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ABSTRACT

This study investigates the flow around a cylinder in a near-axial flow at a Reynolds number of27000. Both CFD

calculations and experiments are performed. Time-mean values of lift force coefficient are investigated against the

inclination of the cylinder in the domain of low inclinations (< 15◦). A pressure distribution and flow profiles are

also measured and extracted from the CFD calculation results for a characteristic inclinationα = 5◦. Numerical

results for force and pressure show fair agreement with experiments for inclination below5◦ and reveal that at low

angles, the lift force is proportional to the angle. In the framework of a quasi-static approach, the instantaneous

damping force exerted on a cylinder oscillating in axial flowis equivalent to the normal force exerted on a cylinder

placed in an oblique flow

Nomenclature

CL Lift coefficient.

CN Normal force coefficient.

Cp Pressure coefficient.

D Diameter of the cylinder (m).

FN Normal force per unit length (N/m).

FD Drag force per unit length (N/m).

FL Lift force per unit length (N/m).

L Length of the cylinder (m).

p∞ Far field pressure (Pa).

Re Reynolds number, based on the cylinder diameter and the incoming flow velocity.

U Incoming flow velocity (m/s).

Uparallel Longitudinal component of the flow velocity (m/s).

x Distance to the end of the cylinder along the cylinder (m).

α Inclination of the cylinder.

ρ Density of the fluid (kg/m3).

θ Angular position of the pressure tap.

∗Address all correspondence to this author.



INTRODUCTION

In Pressurized Water Reactors, fuel rods are arranged in light arrays wrapped by grids and subjected to axial flow. A

description of the forces exerted upon a cylinder oscillating laterally in an axial flow is needed for seismic design purpose to

estimate the flow-induced damping of a fuel assembly. In order to understand the physical phenomena involved, the behavior

of only one cylinder oscillating in axial flow is investigated.

The study is focused on the damping force, which is defined as the dissipative force component in the direction of the

oscillation and orthogonal to the axis of the cylinder. Moreprecisely, the force acting upon a laterally oscillating cylinder

can be expanded in a term proportional to the acceleration, which stands for the added mass effect, and in a term proportional

to the velocity, which dissipates energy and hence generates damping in harmonic regime. This dissipative force shall be

denoted from now on ’damping force’ because it is responsible for fluid damping when a cylinder oscillates in axial flow. In

the framework of the quasi-steady approach, i.e., if the lateral velocity of the cylinder is small compared to the axial flow and

if the oscillation period is low compared to the inverse of the flow characteristic timeU/D, the damping force is identical to

the normal force exerted upon a cylinder submitted to a near-axial steady flow. One expects this damping force to depend on

the axial flow and on the structure velocity.

The normal force for a cylinder oscillating in a fluid at rest has been described by Morison [1,2] as the sum of an added

mass force and a drag force. The added mass is a concept [3] which presents the advantage of reducing all the inertial forces

to one single coefficient. The Morison expansion can serve asa basis for the description of the forces exerted upon a cylinder

oscillating in a axial flow [4]. In the case of a cylinder placed in an oblique flow, Taylor [5] has shown that for oblique

flow with angles higher than 20◦, the axial component of the fluid velocity has no influence (cross-flow principle). Ersdal

& Faltinsen [6] defined three different cases: for angles lower than 5◦, the cross flow principle does not hold, for angles

between 5◦ and 20◦, the cross flow principle needs to be modified by taking into account the state of the boundary layer and

beyond 20◦ the cross flow principle holds.

The objective of this paper is to compare the results of experiments carried out at small angles, for a cylinder in an

oblique flow to RANS CFD simulations of the experiments. As the cross flow principle [5] is not valid for small angles,

the variation of the normal force with the axial and lateral velocities needs to be investigated. The validity of the RANS

simulations will be discussed for the velocity field, the wall pressure distribution and the total lift force exerted by the fluid

on the cylinder.



Fig. 1. Cylinder in near axial flow with an angle α, definition of the normal force FN, the lift force FL and the drag force FD.

STATE OF THE ART

The scientific literature provides very few data about cylinders in near axial flow. Taylor [5] summed up the results of

Relf and Powell about the normal force exerted on a cylinder placed in an oblique flow in an air tunnel at angles of inclination

between 10◦ and 90◦. The normal forceFN is the force in a direction normal to the cylinder axis and in the plane of the

incoming flow velocity and of the cylinder axis (see Fig. 1). In their experiment, the normal force was proportional to the

square of the lateral component of the velocity. In other words, the normal force measured for a cylinder placed in an oblique

flow of velocity U and angleα is the same as the one exerted upon the same cylinder placed ina cross flow of velocity

Usin(α). This implies that the axial component of the flow velocity has no influence on the normal force coefficient in this

range of angles.

