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ABSTRACT
The present work investigates the possibility to pro-

duce electrical energy from the flutter oscillations of a
flexible plate placed in an axial flow and covered with
piezoelectric patches that convert bending and stretching
of the plate’s surface into electric charge displacement.
A fully-coupled nonlinear model for the dynamics of the
fluid-solid-electric system is presented and used to deter-
mine the influence of the different system parameters on
the stability, nonlinear dynamics and energy harvesting
efficiency of the system. In particular, the role of the tun-
ing between the fluid-solid and electrical systems is in-
vestigated as well as the impact of the flow velocity and
fluid-solid mass ratio.

INTRODUCTION
Global climate change and scarcity of traditional fos-

sil fuels motivate the development of innovative and re-
newable energy sources with low environmental impact.
Converting the kinetic energy associated with geophysi-
cal flows such as winds, rivers, oceanic and tidal currents
is particularly attractive, given the wide availability of this
resource. Classical fluid-solid instabilities such as Vortex-
Induced Vibrations, galloping and flutter in axial flows
effectively extract energy from the flow and transform
it into solid mechanical energy that can then be used to
produce electricity using either displacement-based (e.g.
electromagnetic converters) or deformation-based energy
converters (e.g. piezoelectric materials) [1–5]

In the present work, we are interested in the feasi-
bility and performance of flow energy harvesting using
piezoelectric flexible plates, or flags. Thin flexible plates
placed in a steady axial flow are known to become un-
stable to flutter at a critical velocity [6–8], above which
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a large amplitude flapping regime can develop, character-
ized by the propagation of deformation waves along the
flag [9]. When a piezoelectric patch is attached on the
deforming flag surface, its periodic bending can be con-
verted into electric charge transfers [10]. Use of piezo-
electric materials is not adapted to large scale harvesters,
but such materials show competitive and promising per-
formances in the domain of small-power devices [11].

Classically, energy harvesting is represented in the
fluid-solid system as an additional damping [12], but this
approach overlooks the possible coupling between the
harvesting circuit and the fluid-solid system powering it.
In this study, an explicit description of the harvesting
system is introduced in terms of piezoelectric patches,
and following Refs. [13, 14], the equations for the fully-
coupled fluid-solid-electrical nonlinear dynamics are de-
rived. This approach provides insight on the double im-
pact of energy harvesting, namely producing electrical
energy and modifying the behavior of the fluid-solid sys-
tem. For example, increasing the coupling coefficient
might lead to a better energy transfer to the output cir-
cuit but could also eventually result in the restabilization
of the system due to its damping effect. Considering the
model problem of a slender flexible plate in axial flow, we
analyze the energy harvesting efficiency of the system in
terms of the different fluid-solid-electric parameters.

The present paper is organized as follows: the fluid-
solid-electric model is first presented in Section 1. The
effect of the piezoelectric coupling on the stability of the
system is then analyzed using linear analysis (Section 2).
Section 3 finally focuses on the nonlinear dynamics of the
system to determine the amplitude and frequency of the
saturated flapping motion and assess the energy harvest-
ing efficiency.



1 MODEL
1.1 Presentation of the piezoelectric flag

In this work, we consider a rectangular inextensible
flexible plate of length L and span l, and negligible thick-
ness h. The plate is clamped at its leading edge and placed
in a steady incoming inviscid flow of velocity U∞ and
density ρ . The surface of the plate is covered by pairs
of piezoelectric patches (one patch on each side) whose
negative electrodes have been shunted through the plate
and whose positive electrodes are connected to an ouput
resistive circuit (Figure 1). We neglect here any spanwise
plate deformation and charge transfer so that the mechan-
ical and electrical state variables are only functions of the
streamwise curvilinear coordinate s and time t. In the fol-
lowing, for any function a(s, t), its derivatives with re-
spect to t and s are noted ȧ and as, respectively.

