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In this article a dynamical model of the vibrations and

acoustic radiation of a circular clamped plate excited by a

voice coil and two annular piezoelectric patches is derived.

This model is used to perform an optimization of the geome-

tries with the objective to minimize the vibration of the plate

along its second and third modes, so that the plate’s radi-

ation is equilibrated between its first and fourth eigenfre-

quencies. Experiments are then performed and show a good

agreement with the model. Radiation of the designed sys-

tem presents improvements when compared to a system when

only a voice coil is used.

Nomenclature

W Plate’s vertical displacement (m), non-dimensional w

R Radius variable (m), non-dimensional r

T Time (s), non-dimensional t

A,B Internal, external radii of piezo (m), non-dimensional

 a,b
C Radius of voice coil (m), non-dimensional c

R0 Plate’s radius, non-dimensional 1

E0,Ep Young’s modulus of plate and piezo

ν0,νp,νg Poissons’s coefficient of plate, piezo and glue

ρ0,ρp,ρg Density of plate, piezo and glue

H0 Plate’s thickness (m)

Hp Piezos thickness (m)

Hg Glue thickness (m)

µ0,µp,µg Surface density of plate, piezos and glue layer

D0 Rigidity of plate = E0/12(1−ν2
0)

Dp Rigidity of piezos= Ep/(1−ν2
p)×(HpH2

0/2+H2
pH0+

2H3
p/3)

M0 Total mass of the plate (kg)

Rc Electrical resistance of the voice coil (Ohms)

∗Corresponding author: olivier.doare@ensta-paristech.fr

Lc Inductance of the voice coil (H)

Bl Electromechanical conversion factor (T.m)

uc,up Tension across the voice coil and the piezo respec-

tively (V)

Zp Moment arm of the piezoelectric patch ≡
(

H0+Hp

2

)

1 Introduction

Classically, sound is produced by exciting air with a moving

surface. The manufacturing of loudspeakers has converged

to a design involving a cone excited at a given radius by a

voice coil and fixed at its outer radius to a rigid structure

through a flexible material, referred to as the surround. As a

first approach, the radiation behavior of such designed loud-

speakers can be estimated by considering a translating plane

surface baffled in an enclosure and coupled to an electrical

circuit. This assumption served as a basis for the theory of

Thiele [1, 2] in the context of closed boxes and Small [3, 4]

for vented boxes. They are yet widely used for the design

complete loudspeaker systems in the industry. In practice,

such system possesses also structural modes at higher fre-

quencies [5]. The useful bandwidth of this kind of loud-

speakers (i.e. the frequency range where the radiated power

is almost constant and suitable for high-fidelity reproduc-

tion) is in practice comprised between the two first eigenfre-

quencies of the system. Hence, with this design, the higher

the first eigenfrequency of the structural modes compared to

the frequency piston-like oscillator, the wider the bandwidth.

That is one of the reasons why a conical membrane is used.

One can find many attempts to depart from this now classical

piston-like design. In addition to designs involving piezo-

electric transducers [6], one can mention systems involving

rectangular plates excited by multiple electrodynamic trans-

ducers, at the origin of the DML system [7,8]. Other systems



involving regtancular panels are used to synthesize acousti-

cal wave fields [9, 10], and thus referred to as Wave Field

Synthesis.

The present article adresses the problem of a loud-

speaker contisting of a circular plate clamped at its outer ra-

dius, excited by a voice coil. Attention is paid on this system

because it makes possible the design of flat loudspeakers, and

a deformation along its first mode presents a better directiv-

ity factor than a translating baffled piston mode [11]. This

design has however a major inconvenience: compared to

piston-like structures, the first eigenfrequency is poorly sep-

arated from the others. The bandwidth of such a transducer

is hence significantly reduced in comparaison to the classi-

cal design. In order to circumvent this problem, we treat the

reduction of the vibrations of the undesirable modes with the

introduction of additional forcings on the system exerted by

piezoelectric patches. Vibrating plates or beams equipped

with piezoelectric elements interacting with electric circuits

have been extensively studied during the last decades, in

various application fields such as active control of undesir-

able vibrations [12], aeroelastic instabilities [13,14], passive

damping [15–17], eneregy harvesting [18–21]. In the spe-

cific domain of acoustics, piezoelectric actuators and sensors

have been used to control the sound radiated by vibrating

plates [22–26], the sound transmitted by plates between two

spaces [27–29]. Piezoelectric coupling will be introduced in

the present work using results of Lee et al. [30, 31], who de-

rived the equations governing the dynamics of a general non-

isotropic three layered lamitated plate with two symmetric

piezoelectric layers.

The work of the present article has for objective to find

the optimal geometric parameters of the voice coil and the

piezoelectric patches so that the plate’s response has a maxi-

mal amplitude along its first mode and a minimal amplitude

at the other ones when the same signal is sent to all actuators.

The paper is organized as follows. In section 2, a dynamical

model of a flat circular clamped plate equipped with a voice

coil and two piezoelectric patches is derived. In section 3,

this model is used to perform an optimization with the ob-

jective above mentioned. In section 4, various experimental

and theoretical transfer functions are compared to validate

the model and results of a controlled loudspeaker are pre-

sented. A conclusion then closes the article.

2 Reduced order model of a plate equipped with a voice

coil and two symmetrical piezoelectric annuli

2.1 Position of the problem

In this section, a reduced order dynamical model of a flat

circular clamped plate equipped with a voice coil and two

piezoelectric patches is presented. Firstly, dynamical equa-

tions of a plate with added mass and rigidity due to the pres-

ence of piezoelectric patches are derived. A modal expan-

sion will then be performed and the full dynamical equations

of the plate with piezoelectric patches, voice coil and their

associated forcings will be projected on the eigenmodes to

obtain a linear discrete dynamical system where each modal

displacement and electrical displacements of each electrical
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Fig. 1. Schematic view of a flat plate loudspeaker with a voice coil

and two piezoelectric patches.

circuit represent one degree of freedom. This model will then

be used to compute various electromechanical transfer func-

tions.

