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a b s t r a c t

This paper investigates the energy harvested from the flutter of a plate in an axial flow

by making use of piezoelectric materials. The equations for fully coupled linear

dynamics of the fluid–solid and electrical systems are derived. The continuous limit

is then considered, when the characteristic length of the plate’s deformations is large

compared to the piezoelectric patches’ length. The linear stability analysis of the

coupled system is addressed from both a local and global point of view. Piezoelectric

energy harvesting adds rigidity and damping on the motion of the flexible plate, and

destabilization by dissipation is observed for negative energy waves propagating in the

medium. This result is confirmed in the global analysis of fluttering modes of a finite-

length plate. It is finally observed that waves or modes destabilized by piezoelectric

coupling maximize the energy conversion efficiency.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The environmental impact and limited resources of fossile fuel energies have motivated a significant research effort in
the development of new and diverse techniques for the production of electrical energy. In parallel, a particular attention
has also been given to systems able to produce limited amounts of energy at low cost to power remote or isolated devices,
for which connection to the traditional electrical network is prohibitive in terms of cost or technical complexity (Sodano
et al., 2004). These two elements have increased the attention on mechanisms able to produce self-sustained vibrations of
a solid substrate on one hand and to convert the corresponding mechanical energy into electrical power on the other.

The conversion into electricity of kinetic energy from geophysical flows such as tidal currents, winds and river flows is
particularly attractive because of the large availability worldwide and the low environmental impact of this energy source
(Westwood, 2004). Research on fluid–solid interactions has identified several instability mechanisms that can lead to
self-sustained vibrations of a solid placed in a steady uniform flow. Such fundamental instability mechanisms as coupled-
mode flutter of a heaving and pitching airfoil (McKinney and DeLaurier, 1981), vortex-induced vibrations (Bernitsas et al.,
2008) or transverse galloping of flexibly mounted structures (Barrero-Gil et al., 2010) are at the core of prototypes or
concepts of flow energy harvesters.

The harvesting of flow energy through flapping of thin elastic plates has also been investigated, mainly using two
fundamentally different configurations. In the first one, an unsteady flow, created by the oscillatory wake of an upstream
obstacle applies an unsteady forcing on the plate to make it flap (Allen and Smits, 2001; Taylor et al., 2001). The second
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configuration uses the coupled-mode flutter instability of the flexible plate in a steady flow to generate self-sustained
flapping (Tang et al., 2009). In that case, it is well-known that the flat equilibrium state of the plate becomes unstable
above a critical flow velocity, beyond which dynamic vibrations of large amplitude can develop on the structure. The linear
stability of this system has been extensively considered from both a local and global point of view. In the former, the
instability of waves in the infinite medium was considered (Brazier-Smith and Scott, 1984; Crighton and Oswell, 1991),
while the latter considered finite systems, including effects such as vortex shedding downstream of the plate (Alben, 2008;
Kornecki et al., 1976), three-dimensional effects (Eloy et al., 2007), lateral confinement (Guo and Paı̈doussis, 2000),
spanwise confinement (Doaré et al., in press) or coupling between multiple structures (Michelin and Llewellyn Smith,
2009a). The non-linear self-sustained flapping developing above the instability threshold has also been the focus of
multiple experimental (Shelley et al., 2005; Zhang et al., 2000) and numerical studies (Alben and Shelley, 2008; Connell
and Yue, 2007; Michelin et al., 2008).

In this work, we are interested in the ability to produce electrical power from the self-sustained oscillations of a flexible
plate resulting from this fluttering instability. To assess the potential for electrical energy production, it is important to
properly include in the dynamical equations of the fluid–solid system the loss of energy due to the conversion into
electricity, as we seek here regimes where the extracted energy is a significant fraction of the total energy of the system.
Two main approaches can be considered to produce electricity from the mechanical energy of a vibrating solid. Classical
generators convert a displacement of a solid substrate into electrical energy through electromagnetic induction, and are
commonly used in classical turbines as well as in recent prototypes of flow energy harvesters (Bernitsas et al., 2008). On
the other hand, piezoelectric materials convert mechanical strain into electric potential, and have recently received
increasing attention for applications involving low power production, typically of the order of the mW (Sodano et al., 2004;
Anton and Sodano, 2010). Studies on piezoelectric materials for energy harvesting considered flow-induced vibrations
(Pobering and Schwesinger, 2004; Taylor et al., 2001; Wang and Ko, 2010) but also vibrations from various other forcings
such as human movements (Platt et al., 2005; Shenck and Paradiso, 2001).

The objective of the present work is to study from a theoretical point of view the stability properties and dynamics of a
classical fluid–solid system (a flexible plate subject to coupled-mode flutter) coupled to an output electrical network with
piezoelectric materials. In comparison to previous studies on flow energy harvesting (Tang et al., 2009) or piezoelectric
energy conversion, the present approach is original by its full coupling of the fluid–solid and electrical systems. In this
paper, the linear stability of the fluid–solid–electric system is investigated from both a local and global point of view to
identify the impact of the coupling on the stability of the system and assess the efficiency of the mechanical-to-electrical
energy conversion.

Coupling the vibrations with electrical circuits that dissipate energy intuitively results in damping from the point of
view of the structure. In the context of fluid–structure interactions, the effect of viscous or viscoelastic damping has been
addressed both on the infinite-length medium (local approach) and the finite-length systems (global approach). Crighton
and Oswell (1991) investigated the effect of damping on the stability of flexural waves propagating in compliant panels
interacting with an homogeneous flow and found that dissipation can destabilize some particular waves, which are
referred to as negative energy waves after Landahl (1962). In the finite-length case, the most studied system with respect
to the effect of damping is the fluid-conveying pipe, which shares many similarities with the plate in axial flow (Paı̈doussis,
1998, 2008). The effect of piezoelectric coupling on the instability threshold of a cantilevered fluid-conveying pipe has
been addressed by Elvin and Elvin (2009). Destabilization or stabilization by dissipation has been observed, depending on
the fluid–solid mass ratio. The comparison of local and global instability criteria with damping has been addressed by
Doaré (2010). It was shown that global instability of the long system is always predicted by the local instability criterion of
the dissipative medium.

The particular effect of damping induced by piezoelectric coupling has been widely investigated in the research field of
structural damping and vibration control. Passive damping by the use of shunted piezoelectric patches, developed by
Hagood and von Flotow (1991), has inspired studies involving piezoelectric materials and passive electrical components
arranged in a network (Bisegna et al., 2006; Maurini et al., 2004). We will consider here the continuous limit addressed in
these two studies, that is valid when the length of the piezoelectric material is small compared to the typical wavelength
of the solid’s deformations.