The deformation and position of the cantilevered
plate are characterized by the local orientation θ(s, t) of
the unit tangent vector τ(s, t) with the flow direction ex.
The difference of potential between the free electrodes
on each side of the plate and the charge transfer between
those electrodes are respectively noted v(s, t) and q(s, t)
(Figure 1). In the limit of continuous coverage by patches
of infinitesimal length in the streamwise direction [14],
the piezoelectric effect results in an additional torque in-
side the plate imposed by the voltage between the elec-
trodes, namely

Mpiezo =−χv, (1)

with χ the piezoelectric coupling, and in a charge transfer
q resulting from the plate’s deformation:

q = cv+χθs (2)

with c the characteristic capacity of the piezoelectric
patch pair. Noting g the lineic conductivity of the output
circuit, q and v are related through Ohm’s law

q̇+gv = 0. (3)

1.2 Non-linear solid dynamics
The system {plate + piezo} is represented as an

Euler–Bernoulli beam, and large amplitude displace-
ments of the beam are considered. The beam is inexten-
sible and, taking into account the piezoelectric torque in
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FIGURE 1: (a) Two-dimensional motion of a cantilevered
slender flexible plate in axial flow. (b) Piezoelectric flag:
the flexible plate (black) is covered on each side by piezo-
electric patches (grey). (c) each piezoelectric patch pair is
connected to a dissipative circuit and the electrical equiv-
alent is given on the right.

Eq. (1), its position x(s, t) satisfies

µ ẍ =
[
T τ− (Bθss−χv)n

]
s
+ ffluid, (4)

xs = τ, (5)

where B and µ are respectively the uniform rigidity and
lineic mass of the piezoelectric flag, T (s, t) is the plate’s
tension and acts as a Lagrangian multiplier to enforce the
inextensibility of the plate, and ffluid is the fluid force per
unit length on the flag. Clamped-free boundary condi-
tions are used so that

x = 0, θ = 0 at s = 0, (6)

Bθs−χv = Bθss−χvs = 0 at s = L. (7)

1.3 Fluid model
We focus here on the slender body limit (l � L),

when the fluid force applied to the plate can be decom-
posed into two distinct parts: a reactive force [15], result-
ing from the added inertia of the fluid put in motion by



each cross-section of the plate, and a resistive force [16]
accounting for inertial drag and dissipative effects:

ffluid =−maρl2
(

u̇n− (uτun)s +
1
2

u2
nθs

)
n− 1

2
ρlcd |un|unn,

(8)
where ma and cd are the non-dimensional added mass and
drag coefficient associated with the plate’s cross-section,
respectively, and uττ + unn = ẋ−U∞ex is the local rela-
tive velocity of the solid to the fluid at rest. The validity of
this approach, initially developed to evaluate flow forces
created by the motion of a fish body in large amplitude de-
formations, was recently confronted to and found in good
agreement with Reynolds-Averaged Numerical Simula-
tions (RANS) at high Reynolds number [17]. Although
limited, in theory, to asymptotically small aspect ratios
l/L, it was also shown recently that predictions using this
approach provide satisfying results even up to O(1) as-
pect ratio [18]. In the following, the aspect ratio is taken
as H∗ = l/L = 0.5, and we focus on thin flat plates so that
ma = π/4 and cd = 1.8.

1.4 Harvesting efficiency
The total power P(t) harvested by the system is

equal to the energy actually transferred to the output cir-
cuit and dissipated in the useful load g:

P(t) =
∫ L

0
gv(s, t)2ds. (9)

The efficiency of the system is defined as the ratio
of the harvested energy to the fluid kinetic energy flux
through the section occupied by the system:

η =
〈P〉

1
2 ρU3

∞A l
, (10)

with A the peak-to-peak flapping amplitude, and 〈P〉
the time-average of the output power.

1.5 Non-dimensional parameters
Equations (1)–(9) are non-dimensionalized using L,

L/U∞ and ρL3 as reference length, time and mass, respec-
tively. v and q are non-dimensionalized by U∞

√
µ/c and

U∞

√
µc, respectively. The system is then characterized

by five non-dimensional coefficients:

M∗ =
ρlL
µ

, U∗ =U∞L

√
µ

B
, H∗ =

l
L

(11)

α =
χ√
Bc

, β =
cU∞

gL
, (12)

corresponding to the fluid-solid inertia ratio, the non-
dimensional flow velocity, the aspect ratio, the piezoelec-
tric coupling and the tuning of the output circuit, respec-
tively. β is indeed the ratio of the non-dimensional time-
scale associated with the output RC-loop. In the follow-
ing, all quantities are non-dimensionalized, unless speci-
fied otherwise.