2.2 Equations and eigenmodes of a plate with piezoelec-

tric patches

Consider the system sketched in Figure 1, representing a

plate of thickness H0, radius R0 on which two piezoelectric

anuli of internal radius A, external radius B and thickness Hp

are glued. A voice coil of mass Mc is fixed at R = C on the

plate. Due to the presence of two piezoelectric layers be-

tween the radii A and B, the flexural rigidity of the pate has

the following expression,

D(R) = D0 +Fp(R)Dp, (1)

where D0 is the flexural rigidity of the plate without piezo-

electric layers, Dp is an added flexural rigidity due to the

presence of the piezoelectric material and Fp is a function

that equals 1 for R ∈ [A,B] and zero elsewhere, so that is it

appropriately described by the sum of two Heaviside func-

tions,

Fp(R) = H(R−A)−H(R−B). (2)

The exact expression of the flexural rigidity Dp as function of

the material properties and their geometries has been derived



in the case of a three layer laminate by Lee et al. [30–32]

and is given in the nomenclature. We may also consider the

five layer problem where two additional layers of glue are

considered. It is presented in appendix B. It is shown in this

appendix that it is possible to end up with an equivalent three

layer problem after an appropriate change of variables. Thus

the three layer model is retained here for the sake of simplic-

ity.

The surface density of the plate has the following ex-

pression,

µ(R) = µ0 +Fp(R)µp + δ(R−C)
Mc

2πC
, (3)

where µ0 and µp are the surface density of the plate and

the two piezoelectric patches respectively. Using a linear

Kirchoff-Love approximation, the displacement of the plate

is known to satisfy the following equation:

D(R)∆2W (R,T )+ µ(R)Ẅ(R,T ) = P(R,T ). (4)

where P is the pressure exerted on the plate. The plate’s

diplacement is here considered independent of the polar an-

gle, which is justfied by the fact that all forcings exerted on

the plate are axisymmetric. The boundary conditions of the

problem are classical boundary conditions of a plate clamped

at R = R0,

W (R = R0,T ) =
∂W (R,T )

∂T

∣

∣

∣

∣

R=R0

= 0. (5)

Three kind of external forcing are now considered: the force

coming from the voice coil Pc, the force due to piezoelectric

coupling Pp, and a force due to a pressure difference between

each side of the plate Pv.

Following the modelization of Thiele [1,2] of electrome-

chanical coupling introduced in the context of piston-like

electrodynamic transducers, the force exerted by the voice

coil is considered to be proportional to the electrical current

in the coil ic, to the radial magnetic flux density in the air

gap B and to the length of the wire in the magnetic field l.

This force is then exerted on a circle of radius C so that its

contribution in the right-hand term of equation (4) reads,

Pc(R,T ) = Blic(T )
δ(R−C)

2πC
. (6)

The pressure Pp is a consequence of the stretching of

the piezoelectric material induced by charge displacements.

Its expression can be deduced from the results of Lee and

Moon [30], where it is expressed in cartesian coordinates

in the general case of non-isotropic piezoelectric materials.

Considering isotropy in the plane (X ,Y ) (i.e. the plane of

the plate) and axisymetry, the contribution of one piezoelec-

tric patch in the right-hand term of equation (4) is readily

obtained in polar coordinates as

Pp(R,T ) =−up(T )e31Zp

(

∂2Fp

∂R2
+

1

R

∂Fp

∂R

)

, (7)

where up is the voltage at the outlets of the piezoelectric el-

ement, e31 is a piezoelectric coefficient describing the cou-

pling between the deformation in the plane of the plate to the

electrical field in the Z−direction. In the present approach,

two symmetrically glued piezoelectric patches are consid-

ered, each are connected to a distinct circuit. In many works,

piezoelectric patches are glued in such a way that their re-

spective polarity is inversed. Connected in series, they be-

have like a single piezoelectic patch with a moment arm of

twice the value in equation (7) and an electric capacity of two

condensers in series, Cp/2. This configuration is in practice

that which induces the smallest non-linear effects, not mod-

elized in the present approach. Indeed, this configuration en-

sures that the longitudinal stretching of the plate induced by

one piezoelectric patch is cancelled by the other [12]. In the

present model, the voltages exerted on both piezoelectric ele-

ments are always equal, thus leading to the same conclusion,

but it leaves the possibility to use non-symmetric forcings for

which the present model is valid only at the linear level.

If the loudspeaker is placed in a closed box of volume V0

at static equilibrium, there is a pressure difference between

each side of the plate, due to the volume variation of the box.

This pressure is hence expressed as

Pv = δP =−γPa
δV

V0
=−γPa

∫
S W (R,T )dS

V0
. (8)

This expression is similar to those found in models consid-

ering piston-like loudspeaker [3, 4]. The difference comes

from the fact that the plate’s dispacement depends on r in

the present model and has to be integrated to compute the

volume variation.

Let us now consider the electrical networks on which the

electromechanical devices are connected. The electrical net-

work considered for the voice coil is sketched in Figure 2a.

It consists of a resistance Rc, an inductance Lc and a power

source BlW (T ) due to the electromechanical coupling. A

voltage source coming from an amplifier is connected in par-

allel of these three elements. The model equation of this

electrical network is then,

Rcic(T )+Lc
dic

dT
+Bl

dW (C)

dT
= uc(t). (9)

The equivalent electrical network for the piezoelectric

patches is sketched in Figure 2b and is considered when the

piezoelectric material is used as an actuator. Here a voltage

signal up coming from an amplifier is connected directly to

the outlets of the piezoelectric material, which behaves as

a capacitive element in series with a power source due to
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Fig. 2. Models of electrical circuits for the voice coil (a) and the

piezoelectic patch (b).

the electromechanical coupling. The equation governing the

electric charge displacement Qp reads [30],

Qp

Cp

+
Zpe31

Cp

∫
S

Fp(R)

(

∂2W

∂R2
+

1

R

∂W

∂R

)

dS = up(t). (10)

