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The Fourier Singular Complement Method
for the Poisson problem in prismatic domains

P. Ciarlet, Jr, ! Jun Zou ?

Abstract

This paper proposes a Fourier Singular Complement Method for numerically solving the
Poisson problem in a three-dimensional prismatic domain. The method is based on a Fourier
expansion in the direction parallel to the singular edge of the domain, and an improved variant
of the Singular Complement Method in the 2d section perpendicular to the singular edge.
Neither refinements near the singular edges of the domain nor cut-off functions are required
in the computations to achieve an optimal convergence order in terms of the meshsize and the
number of Fourier modes used.

1 Introduction

The Singular Complement Method (SCM) was originally introduced by Assous et al.
[6, 7], for the 2D static or instationary Maxwell equations without charges. The cases
with charges have been recently solved by Garcia [13], including the numerical solution
to the 2D Vlasov-Maxwell system of equations. The SCM has been extended in [10]
to the 2D Poisson problem. Further extensions to the 2D heat or (instationary) wave
equations, or to similar problems with piecewise constant coefficients, can be obtained
naturally.

The primary basis of the SCM is the decomposition of the solution into a regu-
lar and singular part. Methodologically speaking, the SCM consists in adding some
singular test functions to the usual P; Lagrange FEM so that it recovers the optimal
H'-convergence rate, even in non-convex domains. In 2D, one may simply add one
singular test function per reentrant corner.

There exist a couple of numerical methods in the literature for accurately solving
2D Poisson problems in non-convex domains. It was shown in [10] that the SCM
can be reformulated so that it coincides with the approach of Moussaoui [20] when
L-shaped domains are considered. The SCM differs from the Dual Singular Function
Method (DSFM) of Blum and Dobrowolski [8] in that it requires no cut-off functions.
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Actually, when the numerical implementation of the SCM is carried out, the cut-off
function is traded for a non homogeneous boundary condition. Note that Cai and
Kim recently proposed a new SFM [9], which involves the evaluations of singular and
cut-off functions and the solution of a nonsymmetric elliptic problem. The SCM is
clearly different from (anisotropic) mesh refinement techniques [21, 2, 18, 3, 1], and
in principle can be applied efficiently to instationary problems, since it does not need
the refinements of the mesh and thus large timesteps may be allowed. However the
anisotropic mesh refinement methods have one advantage: they require only a partial
knowledge of the most singular part of the solution.

The numerical solution of 3D singular Poisson problems is quite different from the
2D case, and much more difficult. This is a relatively new field of research: most
existing approaches rely on anisotropic mesh refinements, see for instance [2, 4, 18, 3,
19], as well as [1] and the references therein.

This paper is the first attempt to generalize the SCM for three-dimensional singular
Poisson problems. Specifically, we shall consider the numerical solution of the Poisson
problem: Find u € H{(9) such that

—Au=f in £, (1)
where f € L%(Q), and ) is a prismatic domain described by
Q=wxZ, (2)

and w is a two-dimensional general polygonal domain, Z is an interval varying from 0
to a positive constant zy on the zs-axis. Non-homogeneous Dirichlet boundary condi-
tions, or (non-)homogeneous Neumann boundary conditions can be handled in exactly
the same manner.

The rest of the paper is organized as follows. In Section 2, some theoretical results
concerning the regularity of the solution to the Poisson problem in prismatic domains
are recalled. In particular, a priori regularity results of the solution u to (1), and the
relevance of the Fourier expansion along 3, are emphasized. Then a Fourier Singu-
lar Complement Method (FSCM) is proposed for accurately solving problem (1). The
FSCM is based on a Fourier expansion in z3, and an improved variant of the Singular
Complement Method in the 2d section w. In Section 3, we study a theoretical split-
ting (into regular and singular parts) of the solution u, to 2D problems of the form
—Auy, + puy, = f, in w (with a parameter > 0 related to the Fourier modes). The
regular-singular splitting is chosen independent of y. Estimates on Sobolev norms of u,,
and its splitting are established. In Section 4, the SCM is introduced to approximate
u,, accurately, via the discretization of the splitting. Numerical aspects are then con-
sidered, and the optimal H'-norm convergence of the order O(h) is recovered. In the
last Section, we show that the FSCM has the optimal convergence of order O(h+N~1),
where h is the 2D meshsize and N is the number of Fourier modes used.

We remark that C' will be frequently used in the sequel to denote the generic
constant which depends only on the geometry of the domain.



2 Singular Poisson problem

We assume, for ease of exposition, that the polygon w has only one reentrant corner C
with an interior angle larger than 7, denoted as 7/, with 1/2 < a < 1.

It is known that the Poisson problem (1) has a unique weak solution u € H} (),
but the solution has some singular behaviour near the edge E = {C} x Z of the domain
). More accurately, one can decompose, see e.g. [1, 15], the solution u into a singular
part us; and a regular part u, as follows:

u = ug + Uy, with u, € H*(Q) and u, = v(Z) 7% sin(ad) ,

where r and 6 are the polar coordinates in a plane perpendicular to the edge, that is
r = dist(#, E) and 6 € (0,7/«). The regularity of u, and therefore of the singular part
ug, can be characterized accurately as follows (cf. [1]):

u € H'T*4(Q), Ve > 0, and
ou Ju

B B

" oz’ " 0x9

0
cHYO), VB>1—a; X e HY(Q).