2 LINEAR STABILITY ANALYSIS
We first consider the impact of the piezoelectric cou-

pling on the linear stability of the flexible plate. In the ab-
sence of any coupling (α = 0), the plate becomes unstable
to flutter for a flow velocity U∗ greater than a threshold
value U0

c (M
∗) [8, 9, 19].

2.1 Linearized equations
In the limit of small vertical displacement y(s, t) of

the plate, the linearized equations for y and v are obtained
from Eqs. (2)–(4) as

(1+maM∗H∗) ÿ+2maM∗H∗ẏs +maM∗H∗yss

+
1

U∗2
yssss−

α

U∗
vss = 0, (13)

β v̇+ v+
αβ

U∗
ẏss = 0. (14)

Assuming [y,v] = Re
(
[Y (s),V (s)]eiωt

)
with ω complex,

Eqs (13)–(14), together with the boundary conditions

Y (0) = Ys(0) = 0, (15)

Yss(1)−
α

U∗
V (1) = Ysss(1)−

α

U∗
Vs(1) = 0, (16)

become an eigenvalue problem for [Y,V ] and ω , solved
numerically using a collocation method on N Chebyshev-
Gauss-Lobatto points (typically N ≈ 60–120).

2.2 Impact of the piezoelectric coupling on the in-
stability threshold

For a given output circuit (fixed β ), an increase in
the piezoelectric coupling α impacts the dynamics of the
system in two ways: (i) it increases the effective rigid-
ity of the system and (ii) it increases the energy transfer
to the output circuit where it is dissipated. One there-
fore expects an increase of the critical velocity (i.e. a sta-
bilization) due to the piezoelectric coupling. In Fig. 2,
the critical velocity is represented for increasing values
of α . A stabilization is indeed observed for low M∗ (light
fluid or short flag), while a destabilization of the higher
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FIGURE 2: Critical velocity threshold Uc(M∗) for β =
0.1 and α = 0 (uncoupled, thick light grey), α = 0.3
(dashed), α = 0.5 (dash-dotted) and α = 0.9 (dotted).

order dominant modes is observed for higher M∗ (typi-
cally heavier fluid or long flag). This effect was observed
recently for a purely two-dimensional model (flag of in-
finite span), and can be related to the destabilization by
damping of negative energy waves in the local stability
analysis [14]. One should emphasize that the influence of
the piezoelectric coupling is highly dependent on the tun-
ing β of the fluid-solid and electric systems. The results
presented in Fig. 2 are obtained when both systems have
similar fundamental time-scales.

For a fixed piezoelectric coupling α , the frequency
tuning of the fluid-solid and electrical systems, β , is a
measure of the resistance in the output circuit. For β � 1,
the piezoelectric patches’ electrodes are short-circuited:
no electric potential is applied to the piezoelectric ele-
ment and the piezoelectric torque in Eq. (1) vanishes. The
flag dynamics is not modified by the piezoelectric, and the
critical velocity threshold is that of a flag with no piezo-
electric coupling, U0

c (Figure 3). On the other hand, when
β � 1, the conductivity of the output circuit is negligi-
ble and no charge transfer can occur between the elec-
trodes. Equations (1)–(2) impose that the potential v, and
therefore Mpiezo are proportional to curvature and effec-
tively, the piezoelectric coupling acts as an increase in the
flag’s rigidity. As a result, the critical velocity threshold in
this open-circuit limit is obtained directly as U0

c

√
1+α2

(Figure 3). Between these two limit cases, the impact
described above is recovered: the fluid-solid-electric cou-
pling induces a destabilization of the system at large M∗