FN =
1
2

CNρ f D(Usinα)2 for α > 20◦ (1)

This result classically refers to as the cross flow principle. According to equation (1), the normal force coefficientCN is

around 1.1, which corresponds to the drag of a cylinder in cross flow.

Ersdal & Faltinsen [6] recently carried out experiments with a cylinder mounted on a towed carriage. The cylinder was

towed at a constant velocity and angleα and the normal force was measured. The experiments were performed by steps of 1

or 2 degrees. Results similar Taylor’s one were observed forangles above 20◦. For angles between 5◦ and 20◦, a flow regime

transition was observed: the boundary layer which is laminar for high angles becomes turbulent. For practical purposes, this

means that the cross flow principle holds, but the normal force coefficient is lower than for a laminar boundary layer. Ersdal

& Faltinsen measured a normal force coefficientCN ≈ 0.8

For angles lower than 5◦, the cross flow principle does not hold. Taylor [5] proposed amodel based on the friction force

which is now traditionally used at low angles [7, 8]. Ersdal &Faltinsen showed that the normal force is proportional to the



Fig. 2. Experimental setup.

lateral velocityUsin(α) (2) and observed that the lift force is the dominant term of the normal force.

FN =
1
2

CNρ f DU2sinα for α < 5◦ (2)

In the present work, the description of the fluid forces is focused on the lift forceFL. For a cylinder in an oblique flow,

FL is the fluid force in the direction illustrated in Fig. 1. The non-dimensional lift force coefficient is defined by considering

the incoming flow velocity as the reference velocity.

CL =
FL

1
2ρ f DU2

(3)

EXPERIMENTAL SET UP

The experiments are all performed in an air tunnel. A cylinder is arranged in a near-axial flow with an angle of inclination

α, varying from 0.5◦ (axis almost parallel to the flow) to 15◦. The length of the cylinder isL= 1.2 m, its diameterD= 0.02m

and the ends of the cylinder are cone-shaped to prevent flow separation. The incoming flow velocity is measured with a Pitot

tube, with an accuracy of±0.1 m/s.

Three types of experiments are performed in the wind tunnel.The goal of the first experiment shown in Fig. 2 is to

measure the forcesFL andFD exerted on the cylinder. The cylinder is fixed to a foil mounted on a two-dimensional scale,

and a motorized system allows the rotation of the scale. The drag and the lift forces are measured simultaneously and the

contribution of the mounting system is subtracted.

In the second experiment, the velocity profiles along the cylinder are measured with the help of a 1D hot wire probe.



Fig. 3. Position of the velocity profiles in the y direction along the cylinder at an azimuthal angle θ = 180◦.

The profiles are measured in the wake of the cylinder, at an azimuthal angleθ = 180◦. Measurements are performed close

to the cylinder wall, by varying the distance in they direction from 0.4 to 1 mm by step of 0.1 mm, then from 1 to 5 mm by

step of 1 mm, from 5 to 20 mm by step of 2.5 mm and from 20 to 80 mm bystep of 10 mm. The probe is arranged at several

locations along the cylinder, as shown in Fig. 3: the distance to the upstream end of the cylinder spans from 0.2 m to 0.7 m,

i.e., x/L varies from 0.17 to 0.58.

The third experiment consists in measuring the pressure distribution in the cross section in the cylinder. A pressure tap

is arranged at a distanceX = 0.46m from the end of the cylinder (X/L = 0.38). By rotating the cylinder around its axis, the

pressure distribution around it can be measured. Results are provided for an angleα equal to 5◦, and an angleθ varying from

0◦ to 180◦ by steps of 15◦. The incoming flow velocity is 20m/s, which corresponds to a diameter-based Reynolds number

equal to 27000.

The reference frame used in the following is described in Fig. 2 : thex axis is parallel to the cylinder axis.

CFD PROCEDURE

In addition to experiments, CFD simulations have been carried out. In order to reduce the calculation time, the fluid

domain of the CFD calculations is smaller than the test section of the wind tunnel, but its width is large enough to avoid

confinement effects. As for the experiments, the cylinder length isL = 1.2 m and the cylinder diameterD = 0.02 m.

The fluid fow is calculated using Code Saturne, an EDF in-house open CFD tool [9] based on a collocated finite volume

approach. Three dimensional steady RANS simulations are performed with ak−ω turbulence model. An analysis different

turbulence models ranges beyond the scope of this paper, be it enough to mention that a simulations withk− ε turbulence

model provided similar results.

The mesh is built with quadrangle elements only, as shown in Fig. 4. The reference mesh has a number of 1.66×106

cells. The cylinder dimensions are the same as in the experiments. The dimensions of the fluid domain areV = 0.92 m×



Fig. 4. Mesh, zoom on the end of the cylinder.

0.32m×1.8 m. The mesh is refined close to the walls of the cylinder (1< y+ < 30) and a two scale wall law is chosen.