Non-dimensional equations are now derived. Introduc-

ing the non-dimensional radius, displacement, time and pres-

sure as

r = R/R0, w =W/H0, t =
T

Tc

=
T

R2
0

√

µ0
D0

, p =
P

D0H0

R4
0

,

(11)

the non-dimensional local equilibrium equation (4) becomes,

D̄(r)∆2w+ µ̄(r)ẅ = p(r, t), (12)

with

D̄(r) = 1+ D̄p fp, (13)

µ̄(r) = 1+ µ̄p fp +
δ(r− c)

2c
M̄c (14)

fp(r) = H(r− a)−H(r− b), (15)

and where a = A/R0 and b = B/R0 are the non-dimensional

radii characterizing the piezoelectric annulus geometry,

D̄p = Dp/D0 is the non-dimensional flexural rigidity of the

three-layers laminate, µ̄p = µp/µ0 is the non-dimensional

surface density and M̄c = Mc/M0 is the mass of the voice

coil normalized by the mass of the plate. The dimension-

less pressure due to external forcings on the plate is similarly

decomposed into three components p = pc + pp + pv with,

pc(r, t) = τ̄cic(t)
δ(r− c)

2πc
, (16)

pp(r, t) =−τ̄pup(t)

(

∂2 fp

∂r2
+

1

r

∂ fp

∂r

)

, (17)

pv(r, t) =−τ̄v2π

∫ 1

0
w(r, t)rdr, (18)

where q = q/Tc, and where the three following coupling co-

efficients have been introduced:

τ̄c =
BlR2

0

D0H0
, (19)

τ̄p =
Zpe31R2

0

D0H0
, (20)

τ̄v =
γPa

V0

R6
0

D0
. (21)

The coefficient τ̄c quantifies the coupling between the cur-

rent in the voice coil and the dimensionless force exerted on

the plate. τ̄p quantifies the coupling between the current in

the piezoelectric patches and the force exerted on the plate.

Finally, τ̄v quantifies the force exerted on the plate due to a

volume variation in the closed box. It has to be noted that q

is not a dimensionless quantity as it has the dimensions of an

electric charge per unit time. This normalization is preferred

because it allows to keep voltages and currents expressed in

Volts and Amperes respectively while all purely mechanical

quantities are dimensionless. Another consequence is that

q, q̇ and q̈ have all the dimension of Amperes while τ̄c and

τ̄p have the dimension of Amperes−1. The dimensionless

equivalents of equations (9-10) gorverning the charge in the

electric circuits are respectively,

Rc

dqc

dt
+ L̄c

d2qc

dt2
+ τ̄ec

dw(c)

dt
= uc(t), (22)

qp

C̄p

+ τ̄ep2π[rw′]ba = up(t). (23)

where L̄c = Lc/Tc, C̄p = Cp/Tc and where τ̄ec and τ̄ep are

mechanical to electrical coupling coefficients,

τ̄ec =
BlH0

R2
0

√

D0

µ0
, (24)

τ̄ep =
Zpe31H0

Cp

. (25)

These coefficients have the dimension of Volts.

2.3 Discretization of the plate’s equations

Let us now consider that the eigenfrequencies ωn and

eigenmodes φn(r, t) of the unforced plate without voice coil

are known functions. These are the eigenmodes of equation

(12) with p(r, t) = 0, M̄c = 0 and with boundary conditions

(5). They are considered to be known in the present deriva-

tion an their exact calculation is presented in appendix A.

They are used to perform a modal expansion of the problem.

The displacement is hence expressed as a truncated sum of

modal contributions,

w(r, t)≃
N

∑
n=1

qwn(t)φn(r). (26)



Equation (12) is then projected on the modes φm(r), leading

to the following discrete problem,

M~̈qw +K~qw = ~fc(t)+ ~fp(t)+ ~fv(t), (27)

where M is the mechanical mass matrix which elements read

Mmn = 〈φm, µ̄φn〉= δmn +πM̄cφm(c)φn(c), (28)

and K is the mechanical rigidity matrix which elements have

the following expression:

Kmn = 〈φm, D̄φn〉= δmnω2
m. (29)

Orthogonality relations of equations (76) and (77) have been

used here. The mth component of the modal force ~fc(t) has

the following expression,

fcm = 〈φm, pc〉= τ̄cφm(c)ic(t). (30)

The mth component of modal force ~fp(t) is,

fpm = 〈φm, pp〉 (31)

=− τ̄p

C̄p

2π[rφ′m]
b
aqp(t)− τ̄pτ̄ep

N

∑
n=1

4π2[rφ′m]
b
a[rφ′n]

b
aqwn(t).

This force is the sum of two terms, the first one effectively

acts as a forcing term due to a charge displacement in the

piezoelectric material. The second one is proportional to the

mechanical modal displacement and will appear as an added

rigidity matrix in the complete dynamical problem. Finally,

the modal force m due to a pressure variation in the closed-

box has the following expression:

fvm = 〈φm, pv〉=−τ̄v

〈

φm,
N

∑
n=1

qwn2π

∫ 1

0
φnrdr

〉

. (32)

As this modal force depends linearly on the mechanical

modal displacements, it is a rigidity force, and will appear

in the rigidity matrix of the final problem.

In order to write the full dynamical equations satisfied

by the modal displacements, the following projection vectors

are introduced:

~χc =

















φ1(c)
...

φn(c)
...

φN(c)

















,~χp =

















2π[rφ′1]
b
a

...

2π[rφ′n]
b
a

...

2π[rφ′N ]
b
a

















,~χv =

















2π
∫ 1

0 φ1rdr
...

2π
∫ 1

0 φnrdr
...

2π
∫ 1

0 φNrdr

















.

(33)

Next, the two added rigidity matrices are introduced:

Kp = τ̄pτ̄ep~χ
t
p . ~χp , Kv = τ̄v~χ

t
v . ~χv. (34)

The dynamical problem may now be written by adding three

lines to the matrix dynamical equation (27) corresponding to

the three electrical circuits,



























· · ·
... M

...

· · ·







...
...

...

0 0 0
...

...
...

· · · 0 · · ·
· · · 0 · · ·
· · · 0 · · ·

L̄c 0 0

0 0 0

0 0 0









































...
~̈qw

...

q̈c

q̈p1

q̈p2





















+





























. . . 0

C

0
. . .