In Section 2, the linearized equations of motion for the coupled piezomechanical problem of a flexible plate covered
with piezoelectric elements in a potential flow will be presented. In Sections 3 and 4, the linear stability analysis will be
investigated from a local and global point of view, respectively. In both cases, the effect of piezoelectric coupling on
stability will be investigated, as well as the efficiency of energy conversion between the solid mechanical energy and the
energy dissipated in a simple resistive electrical network. Finally, in Section 5, the local and global stability results will be
discussed as well as possible extensions of the present work.

2. Problem formulation

We consider here the motion of a flexible plate of thickness h0, Young’s modulus E0, density r0 and Poisson’s coefficient
n0. The span of the flexible plate is assumed to be much greater than its typical streamwise lengthscale. We therefore focus
on purely two-dimensional deformations, and the plate’s vertical displacement is noted as w(x,t). Piezoelectric patches of
length l, thickness hp, density rp, electric permeability e, Young’s modulus Ep and Poisson’s coefficient np are attached
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symmetrically on the plate. The plate is surrounded by a fluid of density rf with upstream horizontal velocity U1. The
problem is sketched in Fig. 1. In this section, we present the linearized coupled equations of the fluid–solid and
piezoelectric systems, first in the case of discrete piezoelectric patches, and then in the continuous limit when l is much
smaller than the streamwise lengthscale of the solid deformation. In this limit, the equation of energy conservation will
enable us to exhibit the different energy transfers in the system. In the following, for a function a(x,t), _a and a0 correspond
to the temporal and streamwise derivatives of a, respectively.

2.1. Equilibrium equations of a beam with discrete pairs of piezoelectric patches

The left and right ends of the ith piezoelectric pair are positioned in x-
i and xþi , so that l¼ xþi �x-

i and xi ¼ ðx
-
i þxþi Þ=2

denotes the position of the center of the patch. We consider complete coverage of the plate by piezoelectric patches,
therefore xþi ¼ x�iþ1. The following equations can easily be adapted to the case of partial coverage (Bisegna et al., 2006).
Quantities related to the piezoelectric patch located on the upper (respectively, lower) face are denoted by the exponent (1)

(respectively, (2)). The patches are attached to the plate so that their respective polarities are reversed, and the charge
displacement across a piezoelectric patch is obtained as (Preumont, 2002; Thomas et al., 2009)

Q ðkÞi ¼ w½w
0�

xþ
i

x-
i
þCV ðkÞi , k¼ 1,2, ð1Þ

where w¼ e31ðh0þhpÞ=2 is a mechanical/piezoelectrical conversion factor with e31 the coupling factor, and C ¼ el=hp is the
capacity per unit length in the spanwise direction of the piezoelectric element. Vi

(k)
is the potential difference between

the two electrodes of the corresponding piezoelectric (see Fig. 1). Negative electrodes of the patches are assumed to be
shunted through the plate by a purely conductive material, therefore,

Q ð1Þi ¼Q ð2Þi ¼Qi ð2Þ

and

V ð1Þi ¼ V ð2Þi ¼ Vi: ð3Þ

Each piezoelectric pair is therefore equivalent to a single piezoelectric patch of equivalent capacity C and voltage V i of
respective values,

C ¼
C

2
, V i ¼ 2Vi, ð4Þ

and this representation is retained for simplicity in the remaining of the paper. Assuming an Euler–Bernoulli model for the
plate, the bending moment at a given position x results from the internal rigidity of the material and the piezoelectric
coupling:

M¼ Bw00�
X

i

wV iFi, ð5Þ

where B is the flexural rigidity of the three-layer plate (Lee and Moon, 1989),

B¼
E0h3

0

12ð1�n2
0Þ
þ

2Ephp

1�n2
p

h2
0

4
þ

h0hp

2
þ

h2
p

3

 !
, ð6Þ

and Fi is the characteristic function of the ith patch

Fi ¼Hðx�x-
i Þ�Hðx�xþi Þ ð7Þ

Fig. 1. Schematic view of a plate in a homogeneous axial flow, equipped with small length piezoelectric patches on both sides.
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with H the Heavyside step function. In Eq. (5), the summation over all piezoelectric patches and the use of the
characteristic functions Fi provides a compact expression for the local bending moment induced by the piezoelectric
coupling. The linearized conservation of momentum for the plate then leads to

m €w ¼�M00�½P�, ð8Þ

where m is the surface density of the plate with piezoelectric elements and [P]¼Pþ�P� is the pressure forcing applied by
the fluid on the plate. We consider here a purely inviscid model for the flow, and the exact expression of [P] will be made
explicit in the following sections for the infinite- and finite-length systems, respectively. In non-inviscid flow, the viscous
boundary layers would tend to stabilize the plate by inducing a non-uniform tension, maximum upstream (see for
example Connell and Yue, 2007). For large enough Reynolds numbers, this correction is however expected to be small.

An additional relation between V i and Qi is needed to close the system of Eqs. (1), (5) and (8), and is obtained from the
output electrical network connected to the free electrodes of the piezoelectric patches. Lesieutre et al. (2004) showed that
energy removal from the piezoelectric system induces structural dissipation, whatever electric device is effectively used
(resistor, storage in a battery or other energy harvesting circuitry). Consequently, the simplest electrical component, where
each piezoelectric pair is shunted by a conductance G, is considered to investigate the potential harvesting power of the
system and its effect on the flutter dynamics (Fig. 2). Applying Ohm’s law,

V iþ
_Q i

G
¼ 0: ð9Þ

This simple electric network is a particular case of more general electric networks considered in Bisegna et al. (2006), in
the context of the optimization of dynamical properties of pinned–pinned beams.

2.2. Continuous limit

If the typical lengthscale of the plate’s streamwise deformations is large compared to the length l of the piezoelectric
patches, one may consider the continuous limit of the discrete equations (1), (5), (8) and (9). We introduce the surface
density of the charge, piezoelectric capacity and conductance of the resistive circuit as

qðxiÞ ¼Qi=l, c¼ C=l, g ¼ G=l, ð10Þ

and the continuous voltage vðx¼ xiÞ ¼ V i. As l-0,

½w0�
xþ

i
x-

i
Cw00ðxiÞl, ð11Þ

X
i

V iFiðxÞCvðxÞ: ð12Þ

The continuous equations are then obtained as

m €wþBw0000�wv00 ¼ �½P�, ð13Þ

q�cv�ww00 ¼ 0, ð14Þ

Fðq,vÞ ¼ 0: ð15Þ

Here, F(q, v) is a general expression that links charge and voltage, so that at this stage, the equations are valid for any
circuit. In the particular case considered here, Fðq,vÞ ¼ vþ _q=g and v can be eliminated from the previous dynamical
equations, thereby leading to a system for w and q only:

Bþ
w2

c

� �
w0000 þm €w�w

c
q00 ¼ �½P�, ð16Þ

c

g
ð _qÞþq�ww00 ¼ 0: ð17Þ

These continuous equations are similar to those obtained in the Laplace space by Bisegna et al. (2006) where
homogenization techniques were used.