The resolution of the velocity field and pressure is directlylinked to the size of the mesh. The pressure distribution

around the cylinder is hence determined by steps of 8◦, which corresponds to about 1mm. The same resolution is obtained

for the velocity profiles close to the cylinder.

LIFT COEFFICIENT

The lift and drag contributions to the normal force measuredwith the two-dimensional scale are shown in Fig. 5, with

the notations of Fig. 1 : the normal force is essentially due to the lift force. Moreover, the figure shows two different flow

regimes : the first shows a linear dependency of the normal force with respect to the yaw angleα for values lower than 5◦,

and the second exhibits a quadratic dependency for higher values, consistent with the so-called cross-flow principle, and

already observed by Ersdal & Faltinsen [6]. Paı̈doussis [8]has already pointed out that the normal force coefficient in the

linear part could be higher than the one obtained by the projection of the drag force in the normal direction but he attributed

this effect to friction. The results presented in Fig. 5 showthat the linearity of the normal force is due to the linearityof the

lift force in the linear regime.

The experimental results are also compared to the results ofthe CFD calculations. A qualitative agreement is obtained

between the CFD calculations and the measurements, as illustrated by the linear regression on the experimental data plotted

in dashed line in Fig. 5, and by the slope estimation in Table 1. Discrepancies appear in the range of angles beyond 5◦, but

the normal force at small angles is reasonably predicted by the simulations.

The figure 6 shows the variation of the lift component of the normal forceCLcosα with respect to the inclination angle

with a log scale. It highlights the transition between the linear and the quadratic behavior around 5◦. The reasons for this
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Fig. 5. Lift and drag contributions to the normal force CLcosα et CDsinα such as CN = CLcosα+CDsinα. Comparison between

experimental measurements and CFD simulation results. Linear regime for |α| < 5◦ and comparison with the cross flow principle for

|α|> 5◦.

Table 1. Slope of the lift coefficient for α < 5◦

Experiments Simulations

CL/α[rad] 0.010 0.0125

quadratic behavior are related to flow separation effects that can not be described here, and the discussion is focused onthe

linear range. The results are reasonably independent on theincoming flow velocity.

FLOW PATTERN

The observation of the flow pattern with the hot wire reveals no significant r.m.s. velocity further than 1.5 D from the

cylinder. The RANS simulations show a similar trend, as presented in Fig. 7. It can hence be assessed that no large unsteady

structures are generated by the oblique flow at low angles. More precisely, a gradual deficit of velocity is observed during the
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Fig. 7. Velocity profiles at a yaw angle of 5◦. • : experiments and − : CFD simulations.

experiments and predicted by the RANS simulation on the lower side (θ = 180◦) (see Figs. 8 and 9), with a thickness varying

from 1.0 to 1.5D, whereas the velocity is almost uniform on the upper side (θ = 0◦). This highly differs from cross-flow

cases [7, 10, 11], where unsteady vortices are shed along theseparation line. This absence of a clear flow separation is a

distinct feature of quasi-oblique flow, which does not seem to have been reported up to now.

Some discrepancies are present when comparing the CFD and experimental velocity profiles; the velocity gradient is



Fig. 8. Velocity in the x-direction, cylinder in near-axial flow with a yaw angle α = 5◦, view in the plane (x,y).

Fig. 9. Velocity in the x-direction (defined in Fig.3), cylinder in near-axial flow with a yaw angle α = 5◦, view in the plane (y,z) at a distance

x= 0.46m from the first end of the cylinder.

smaller in the computations, and the deficit area is larger with a thickness varying from 1.5 to 2.5D. This seems to indicate

that the RANS approach overestimates diffusion effects close to the cylinder wall. This point shall be discussed at longer

extent in the discussion section.

Another feature of the oblique flow is the variation of the thickness of the velocity deficit area along the cylinder, which

indicates that the flow pattern is not purely two-dimensional.

PRESSURE DISTRIBUTION ALONG THE CYLINDER WALL.

The coefficientCp in Eq. (4) is defined as a dimensionless pressure difference,with the far field pressure chosen as

reference. The Fig. 10 shows the convention for the angular position of the pressure tap on the instrumented cylinder.



Fig. 10. Angular position of the pressure tap. View in the place (y,z).

Cp =
p− p∞
1
2ρ fU2

(4)

The experimental and computed pressure distributions are compared in Fig. 11. Atθ = 0◦, the pressure coefficientCp

is maximal and strictly lower than 1, which differs from cross flow pressure distributions where a stagnation point generates

a value equal to 1. More precisely, if the velocity were equalto zero atθ = 0◦, a direct application of the Bernoulli equation

would lead toCp = 1. The other way around, as the pressure coefficient is not equal to 1, one expects a non-vanishing flow

velocity parallel to the axis atθ = 0◦ to exist and which can be estimated by applying the Bernoulliequation (5).