...
...

...

τ̄c~χc 0 0
...

...
...

· · · τ̄ec~χ
t
c · · ·

· · · 0 · · ·
· · · 0 · · ·

Rc 0 0

0 0 0

0 0 0









































...
~̇qw

...

q̇c

q̇p1

q̇p2





















+





























· · ·
... K+Kp+Kv

...

· · ·







...
...

...

0 − τ̄p

C̄p
~χp − τ̄p

C̄p
~χp

...
...

...

· · · 0 · · ·
· · · −τ̄ep~χ

t
p · · ·

· · · −τ̄ep~χ
t
p · · ·

0 0 0

0 1/C̄p 0

0 0 1/C̄p











































...

~qw

...

qc

qp1

qp2





















=





















...

0
...

uc

up1

up2





















,

(35)

where indices 1 and 2 are used to differentiate between front

and rear piezoelectric patches. This equation is the full dis-

cretized problem of the electrically forced transducer where

a voice and two piezoelectric patches of the same size and

material properties are considered, as sketched on Figure 1.

The N × N diagonal matrix C appearing in the upper left

part of the dissipation matrix modelizes all sources of energy

losses in the system, such as visco-eleasticity of the material

or acoustic radiation. In the present modeling the coefficients

of this diagonal matrix have to be adjusted empirically from

experiments. In a more compact form, equation (35) reads,

M ~̈q(t)+C~̇q(t)+K~q(t) =~u(t). (36)

2.4 Transfer functions computation

The model presented above will be used to compute

transfer functions between different quantities of the system.

Considering the forcing and response vectors to be of the

form,

~u(t) =~u0eiωt , ~q(t) =~q0eiωt . (37)

Introducing these expressions in equation (36) and factoriz-

ing ~q0 leads to the following expression for the response’s

amplitudes,

~q0(ω) = (−ω2M + iωC +K )−1~u0. (38)

Numerical computation of a transfer function hence consists

in inverting a matrix for discrete values of ω. This is done



with Matlab for the results presented in this article. Let us

consider first the loudspeaker’s impedance, which is a trans-

fer function commonly measured on loudspeakers. Practi-

cally, it can be achieved by forcing the voice coil with a volt-

age in the form of a harmonc signal at different frequencies

and measuring the intensity. Numerically, this is done by

considering a forcing vrector ~u0 in the form of a vector full

of zeros, except at the position corresponding to u0c. One

next compute the response vector with equation (38). The

voice coil impedance then reads,

Zc =
ic(ω)e

iωt

u0ceiωt
=

iωq0c(ω)

u0c

. (39)

Another transfer function that will be considered in the

following is the transfer function between the displacement

at a given position r and the voice coil voltage. After us-

ing equation (26) to express the displacement as function of

the modal variables, the transfer function we are looking for

reads,

w(r,ω)

u0c

=
1

u0c

N

∑
n=1

q0n(ω)φn(r). (40)

Similarly, the transfer function between tension at coil and

acceleration reads,

ar0
(ω)

uc

=−ω2
N

∑
n=1

q0n(ω)φn(r0). (41)

Let us consider now the pressure radiated by the plate at

a distance L from the plate, on the Z axis. This pressure can

be computed using the Rayleigh integral [33],

P(L) =−Ω2ρ

2π

∫ ∫
S

e−iKL′

L′ W (R)RdRdθ, (42)

where L′ =
√

L2 +R2 is the distance between the point of

interest and a point on the plate and K is the wavenumber,

K =
Ω

c0
. (43)

In the above equation, the use of capitals letters indicates

that dimensional quantities are used. The point is consid-

ered to be at a distance greater than the typical size of the

plate, L′ ∼ L, and can be put outside of the integral. After

a straightforward calculation, the pressure takes then the fol-

lowing form,

P(L) =−ρH0R2
0

2πT 2
c

e−iKL

L
ω2 ∑

n

q0n(ω)χvn. (44)

3 Optimization of the position of the voice coil and the

piezoelectric patches

The objective of this section is to address the design of a

flat plate excited by a voice coil that approaches the behavior

of a classical piston-like loudspeaker. In the low frequency

approximation, the latter is viewed as a single mode oscilla-

tor coupled to an electrical circuit through electromechanical

coupling. The typical tranfer functions of such ideal loud-

speaker can be obtained by only considering the first plate

mode in the model of the previous section, so that N = 1

in equation (26). It is plotted in Figure 3a-d and compared

to the same voice coil when five modes are retained in the

model. In these figures, arbitrary but representative values

of the parameters have been chosen. It appears then in Fig-

ure 3d that without any particular care taken in the design of

this flat loudspeaker, the level of the pressure radiated is not

homogeneous, resulting in a poorly equlibrated loudspeaker

at frequencies above the second eigenfrequency. Hence, the

effective useful bandwidth of this loudspeaker is a narrow

range of frequencies above its first eigenfrequency. Con-

versely, the case N = 1 has an increased bandwidth that is

more similar to that of a piston-like loudspeaker.

It is envisaged to approach the N = 1 behavior by can-

celling the effect of resonances of modes 2 and 3 by a care-

ful design of two actuators: one voice coil and one pair of

piezoelectric patches. In this optimization process, modes 2

and 3 are addressed differently. Indeed the parameters of the

system are adjusted so that the projection of the pressure ex-

erted by the voice coil and the piezoelectric patch on mode

3 equals zero, while mode 2 is cancelled by using appropri-

ate respective values of the amplitudes of the voice coil and

piezoelectric voltages uc, up1 and up2. In order to ensure

a good efficiency of the forcing exerted on mode 2 by the

piezoelectric patch, a high value of the piezoelectric modal

force of mode 2 is looked for. Finally, in a more compact

formal form the optimization procedure can be expressed as:

Maximize χp2 with χc3 ≡ 0 and χp3 ≡ 0. (45)

Equation (33) indicates that~χc and~χp depend only on a,

b, c and the mode shapes φn. The latter depend on ν0, νp, νg,

D̄p, µ̄p, D̄g, µ̄g, a, b and c. Consequently, if the material pa-

rameters are fixed quantities (see table 1), only the geometric

quantities a, b and c are variables for the optimization pro-

cess. Hence, before performing the optimization procedure,

mechanical parameters used for the plate and the piezoelec-

tric actuators have to be known quantities.