Fig. 2. All piezoelectric pairs are shunted with resistances, modeling the electrical energy absorption.
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2.3. Efficiency of the energy conversion

To assess the amount of electrical power that can effectively be extracted, non-linear effects are important to provide
the saturation amplitude of the self-sustained oscillations. This question is not addressed here as we focus only on the
linear analysis, and will be the subject of a subsequent contribution. However, important physical insight can be gained
from the analysis of energy transfer by linearly unstable modes. In particular, the non-linear mode shape that determines
the piezoelectric deformation rate and the energy transfers to the output circuit, has been observed to be similar to that of
the most linearly unstable mode (Eloy et al., 2008; Michelin et al., 2008). From Eqs. (13) and (14), the equation for energy
conservation can be obtained as

@E
@t
¼Pp�Pelþ

@F
@x

, ð18Þ

with

E ¼ 1
2 rs

_w2
þ1

2 Bw
002
þ1

2cv2, ð19Þ

F ¼ _wðwv0�Bw000Þþ _w 0ðBw00�wvÞ, ð20Þ

Pp ¼�p _w, ð21Þ

Pel ¼�v _q: ð22Þ

The total energy density of the system E is the sum of the solid kinetic and elastic energy as well as the electrical energy
stored in the capacity of the piezoelectric material. F is the flux of mechanical energy in the plate: the first and second
terms are, respectively, the rate of work of the internal bending forces and moments, due both to the elastic response of
the solid and the piezoelectric coupling. Pp is the rate of work of the local pressure force and Pel is the power readily
available and dissipated in the output system. Note that this equation is valid regardless of the output electrical network
chosen. In the case of the purely resistive system considered here, Pel ¼ _q2=g.

We consider a measure of the harvested (i.e. dissipated) energy over one flapping period T relative to the mean energy
density of the solid-piezoelectric system during that period. In that regard, this ratio is a normalization of the harvested
energy, and it will be referred to as conversion efficiency in the following. This ratio is defined for an unstable mode (that
can lead to self-sustained oscillations) as

r¼

R T
0 /PelS dt

1
T

R T
0 /ES dt

: ð23Þ

In this last expression / �S stands for the spatial mean value for the considered mode, taken over either a wavelength in
the local analysis or the entire plate in the global analysis. Note that since r is just a normalized energy output and not a
thermodynamic efficiency, r41 is allowed. In the following, we will study the influence of the system’s parameters on this
ratio to find optimal conditions for the energy conversion.

3. Destabilization by damping and energy conversion in the infinite medium

3.1. Nondimensional equations

Using m=rf , m=rf U1, rU2
1 and U1

ffiffiffiffiffiffimc
p

, respectively, as characteristic length, time, pressure and charge surface density,
and noting all nondimensional variables with a tilde, Eqs. (16) and (17) take the following nondimensional form:

1

V�2
ð1þa2Þ ~w 0000 þ €~w�

a
V�

~q 00 ¼ �½ ~p�, ð24Þ

g _~qþ ~q� a
V�

~w 00 ¼ 0, ð25Þ

with

V� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m3U2

1

Br2
f

s
, ð26Þ

a¼ wffiffiffiffiffi
cB
p , ð27Þ

g¼
rf U1c

mg
: ð28Þ
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V� is the nondimensional flow velocity, a is the piezoelectric coupling coefficient, and g is the ratio between the fluid–solid
and electrical characteristic timescales.

In the present local analysis, mechanical and electrical displacements are sought in the form of harmonic waves of
wavenumber ~k and frequency ~o,

~w

~q

 !
¼ Re

w0

q0

 !
eið ~kx� ~otÞ

" #
: ð29Þ

3.2. Computation of the pressure forcing

The pressure forces are computed assuming a potential flow on both sides of the flexible solid. The potential F can be
decomposed into Fðx,y,tÞ ¼ xþfðx,y,tÞ where f is the perturbation potential to the uniform base flow. The flow is
incompressible therefore f must satisfy

r2f¼ 0, ð30Þ

with boundary conditions,

@f
@y
ðx,y¼ 0þ ,tÞ ¼

@f
@y
ðx,y¼ 0�Þ ¼ _wðx,tÞþw0ðx,tÞ, ð31Þ

rf-0 for jyj-1: ð32Þ

Note that f is discontinuous on the plate but the normal velocity must be continuous. The pressure is obtained from the
linearized unsteady Bernoulli equation as

~p ¼�
@f
@t
�
@f
@x
: ð33Þ

The velocity potential is obtained solving Eq. (30) with boundary conditions (31)–(32). The pressure jump is then obtained
by applying Eq. (33) on both sides of the plate. From Eq. (29), it can be written as

½ ~p� ¼ ~pðx,y¼ 0þ ,tÞ� ~pðx,y¼ 0�,tÞ ¼ Re 2w0
ð ~o� ~kÞ2

j ~kj
eið ~kx� ~otÞ

" #
: ð34Þ

Using Eqs. (34) and (29), the system (24)–(25) becomes a linear system for w0 and q0,

D0þD2
1 D1

D1 D2

" #
w0

q0

( )
¼Lð ~k, ~oÞ

w0

q0

( )
¼

0

0

� �
, ð35Þ

with

D0 ¼� ~o2 1þ
2

j ~kj

 !
�2j ~kjþ4 ~o

~k

j ~kj
þ
~k

4

V�2
, ð36Þ

D1 ¼ a
~k

2

V�
, ð37Þ

D2 ¼ 1�ig ~o: ð38Þ

Eq. (35) admits non-trivial solutions if and only if the determinant of L vanishes, which leads to the following dispersion
relation:

D0ð
~k, ~oÞ ¼D1ð

~k, ~oÞ2 1

D2ð
~k, ~oÞ
�1

 !
: ð39Þ

For ð ~k, ~oÞ solution of Eq. (39), Eq. (35) determines the relative amplitude of the mechanical displacement and electrical
charge for the corresponding wave.

3.3. Local stability analysis

We will restrict the wave analysis to the temporal approach, which classically consists in looking for frequencies
satisfying the dispersion relation associated to a real wavenumber ~k. Eq. (39) can be put in the form of a third-order
polynomial in ~o. Hence, for any real wavenumber, there are three different waves. If there exists a real wavenumber for
which one of these frequencies has a positive imaginary part, the corresponding wave grows exponentially in time,
indicating a temporal instability. In the energy harvesting context, this temporal instability is necessary to create
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self-sustained oscillations of the plate that are able to generate a net power to the electric networks via the piezoelectric
coupling.