O3
The function v(Z) in the expression of us is often called the stress intensity distribution,
and it depends a priori on all three variables ¥ = (z1,z2,z3). Further, 7 can be
explicitly characterized by a convolution integral:

1 T
y(r,z3) = ;/qu(% — 5)ds. (3)

It is shown in [15] that g has the regularity H'!~%(R). This characterization is important
as it gives a possible way to compute the stress intensity distribution if we can find
some method to approximate the function ¢ used in (3).

Next, we shall discuss two possible approximations of the singular part us: one uses
a more general non-tensor-like form, the other uses a specialized tensor-like form. To
do so, we first approximate ¢ in (3) by the Fourier sine series:

20

N
. (km
qy(z3) = VZWZCIC sin (—:1:;;) (4)
k=0
Substituting this expression into (3), we have

1 r
ny(T,ws):;/ﬂg’l"2+82 qN(.Tg—S)dS,

then taking the Fourier transform on both sides gives
Y (7"7 é) = exp(—r|§|)(jN (6)
V2r al km km
— exp(—r|¢]) ch{5(§ + Z_o) - 5(§ — —)} .

21 Z
k=0 0




Now by taking the inverse Fourier transform on both sides, we derive

N

Tn (Ta -T3) = Z Ck exp(_rk—ﬂ-) sin (k—ﬂ-.???,) .

Z Z
k=0 0 0

Plugging this into the expression of the singular part us leads to

k k
ul (1,0, z3) chr exp(— r W)sm (Z—Wacg) sin(af).
0

This is called a non-tensor-like approximation [17], in the sense that u2 can not be
expressed as the product of an (r,0)-function and an zs-function. According to [17,
(6.23-6.24) p. 853] (in the axisymmetric case without conical points), one has
lim ) =us; in {veHYQ) : Ave L*(Q)}.
N—+4o00
Remark 2.1 By plugging (4) into the expression of vy (r,z3), one can see directly
that the limit y(r,z3) of v, vanishes at x3 = 0 and zy. As a matter of fact, for any
(relevant) r, the integrand of -y, (r,0) is an odd function of s, so v, (r,0) = 0 since the

integral is over R. The same is true for v, (r, z9), which vanishes for all r. Passing to
the limit in H'(Q) yields the result.

If the right-hand side f of (1) is slightly more regular, that is, if we have

0 . 0? .
a—i € L?*(Q) and (9:5;;]; € L*(9), (5)

then it is possible to derive a tensor-like approximation (see again [17] for the axisym-
metric case without conical points 3, and the subsequent Section 5 here). To see this,
we expand the solution u and the right-hand side f in (1) in the Fourier sine series:

o0

. km
u(z1,T2,73) = Zuk(xlax2)51nz_ox3a (6)
k=0
. km
flz1,22,23) = ka(ﬂh,lvz)smz—oiﬂ?,- (7)
k=0

By substituting the expressions (6) and (7) into the equation (1) we see that the
coefficients ug(z1,x2) satisfy the two-dimensional elliptic problems:

o 2
—Auy, + (_ﬂ) up=fr In w; ur,=0 on OJw. (8)
20

3Heinrich proved in [17] that the tensor-like form can be obtained, under the conditions

. of o*f
1/2 2 172 2 1/2 12(Q
r/2f e L*(Q), 6¢€L(Qa)andr 8¢2€ (Q0),

where (r, ¢, z) are the cylindrical coordinates in an axisymmetric domain Q, without conical points. This
corresponds precisely to the conditions that f € L?(Q) and satisfies (5) in our current prismatic case.
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It is interesting to notice that the elliptic problems (8) become more coercive when k
increases. This is certainly an advantage for the numerical solutions. We will apply
the Singular Complement Method to solve the two-dimensional elliptic problems (8).
To that aim we rewrite the solutions as follows:

Uk = Uy + ChUs (9)

where the same singular function is used for all Fourier coefficients ug. Using the
decomposition (9), we obtain the following approximation

_ N N
uN - ur + us
with

N

N . km N . km

U, = g ur,k(ml,xz)smz—wg, Uy = E cx in ——3 us(x1,22).
k=0 0 k=0 0

One may use two different representations for the singular function us(z1, z2) (see [10]).
The first one is to use a global singular function which belongs to H{ (w):

us(T1,72) = ¢s(T1,T2); (10)
the second one is to keep only the principal part of the singularity:

us(z1, z2) = r*sin(ab). (11)

For both representations, the resulting approximations uY are tensor-like. As stated

before, under the assumption that f is slightly more regular than f € L2(Q), see (5),
one can prove that

N
. N . 2
Ngrfoo kE_O u, — up in H*(Q).

In the case (11), one can pass to the limit in u)¥ and write the limit as
us = y(z3)r®sin(af). (12)

The regularity of u implies that v € H2(]0,20[). Thanks to the Sobolev imbedding
theorem [14, Chapter I], we find that v € C!([0, z9]). In addition, one easily derives
that there holds v(0) = y(z9) = 0, since

N
. km
Vv = E cp Sin —x3
20
k=0

converges to v in H2(]0, z[).

For the case (10), similar results hold, which yields in turn u, = y(z3)¢s(z1, z2),
with the same stress intensity distribution + as in (12). In this case, as u belongs to
H{(9) by construction, one gets the splitting u = ul. + u}, with u, € H2(Q) N H ().