The chosen material for the plate is a polymethacrylim-

ide thermoformed foam. This material is used in some mod-

ern commercial loudspeakers and its parameters have have

been estimated by measuring the first two eigenfrequencies

of cantilevered plates coming from the same material sam-

ple as the one used for the final prototype. The retained

material parameters are those ensuring the best fit between

experimental frequencies and frequencies predicted by sim-

ple finite element computations for different plate sizes. The

piezoelectric patches are thin films of PVDF (polyvinylidene
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Fig. 3. Typical transfer functions of a clamped flat plate used as a loudspeaker obtained using the present model without considering

piezoelectric patches. In blue, N = 1 so that its behavior is similar as a single mode piston-like loudspeaker. In black, N = 5. (a), voice

coil impedance; (b) transfer function between tension at the voice coil outlets and displacement at the center of the plate; (c) transfer function

between tension at the voice coil outlets and acceleration at the center of the plate; (d) pressure at 1 meter for a voltage of 2.8V at the voice

coil outlets, computed using rayleigh integral calculation.

fluoride) furnished by Piezotech with a complete dataset of

the material parameters. In the prototype that is built af-

ter this optimization procedure, the piezoelectric patches are

glued on the plate using double face adhesive tape. As the

mechanical properties of the adhesive were not known, it was

decided to arbitrarly set the Young’s modulus and the Pois-

son coefficient equal to that of the piezoelectric material. The

density of the adhesive layer was measured with a precision

balance and the thickness estimated by measuring the total

thickness of a small part of the two-layer laminate with a

Keyence precsion laser sensor and removing the thickness of

the piezoelectric layer. All the material parameters used in

this optimization procedure are finally given in Table 1. The

voice coil mass may also have a strong influence in the opti-

misation process. To otain an estimate of this parameter the

radius of the voice coil has been estimated at 1.5 cm so that

it coincides with a zero of the third eigenmode of the plate

without piezoelectric layer. Such a voice coil was weighted

to Mc = 9.3g. This mass is fixed in the optimization process

that is now presented.

An optimal loudspeaker satisfying criteria (45) is now

sought for in the (a,b,c) space. For each triplet of these pa-

rameters, the linear problem detailed in appendix A is solved

Parameter Rohacell Piezo Adhesive

Yng’s mod. (MPa) E0 = 220 Ep = 1780 Eg = 1780

Poisson’s ratio ν0 = 0.1 νp = 0.2 νg = 0.2

Thickness (mm) h0 = 3 hp = 0.04 hp = 0.05

Density (kg/m3) ρ0 = 96 ρp = 1850 ρg = 500

Radius (m) R0 = 0.08

Piezo coeff. (C/m2) e31 = 0.02

Table 1. Table of materials properties

to compute the eigenmodes and the projections χp2, χp3 and

χc3. In Figure 4, the contour levels of χp2 are plotted in the

(a,b) plane for different values of c. The contour lines where

χp3 and χc3 equal zero are plotted on the same figures in blue

and red respectively. Each crossing of the blue and red lines

corresponds to a situation where both χp3 and χc3 vanish.

Such points are looked for in the vincinity of a maximum of

χp2. It appears that multiple choices of the triplet (a,b,c) are

possible. They occur at differents points in the (a,b) plane in
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Fig. 4. Contour levels of χp2 in the map (a,b), zeros of χp3 (blue) and zeroes of χc3 (red). Points satisfying the criteria of equation (45)

are indicated by an arrow.

the range c ∈ [0.254,0.266]. Good candidates are indicated

by an arrow on these figures. The chosen design is finally the

one emphasized at c = 0.254 on Figure 4 and the final triplet

of chosen parameters is

a = 0.36, b = 0.8, c = 0.254. (46)

4 Experiments

Based on the design rules obtained in the previous section,

the flat plate loudspeaker presented in Figure 5 has been

built. Due to practical problems in cuting and gluing manu-

ally the piezoelectric patches, the desired radii could not be

selected with precision. The following dimensional values of

the three geometrical parameters were finally obtained,

A = 0.029 m, B = 0.063 m, C = 0.0195 m, (47)

the corresponding non-dimensional parameters being,

a = 0.363, b = 0.787, c = 0.244. (48)

As these parameters are different than that required by the

optmization procedure, the criteria (45) is not perfectly sat-

isfied by the prototype. In particular, χc3 and χp3 6= 0 and

mode 3 reamains excited. It is expected that this could be im-

proved by more precise and robust manufacturing. Generally

Fig. 5. Photographs of the prototype.

speaking, the standard manufacturing tolerance of piezoelec-

tric material is around 0.2 mm and usually less. Given the

geometrical parameters in the experiment, one can expect a

precision of the order of 10−3 on the geometrical parameters

a and b, while it is of 10−2 for the present manual procedure.

Mechanical transfer functions predicted by the model

are now compared to measurements on the prototype. In the

experiments, a National Instrument DAQ card and Labview

are used to manage sewpt sine measurements. Output volt-

ages are sent to the voice coil with a QSC 5050 amplifier and

to the piezoelectric patches with a TREK PZD-350 amplifier.
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Fig. 6. Comparison of experimental (dashed blue line) and theoretical (plain black line) transfer functions; (a), voice coil impedance; (b),

transfer function between volage at the voice coil outlets and diplacement at the center of the plate; (c) transfer function between voltage at the

piezoelectric patches outlets and displacement at the center of the plate when the voice coil outlets are not connected; (d), transfer function

between voltage at the piezoelectric patches outlets and displacement at the center of the plate when the voice coil outlets are short-circuited.

The displacement of the plate is measured at the center using

a Keyence LK-G37 laser displacement. Four different result-

ing transfer functions are plotted on Figure 6 and compared

to the theory:

(a) the voice coil impedance,

(b) the transfer function between voltage at the voice coil in-

lets and displacement at the center of the plate (wr0
/uc),

(c) the transfer function between tension at the piezoelec-

tric patches outlets and displacement at the center of

the plate when the voice coil outlets are not connected

(wr0
/uc with τ̄c forced to 0)

(d) the same as the latter when the voice coil outlets are

short-circuited (wr0
/uc).

