

Summer School Fluid Dynamics of Sustainability and the Environment

Ecole Polytechnique (Paris), 1-12 July 2019

Fluid-structure interactions Energy harvesting from flow-induced instabilities

Olivier Doaré IMSIA, ENSTA Paris olivier.doare@ensta.fr

Energy harvesting from flow-induced vibrations

Vortex Induced Vibrations (VIV)

©2011 Vortex Hydro Energy

Vibrations of slender structures in instationnary flows

Peng & Zhu, Phys. Fluids,

2009

Flapping wings

© 2003 - The Engineering

Business Ltd

2

Some commercial products

The STINGRAY project (Engineering Business Ltd.)

- Experimental project of the early 2000's
- 15m span 3m chord, displacement amplitude of 12m
- Displacement of the wing transmitted to an hydraulic motor through hydraulic cylinders
- Abandonned project because of economic viability

Some commercial products

Pulse Generation

PULSE-TIDAL

- Two wings are phase-locked, translation and rotation of each wing also phase-locked
- Movement transitted to a generator through arms
- Generator can be put in or out the water
- Small vertical space

http://www.biopowersystems.com/biostream.html

www.eel-energy.fr

Flow induced instabilities

Cross-flow instabilities

Axial flow instabilities

Fluttering flag

Fluttering pipe

 Objective : Overview of the different physical phenomena that may induce structural vibrations

- Part I : Cross-flow instabilities
- Part II : Axial flow instabilities

Part I : Cross-flow instabilities

Two polarities flexural deformation of a cylinder

Cases considered here

Aerodynamic efforts acting on a solid (2D)

- Forces per unit length
- Definition of non-dimensional coefficients :

$$C_L = \frac{F_L}{\frac{1}{2}\rho U^2 L} \qquad C_D = \frac{F_D}{\frac{1}{2}\rho U^2 L} \qquad C_x = \frac{F_x}{\frac{1}{2}\rho U^2 L} \qquad C_y = \frac{F_y}{\frac{1}{2}\rho U^2 L}$$

• Coefficients function of the Reynolds number and $\, heta$

Buckling instability due to negative flow-induced stiffness

Buckling instability due to negative flow-induced stiffness

• Lift force :
$$F_L = \frac{1}{2}\rho U^2 SC_L$$
 with $C_L = C_L(\theta, R_e)$

• Small angles of attack : $C_L \sim \theta \frac{\partial C_L}{\partial \theta} = \theta C'_L$

$$M = dF_L$$

• Angle of attack governed by : $J\ddot{\theta} + \left|k - \frac{1}{2}\rho U^2 S dC'_L\right|\theta = 0$

Buckling instability due to negative flow-induced stiffness

$$J\ddot{\theta} + \left[k - \frac{1}{2}\rho U^2 S dC'_L\right]\theta = 0$$

• Negative stiffness if :

$$U > \sqrt{\frac{2k}{\rho S d C_L'}}$$

 \rightarrow (buckling instability)

Weathercock

Dynamic instability by negative flow-induced damping

Added damping force

NACA 0012 airfoil

Other sections

 $\frac{\partial C_L}{\partial \theta}$

	With Pathon 14			
ction	Smooth flow	Turbulent flow ^b	Reynolds number	
	3.0	3.5	10 ⁵	
	0.	-0.7	10 ^s	
	-0.5	0.2	10 ⁵	
	-0.15	0.	10 ⁵	
	1.3	1.2	66 000	
	2.8	-2.0	33 000	
+	-10.	-	2 000-20 000	
	-6.3	-6.3	>10 ³	
U.	-6.3	-6.3	>10 ³	
D	-0.1	0.	66 000	
D	-0.5	2.9	51 000	
55	D 0.66	-	75 000	
V_	*	(Blevins, 1990)		

Case of the square

Ice on cables

telegraph.co.uk

icefree.ro

23

edn.com

Drag crisis instability

Oscillations in the direction of the flow

$$F_D = -\frac{1}{2}\rho U^2 S\left(C_D(R_E) + 2\frac{\dot{x}}{U}C_D(R_E) + \frac{\dot{x}}{U}R_E\frac{\partial C_D}{\partial R_E}\right)$$

Instability if

$$2C_D(R_E) + R_E \frac{\partial C_D}{\partial R_E} < 0$$

Case of the circular section

Common problem in the offshore industry

Coupled mode flutter

How to explain wing flutter?

 $-rac{\partial C_L}{\partial heta}$

	A CONTRACT OF A		
Section	Smooth flow	Turbulent flow ^b	Reynolds number
	D 3.0	3.5	105
	0. D	-0.7	105
) -0.5 /2	0.2	105
	-0.15	0.	10 ⁵
	1.3	1.2	66 000
	2.8	-2.0	33 000
	-10.	-	2 000-20 000
F	-6.3	-6.3	>10 ³
U.	→ -6.3	-6.3	>103
D	D -0.1	0.	66 000
D	-0.5	2.9	51 000
5	D 0.66		75 000
V_		(Bievins	5, 1990)

But ...

Observation : the instability mechanism should involve flexural and torsional deformations.