If the boundary conditions for u is the homogeneous Neumann boundary condition
Opu = 0 on 0L, then one can take the following Fourier cosine series:

o
km
u(zy,z9,23) = Z'uk(acl,xg)cos—xg,
k=0 #0

> km
f(z1,22,23) = ka(ﬂﬂl,ﬂvz)cosgxs-
k=0

Under the same regularity assumptions on f, i.e. (5), one finds

U = Uy + Yo (z3)r* cos(ab) = ul. + v, (z3)s(z1, T2)-

Here 15 is a global singular function in the Neumann case. Again, u, and u). both belong
to H%(Q) (with d,ul. = 0 on 09), and v, € H?(]0, zo) satisfies that ., (0) = 7/, (z0) = 0.

Remark 2.2 If the boundary conditions for u on the top and bottom faces of the
physical domain ) are the non-homogeneous Dirichlet boundary condition:

u=¢g at z3=0 and 3=z,

one can set w = u — § with g being an extension of g into Q2. Then the problem
reduces to the case with the solution w satisfying the homogeneous Dirichlet boundary
condition.

If we have the non-homogeneous Neumann boundary condition:

@
on

=g at z3=0 or x3= =z,

one may then study the solution

3
w(E) = u(@) / §(21, 39, 33) ds
0

first, which satisfies the homogeneous Neumann boundary conditions at the top and
bottom faces of the domain Q. Here g is an extension of g into €.

The regularity assumptions on g are such that the problem in w is posed with a
right-hand side of sufficient reqularity (in L?(Q2), and possibly with the additional as-
sumptions (5)).

2.1 Fourier expansion

We devote this section to some justifications about the Fourier series expansion of
the Poisson solution to (1). First, one can show following the proof of Lemma 3.2 in
Heinrich [17]:



Lemma 2.1 For any u € L%(RQ), there exist Fourier coefficients defined by

2 [ . km
ug(z1,x2) = — u(z1, T, x3) sin —zsdzs, k=1,2,3,---,
20 Jo <0
such that uy € L*(w) and
ad km
u(x1, T2, x3) = Zuk($1,$2) sin—z3 a.e. in Q, (13)
k=0 0

and

o0
20
||“||%2(Q) =3 Z ||uk||%2(w) < oo
k=1

Ifu € HY(Q), then up € HY(w) for all k and
IVulae = 2 {1Vl + () ke } < o (14)
Q) — 9 L*(w) 20 L*(w)

Consider the weak form of the Poisson problem (1): Find u € Hg(?) such that
a(u,v) = f(v) Vo€ Hg(Q) (15)

where a(-,-) and f(-) are given by
a(u,v) = /QVu-Vvda:, flv) = /vadx.

Lemma 2.2 For any u,v € H} (), we have

- 50 kz_: e(uk,ve), flv) = 22—0 ka(vk),

where ag and f are given by

k 2
ak (ug, vg) = / {Vuk -V, + (z—:) ukvk}dmdxg, fre(vg) = / fr v doidza,

w

and ug, v and fi, are Fourier coefficients of u, v € HZ(Q) and f € L*(X2) respectively.

Lemma 2.3 For any f € L?(2), let u € H(Q) be the unique weak solution of (15)
and uy and fr be the Fourier coefficients of u and f. Then uy € H& (w) is the unique
solution of the following 2D weak problem: Find uy € H{(w) such that

ay,(ug,v) = fr(v) Vv € Hy(w). (16)

Moreover, uy satisfies the following a priori estimates:

/w{|Vuk|2 + (i—:)zui}dxldmg (2—;)2||fk||§2(w), k=12,

s k
>k IVl + ( ”) el } < 22Ny
k=1

VAN

IN



3 Regular-singular decomposition in the 2D do-
main w: theoretical study

The main interest of this paper is to propose some efficient numerical method for solving
the three-dimensional singular Poisson problem (1) in a prismatic domain. Basically,
the method reduces the 3D problem into a series of 2D Poisson like problems, see (8),
by the Fourier expansion of the 3D solution along the z3-direction.

This section will first study the 2D singular Poisson problem: Find u, € H(w)
such that

—Auy +p(k)u, = f(k) in w (17)

where (k) = k?7%/23 and f(k) depends on k. Due to the presence of the Fourier mode
index k, the coefficient p(k) in the equation (17) varies in a large range, from O(1)
to O(N?), where N will be the number of Fourier modes required subsequently in the
numerical approximation (cf. Section 5). This brings in one of the main difficulties in
the subsequent error estimates, which should hold for all £’s in a large range.

Let 1, 2, « -+, 7k be the line segments of 0w, where y; and 2 are two line segments
which form the single re-entrant corner of w. Our numerical method is based on the
following important decomposition of the space L?(w) [16]:

2 2 1 x
L*(w) = A[H*(w) N Hj(w)] ® N, (18)
where N is a space of singular harmonic functions defined by
N={pelL?w) : Ap=0, ply, =0in (HY (%)), 1<k<K}.

As the domain w has only one re-entrant corner, we know dim(N) = 1, and N=span{p;}
for some ps € N \ {0}, see Grisvard [16].
Let ¢s be an element in H}(w), which solves the Poisson problem

—A¢ps=ps in w. (19)
Then by the decomposition (18), we can split the solution u, to equation (17) as
uy = Uy + cuds, (20)

where @, € H*(w) N H}(w), and is called the regular part of u,,.

We will devote the rest of this section to derive some a priori estimates for the
solution u,, its regular part 4, and the singular coefficient c,, as well as the solvability
of 4, and c,. Let us first introduce some notation.

Throughout the rest of the paper, ag will be a frequently used fixed positive constant
lying in the interval |3, o[, where « €]%, 1] is the singularity index. |-|, is used to denote
the semi-norm of the Sobolev space H*(w) for any s > 0, (-,-) and || - ||o are used to
denote the inner product and the norm in the space L?(w). Also, (-,-) will be used for
the dual pairing between the space H{(w) and H~!(w) when necessary.