The modal dampings of modes 1 and 2 have been adjusted

so that the height of the peaks are the same for theory and

experiments on the impedance curves of Figure 6(a). Preci-

sion of the identification of damping using impedance peaks

was insufficient for higher modes, it was hence chosen to ad-

just modal damping of these modes so that we observe the

best fit between theory and experiments in the transfer func-

tion of Figure 6(b). Finally, the five diagonal coefficients of

the matrix C of equation (35) are set to [2.4,3.6,7,15,17]. It

has to be noted that eigenmodes of the system are indepen-

dent of the diagonal terms in the damping matrix because



these terms do not introduce coupling between modes in the

mechanical system (35). Consequently, results of the the op-

timization procedure presented in section 3 are not affected

by the adjustement of these damping coefficients.

The first observation that can be made from the the ex-

perimental and theoretical curves of Figure 6 is that a good

agreement exists between experiments and a model where

only the damping has been adjusted. Indeed, it has to be

recalled that all other parameters have been identified us-

ing distinct experiments: dynamic tests on beams for the

plate’s material, manufacturer data for the piezoelectric ma-

terial, electrical measurements for the static resistance and

impedance of the voice-coil, wheightings for the different

masses. Only the Young’s modulus of the glue has been ar-

bitrarly chosen. However, this parameter was adjusted in or-

der to improve the agreement. Slight improvements of the

model’s results have been observed when Eg is strongly in-

creased, but changes were not significant enough to justify a

change in the value selected in the previous section. It has

to be noted that in the case presented here, contrary to the

objectives of the optimization performed in section 3, mode

3 remains excited by both the piezoelectric patches and the

voice coil. This is clearly visible on each of the plots. This

may be due to the imprecisions occuring during the manu-

facturing process.

Let us now adress the cases where both the voice coil

and the piezoelectric patches are used to force the plate. It

is desired to approach a case where only the first mode is

excited, so that we obtain a better spectral equilibrium of the

radiated power. On Figures 7 and 8, the transfer function

between voltage at the voice coil and the displacement at the

center of the plate is plotted in five different cases:

. Only the voice coil is used (piezoelectric patches short

circuited), theoretically and experimentally. This case is

in practice the same as in Figure 6b

. The same electrical signal is sent to the piezoelectric

patches, but with an amplitude multiplied by 250, the-

oretically and experimentally.

. A virtual case where only the first mode is excited by

the voice coil (N = 1 theoretical approximation).

The chosen factor 250 is the one that displays the best fit

between the N = 1 approximation and the experimental re-

sult. On these plots we observe that it is possible to reduce

significantly the amplitude of anti-resonance and resonance

associated to mode 2 on both displacement and acceleration

plots. However, due to the fact that χp3 and χc3 do not vanish,

mode 3 remains excited.

Finally, the experimental and theoretical radiated power

on the axis at 84 cm expressed in dBSPL units is plotted on

Figure 9a and Figure 9b in two different cases. In the first

case, a white noise signal of 0.48V rms amplitude is sent

to the voice coil while the piezoelectric patches are shunted

(up1,2 = 0). This case is referred to as the non-controlled

system. In the second case, the same signal amplified 250

times is sent to the piezoelectric patches (120V rms). This

case is referred to as the controlled system. Experimentally,

the loudspeaker is baffled in a wood plane of 60×65 cm and
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measurements are performed in an anechoic chamber. It is

known that for acoustical wavelengths equal or greater than

the typical size of the plate, the rearward radiation interferes

with the frontward direct radiation [33], so that the results

can not be compared with Rayleigh integral computations,

which corresponds to an infinite baffle. Above this grayed

range, experiments and theory are in good agreement.

The radiation of the uncontrolled system presents a peak

at 1500Hz, followed by a strong hole due the resonance

and antiresonance of the second mode. The antiresonance

is strongly reduced in the controlled system. A succession

of resonance and antiresonance is also observed for the third

mode around 3000 Hz. The controlled system presents also

a reduced antiresonance. Finally, if we tolerate a maximum

difference of 10dB in the pressure radiated by the plate, we

can conclude that the system is able to extend the useful

bandwidth from [200Hz,1500Hz] up to [200Hz,4000Hz].

5 Conclusion

In order to reduce the depth of the devices used to repro-

duce sound, one can envisage to use a clamped flat plate as

a loudspeaker. In this article, the dynamics of a clamped

plate excited by a voice coil at a given radius has been mod-

elized. In order to circumvent the problems due to the vibra-

tions of the plate along undesirable modes, we investigated

the use of an additional forcing exerted by annular piezoelec-

tric patches. An optimization has been performed to design

a system where the modal force due to the voice coil and the

piezoelectric patches second and third modes is minimized.

A prototype has then been presented and transfer functions

measured and predicted by the model have been succesfully

compared. Next, control tests have been presented, showing

encouraging results. Indeed the radiated power shows that

forcing the system with both the voice coil and the piezoelec-

tric patches at appropriate respective amplitudes, the effects

of the antiresonance and resonance of the second mode are

less pronounced. Concerning the third mode, the objective

was to design actuators which geometries allowed to cancel

the forcing on this particular mode. The manufacturing as

not precise enough to fully satisfy this objective.