10 1 100 101 102
0

5

10

15

20

25

M*

Uc

FIGURE 3: Critical velocity threshold Uc(M∗) for α =
0.5 and β = 0 (short circuit, thick light grey), β = 0.1
(dashed), β = 0.3 (dash-dotted), β = 1 (dotted), β = 3
(solid) and β = ∞ (open circuit, thick dark grey)

and a stabilization for small M∗.
This destabilization by damping is particularly inter-

esting from the point of view of harvesting energy from a
flow. In general, the optimal operating regime of the de-
vice should be a trade-off between adding enough damp-
ing on the system to dissipate energy in the output circuit
while maintaining sufficiently high flapping amplitude.
When the system is destabilized by damping, initially at
least, the addition of damping to the system satisfies both
constraints: it increases the energy transfer while main-
taining, or possibly enhancing, the flapping dynamics.

3 NON-LINEAR DYNAMICS
Studying the nonlinear dynamics of the fully cou-

pled fluid-solid-electric system is necessary in order to
determine the characteristics of the limit-cycle oscilla-
tions of the system (amplitude and frequency) and assess
the amount of power that can be harvested by such a de-
vice. The non-dimensional form of Eqs. (1)–(8) is solved
numerically using a Chebyshev collocation in space and
a second order implicit time-stepping method [20]. The
flag is initially at rest, with the piezoelectric patches in
their reference configuration (q= v= 0). At t = 0, a small
vertical perturbation is added to the horizontal flow to ini-
tiate the flag motion.

For U∗ > Uc, the small perturbation results in an ex-
ponential growth of the flapping amplitude that eventu-
ally saturates (Figure 4). Two different behaviors can
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FIGURE 4: Flapping dynamics of the piezoelectric flag
for α = 0.5, M∗ = 10, β = 0.158 and (a) U∗ = 10.5, (b)
U∗ = 11 and (c) U∗ = 14.5. (Left) Successive position of
the piezoelectric flag and (Right) evolution in time of the
instantaneous harvested power.

then be observed: (i) the flag enters a strongly periodic
regime with a limit cycle oscillation clearly identified or
(ii) the flag dynamics is more complex, suggesting some
nonlinear interactions between different modes, and some
chaotic-looking motion.

A complete discussion of the properties of the latter
behavior is beyond the scope of the present work, but it is
worth noting that such complex behavior was reported in
experimental and numerical studies on the flapping flag
dynamics [9, 18, 21, 22], and is not specific to the piezo-
electric coupling problem. For fixed M∗, α and β , as
U∗ is increased beyond the critical velocity Uc and more
modes become unstable, the system shows different mode
switching events, one being illustrated on Figures 4 and 5.
The impact of such events on the harvesting performance
is important as the amplitude, frequency and curvature
distributions are modified.
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FIGURE 5: Evolution with U∗ of the amplitude (solid)
and frequency (stars) of the limit-cycle oscillations for
M∗ = 10, α = 0.5 and β = 0.158.

4 HARVESTED ENERGY AND EFFICIENCY OF THE
SYSTEM
For a given set of parameters (M∗,U∗,α,β ) the dy-

namics of the piezoelectric system is obtained using the
numerical method presented above, and the harvesting ef-
ficiency is computed using Eq. (9). When a limit cycle
is detected, the efficiency is simply obtained by taking
the time-average of P(t) over one period, and the non-
dimensional flapping amplitude A =A /L is computed as

A =
√
〈2ye(t)2〉, (17)

with ye(t) the deflection of the trailing edge of the flag.
In the case where a limit cycle can not be identified,

the computation is carried over a long enough time frame
to ensure that a stationary flapping state has been reached.
The efficiency is then obtained using statistical averages
over this interval in order to define A and 〈P〉.

We are interested here in the influence of the different
parameters on the system’s performance, measured here
by the efficiency η , the ratio of the energy used in the out-
put circuit (i.e. dissipated in the resistive elements) and of
the flow kinetic energy flux through the cross-section oc-
cupied by the device. In Figure 6, the evolution of η with
β and U∗ is represented for two different values of M∗.