The following lemma summarizes some a priori estimates on u, and c,.
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Lemma 3.1 Let u, be the the solution u, to the Poisson problem (17), then we have
the following a priori estimates:

1
plluullo < fllos  Virluuly < Ellfllo, [Auullo < 2| £llo; (21)
_l-a
leul < Cu 2 || fllo (22)
l—aQ
luplivae < Cu™ 72 [Ifllo- (23)

Proof. Multiplying equation (17) by u, and integrating over w yield

[uul? + o lluullg < 11fllo llwallo

this proves the first estimate in (21). Then applying the Cauchy-Schwarz inequality,
we further obtain

1 1
2 2 9 2
lugl? + plluplly < oM llupllo + ﬂ”f“o,

which leads to the H' semi-norm estimate in (21).
The last estimate in (21) follows immediately from Au, = pu, — f and the first
inequality in (21).

As far as (22) is concerned, it is a simple matter to check that the singular coefficient
cu, multiplied by some constant 3*, equals the singular coefficient c¢(u) of [16, pp. 62-
69]. Indeed, in the works of Grisvard, u, is decomposed into:

Uy = ufj + c(p)e VETE(r)r® sin(af), uﬁ € H*(w) N H} (w) (24)

where £ is a smooth cut-off function, equal to one in a neighborhood of 0.
On the othe hand one can decompose the singular part in (20) as (cf. [10] or (43)
below)

ubs = cu (6 + F1osin(ad)), € Hw), 5= Linild
Using this, (20) and (24), we can write
(0" — c(E(r)r® sin(a)
= (g + ud) — (&) sinaf)
= uf + () (™Y 1) £(r)r® sin(a) — (i, + ). (25)

Noting that each term on the right-hand side of (25) belongs to in H?(w), we must
have ¢, = c¢(n)/B*. But it is shown in [16, ineq. (2.5.5)] that

le(u)| < Cu™ 3" || £llo (26)

this implies (22).



In order to derive the estimate (23), we shall use (24-27), with the additional norm
estimate [16, ineq. (2.5.4)] on the regular part ufj, namely

[ugt o + VAkug [y + ullugllo < ClIf lo- (27)
Indeed, from the estimates
ugli <Cu N o, lugle < Cfllo,
we have then by standard interpolation theory that

[uS 140 < Cu - = £llo-

Next, we use (26) and a direct estimate of the H'*®° semi-norm to bound the singular
part in (24). Actually, there holds

[Vo(@) = Vo@)|® o
[0[1 a0 = /e /e |x_$,”2+2a0 dw(Z) dw (i), Vv e H*(w).

Due to the uniform smoothness (in u) of e VFT¢(r)r®sin(ad) for r > ro > 0, it is
possible to evaluate the integrals only on we, = {(r,8) €]0,79[x]0,7/a[}. Then, one
performs the changes of variables s = \/ur, s’ = /ur’, to find

a—aq

€V E(r)r sin(00) 1400 ) < Clag)i™ "3

This with (22) leads to (23)). o

Remark 3.1 Both ¢, and p, in (19) are chosen independent of f(k), u, and the
Fourier mode index k, so their norms will be regarded as some generic constants inde-
pendent of f(k), u, and the index k in the subsequent analysis.

Remark 3.2 Instead of the decomposition (20), it seems more natural [15, 16] to
take the decomposition u, = '&L + cupu, where ¢, € H}(w) depends on the Fourier
mode indezx p(k), and it is the solution to the problem: —A¢, + p ¢y = py in w, with
pu € Ny \ {0}, where N, is given by

N, = {p €L2(w) 1 (~A+pD)p=0, ply, =0 in (HY*(w)), 1<k < K}

But the decomposition (20) has an important advantage: the singular part ¢s is in-
dependent of the Fourier mode index p(k). As we shall see, this will be much less
expensive than using the above more natural decomposition.

Next, we study the solvability of 4, and ¢, in decomposition (20). For convenience,
we introduce the notation a,(-,-) and the norm || - ||4:

au(w,) = (Vw, Vo) + g (w,0),  |Jv]lz = au(v,v),
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and the operator A4, = —A + p1. Clearly, A, is an operator from H{(w) into H™'(w),
and

(Ayw,v) = ay(w,v) Yw,v € Hj(w).

It is not difficult to verify that A, is a one-to-one and onto operator, so it is invertible.
Now we claim that @, and ¢, solve the following coupled system:

G’IJ'(I&’IHIU) + Cu au(¢87v) = (f,’U) ACAS H(}(w) ’ (28)
(||ps||(2) +/‘|¢s|%) Cu +N(auaps) = (faps)- (29)

In fact, by multiplying the equation (17) by ps and integrating over w we obtain

_(Auuaps) +u (uuaps) = (faps) s

then (29) follows readily from the decomposition (20), the orthogonality between pj
and Ay, along with the relation (19) and its following direct consequence

|65[F = (¢5,p5)- (30)
On the other hand, the solution u, of (17) also satisfies the weak form:
(Vuy, Vo) + g (uy,0) = (f,v) Vv € Hy(w),
this and the decomposition (20) lead to the equation (28).
Next, we show the well-posedness of the system (28)-(29).