Let us first consider the case of no-piezoelectric coupling (a¼ 0): the matrix L is diagonal and the problem then consists
of two distinct dispersion relations. The first describes the propagation of flexural waves in the medium,

D0ð
~k, ~oÞ ¼ 0: ð40Þ

This dispersion relation is very similar to that of a compliant panel interacting with a potential flow, which has been
extensively studied (Brazier-Smith and Scott, 1984; Crighton and Oswell, 1991). The difference between the present
dispersion relation and that of Brazier-Smith and Scott (1984) comes from the different choice for the nondimensional
time and the presence of the flow on both sides of the plate. Hence, the same phenomena will be observed, but at different
values of the nondimensional velocity, frequencies and wavenumbers. The main feature of this medium is that it is
unstable for any non-zero value of the flow velocity. Analyses of the different branches in the complex ~k- and ~o-planes
have also been performed in the above-mentioned papers to investigate the convective-absolute instability transition,
which will not be addressed here. The second uncoupled dispersion relation describes the behavior of the charge in the
electric network,

D2ð
~k, ~oÞ ¼ 0: ð41Þ

Eq. (41) corresponds to the charge dynamics in an RC circuit and does not include the wavenumber ~k, as no propagation of
charge can exist in a medium composed of electrical circuits disconnected from each other.

In Fig. 3, the frequencies ~onð
~kÞ (n¼ 1: :3) are plotted. Here, ~o1 and ~o2 are solutions of Eq. (40) and correspond to

flexural waves, while ~o3 is the solution of Eq. (41) and corresponds to an electrical wave. For ~k 2 ½0, ~kb�, the two
frequencies ~o1 and ~o2 are complex conjugate, one of them having a positive imaginary part that indicates a temporal
instability. For ~k4 ~kb, ~o1 and ~o2 are real and the waves are neutrally stable. Wave 1 has positive phase velocity for all k

but two ranges of wavenumbers can be distinguished depending on the sign of the phase velocity of wave 2. For
~kbrkr ~kc , ~o240 and wave 2 has a positive phase velocity, while for kZ ~kc , it has a negative phase velocity. As a
consequence of the phase velocity sign change, the frequency ~o vanishes for ~k ¼ ~kc . From Eq. (40), one can show that

~kb � V�, ð42Þ

when V�51. Looking for zeroes of ~o2, we obtain

~kc ¼ 21=3V�2=3: ð43Þ
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Fig. 3. Real part (a) and imaginary part (b, c) of frequencies associated to a real wavenumber k, for V� ¼ 0:05, g¼ 15 and a¼ 0. This corresponds to a

situation where no coupling is present in the system.
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Finally, the frequency ~o3 is constant and purely imaginary with negative imaginary part: no energy propagates and the
negative growth rate Im( ~o3) is the characteristic time of discharge of a capacity c in a resistance 1/g.

Piezoelectric coupling is now considered (aa0). From a mechanical point of view, its effect is to pump energy from the
system to produce heat in the resistances, thereby dissipating mechanical energy. It is thus expected that results regarding
the effect of damping on stability of neutral waves will also apply here. In particular, as demonstrated by Landahl (1962),
the sign of wave energy is expected to allow the prediction of the stabilizing or destabilizing effect of coupling on neutral
waves. The wave’s energy is defined as the work done in slowly building up the wave starting from rest at time t¼�1 and
has for expression (Cairns, 1979),

E¼�
~o
4

@D0

@ ~o jw0j
2: ð44Þ

Let us consider a neutral wave propagating in the uncoupled system. The corresponding frequency is ~o0ð
~kÞ, so that

D0ð ~o0, ~kÞ ¼ 0 and ~o0i ¼ 0. The perturbed value of ~o due to the addition of piezoelectric coupling is then written as

~o ¼ ~o0þd ~o, ð45Þ

where d ~o5 ~o. The frequency ~o satisfies the dispersion relation, thus,

d ~o@D0

@ ~o

����
ð ~k , ~o0Þ

C
D2

1

D2
�D2

1

� �
ð ~k , ~o0Þ

: ð46Þ

In this last expression, only the leading order terms have been kept. The stabilizing or destabilizing effect of piezoelectric
coupling depends on the imaginary part of d ~o. After a straightforward calculation, this quantity reads

d ~o iC
~o0a2g ~k

4

V�2ð1þ ~o2
0g2Þ

@D0

@ ~o

: ð47Þ

It hence appears that the variation of the growth rate after the addition of piezoelectric coupling has the opposite sign of
the neutral waves energy in the absence of coupling. It is positive for a negative energy wave (NEW), and negative for a
positive energy wave (PEW). Following the classification of Benjamin (1963), NEW are also referred to as class A waves,
while PEW are referred to as class B waves. In Fig. 4, energy of waves 1 and 2 are plotted as a function of the wavenumber.
Energy of wave 2 is negative for ~k 2 ½ ~kb, ~kc� and the wave energy analysis shows that this range of wavenumbers will
become unstable when piezoelectric coupling is added. To address the validity of the previous prediction, Fig. 5 represents
the three frequencies associated with a real wavenumber in the case V� ¼ 0:05, a¼ 0:5, so that it is the same case as in
Figs. 3 and 4, but with added piezoelectric damping. Here, piezoelectricity couples mechanical displacement and electrical
displacement. Consequently, no purely mechanical or electrical waves propagate in the system. The predictions of the
above wave energy analysis are confirmed by the behavior of Imð ~o1Þ and Imð ~o2Þ in Fig. 5b: Wave 1 is stabilized by the
addition of piezoelectric coupling while wave 2 is destabilized by the addition of piezoelectric coupling in the range of
wavenumbers ½ ~kb, ~kc� and stabilized for ~k4 ~kc. For the third wave, which is a purely electrical wave without coupling, the
frequency has now a non-zero real part, indicating that it is now a propagating wave. Consequently, this wave also appears
to be affected by coupling.
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Fig. 4. Wave energy of the neutral waves propagating in the system without piezoelectric coupling for V� ¼ 0:05.
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3.4. Energy conversion efficiency of unstable waves

Now that the effect of piezoelectric coupling on the propagation of waves and their stability has been addressed, the energy
conversion efficiency of these waves is investigated. As defined in the previous section, energy conversion is modeled by
resistances that shunts the piezoelectric patches, and is significant only if a wave is unstable, so that it grows exponentially in
time and eventually saturates through a non-linear mechanism that is not addressed in the present analysis. The starting point
is the ratio defined in Eq. (23), which takes the following form when nondimensional variables are used:

r¼

1

g

Z 2p= ~or

0
/ ~v _~qS dt

~or

2p

Z 2p= ~or

0

1

2
_~w 2
þ

1

V�
~w
002
þ ~v2

� 	
dt

: ð48Þ

The spatial averaging appearing in this last expression corresponds to the mean value over one wavelength. When it is applied
to the product of two quantities transported by a wave of wavenumber ~k and frequency ~o, namely a¼ Re½a0eið ~kx� ~otÞ� and
b¼ Re½b0eið ~kx� ~otÞ�, it reads