Improvements to this study are multiple. Firstly, some

work should be made to improve the precision of the man-

ufacturing of the piezoelectric patches. Better understand-

ing of the glue mechanical properties could also induce bet-

ter agreement between theoretical and experimental results

and thus improve the optimization process. Different plates

could also be envisaged. Indeed, the thermoformed foam

was used because it is commonly used in conical loudspeak-

ers. This does not mean that it is the best material for the

present application. Guidelines for the choice of this mate-

rial could be found for instance in studies that look for pa-

rameters that maximize the piezoelectric coupling on sand-

wich beams [34]. Multiple pairs of piezoelectric patches or

supplementary voice coils could also be envisaged to extend

the bandwidth of the plate. Piezoelectric materials of differ-

ent shapes or with spatially varying polarization could also

be considered to design so-called modal actuators that could
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Fig. 9. Power radiated by the plate on axis at 84 cm, comparison

of non controlled and controlled systems. Experiments in dashed

blue and theory in plain black. Grayed region indicates the frequency

range where backward radiation interferes with frontward radiation,

which is not taken into account by the model. The arrow indicates

the bandwidth of the loudspeaker where a maximum 10 dB difference

between minimum and maximum value is tolerated. (a), uncontrolled

system; (b) controlle system.

improve mode selectivity [32, 35]. Finally, nonlinear aspects

have been overlooked in this work and should be included in

the model to adress the distorsions that arises at high vibra-

tion amplitudes [36].
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Appendix A: Eigenmodes and eigenfrequencies of the un-

forced plate without voice coil

The plate equation (4) is rewritten in the form of a union of

homogeneous problems,

D0∆2W (R,T )+ µ0Ẅ (R,T ) = 0 in Ω1 and Ω3,

(D0 +Dp)∆
2W (R,T )+ (µ0+ µp)Ẅ (R,T ) = 0 in Ω2, (49)

where Ω1 ≡ R ∈ [0,A], Ω2 ≡ R ∈ [A,B] and Ω3 ≡ R ∈ [B,R0].
To the set of local equations (4), a set of boundary condi-

tions has to be added. These boundary conditions are the

continuity of the displacement W , the rotation ∂W/∂R the

momentum and the shear at R = A and R = B and the bound-

ary conditions of a plate clamped at R = R0,

[W ]A
+

A− = 0, [∂W/∂R]A
+

A− = 0, [Q]A
+

A− = 0, [M ]
A+

A− = 0,

[W ]B
+

B− = 0, [∂W/∂R]B
+

B− = 0, [Q]B
+

B− = 0, [M ]
B+

B− = 0, (50)

W (R0) = 0,
∂W

∂R
(R0) = 0.

In the particular case of a displacement independent of the

polar angle, the momentum reads:

M =−D0
∂2W

∂R2
−D0ν0

1

R

∂W

∂R
in Ω1 and Ω3

M =−(D0 +Dp)
∂2W

∂R2
− (D0ν0 +Dpνp)

1

R

∂W

∂R
in Ω2,

(51)

and the shear has the following expression:

Q =−D0
∂

∂R
∆W in Ω1 and Ω3

Q =−(D0 +Dp)
∂

∂R
∆W in Ω2. (52)

Introducing the non-dimensional radius, displacement,

time and force given in equation (11) the non-dimensional

local equilibrium equation (49) becomes,

∆2w+ ẅ = 0 in Ω1 and Ω3,

D̄p∆2w+ µ̄pẅ = 0 in Ω2. (53)

In non-dimensional form, the boundary conditions have then

the following expanded form,

[w]a
+

a− = 0, (54)

[∂w/∂r]a
+

a− = 0, (55)

∂

∂r
∆w

∣

∣

∣

∣

a−
− (1+ D̄p)

∂

∂r
∆w

∣

∣

∣

∣

a+
= 0, (56)

∂2w

∂r2
+ν0

1

r

∂w

∂r

∣

∣

∣

∣

a−

− (1+ D̄p)
∂2w

∂r2
+(ν0 + D̄pνp)

1

r

∂w

∂r

∣

∣

∣

∣

a+
= 0, (57)

[w]b
+

b− = 0, (58)

[∂w/∂r]b
+

b− = 0, (59)

∂

∂r
∆w

∣

∣

∣

∣

b+
− (1+ D̄p)

∂

∂r
∆w

∣

∣

∣

∣

b−
= 0, (60)

∂2w

∂r2
+ν0

1

r

∂w

∂r

∣

∣

∣

∣

b+

− (1+ D̄p)
∂2w

∂r2
+(ν0 + D̄pνp)

1

r

∂w

∂r

∣

∣

∣

∣

b−
= 0, (61)

w(1) = 0, (62)

∂w

∂r
(1) = 0. (63)

The eigenfrequencies and eigenmodes of equation (53)

with boundary conditions (54-63) are now sought for. It is

practically done by introducing a solution of the form

w(r, t) = ϕ(r)eiωt (64)

in equation (53). The latter now reads,

∆2w−λ4w = 0 in Ω1 and Ω3

∆2w−α4λ4w = 0 in Ω2, (65)

where

λ4 = ω2 (66)

and

α4 =
1+ µ̄p

1+ D̄p

. (67)

The solutions of these well known ordinary differential equa-



tions are combinations of Bessel functions,

ϕ1(r) = A1J0(λr)+A2I0(λr) , in Ω1 (68)

ϕ2(r) = A3J0(αλr)+A4Y0(αλr)

+A5I0(αλr)+A6K0(αλr) , in Ω2 (69)

ϕ3(r) = A7J0(λr)+A8Y0(λr)

+A9I0(λr)+A10K0(λr) , in Ω3 (70)

Introducing these solutions in the boundary conditions ex-

pressions leads to a linear problem,

MA
~A = 0, (71)

where ~A is a column vector with 10 elements corresponding

to the amplitudes An, n ∈ [1,10] and MA is the matrix which

coefficients are deduced from the boundary conditions ex-

pressions. A non trivial solution exists if

det(MA) = 0. (72)

The numerical resolution of this last equation gives the dis-

crete values of λn, which then gives the eigenfrequencies us-

ing equation (66). Introducing a particular value λn in the

linear problem (71) gives the associated eigenmode through

the vector ~An. The associated eigenmode φn(r) is the union

of functions ϕ1...3 in their respective domains. One has then

to choose a convention for the norm of the eigenmodes. Let

us define a scalar product in the domain Ω :

〈 f ,g〉=
∫

S
f gdS = 2π

∫ 1

0
f grdr. (73)

The chosen convention for the normalization is,

〈µ̄(r)φn(r),φn(r)〉= 1, (74)

where µ̄ describe the distribution of surface density of the

plate, and reads,

µ̄(r) = 1+[H(r− a)−H(r− b)]µ̄p. (75)

By definition, the eigenmodes are orthogonal with respect to

the mass and rigidity operators,

〈µ̄(r)φn(r),φm(r)〉= δnm, (76)

〈D̄(r)φn(r),φm(r)〉= ω2
mδnm, (77)

where D̄ describe the distribution of rigidity of the plate,

D̄(r) = 1+[H(r− a)−H(r− b)]D̄p, (78)

and δ is the Kronecker symbol. The eigenmodes defined here

serve as a basis for the full problem defined in section 2.