Thin profiles are stable with respect to galloping

Example : flutter of a wing profile

Coupled torsional and flexural modes of an airfoil

Equivalent 2D profile in translation and rotation

The model

- *G* center of gravity
- m mass
- J moment of inertia

If G is not at the elastic center, coupled flexural and torsional modes :

$$m\ddot{y} + ky + kx\theta = 0$$
$$J\ddot{\theta} + (c + kx^2)\theta + kxy = 0$$

With an incident flow :

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{y} \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} k & kx - \frac{1}{2}\rho U^2 S C'_L \\ kx & c + kx^2 - \frac{1}{2}\rho U^2 S (x+d)C'_L \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Eigenfrequencies and phase difference between eigenmodes components

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{y} \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} k & kx - \frac{1}{2}\rho U^2 S C'_L \\ kx & c + kx^2 - \frac{1}{2}\rho U^2 S (x+d)C'_L \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Dynamical equation of the form :

$$M\vec{\ddot{q}} + K\vec{q} = 0$$

Solutions sought in the form :

$$\vec{q} = \vec{q}_0 e^{\mathbf{i}\omega t}$$
$$= \vec{q}_0 e^{-\omega_i t} e^{\mathbf{i}\omega_r t}$$

Eigenvalue problem :

$$M^{-1}K\vec{q_0} = \omega^2 \vec{q_0}$$

Energy transfers

Unstable mode : positive work

Work depends on the path : non-conservative force...

Coupled mode flutter of cables

Oscillations of a structure in the wake of another structure

$$m\ddot{x} + k_x x = x\frac{\partial F_x}{\partial x} + y\frac{\partial F_x}{\partial y}$$
$$m\ddot{y} + k_y y = x\frac{\partial F_y}{\partial x} + y\frac{\partial F_y}{\partial y}$$

Vortex-induced vibration

Mooring lines in RME

Energy harvesting

©2011 Vortex Hydro Energy

Vortex shedding around a circular cylinder

 $R_e = 100$

 $R_e = 3000$

 $R_e = 1000$

 $R_e = \frac{UD}{\nu}$

Rishiri island (source wikipedia)

 $R_e = 6 \times 10^9$

- Strouhal number almost constant (~0.2, 0.3)
- Frequency of the vortex shedding varies almost linearly with the flow velocity

Other geometries

Square section St \sim 0.16

- Each cross-section has a unique Strouhal number
- Robust, generic, and predictible phenomenon

$$F = \frac{S_t U}{D}$$

This vortex shedding acts like a fluctuatig force on the structure

Forcing \rightarrow Vibrating structure \rightarrow Response ?

Harmonic oscillator : forced motion

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + c\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F_e$$

- Harmonic forcing : $F_e = \operatorname{Re}(F_0 e^{i\omega t}) \quad F_0 \in \mathbb{C}$
- Hyp. : response at the same frequency : $x = \operatorname{Re}(x_0 e^{i\omega t}) \quad x_0 \in \mathbb{C}$

$$(-\omega^2 m + ic\omega + k)x_0e^{i\omega t} = F_0e^{i\omega t}$$

Lock-in phenomenon

In the lock-in range, fluid-structure coupling is improved, frequency is locked to the eigenfrequency of the oscillator

VIV phomenon predicts vibrations in a frequency range around the fundamental frequency of the oscillator

Other instability phenomena

Not a VIV phenomenon !

Flow-structure instationnary dynamics

More general continuous problems → Axial flow instabilities

What kind of reactive forces are exerted on the solid ?

• For a displacement of the boundary of the form :

$$w(x,t) = q(t)\phi(x)$$

• Pressure in the fluid :

$$p = -\rho\varphi_2\ddot{q} - \rho U_0\left(\varphi_1 + \frac{\partial\varphi_2}{\partial x}\right)\dot{q} - \rho U_0^2\varphi_1 q$$

Deformation of a boundary in presence of a potential flow

• Pressure in the fluid :

$$p = -\rho\varphi_2\ddot{q} - \rho U_0\left(\varphi_1 + \frac{\partial\varphi_2}{\partial x}\right)\dot{q} - \rho U_0^2\varphi_1 q$$

• Influence on the mode dynamics \rightarrow modal force calculation :

General form :
$$f = \int_{S} (-p\underline{n}) \cdot \underline{\phi} \, \mathrm{d}S$$

 \rightarrow Added mass, dissipation, stiffness

• If more than one mode is involved in the dynamics :

Modal force on mode i :
$$f_i = \sum_j \int_S (-p_j \underline{n}) \cdot \underline{\phi}_i \, \mathrm{d}S$$

 \rightarrow Coupling through inertia, dissipation and stiffness terms

Plates in axial flow

(Eloy et al, 2008)

Fluid-conveying pipe

They can be modeled as beams in axial flow

The flow couples the modes dynamics through inertia, dissipation and stiffness terms \rightarrow instabilities

Stability curve

www.eel-energy.fr

Conclusion

• Flow-induced vibrations may have many different origins

Negative induced stiffness Negative induced damping Coupled mode flutter Vortex shedding Other complex Flow-structure interactions

Surrounding flowing fluid may induce

Added mass Added damping Added stiffness

Axial flow systems

Mode coupling instabilities

Perspectives

Most of the phenomena are explained by an instability induced by a flow-structure coupling \rightarrow linear phenomena

Energy harvesting \rightarrow non linear permanent regime

1. The finite amplitude regime depends on the non linear phenomena and the dissipation induced by energy harvesting

2. An optimisation work is necessary to maximise the efficiency of the system