/abS¼
~k

2p

Z 2p= ~k

0
ab dx¼ 2e2 ~o it Reða0b0Þ: ð49Þ

The numerator and denominator of Eq. (48) have the same time-dependence therefore r does not depend on time. With a
displacement in the form of Eq. (29), it finally takes the following form:

rða,V�,g, ~k, ~oÞ ¼ 8p
~or

g�1 1þ
~k

4

V�j ~oj2

 !
V�

ig ~o�1

a ~k
2

�����
�����
2

þg

2
4

3
5
�1

, ð50Þ

where ~o and ~k are linked through the relation dispersion equation (39). For a given set of parameters a, V� and g, let R be the
maximum value of r among all unstable waves,

Rða,V�,gÞ ¼ max
~k , ~o i 40

rða,V�,g, ~k, ~oÞ: ð51Þ

The wavenumber and frequency of the corresponding wave are noted as K and O, respectively. The maximum efficiency R is
plotted in Fig. 6 as a function of g, for a¼ 0:5 and V� ¼ 0:05. It presents a local maximum at g� 22 and tends to infinity for high
values of g. The values of K and Or are also plotted. The first observation that can be done is that for all g, K is comprised
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situation where coupling is present in the system.
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between ~kb and ~kc . Hence, the maximum of r always occurs for a wave that is stable without piezoelectric damping and is
destabilized by the addition of piezoelectric damping.

Let us focus at first on the behavior of R for g-1. One is tempted to conclude that one has to choose a large value of g
to optimize the energy conversion. But it appears in Fig. 6(b), (c) that K- ~kc and Or- ~o2ð

~kcÞ ¼ 0. This means that although
the energy dissipated in the electrical circuits grows with g, the period of the oscillations diverges and the growth rate
tends to zero. This situation is thus far from optimal. One can also note that g-1 corresponds to a resistance that tends to
infinity, or equivalently, an open circuit. For this reason, we conclude that the optimal efficiency corresponds to the local
maximum of Fig. 6(a) around g¼ 22 instead of g-1. Moreover, Fig. 6(c) shows that in the vicinity of the maximum
efficiency, the characteristic time of the electrical circuits and the characteristic time of the wave are equal, indicating that
optimal efficiency also results from a synchronization between the fluid–solid and electrical systems.

For the particular values of the parameters a and V� used in Fig. 6, negative energy waves are hence waves that
optimize conversion efficiency. Let us now explore the whole ða,V�Þ space. To do so, we introduce GðV�,aÞ, the value of g
that maximizes Rða,V�,gÞ and Rg, Kg and Og the respective values of the efficiency, the wavenumber and the frequency at
this maximum. In Fig. 7, Kg is plotted as a function V� for several values of a between 0.01 and 0.7. The range of
wavenumbers destabilized by damping ½ ~kb, ~kc� appears grayed out on this plot, showing that for any values of a and V�,
optimal efficiency occurs for a wave destabilized by damping.

Finally, the optimal efficiency Rg is plotted as a function of a for different values of V� in Fig. 8. All curves gather on a
single line, indicating that the optimal efficiency scales as a2 and does not depend on the flow velocity. This enlightens the
importance of maximizing the coupling coefficient for such application.

Before addressing the finite-length system, let us summarize the main point of the local analysis conducted in this section:
The particular range ½ ~kb, ~kc� of wavenumbers has been emphasized, in which piezoelectric damping has a destabilizing effect
and analysis of the efficiency has shown that energy conversion efficiency is maximum for waves in this range.

4. Linear dynamics of a finite-length piezoelectric flexible plate

In the previous section, we focused on the local stability analysis of an infinitely long flexible plate coupled through
piezoelectric patches to a purely dissipative electrical system. In this section, we are interested in the global stability
analysis and conversion efficiency of a plate with finite length, coupled to the same piezoelectric dissipative system.
The wave analysis approach of the local study is here replaced by a study of global modes that takes into account the
boundary conditions on the finite plate and effects such as vortex shedding downstream from the solid.
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Fig. 6. (a) Maximal efficiency, R, as a function of g for a¼ 0:5 and V� ¼ 0:05. (b) Value of the wavenumber of the corresponding unstable wave.

(c) Value of the corresponding frequency, compared with 1=g (dashed line).
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4.1. Nondimensional equations and fluid model

The natural length scale of the problem is now L, the streamwise length of the plate. The nondimensionalization of the
system’s equations must be modified, and L and L=U1 are now used as characteristic length and time-scales, respectively.
Pressure, charge densities and voltage remain nondimensionalized by rU2

1, U1
ffiffiffiffiffiffimc
p

and U1
ffiffiffiffiffiffiffiffi
m=c

p
. The nondimensional

form of a variable a is noted as â to avoid confusion with the infinite system’s notations, so that Eqs. (16) and (17) now
become

1

U�2
ð1þa2Þŵ

0000
þ €̂w�

a
U�

q̂ 00 ¼ �M�p̂, ð52Þ

b _̂qþ q̂�
a

U�
ŵ 00 ¼ 0, ð53Þ
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Fig. 8. Optimal energy conversion efficiency, Rg , as a function of a for different values of the nondimensional velocity V� .
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where the coupling parameter a was defined in Eq. (27) and

M� ¼
rf L

m , b¼
cU1
gL
¼

g
M�

, U� ¼UL

ffiffiffiffi
m
B

r
¼ V�M�: ð54Þ

The voltage induced on the piezoelectric system is in nondimensional form

v̂ ¼ q̂�
a

U�
ŵ 00: ð55Þ

The parameters M� and U� are the classical mass ratio and nondimensional velocity used in previous studies of the flag
instability (Eloy et al., 2007; Michelin and Llewellyn Smith, 2009a). b is the nondimensional characteristic time-scale of the
output circuit, relative to the advective time-scale L=U1 chosen as a reference in this section.

M� can also be interpreted as a length ratio L=Z where Z¼ m=rf is the characteristic length scale introduced in Section 3.
The parameters U� and b are the finite-system equivalent to the V� and g parameters of the local analysis [see Eqs. (26) and
(28)]. In the limit of a long flexible plate, M�b1, the local dynamics studied in the previous section is expected to become
dominant over finite-length effects such as the influence of the wake or boundary conditions.

Clamped–free boundary conditions are imposed on the finite-length flexible plate:

for x̂ ¼ 0
ŵ ¼ 0,

ŵ
0
¼ 0,

(
ð56Þ

for x̂ ¼ 1
ð1þa2Þŵ 00�aU�q̂ ¼ 0,

ð1þa2Þŵ
000
�aU�q̂

0
¼ 0:

(
ð57Þ

Note that, Eq. (57) expresses the vanishing at the free end of the total internal torque and normal stress.
The solution of the linearized equations (52) and (53) is sought in the form of global modes

ŵ

q̂

 !
¼ Re

WðxÞ

Q ðxÞ

 !
e�iôt

" #
, ð58Þ

where ô can be complex. Similarly, V(x) can be defined from the potential v̂ and is easily obtained from Eq. (55).