Hg

Hg

Hp

Hp

H0

Fig. 10. Schematic view of the five layers problem.

Appendix B: Five layers problem: equivalent three layers

problems

Provided that the Young’s modulus of the glue is of the same

order as the other materials, the assumption that the defor-

mation varies linearly with Z is still valid. We have to solve

a problem of a five layer plate, as sketched in Figure 10. The

momentum has now the following expression in Cartesian

coordinates [37],

M =

∫ h0/2+hg+hp

−h0/2−hg−hp
σXX ZdZ (79)

=−(D0 +Dg +D′
p)

∂2W

∂X2
− (ν0D0 +νgDg +νpD′

p)
∂2W

∂Y 2
,

(80)

with,

Dg =
Eg

1−ν2
g

(

HgH2
0

2
+H2

g H0 +
2H3

g

3

)

(81)

D′
p =

Ep

1−ν2
p

(

Hp(H0 +Hg)
2

2
+H2

p(H0 +Hg)+
2H3

p

3
.

)

(82)

The prime is used to avoid confusion with Dp defined in the

three layer problem [30]. The momentum then takes the fol-

lowing form in cylindrical coordinates [37],

M =−(D0+Dg+D′
p)

∂2W

∂R2
−(ν0D0+νgDg+νpD′

p)
1

R

∂W

∂R
.

(83)

In non dimensional form, the continuity equation for the mo-

mentum has the following expression at r = a,

∂2w

∂r2
+ν0

1

r

∂w

∂r
|a− − (1+ D̄′

p+ D̄g)
∂2w

∂r2

+(ν0 + D̄′
pνp + D̄gνg)

1

r

∂w

∂r
|a+ = 0. (84)

This last expression can be rewritten in the following form,

∂2w

∂r2
+ν0

1

r

∂w

∂r
|a− − (1+ D̄pg)

∂2w

∂r2

+(ν0 + D̄pgνpg)
1

r

∂w

∂r
|a+ = 0, (85)



with,

D̄pg = D̄′
p + D̄g (86)

νpg =
D̄′

pνp + D̄gνg

D̄′
p + D̄g

(87)

Hence, the five layer problem can be modelized using the

same equations as presented in section 2, provided that the

following change of parameters is done :

D̄p −→ D̄pg (88)

νp −→ νpg (89)

µ̄p −→ µ̄pg = µ̄p + µ̄g (90)

Zp −→ Zpg =
H0 +Hp +Hg

2
(91)
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[21] Doaré, O., and Michelin, S., 2011. “Piezoelectric cou-

pling in energy-harvesting fluttering flexible plates: lin-

ear stability analysis and conversion efficiency”. Jour-

nal of Fluids and Structures, 27(8), pp. 1357–1375.

[22] Fuller, C. R., Hansen, C. H., and Snyder, S. D., 1991.

“Experiments on active control of sound radiation from

a panel using a piezoceramic actuator”. Journal of

Sound and Vibration, 150(2), pp. 179–190.

[23] Tzou, H., and Zhou, Y., 1995. “Dynamics and control

of non-linear circular plates with piezoelectric actua-

tors”. Journal of Sound and Vibration, 188(2), pp. 189–

207.

[24] Lee, J. C., and Chen, J. C., 1999. “Active control of

sound radiation from rectangular plates using multi-

ple piezoelectric actuators”. Applied Acoustics, 57(4),

pp. 327–343.

[25] Chen, K., Chen, G., Pan, H., and Li, S., 2008. “Sec-

ondary actuation and error sensing for active acoustic

structure”. Journal of Sound and Vibration, 309(1-2),

pp. 40–51.

[26] Larbi, W., Deu*, J. F., Ciminello, M., and Ohayon, R.,

2010. “Structural-Acoustic Vibration Reduction Using

Switched Shunt Piezoelectric Patches: A Finite Ele-

ment Analysis”. Journal of Vibration and Acoustics-



Transactions of the ASME, 132(5), p. 051006.

[27] Gardonio, P., Bianchi, E., and Elliott, S. J., 2004.

“Smart panel with multiple decentralized units for the

control of sound transmission. Part I: theoretical pre-

dictions”. Journal of Sound and Vibration, 274(1–2),

pp. 163–192.

[28] Gardonio, P., Bianchi, E., and Elliott, S. J., 2004.

“Smart panel with multiple decentralized units for the

control of sound transmission. Part II: design of the de-

centralized control units”. Journal of Sound and Vibra-

tion, 274(1–2), pp. 193–213.

[29] Bianchi, E., Gardonio, P., and Elliott, S. J., 2004.

“Smart panel with multiple decentralized units for the

control of sound transmission. Part III: control sys-

tem implementation”. Journal of Sound and Vibration,

274(1–2), pp. 215–232.

[30] Lee, C. K., and Moon, F. C., 1989. “Laminated

piezopolymer plates for torsion and bending sensors

and actuators”. Journal Of The Acoustical Society Of

America, 85, pp. 2432–2439.

[31] Lee, C. K., 1990. “Theory of laminated piezoelec-

tric plates for the design of distributed sensors actu-

ators .1. Governing equations and reciprocal relation-

ships”. Journal Of The Acoustical Society Of America,

87, pp. 1144–1158.

[32] Lee, C. K., and Moon, F. C., 1990. “Modal Sen-

sors/Actuators”. Journal of Applied Mechanics, 57(2),

pp. 434–441.

[33] Pierce, A. D., 1989. Acoustics: An Introduction to Its

Physical Principles and Applications.

[34] Ducarne, J., Thomas, O., and Deü, J. F., 2012. “Place-
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