Lemma 3.2 There exists a unique solution (@, c,) to the coupled system (28)-(29)
and the following stability estimates hold:

. 1
laula < V2(2v3CH + ) o,
[1£llo N
|CH| < 2 ||p ||0 ) |ul£|2 < 4||f||0;
S

where Cp 1is the constant in the Poincaré inequality.

Proof. To see the unique existence, we rewrite (28) as the following operator form:
Ayt + ey Auds = f in H (w). (31)

As the inverse of A, exists, we know from (31) that 4, can be determined if ¢, is
available:

Gy = A f —cuds. (32)

This is exactly our original decomposition (20). Substituting this into (29),
(lpsl3 + w1l ) e + 1 (A1 f = ubssps) = ()

11



With (30), we obtain that

(fu AN ps)
Cu = 2
P53

(33)

With ¢, uniquely determined, 4, is clearly uniquely determined by (28) or (32).
Next, we derive the stability estimates in Lemma 3.2. We show that these estimates
are the consequences of (32-33) and the following inequality

_ 1
145" gllo < M lgllo Vg € L?(w). (34)

In fact, if (34) is true, then the desired estimate on ¢, follows from (33):

171+ 104, fllo _ £l

c,l < < .
el < =0T, ol

On the other hand, we have from (30) and the Poincaré inequality that

”9255”0 <Cp ||V¢s||0 < CJ%HPSHO-

Using this and the bound of ¢,, we derive from (28) by taking v = @, that

[ fllollllo + leul (IV@sllol[Vaullo + [l pslloll@ullo)
1£lloll@ullo +2Cplf ol Vaullo + 2 1 CEl £ llollullo -

Va5 + plla.lg <
<

Then the application of the Young inequality yields

i _ 1 1 1,
IVaull§ + ulaalls < gulluullﬁ+p||f||3+§||Vuu||3+2012»||f||§+4ﬂ0}‘5||f||3-

This implies

1, . 1 1 2
slal? < (5 +20h+903) I11E < (= +2vick) 1.

so the desired estimate on |||, follows.
We now show the H?-norm estimate. By the decomposition (32), we have u, =
A;lf = 1, + ¢, ¢s, and

—Aty, = —Auy + ¢ Aps = f — puy, — cups,
this gives
||Aﬂu||0 <|Ifllo + NHU/AHO + |Cu‘ l|lpsllo-

But we know from Lemma 3.1 that pl|uyllo < ||f]|lo- This, along with the previous
bound for ¢, leads to

[Adllo < 4[[f]lo-
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Now, for any © € H'(w)? such that ¥+ 7 = 0 on dw, with 7 the vector tangential to
Ow, it is well-known (cf. [12]) that (since w is a polygon)

> lokullg = llcurld|[s + [|diva]l3.
1<k,i<2

So, by taking 7 = V1, one actually finds
|Gl = [[Adyllo < 4| fllo-

Finally, it remains to prove (34). By the definition of a,(:,-), we easily see the
following lower bound:

(A 0,0) = au(v,0) > pllol} Vo € H(w). (35)

Then for any g € L?*(w) C H (w), as A, is invertible, let v = A;l g, then v € H}(w)
and A, v = g. It follows from (35) that

B 1 1, 1 _
14,  all§ = llol§ < o (Awvv) = (9: A" 9) = llgllo 14, gllo-

This proves (34). o

4 Discrete formulation in the 2D domain w: the

SCM

In this section we shall formulate the generalized SCM method for solving the coupled
system (28)-(29) and derive the error estimates of the approximate solutions. The SCM
method was first introduced by Assous et al [6] for solving the 2D static or unsteady
Maxwell equations without charges. As we will see, the formulation of the SCM for
the 2D Poisson like problem (8) is quite different here due to the involvement of the
Fourier mode number k.

Let 7y be a regular triangulation of the domain w, with vertices {Mj}jy:“fN"
the last Np vertices lying on the boundary dw. We define V" to be the continuous
piecewise linear finite element space on 7, with the standard basis functions {1); };V:l ’ILN b
(cf. [11]). We further define V{ to be the subspace of V* with all functions vanishing
on the boundary of w. The interpolation associated with the space V;, will be denoted

by II.

and

4.1 Approximation of the singular function p;

We start with the finite element approximation of the singular function ps € N in (19).
Recall the splitting (see [10])

ps=P+p,, PEH (W), p,=r *sin(ad).
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As p; is harmonic in w, one can directly verify that the regular part p in the splitting
solves the problem: Find j € H'(w) such that § = s on w and

(VH, Vo) =0 Vo€ Hi(w) (36)
where the boundary function s is given by
s=0 on mU~y; s=-p, on v (3<k<K).

For the finite element approximation of the problem (36), we shall use the simple
treatment of the boundary condition:

N;+ Ny

Th S = Z s(M;)v; . (37)

j=N;+1

Then we approximate p; by p? = p;+p »» Where py, is the piecewise linear finite element
solution to the problem (36). Namely, p, = 7ps + pg where p% € V,? solves

(Vpn, Vor) =0 Vo, € V. (38)

The error estimates for the singular function pg and its finite element approximation

pl are summarized in the following lemma.

Lemma 4.1 We have *
ps = P41 SCh®,  Ips —plllo < CR*.
Proof. We introduce a smooth extension of s into w:
§=—pp(1-¢&(r)).

Clearly, 5 = s on Ow and 5 € H?(w). Let p® = p — 5. It is known that p € H'T0(w),
so we have p® € H'T20(w) N H} (w). Tt follows from (36) that

(Vp°, Vv) = —(V5,Vv) Vv e Hi(w). (39)

Recall ITj, is the interpolant associated with V", thus we can rewrite the finite element
solution pj to the system (38) as pp, = 1155 + pg with p% € V' now solving

(Vp), Vo) = —(VIIL3, Vo) Yo, € VI, (40)

by noting I1,5 = 7, s on Jw.