4.2. Pressure forcing on the finite-length plate

The pressure forcing on the flexible plate is computed from a potential flow approximation. In the case of a finite-length
solid, we must account for the shedding of a vortex wake from the trailing edge of the plate. We follow here the double-
wake method (Eloy et al., 2007; Guo and Paı̈doussis, 2000; Michelin and Llewellyn Smith, 2009a): the flow around the
plate is potential everywhere except on the horizontal axis. On the plate, a bound vorticity distribution is present to satisfy
the no-normal flow boundary condition on the plate’s upper and lower surfaces. The free wake vorticity is not solved for
explicitly as in the Vortex Sheet approach (Kornecki et al., 1976; Michelin and Llewellyn Smith, 2009b) but it is instead
imposed that the pressure discontinuity across the plate must vanish at both ends of the flexible plate
(½p̂�ð0,tÞ ¼ ½p̂�ð1,tÞ ¼ 0). At the trailing edge, this is consistent with the shedding of a free horizontal vortex sheet that
cannot sustain any pressure force. At the leading edge, it introduces an ‘‘upstream wake’’ whose physical origin is
debatable. However, this method has been shown to predict the instability threshold and growth-rates correctly,
particularly for intermediate-to-large mass ratio M� where the instability threshold and mode structures predicted by
both methods are very similar (Michelin and Llewellyn Smith, 2009a).

Using Fourier decomposition in the axial direction, it can be shown that the longitudinal gradient of the pressure jump
@½p̂�=@x satisfies the following singular integral equation (Eloy et al., 2007):

1

2p

Z 1

0

@½p̂�

@x
ðx,tÞ

dx
x�x
¼

@

@t
þ
@

@x

� �2

ŵðx,tÞ, ½p̂�ð1,tÞ ¼ ½p̂�ð0,tÞ ¼ 0: ð59Þ

This singular equation can be formally solved for @½p̂�=@x, and after integration of the pressure gradient from the leading
edge, the pressure forcing on the plate is obtained as a function of the plate’s displacement ŵðx,tÞ. Using the normal mode
decomposition in Eq. (58), for a given mode shape W(x), the pressure jump P(x) can be decomposed as

PðxÞ ¼�ô2
PMðxÞ�2iôPGðxÞþPK ðxÞ ð60Þ

with

1

2p

Z 1

0

@

@x

PK ½W �

PG½W �

PM½W �

0
B@

1
CA dx

x�x
¼

W 00ðxÞ

W 0ðxÞ

WðxÞ

0
B@

1
CA,

PK ½W �

PG½W �

PM ½W �

0
B@

1
CAðx¼ 0,1Þ ¼ 0: ð61Þ

O. Doaré, S. Michelin / Journal of Fluids and Structures 27 (2011) 1357–13751368



Author's personal copy

PM, PG and PK represent added inertia, gyroscopic and added stiffness effects on the particular mode considered, and can be
expressed as linear operators on the mode shape W by inverting Eq. (61). The system (52)–(53) can then be rewritten as

�ô2
ðWþPM ½W �Þ�2iôPG½W �þ

ð1þa2Þ

U�2
ðW 0000 þPK ½W �Þ�

a
U�

Q 00 ¼ 0, ð62Þ

ð�iôbþ1ÞQ�
a

U�
W 00 ¼ 0, ð63Þ

and boundary conditions are readily obtained from Eqs. (56) and (57).
For given values of the four nondimensional parameters a, b, U� and M�, discretizing W(x) and Q(x) on the first N

Chebyshev Gauss–Lobatto points, the above system together with boundary conditions in Eqs. (56) and (57) can be written
using a collocation method as an eigenvalue problem for the vector ½W ,�iôW ,Q �T .

4.3. Stability analysis and impact of piezoelectric coupling

The flexible plate in axial flow classically becomes unstable to fluttering above a critical velocity ratio U�crit that depends
on the fluid–solid mass ratio M� (e.g. Eloy et al., 2007). We consider here the evolution of this stability threshold with the
piezoelectric coupling a and the circuit’s response time-scale b.

For a fixed b, increasing a enhances the coupling between the piezoelectric and mechanical systems: an additional
rigidity is introduced and energy is dissipated in the resistive circuit. The overall effect of the piezoelectric coupling a is
therefore expected to be a stabilization of the fluttering modes. Fig. 9 shows that this is generally the case except at large
values of M� where destabilization of some modes through the piezoelectric coupling is possible. For large enough a
however, all modes are stabilized, in agreement with physical intuition on the stabilizing effect of a dissipative system.

Nonetheless, it is important to note that the effect of a is highly dependent on the tuning of the system’s frequency to
that of the output circuit and Fig. 9 corresponds to a configuration where both the fluid–solid system and the electrical
circuit have similar fundamental frequencies.

The ratio b is also a measure of the resistance of the electric circuit, and the limit b51 corresponds to shunted
piezoelectric elements. In that case, charge transfers are instantaneous and the electrostatic balance of the piezoelectric
material is achieved at all times. The electric potential difference v̂ in the piezoelectric remains negligible, and so does the
piezoelectric torque on the plate. Therefore, in the limit b51, the system behaves like the uncoupled system as observed
in Fig. 10(a).

In the large-b limit, the output circuit behaves like an open loop: electric charge transfers in the circuit between the two
faces of the piezoelectric material are negligible. Because of the piezoelectric coupling, the plate’s bending induces an
electrostatic potential difference in the piezoelectric patches that, in return, creates an additional rigidity on the plate [see
Eqs. (16) and (17)]. The system is therefore equivalent to a flexible plate of modified dimensional bending rigidity
B0 ¼ Bð1þa2Þ. This behavior is confirmed in Fig. 10(b) where the stability threshold is observed to converge at large b
toward U�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2
p

, with U�0ðM
�Þ the uncoupled stability threshold.

Between these two limits b51 and bb1, the minimum velocity required for flutter to develop is observed to be
significantly increased for low values of M� (heavy flags) while at large M� (typically M�Z50), a destabilization is observed
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Fig. 9. Evolution of the stability threshold with M� for b¼ 1 and a¼ 0 (thick black), a¼ 0:2 (dash-dotted), a¼ 0:5 (dashed), a¼ 0:7 (dotted), a¼ 1

(solid-circle) and a¼ 2 (solid-triangles). a¼ 0 corresponds to the uncoupled flexible plate without the piezoelectric system.
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and is maximum for b¼Oð1Þwhen the dynamics of the fluid–solid system and the electrical circuit have time-scales of the
same order. We also observe that for b¼Oð1Þ the different branches observed on the stability threshold for large M� and
associated with the instability region of successive high-wavenumber modes, disappear. Beyond the conclusions on the
evolution of the stability threshold, these results emphasize the existence of a maximum in the coupling effects for values
of b¼ Oð1Þ.

