma v w d \Omega$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(v, 0)$.
(2) $a((0, \boldsymbol{q}),(w, \boldsymbol{r}))=-\int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{r} d \Omega($ with $\operatorname{div} \boldsymbol{q}=0)$: choose $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=(0,-\boldsymbol{q})$.
(3) General case: $\boldsymbol{r}^{\star}=-\boldsymbol{q}$. Next, $w^{\star}=\alpha\left(v+\sigma^{-1} \operatorname{div} \boldsymbol{q}\right), \alpha>0$ leads to

$$
\begin{aligned}
a\left((v, \boldsymbol{q}),\left(w^{\star}, \boldsymbol{r}^{\star}\right)\right)= & \int_{\Omega} \mathbb{D}^{-1} \boldsymbol{q} \cdot \boldsymbol{q} d \Omega+\int_{\Omega} \sigma^{-1}(\operatorname{div} \boldsymbol{q})^{2} d \Omega+\alpha \int_{\Omega} \sigma v^{2} d \Omega \\
& +(2 \alpha-1) \int_{\Omega} v \operatorname{div} \boldsymbol{q} d \Omega
\end{aligned}
$$

So, choosing $\left(w^{\star}, \boldsymbol{r}^{\star}\right)=\left(\frac{1}{2}\left(v+\sigma^{-1} \operatorname{div} \boldsymbol{q}\right),-\boldsymbol{q}\right)$ yields T-coercivity.

Neutron diffusion model

Constructive proof of convergence with uniform T_{δ}-coercivity

We assume that σ is constant (general case, see PC-Jamelot-Kpadonou'17). The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(V_{\delta}\right)_{\delta}$ of $L^{2}(\Omega)$, resp. $\left(\boldsymbol{Q}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}(\operatorname{div} ; \Omega)$, one can build an approximation of the neutron diffusion model. Question: how to choose them?

Neutron diffusion model

Constructive proof of convergence with uniform T_{δ}-coercivity

We assume that σ is constant.
The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(V_{\delta}\right)_{\delta}$ of $L^{2}(\Omega)$, resp. $\left(\boldsymbol{Q}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}(\operatorname{div} ; \Omega)$, one can build an approximation of the neutron diffusion model. Question: how to choose them? Given $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$, we look for $\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(v_{\delta}, \boldsymbol{q}_{\delta}\right),\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)\right\|_{V}\left\|\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)$.

Neutron diffusion model

We assume that σ is constant.
The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(V_{\delta}\right)_{\delta}$ of $L^{2}(\Omega)$, resp. $\left(\boldsymbol{Q}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}(\operatorname{div} ; \Omega)$, one can build an approximation of the neutron diffusion model. Question: how to choose them? Given $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$, we look for $\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(v_{\delta}, \boldsymbol{q}_{\delta}\right),\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)\right\|_{V}\left\|\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)$. Mimicking the T-coercivity approach, one chooses

$$
w^{\star}=\frac{1}{2}\left(v_{\delta}+\sigma^{-1} \operatorname{div} \boldsymbol{q}_{\delta}\right) \text { and } \boldsymbol{r}^{\star}=-\boldsymbol{q}_{\delta} .
$$

Neutron diffusion model

We assume that σ is constant.
The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(V_{\delta}\right)_{\delta}$ of $L^{2}(\Omega)$, resp. $\left(\boldsymbol{Q}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}(\operatorname{div} ; \Omega)$, one can build an approximation of the neutron diffusion model. Question: how to choose them? Given $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$, we look for $\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(v_{\delta}, \boldsymbol{q}_{\delta}\right),\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)\right\|_{V}\left\|\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)$. Mimicking the T-coercivity approach, one chooses

$$
w^{\star}=\frac{1}{2}\left(v_{\delta}+\sigma^{-1} \operatorname{div} \boldsymbol{q}_{\delta}\right) \text { and } \boldsymbol{r}^{\star}=-\boldsymbol{q}_{\delta} .
$$

Difficulty: $\operatorname{div} \boldsymbol{q}_{\delta} \in V_{\delta}$? Whereas $v_{\delta} \in V_{\delta}$ and $\boldsymbol{q}_{\delta} \in \boldsymbol{Q}_{\delta}$.