4By construction, neither p; nor p” belong to H'(w), due to the presence of p,, but the following holds:

ps —pt =P —pn € H'(w).
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Now we are ready to derive the error estimates. It is clear from (39) and (40) that

(V(® —pp), Vor) = (V(II43 — ), Vo) Vo € Vi
Using this, we obtain for any ¢, € Vbh that
IV®® = an)l” > V@ = p)II” +2(V(I1x3 = 3), V(ph — an)),
taking g, = II,p° above and using the Young inequality leads to
P’ —phlf < Ip° —Tp’|? + 203 — 31 (ph — p°l + [p° — ap°|1)
1 . -

< 20p° —pp° + §|P2 —p°|7 + 3 [IL5 — 37
Then by the standard interpolation results we obtain

P’ —phli < 4]p° — Tap®[F + 6|45 — 31,

< O 14, + h21313),
this leads to the desired H'-norm error estimate:
lps —plili = |p—Pnli = [p° + 5 —pj — Ay

< p® —pY|1 + |5 — M,5]; < C R + Chl3|y < C B,

Finally, we apply the Nitsche trick to derive the L?-norm error estimate.

w € Hi(w) be the solution to the variational problem
(V’U),V’U) = (pO _p?u’u) Vv e H(%(w)
By the elliptic theory, we know w € H'T%(w) and
[wli+ae < Cllp” — phllo-
Let wy, be the finite element approximation of w: wy, € V¥ solves
(Vwp, Vo) = (0° —p),vn) Vo, € V.
Taking vp, = wy, above and using the Poincaré inequality, we know
wal1 < Cllp° = v} lo-
Also, by the standard error estimate, we have

w —wp1 < Ch%wl11ae < Ch%|lp° = pjlo-

(41)

Let

(42)

Now, taking v = p® — p? in (42) and using (41) and the duality argument, we obtain

I’ —phlls = (Vw,V(° —pp))
= (V(w—wp), V(" —pp)) + (Vwr, V(@° — p))

(V(w —wy), V(p° = pj)) + (V(II43 — 8), V(wp, — w))
V(I3 — 3), V)

IA N

Ch**|p° — ppllo + Ch'*32]Ip° — P} llo ,
this leads to the desired L2-norm error estimate:

Ips —pillo < 1IP° —phllo + 18 — hdllo < C A2 + C h?[3]; < C h2.
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4.2 Approximation of the singular part ¢,

To approximate the singular part ¢, in the decomposition u, = 1, + ¢, ¢, we recall
(cf. [10]) that ¢s € Hj(w) solves the elliptic problem (19) and has the following
decomposition:

b= b+ B, FEHW), B = lpsld ¢p =rsin(ah).  (43)

s
Using (19), we see that é, satisfying ¢ = —[*¢, on Jw, solves the variational problem:
(Vé, Vv) = (ps,v) Vv € HE(w). (44)

Next, we consider the finite element approximation of ¢ in V:

bn = —Brmhdp + BY,

1

where 7, is defined as in (37), Bf is computed using 8f = — / (p?)2dw, and ¢) € Vi
i

is the solution to the problem: N

(Vén, Von) = (pl,vn) Yop € Vg (45)
Then we propose to compute the finite element approximation of ¢ by
O =G+ Bhs -
Next, we derive the error estimates for this approximation.
Lemma 4.2 The following error estimates hold
[bs =il SCh, llds = &5lla < Cv/iih.
Proof. We first estimate the error ¢ — ¢,. Subtracting (45) from (44) yields
(V(¢— dn), Von) = (ps — ! vn) Von €V,
thus we obtain for any wy, € V" satisfying wy, — ¢, € Vi,
|6 — whl? = | — Buli + [dn — wali +2(ps — Pf, b — wh),
which with the Young inequality and the Poincaré inequality gives
16— dnlf < |6 —wnlt +2Cpllps — Pillo(|6 — Pnlr + |6 — whl1)
< 20f—will + 116 — @l + Cllps — 213, (16)

Noting that ¢ = —[*¢, on Ow, so [)’,’{Hhé = (*¢y, on Ow. Let wy = ﬁﬁﬂhq;/ﬁ*, then
wy, — ¢p, € V. With this wy, we derive from (46) and Lemma 4.1 that

6= gnli < Ch®+C(6*)7%5¢ — BiIInGIT
< On+0{18* = Bl B + 181216 — Wl |- (47)
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But using the definitions of 8* and 3}, we have

1
8% = Bl = —|llpslI§ = Ip5 15| < Cllps = pllo < CH*, (48)
then it follows from (47) and the fact that ¢ € H?(w) that

¢ — nl1 < Ch.

This with (48) and the decompositions of ¢; and ¢/ gives the desired H'-norm estimate:

lbs — P11 < | — dul1 + 18 — Bl dpl1 < Ch

Finally, by noting that both ¢, and ¢? vanish on v, and v, we can apply the
Poincaré inequality to the function ¢; — ¢” to get

s — ¢ lo < Clolps — 1 -

Then the desired estimate on ||¢s — ¢?||, follows from

g5 — ¢3 117 = |65 — $5 1T + nlls — BL1IG < C (h* + ph?).