4.4. Conversion efficiency

4.4.1. Definition in the finite-length system

Total harvested energy estimates are not possible within a purely linear framework. However, the conversion efficiency
(or normalized harvested energy) defined in Eq. (23) provides some important information about the energy transfers in
the linearly unstable modes of the coupled systems and its ability to produce electrical power from the flapping of the
flexible plate. The spatial average in Eq. (23) is now taken over the entire length of the plate and the conversion efficiency r

becomes the nondimensional notations of this section

r¼

1

b

Z tþ2p=ôr

t

Z 1

0
v̂

2
dt0 dx̂

ôr

2p

Z tþ2p=ôr
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Z 1

0

1

2
_̂w

2
þ

1

2U�2
ŵ
002
þ

1

2
v̂

2
� �

dt0 dx̂

� ð64Þ

For a function f ðx,tÞ ¼ ReðFðxÞe�iôtÞ with ô ¼ ôrþ iô i (f being one of v̂, q̂, ŵ, y),

Z tþ2p=or

t
f ðx,t0Þ2dt0 ¼

ðe4pô i=ôr�1Þe2ô it

4ô i
jFðxÞj2þRe

iôie
�iôr t

ô
FðxÞ2

" # !
,

and Eq. (64) becomes

rðtÞ ¼

G1þRe
iG2ô i

ô
e2iô r t

� �

H1þRe
iH2ô i

ô
e2iô r t

� � , ð65Þ

with G1 ¼
R 1

0 jGðxÞj
2 dx and G2 ¼

R 1
0 GðxÞ2 dx, with

GðxÞ ¼
VðxÞ2

b
, ð66Þ

and H1 and H2 are defined similarly from

HðxÞ ¼
1

2
½iôWðxÞ�2þ

1

U�2
W 00ðxÞ2þ

1

2
VðxÞ2

� �
: ð67Þ
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Fig. 10. Evolution of the stability threshold when b is varied for a¼ 0:5. For clarity, only values of b lower (resp. greater) than 1 are represented in (a)
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Unlike in the local analysis of Section 3, and because the different functions are not periodic on the averaging length
anymore, r is still a function of time, except at the stability threshold where ô i ¼ 0. r(t) is however periodic, and for
unstable flutter modes, the fluctuations of r around its mean value are weak as the mode’s growth rate is generally small
compared to its frequency. In the following, most of the analysis will be performed at the stability threshold, where r is a
constant. In all other cases, its time-average r over a period will be taken as a measure of the conversion efficiency and is
easily computed from ô and the mode shape functions V and W.

4.4.2. Energy conversion and resonance

We are interested here in the coupled behavior of the fluid–solid and electric systems for a given piezoelectric material
(fixed a). Fig. 11 shows the variations with M� and U� of the conversion efficiency associated with the dominant mode for
a¼ 0:5 and b¼ 0:25, above the stability threshold. We observe that this conversion efficiency is increased significantly for
large M�, corresponding to high fluid-to-solid mass ratios (in water for example) or long systems. The conversion efficiency
is also observed to be maximum in the regions destabilized by the piezoelectric coupling. This is consistent with the
conclusions of the local analysis, where a maximum of the conversion efficiency was observed for the negative energy
wave destabilized by the introduction of piezoelectric damping.

Such destabilized regions are located in the vicinity of the instability threshold and we will from now on focus on this
parameter region, as it is also most relevant given the linear character of this study. The map of the conversion efficiency
for the dominant (and neutrally stable) mode at the threshold is shown in Fig. 12. It confirms the existence of a maximum
of conversion efficiency at high M� for b� 0:121. We also observe that the maximum efficiency and the corresponding
value of b are independent of M� for M�Z20250. This suggests that the dynamics leading to the maximum energy

Fig. 11. Conversion efficiency of the dominant unstable mode for a¼ 0:5 and b¼ 0:25. In the white regions, all the modes are stable. The stability

threshold obtained for the uncoupled system (a¼ 0) is shown as a dashed line.

Fig. 12. Conversion efficiency r of the dominant mode (neutral) at the stability threshold for a¼ 0:5. The thick black line shows the limits of the regions

of the (M� ,b)-plane destabilized in comparison with the uncoupled problem a¼ 0.
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conversion are dominated by local effects as will be discussed further in Section 5. Fig. 12 also confirms that the maximum
conversion efficiency is reached when the flexible plate is destabilized by the piezoelectric coupling.

In that region of the parameter space, the frequency of the dominant mode varies between 3 and 5 (Fig. 13), which is of
the same order of magnitude as the value of 1=b near the maximum efficiency, therefore suggesting a resonance-type
phenomenon between the frequency of the neutrally stable mode and the characteristic frequency of the output electric
system. The existence of a maximum for the conversion efficiency for bor C1 is confirmed in Fig. 13. Note that the
agreement is excellent for M� ¼ 100 while it is not as good for M� ¼ 1 which lies outside of the maximum efficiency region.

The evolution of the maximum efficiency with b in Fig. 13 is highly reminiscent of the variations of the dissipated
energy in the resistive part of a RC-electrical circuit forced by a generator at a given frequency o. The role of the forcing
generator is played here by the fluid–solid system that imposes charge transfers and non-zero potential in the
piezoelectric material through the deformation of the flexible plate [Eq. (17)]. The forcing frequency is however not
independent from the output circuit, as shown in Fig. 13 where we observe a significant variation with b of the frequency
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of the dominant mode. This modification of the forcing frequency is a result of the piezoelectric feedback of the electrical
system on the fluttering dynamics. In that regard, the observed efficiency peak differs from a traditional resonance and
corresponds to a tuning of the fluid–solid frequency to the output system’s when the two time-scales are of the
same order.

The comparison of the three cases M� ¼ 1, 10 and 100 also confirms that the maximum conversion efficiency is
significantly larger when destabilization by damping occurs (lower value of the threshold when bor C1).

4.4.3. Influence of the piezoelectric coupling

In Fig. 12, we observed that the conversion efficiency reaches a maximum value of 1.7 for large M� and bor C1. Fig. 14
shows that the maximum conversion efficiency at the stability threshold is strongly influenced by the coupling coefficient
a, with a clear scaling rmax � a2, and this confirms the discussion of Section 3. It is not surprising to obtain values of rmax

greater than one as it is not a thermodynamic efficiency but a measure of the harvested energy over a period relative to the
average stored energy over the same period in the solid and capacitative systems. Note also that unlike b, U� and M�,
which are determined by the tuning of the output system properties, of the plate’s length, inertia and of the flow
conditions, a depends only on the characteristics of the piezoelectric material and the plate’s rigidity. For a given
piezoelectric system a is fixed and Fig. 14 provides an upper bound of the achievable conversion efficiency.