U2+
p∞

ρ f
=U2

parallel+
pθ=0

ρ f
(5)

A value ofUparallel = 19.88 m.s−1 is obtained, very close to the incoming flow velocity equal to20 m/s and up to the

measurement uncertainty. Further work is needed to accurately describe the flow pattern: whether the flow is deviated around

the cylinder or convected along the lineθ = 0 is not clear, and cannot be easily assessed in the frameworkof the present

study.

Betweenθ = 0◦ andθ = 80◦, the pressure coefficient gradually decreases, as it is the case in cross flow where the

velocity increases. It reaches its minimal value atθmin = 80◦, and increases betweenθ = 80◦ andθ = 180◦, where it is equal

to about -0.005, a negative value which is consistent with the velocity deficit observed in the previous section.

In Fig. 11, a fairly reasonable agreement is obtained between the experimental and the calculated pressure distribution

around the cylinder. The values of the pressure at the upper side θ = 0◦, the lower sideθ = 180◦ and atθmin are close.

However, the minimum angleθmin is equal to 80◦ in the experiments and to 80◦ in CFD calculations. Furthermore, the

pressure distribution is steeper in the calculation close to θmin, and flatter at the upper side and the lower side.
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Fig. 11. Mean pressure distribution around the cylinder at a yaw angle α = 5◦.

DISCUSSION

Velocity flow.

As pointed out in Fig. 7, even though the main trends of the flowfield are predicted by the present RANS simulations,

significant discrepancies are still observed in the vicinity of the cylinder wall. The velocity deficit area is larger in RANS

calculations compared to those observed in the experiments: it turns out that the boundary layer thickness provided by the

simulations is overestimated. For such flow configuration, spatial flow development in the streamwise direction is driven

by the boundary layer : a laminar turbulent transition occurs near the upstream tip of the cylinder and is followed by the

emergence of a spatially developing turbulent boundary layer further downstream.

Unfortunately, such a flow patter falls outside the scope of calculations based on RANS turbulence modelling, and

specific mechanisms such as the transition to turbulence in aboundary layer are clearly out reach. Closures of Reynolds-

averaged equations are indeed designed and calibrated for fully turbulent steady flows. As a consequence, during a RANS

simulation, all boundary layers are assumed to be fully turbulent. The dissipation is overestimated, and so is the cylinder

wake thickness.

Pressure.

The plot of the lift coefficient as a function of the yaw angle in Fig. 5 display a remarkable feature: despite the inability

of RANS calculations to reproduce the turbulent boundary layer details, a fair collapse between simulations and experiments

is observed for small enough angles (α < 5◦). One could state that for low angles of attack, the lift coefficient mainly

depends on the main flow features, so that the details close tothe solid walls would not have a significant influence. Further

investigations are nonetheless required to further assessthis assumption.



According to the experiments, for larger yaw angles (α > 5◦) flow separation is expected with a loss of linearity between

the lift coefficient and the angleα. The RANS simulations seem to miss the onset of this new flow regime since the lift force

remains a linear function of the angle of inclination over the range of angles investigated (0◦ < α < 15◦).

The CFD data are however obtained thanks to a steady RANS model which is not ideal for predicting unsteady turbulent

phenomena such as the flow separation in the wake of a cylinder. In addition, the flow structure is likely to be three-

dimensional while thek−ω turbulence model is isotropic. Though they have not been assessed here, unsteady RANS,

second-order closures (i.e. anisotropic) might yield more consistent results.

CONCLUSION

Experiments and CFD calculations have been carried out to determine the lift force exerted on a cylinder in near-

axial flow. The experimental results are consistent with theresults obtained by Ersdal & Faltinsen [6] and with previous

results [12], namely, for inclination angles lower than 5◦, the lift force appears proportional to the inclination angle. The

velocity pattern and the pressure distribution around the cylinder indicate that the lift force is somehow related to a gradual

velocity deficit at the lower side, without any clear flow separation.

The CFD computations and the experiments exhibit a reasonable agreement with respect to the minimum and the maxi-

mum pressure. The measured velocity deficit is predicted by the computation but its thickness is overestimated. This canbe

explained by the fact that the RANS modeling is designed for fully turbulent flow, with an isotropic turbulence model.

From a global point of view, the lift forces obtained by RANS CFD calculations are close to the experimental results

for inclinations lower than 5◦. Despite some modeling inaccuracies close to the wall, the RANS calculations seem able to

predict the general trend of the lift force for small angles of inclinations.

Further work is needed to determine the range of validity of the quasi-static approach. The damping forces of a cylinder

oscillating in axial flow should be investigated for low oscillation frequencies (f < U/L) and low lateral velocities or low

instantaneous angle (α(t)< 5◦) and then compared to the normal force values predicted withthe quasi-static approach.
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