4.3 Approximation of 4, and ¢, in decomposition (20)

Noting that @, and c, solve the coupled system (28) and (29), it is natural to formulate
their finite element approximations as follows:
Find @ € V{" and ¢/ € R' such that

ap(@h,v) + el ay (4, v) = (f,v) eV, (49)

(IDEI3 + wl gt 2) e -+ e (@l 1) = (F,00), (50)

where ¢§ and pg are the finite element approximations of ¢; and p;, see Subsect. 4.1-4.2.

However, this formulation requires one to solve a coupled system, and it poses some
difficulty in getting the error estimates as it does not fall into any existing saddle-point
like framework. Instead, we are going to propose a more efficient approximation which
enables us to find ﬂﬁ € VJ and c,’j separately. In fact, we can use the formula (33) to
first find cﬁ, and then use (49) to find ﬂﬁ € V. This leads to the following algorithm
to find ﬂZ € V and cZ.

SCM Algorithm for finding @, € V" and ¢ € R'.

Step 1. Find zﬁ € VJ* such that

aN(ZLlav) = (fav) Vo e %h . (51)
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Compute cZ as follows:

—uzh ph _ 1
= U1 P) e (52)
Hps ||0
and
=0 if k>Ch T, (53)
Step 2. Find ﬂﬁ € VJ* such that
a, (), v) + ¢t au(¢l,0) = (f,v) Vv e V. (54)

Below, we shall derive the error estimates on (¢, — cﬁ) and (ﬂﬁ - ﬂﬁ) Recall the
formula (33) for c,:

(.f — K2y, ps)
=" (55)
. HpSHg
where z, = A;'f € Hj(w) solves
au(zu,v) = (f,v) Vo€ Hj(w). (56)

Clearly z, = uy, the solution to the equation (17). But a different notation z, is used
here for convenience, since the numerical approximation zﬁ is derived with the standard
piecewise linear FEM.

Lemma 4.3 For the solution z, to the problem (56) and its piecewise linear finite

element approrimation zﬁ in (51), we have the following error estimates
lzu = 2zpllo < Mo (57)
lzu =zl < CR*0u7Y|f]lo, (58)

while for the coefficient ¢, in (55) and its approzimation cZ in (52), we have
lew — el < C (h**°u® +h) | fllo- (59)

Proof. Tt follows from (56) and (51) that
ay(z, — zﬁ, Zy — zﬁ) = au(zy, 2y — zZ) =(f,zu— zﬁ)
This implies

2w = 2uld + wllzu = 205 < N1 llo 12 — 25 llo,

thus (57) follows by the Young inequality.
We next show (58). Again it follows from (51) and (56) that

l2u — zZHa <|lzu —vnlla VYovn€ Voh-
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But, by standard interpolation theory, we know that
|z — Hpzult £ Ch*|zu/1400, and [z, — Mpzpllo < Ch1+a°|zu|1+a0.
Therefore,
2 = 2 lla < C (L4 VR 4] 140 < C 2]t - (60)
For any g € L?(w), define w € H{(w) such that
au(w,v) = (g,v) Yv € Hy(w). (61)

Using the duality and (61), we have

h h
Zy — % a\w, 2, — 2
el = sp G IO gy, G0 E )
gEL?(w) ”gHO geL?(w) ”gHO
h h
_ sup a’H(w_th,zu_zu)S ”w_thHa”ZM_ZuHa
gel2(w) llgllo 9eL2(w) llgllo

Using the interpolation result and the same derivation as in (60) and the a priori
estimate (23) (with u and f replaced by w and g), we obtain

C B> |wl1+aq|2u1+aq

Iz =zl < sup
g g geL?(w) ||g||0

< Cr*u Y fllo-

This proves (58).
It remains to prove (59). We have from (52) and (55) that

Cu—Ch — (f_llzuaps)_(f_liz,’fapg)
. IpsI5 P23
h
- {(f’ps (f, p) }+ { pr)—(z“’pQS)}::h-i-Iz.
Ipsll§ [lP21I3 P25 1ps I3

For I, we have from Lemma 4.1 that
i < CRh| flo-

For Iy, we further write it as follows

(2F — z,, pP) 2y, PP 1 1
Iy —p b Pe) | G P p5)+u(u,ps){ 1

P13 %113 PRI sl

Then using estimate (58) and Lemma 4.1, we can derive
|1I2| < pllz = zpllo + C Rl fllo < C (R4 + ) [|fo-

This with the estimate of I; gives (59). o
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In the rest of this section, we shall estimate the error between the solution u, to
the elliptic problem (17) and its SCM approximation uﬁ Noting the decomposition of
Uy

uy =iy + Cu s = iy + cu (b + B7,) (62)
we propose its SCM approximation uZ of the form:
ul = il ch gl =il + (G + Bry)- (63)

b Let us start with the estimate of

We shall derive the error estimate on u, — Uy,

(G, — ﬂﬁ) We have
Lemma 4.4 The following error estimate holds
~ ~h h
i, — ayls < C Vi (W | fIIF + lew — eul?) -
Proof. Subtracting (49) from (28) we have
a, (G, — ﬂz,vh) + cuay(ds,vp) — cZau(q’)gL,vh) =0 Vo, € Voh.
Using this we obtain for any wy, € V!,
18y — walls = G — aylls + 1T — wallz + 2chau(¢5, @ — wh) — 2cua,(bs, Ty, — w),

this implies

= -
2 — il
< i, — wh”i + 2¢y ap(ds — ¢’sl>aﬁ —wp) + 2(cy — CZ)GM(¢?aﬂZ — wp) (64)
~ h ~h h h ~h
<y — wally + 21cul l1ps — lla 1% — whlla + 21cu — il 1|95 a 1, — whlla -