5. Discussion

The fluttering of a flexible plate in an axial flow is an attractive candidate for flow energy harvesting as it can produce
self-sustained periodic vibrations of the solid body. Understanding the impact of the harvesting-induced damping on the
fluid–solid dynamics is an essential element to assess the potential performance of such systems. Thus the present paper
investigated the linear dynamics of the fluttering flexible plate fully coupled to a simple dissipative electrical circuit
through piezoelectric layers, by studying the coupling effect on the local and global instabilities as well as on the energy
conversion efficiency.

The ability to quantify the total harvested energy is intrinsically limited by the linear framework considered, as
saturated flapping amplitudes are not computed. However, the linear analysis is an important step to obtain some insight
on the modification of the system properties, in particular its stability threshold, by the introduction of a realistic coupling
to an output electrical network. Hence, it was shown that destabilization by damping can occur in such systems. The local
analysis showed that the destabilized modes correspond to the so-called negative energy waves of the un-damped system.
This was confirmed in the global analysis by the destabilization of plates with high mass ratio where local effects are
expected to dominate. In particular, we observed in Fig. 12 that above a certain value of M� of the order of 100, the
dependence with M� of the system properties at the stability threshold becomes negligible.

The parameter M� can be seen as a relative measure of the length of the system to the local characteristic lengthscale.
For M�b1, one expects the stability and properties of the dominant modes to be driven by local phenomena rather than
global ones. For given a and b, the critical velocity threshold remains finite which is consistent with the observation that
the system is unstable locally for all V� ¼U�M�. The presence of a maximum in conversion efficiency for bôr C1 can be
identified to the maximum efficiency observed in local analysis for g ~or C1 as b¼ g=M� and ôr ¼ ~orM�.

From a practical point of view, the present results suggest that the energy conversion is more efficient when the mass
ratio M� is large. This is achieved when the plate’s length is long, but also when the fluid inertia is large compared to the
solid’s, as in water flows for example. These results also emphasize the importance of the output circuit in the energy
transfers: a careful tuning of the circuit characteristic time-scale to that of the fluid–solid oscillations significantly
increases the conversion efficiency from the solid to the electric system.

Using both local and global analyses, the maximum energy conversion efficiency rmax was found to scale as a2. This
scaling is expected in the limit of weak coupling: if one neglects the piezoelectric coupling term in Eq. (24) or (52), the
fluid-system can be considered as only weakly modified and act as a constant forcing on the electric system. The forcing in
Eqs. (25) and (53) scales linearly with a and so is expected to scale the charge density. The harvested energy, a quadratic
function of the charge density, is therefore expected to scale as a2. It is however surprising to observe that this scaling
remains valid in a greater range of coupling. This result enlightens the essential role of the coupling coefficient a in energy
harvesting applications. This coupling coefficient can be obtained from Eqs. (6) and (27) by separating the properties of the
piezoelectric materials from the geometric effects of the relative thickness of the plate and piezoelectric patches:

a¼ e31

ffiffiffiffiffiffiffiffiffiffiffiffi
1�n2

p

eEp

s
G h0

hp
,
E0ð1�n2

pÞ

Epð1�n2
0Þ

 !
, ð68Þ

where G is a nondimensional function of the thickness and bending stiffness ratios. To increase the piezoelectric coupling it
is therefore important to maximize e31 or minimize the permittivity e. It must be noted that changing e also impacts the
capacity of the piezoelectric material, which in turn modifies the choice of the optimal energy harvesting electrical circuit
through the optimization of the parameter b. Finally, once the materials are chosen, an optimal thickness ratio h0/hp can
also be obtained. To get an idea of the value of a in practical applications, two cases may be considered that are
representative of typical values found in the literature: the former consists of a mylar plate (h0 ¼ 100 mm, E0¼4 GPa) with
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two PVDF piezoelectric layers (hp ¼ 40 mm, Ep¼2.5 GPa, e31¼0.023 C/m2, er ¼ 11:5), leading to an approximate value of
a� 0:03. The latter consists of a steel plate (h0 ¼ 300 mm, E0¼200 GPa) with two PZT piezoelectric layers (hp ¼ 300 mm,
Ep¼60 GPa, e31¼10 C/m2, er ¼ 2000) and in that case, the coupling coefficient is a� 0:3. Careful design of the system is
expected to further increase a, therefore the typical value of a¼ 0:5 chosen in the present paper is realistic but corresponds
to an upper bound estimate of the system’s performance.

Natural extensions of this work include the study of passive resonant (Hagood and von Flotow, 1991) or active circuits
(Chen et al., 2010) to determine potential improvements in the energy transfer from the electrical design. In this paper, a
continuous distribution of piezoelectrics has been considered and studying the impact of the finite-length of piezoelectric
patches would provide important information on the actual design of energy harvesters. Finally, as emphasized
throughout the present paper, further investigation of the energy harvesting potential must include the representation
of non-linear effects in the fluid and solid dynamics, to obtain the amplitude of the self-sustained oscillations of the
system. Both local (Peake, 2001) and global (Michelin et al., 2008) analyses of the non-linear regime have been performed
for compliant panels or plates placed in an axial flow. The non-linear behavior of piezoelectric materials in the energy
harvesting context has been investigated by Triplett and Quinn (2009). The study of the saturated regime in the fluttering
dynamics of the fluid–structure–electrical fully coupled system will provide a quantitative assessment of the actual
harvested power and is the focus of subsequent work to this linear analysis.
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O. Doaré, S. Michelin / Journal of Fluids and Structures 27 (2011) 1357–13751374



Author's personal copy

Shenck, N.S., Paradiso, J.A., 2001. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21, 30–42.
Sodano, H.A., Inman, D.J., Park, G., 2004. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest 36,

197–205.
Tang, L., Paı̈doussis, M.P., Jiang, J., 2009. Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill. Journal of Sound and

Vibration 326, 263–276.
Taylor, G.W., Burns, J.R., Kammann, S.M., Powers, W.B., Welsh, T.R., 2001. The energy harvesting eel: a small subsurface ocean/river power generator. IEEE

Journal of Oceanic Engineering 26, 539–547.
Thomas, O., Deue, J.F., Ducarne, J., 2009. Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and

electromechanical coupling coefficients. International Journal for Numerical Methods in Engineering 80, 235–268.
Triplett, A., Quinn, D., 2009. The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. Journal of Intelligent Material Systems

and Structures 20, 1959–1967.
Wang, D.A., Ko, H.H., 2010. Piezoelectric energy harvesting from flow-induced vibration. Journal of Micromechanics and Microengineering 20, 025019.
Westwood, A., 2004. Ocean power wave and tidal energy review. Refocus 5, 50–55.
Zhang, J., Childress, S., Libchaber, A., Shelley, M., 2000. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional

wind. Nature 408, 835–839.
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