Neutron diffusion model

We assume that σ is constant.
The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(V_{\delta}\right)_{\delta}$ of $L^{2}(\Omega)$, resp. $\left(\boldsymbol{Q}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}(\operatorname{div} ; \Omega)$, one can build an approximation of the neutron diffusion model. Question: how to choose them? Given $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$, we look for $\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(v_{\delta}, \boldsymbol{q}_{\delta}\right),\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)\right\|_{V}\left\|\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)$. Mimicking the T-coercivity approach, one chooses

$$
w^{\star}=\frac{1}{2}\left(v_{\delta}+\sigma^{-1} \operatorname{div} \boldsymbol{q}_{\delta}\right) \text { and } \boldsymbol{r}^{\star}=-\boldsymbol{q}_{\delta} .
$$

By browsing the book by Boffi-Brezzi-Fortin (2013), one finds that: the Raviart-Thomas finite element of order $k \geq 0$ does the job!

Neutron diffusion model

We assume that σ is constant.
The second goal is to prove the uniform discrete inf-sup condition, with the help of the uniform T_{δ}-coercivity. Given finite dimensional subspaces $\left(V_{\delta}\right)_{\delta}$ of $L^{2}(\Omega)$, resp. $\left(\boldsymbol{Q}_{\delta}\right)_{\delta}$ of $\boldsymbol{H}(\operatorname{div} ; \Omega)$, one can build an approximation of the neutron diffusion model. Question: how to choose them? Given $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$, we look for $\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right) \in V_{\delta} \times \boldsymbol{Q}_{\delta} \backslash\{(0,0)\}$ such that

$$
\left|a\left(\left(v_{\delta}, \boldsymbol{q}_{\delta}\right),\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right)\right| \geq \alpha_{\dagger}\left\|\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)\right\|_{V}\left\|\left(w_{\delta}^{\star}, \boldsymbol{r}_{\delta}^{\star}\right)\right\|_{V},
$$

with $\alpha_{\dagger}>0$ independent of δ and of $\left(v_{\delta}, \boldsymbol{q}_{\delta}\right)$. Mimicking the T-coercivity approach, one chooses

$$
w^{\star}=\frac{1}{2}\left(v_{\delta}+\sigma^{-1} \operatorname{div} \boldsymbol{q}_{\delta}\right) \text { and } \boldsymbol{r}^{\star}=-\boldsymbol{q}_{\delta} .
$$

By browsing the book by Boffi-Brezzi-Fortin (2013), one finds that:
the Raviart-Thomas finite element of order $k \geq 0$ does the job!
The proof is again very "simple"!

Further remarks

Possible extensions:
(1) T-coercivity still usable with the Strang lemmas (approximate forms).
(2) Stokes model: see Jamelot'22 for a non-conforming discretisation (Crouzeix-Raviart or Fortin-Soulié finite elements); see master's thesis by MRoueh' 22 for DG discretisation ; see Barré-Grandmont-Moireau'22 for a poromechanics model.
(3) diffusion model: see PC-Jamelot-Kpadonou'17 or PC-Giret-Jamelot-Kpadonou'18 for Domain Decomposition (DDM $+L^{2}$-jumps).
(9) electrostatic model: classroom notes by PC (2020).

Further remarks

Possible extensions:
(1) T-coercivity still usable with the Strang lemmas (approximate forms).
(2) Stokes model: see Jamelot'22 for a non-conforming discretisation (Crouzeix-Raviart or Fortin-Soulié finite elements); see master's thesis by MRoueh' 22 for DG discretisation ; see Barré-Grandmont-Moireau'22 for a poromechanics model.
(3) diffusion model: see PC-Jamelot-Kpadonou'17 or PC-Giret-Jamelot-Kpadonou'18 for Domain Decomposition (DDM $+L^{2}$-jumps).
(9) electrostatic model: classroom notes by PC (2020).

NB. For the electrostatic model, one recovers the Nédélec finite element.

Conclusion

Within the framework of T-coercivity, analysing a variational formulation theoretically and solving it numerically are very strongly correlated issues!

Conclusion

Within the framework of T-coercivity, analysing a variational formulation theoretically and solving it numerically are very strongly correlated issues!
[IN PROGRESS] (with Mathieu Barré) Study of abstract mixed variational formulations, and "simplification/extensions" of results in the book by Boffi-Brezzi-Fortin (2013).
[TO DO] Investigate how T-coercivity could be extended to formulations set in Banach spaces (using eg. Arendt-Chalendar-Eymard'20).

Thank you for your attention!