Now, there holds || [la — [|s — df[la < ¢4 lla < [1dslla + [|ds — H]la- Using Lemma 4.2
and (|92 = |65[2+ s | 65]13, we find [ 92]]a ~ /7 [[gslo- Using the interpolation results,
we obtain

||ﬂu - Hhﬂung < |ﬂu - Hhﬂu@ +p ||ﬂu - Hhﬂu”% < Ch’2 |’11,u|%,
thus letting wy, = 1%, in (64) and using Lemma 3.2, we derive

8y — ﬂZHg < Ch?|aul3 + C (Vuh®)| fllo )z + C /i h ey — CZ‘ |Tpl2
< CvrB?IfI +lew — i)

Lo

Theorem 4.1 Let u, be the solution to the equation (17) and UZ be its finite element
approzimation given in (63). Then the following error error estimate holds:

[y — ultlla < Cphlifllo

for all \/u=Fke{1,2,--- ,N}.
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Proof. Tt follows from (62) and (63) that
Uy — “Z = (i — ﬂﬁ) + culds — ¢?) + ¢’sl(cu - CZ)
Then we have using Lemmas 4.4, 4.2 and 3.2 that
o =2 < 3t — 212 + lea? s — G13 + 82 e — chi?)
< C(uh|IFIIG + plen — cl?) -
To prove the desired estimate, we need simply
e = cul? < Cuh? | £II3- (65)
First consider the case (53), i.e. \/u =k > C h~7ss. This condition is equivalent
to
h2u00-2 < O
Then (65) comes directly from this condition, cZ = 0 and (22) as follows:

leu — eul? =i < CpHIFI§ < Cuh® (B2 )| £1I§ < C b |I£15 -

1
For the remaining case (52), we have /i = k < Ch™ 720, or h? < C p~(2-a0).
Therefore, since 2ag — 1 > 0,

h4oz0—2 < Cu—(2a0—1)(2—a0) ]
But it follows from (59) and this condition that

e = ch? < O (h0 2 + B |1 = C (R W0 22 4 ?) | £3
< OR? (eomCeomCe0) 41y | 7|3,

Now (65) follows from this and the fact that, as ag E]%, 1[, the exponent of 4 is bounded
by

200 — (200 — 1)(2 —9) =202 —3ag +2 =1+ (29 — 1)(ag — 1) < 1.

5 Fourier Singular Complement Methods

Let u be the solution to the elliptic problem (15) and uy be its Fourier coefficients in
terms of (6). We define

N

. km
uN (x1, T2, 13) = Zuk(xl, x2) sin Z—Oxg .
k=1
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By Lemma 2.3, we know that ug(z1, z2) solves the 2D problem (16), the weak formu-
lation of the elliptic problem (8). And using (20) we can decompose uy, as follows:

U = U + ck ¢

where 1y, € H?(w) N H}(w) and ¢, € H{(w) solves (19). Let ul(z1,z2) be the SCM
solution of uy(z1,2), defined to be the same as u in (63) but with u replaced by
k%n? /22 now, that is,

_~h h . h
—“k+ck¢s-

We define the Fourier SCM (FSCM) solution to (15) as follows:

N
. km
uhN(ml,wg,xg) = E uZ(ml,wQ)stmg.
k=1

Then we have
Theorem 5.1 The following error estimate holds:

ik

19— w2y < € b+ NH] /] 93

v

Proof. Using the Fourier expansion of u in (13) and the definition of uhN , we have, cf.
(14),

12(Q) Ha—wg) 12(0

N
2 km
IV@— a2y = 52 (VG = u)lf + () e — ull
) 2k—1 20
20 km. o
5 2 (19l + )2 s 7)
k>N
= I; +1I.
By Lemma 2.3, we derive
2 km
L = 5" (I7uelig + )2
k>N
< 282 R(Ivunlf + )
k>N
20 -2 2
< (;)N 111220

For 1, we have
o
0 2
9 E :||Uk — uglls -
k=1
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By Theorem 4.1 we have
lluk — uills < CE*B? || fillg -
Using this and the completeness relations of the Fourier series, we obtain the estimate

of 11:

I <Ch2§:k4||f 12 < Ch? 1
b= #Io = oz3 L2 ()
k=1

This with the previous estimate of Iy leads to the desired error estimate. o

6 Conclusion

The optimal convergence rate of the FSCM in prismatic domains, has been proven for
the Poisson problem with homogeneous Dirichlet boundary conditions. Assuming that
the right-hand side f is slightly more regular than f € L%(Q), i.e. that §f/0z3 and
02 f /013 both belong to L?(€), the convergence rate of the FSCM in H'-norm is like

lu = up'lls < Cp(h+ N1,
where h is the 2d meshsize, and N is the number of Fourier modes used.

The same result also holds for the discretization of the Poisson problem with
a homogeneous Neumann boundary condition. For the Poisson problem with non-
homogeneous boundary conditions, one can apply Remark 2.2 to reach similar results.

Further, it is no difficulty to consider the case of a prismatic domain  with several
reentrant edges, i.e. w with several reentrant corners.

Finally, the results, which have been proven in this paper, can also be viewed as
the first effort towards the discretization of electromagnetic fields in prismatic domains,
with continuous discrete fields, the importance of which is well-known, cf. [5]. As a
matter of fact, the SCM developed in [6, 7, 13] for 2D electromagnetic computations
can be generalized, based from the results obtained here.
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