One first observes that η vanishes for both β � 1
and β � 1 and is only significant in the intermediate
range β ∼ 0.1–1, a direct result from the filtering prop-
erties of the RC-loop: for β � 1, the circuit’s resis-



tance is infinitesimal, resulting in negligible energy dis-
sipation despite the charge transfers between the piezo-
electric electrodes; for β � 1, the resistance is too large
for any charge transfer to be possible. The dissipated
power is maximum when the frequency of the forcing on
the electrical circuit (here, the flapping flag frequency) is
close to the circuit’s fundamental frequency g/c. This
is confirmed by comparing the results for M∗ = 1 and
M∗ = 10: for larger M∗, higher order modes are known
to become dominant and have typically higher frequen-
cies [9]. The maximum efficiency is then obtained for
a higher characteristic frequency of the electrical circuit,
namely a smaller value of β (Figure 6).

For a fixed β and increasing U∗, successive optimal
regions are observed separated by low-efficiency transi-
tion regions. This behavior can be interpreted from the
mode switching events observed on Figure 4 and 5: as
U∗ is increased, the efficiency of the system increases
while the dynamics of the system remains locked on the
same mode, because the frequency of that mode is in-
creasing with U∗. However, as more modes become un-
stable the limit cycle oscillations can lock onto a different
mode with lower frequency resulting in a drop in the sys-
tem’s efficiency. One observes that when the fluid inertia
is increased (greater M∗), mode switching events occur at
more closely-spaced values of U∗.

The effect of β can also be observed on the stabil-
ity threshold: for small M∗, the critical velocity increases
monotonically with β between the short-circuit and open-
circuit limits, while destabilization by damping is ob-
served for larger M∗. Figure 6(b) also shows that the im-
pact of β on the mode switching thresholds is similar to
that on the stability threshold.

The performance of the system can therefore be opti-
mized by tuning the output circuit to the frequency of the
flag dynamics. This frequency is however not constant
but is itself modified by the fluid-solid-electric coupling.
In Fig. 7, we consider the evolution of the efficiency of
the optimally-tuned system with M∗ and U∗: for a given
value of these two parameters, the maximum achievable
efficiency (over all possible values of β ) is represented.
One observes that the efficiency is in general an increas-
ing function of U∗ (as seen previously) and M∗. This
higher efficiency of the high-fluid loading limit (large M∗)
confirms the linear analysis in Ref. [14], where the energy
transfer from the fluid-solid system to the electrical circuit
was shown to be more efficient on configurations destabi-
lized by damping. Maximum efficiencies above 10% are
achievable, but it must be pointed out that the efficiency
is strongly dependent on U∗ at higher M∗ as critical flow
velocities leading to mode switching events get closer as
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FIGURE 6: Evolution of the harvesting efficiency with
the tuning ratio β and flow velocity U∗ for α = 0.5 and
M∗ = 1 (top) and M∗ = 10 (bottom). the white line corre-
sponds to the stability threshold.

M∗ is increased (Figure 6). This results in an increased
sensitivity of the device’s performance with the flow ve-
locity.

CONCLUSIONS
The present study provides some important insight

on the coupled dynamics of a classical fluid-solid system
(a fluttering flag) and an output circuit producing electri-
cal energy from the deformation of the structure. It was
shown that the coupling can lead to a destabilization of
the system, corresponding to an increase in the operat-
ing range of the device. The destabilized range of fluid
loading M∗ also corresponds to the highest harvesting ef-
ficiencies. The role of the tuning of the output circuit to
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FIGURE 7: Optimal energy harvesting efficiency as a
function of M∗ and U∗ for α = 0.5. for each value of
(M∗,U∗), the maximum efficiency obtained for the opti-
mal value of β is represented. The white line corresponds
to the minimum stability threshold over all β .

the fluid-solid frequency is here essential: only carefully-
tuned system can harvest a significant amount of energy.

Here, we illustrated the critical role played by the
nonlinear flapping mode selection on the energy harvest-
ing efficiency of the system. The locking of the flag on a
particular dynamics is a strongly nonlinear phenomenon,
and it is expected that it is also influenced by the output
circuit behavior. Further investigation is therefore neces-
sary to understand more completely the factors determin-
ing the nonlinear dominant mode in order to ensure an in-
creased robustness to the harvesting system with respect
to the flow conditions.
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