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Abstract. Shape Memory Alloys (SMAs) present unusual behaviour compared
to more standard linear elastic materials. Indeed, they can accomodate large re-
versibe strain (pseudo-elasticity) or recover their shape, after being strained, by
simple heating (shape memory effect). These behaviours are due to a displacive
first order phase transformation called martensitic transformation. These features
promote their use in many applications ranging from biomedical field to spatial
domain. In the current work, we focus on the pseudoelastic behaviour. To this
end, the thermomechanical constitituve law developped by Moumni and Zaki [1]
is used. Firstly, the behaviour is reduced to a single degree of freedom. Secondly,
inertial effect is considered and the forced oscillations of a device witnessing a
pseudoelastic behaviour are studied. The analysis of the results through frequency-
response curves and Poincaré maps reveals softening behaviour, jump phenomena,
symmetry-breaking bifurcations and occurence of chaos. Results are in good agree-
ment with those found in the literature [2] and using a different modelisation of the
shape-memory effect.
Keywords: hysteresis loop, damping capacity, softening behaviour, chaotic solu-
tions, symmetry breaking, Poincaré map.

1 Introduction

The interesting behaviour of shape memory alloys (SMA) is usually at-
tributed to their ability to undergo a reversible solid - solid phase change
between a parent phase called austenite and a product phase called marten-
site. The transition from austenite to martensite is accompanied by a loss of
crystallographic symmetry, which produces entropy and heat. Austenite can
usually transform into martensite when the SMA is mechanically stressed,
the resulting transformation strain can then be recovered by unloading. This
seemingly elastic yet dissipative behaviour is called pseudoelasticity. During
a pseudoelastic transformation, a considerable amount of heat can be gener-
ated due to phase change, which can result in temperature variations that
readily impact the behaviour of the SMA resulting in a strong thermome-
chanical coupling. This paper is devoted to the computation of the dynamic



response of a pseudoelastic device in isothermal condition. The behaviour of
the device is derived from a full 3D model that has been exhaustively pre-
sented in [1]. It is recalled in section 2. The reduction to a one-dimensional
system is exhibited in section 3 by assuming axial loading of a slender beam,
resulting in a non-linear pseudoelastic spring characteristic. An added mass
ensures inertia effect, and the oscillator model is completed with a dashpot
and external harmonic forcing. Comparing with the model used in [2], [3]
and [4], the originality of the current work is the use of a thermodynamic
admissible 3-D law which allows studying vibrations of either continuous or
discrete systems. The frequency-response of the pseudoelastic device is com-
puted in the vicinity of its eigenfrequency corresponding to purely austenitic
(small amplitude) motions. In the lines of the results presented in [2], a soft-
ening behaviour, characterized by a shift of the resonance frequency to lower
frequencies, is found, resulting in jump phenomena. Moreover, symmetry-
breaking bifurcations and onset of chaotic responses are detected for selected
parameters values.

2 ZM model-3D version

The Zaki-Moumni (ZM) model for shape memory alloys is based on the of
solid-solid phase change modelisation developed by Moumni [5] and was first
introduced by Zaki and Moumni [1]. It was later extended to take into
account cyclic SMA behaviour and training [6], tension-compression asym-
metry [7] and irrecoverable plastic deformation of martensite [8]. The model
is developed within the framework of Generalized Standard Materials with
internal constraints ([9], [5]) in order to guarantee thermodynamic consis-
tency. For the original ZM model, the thermodynamic potential is chosen as
the Helmholtz free energy density taken as:
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In the above equation, ǫA and ǫM are the local strain tensors of austenite
and martensite respectively, T is temperature, z is the volume fraction of
martensite, and ǫori is the orientation strain tensor. SA and SM are the
compliance tensors of austenite and martensite respectively. ρ is the mass
density, G, α, and β are material parameters that influences the shape of the
superelastic hysteresis loop and the slopes of the stress-strain curve during
phase change and martensite orientation. The parameter C(T ) is an energy
density that depends on temperature as follows:

C(T ) = ξ(T − T 0) + κ, (2)



where ξ and κ are material parameters. The state variables obey the following
physical constraints :

• The macroscopic strain tensor ǫ is an average over the REV (Represen-
tative Elementary Volume) of the strain within austenite and martensite
phases. By construction, ǫ is given by

(1− z) ǫA + zǫM − ǫ = 0, (3)

• z is the volume fraction of martensite, restricted to the [0,1] interval,
• The equivalent orientation strain cannot exceed a maximum γ:
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3
ǫori : ǫori ≥ 0. (4)

The above constraints derive from the following potential:
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where the Lagrange multipliers ν1, ν2, and µ are such that

ν1 ≥ 0, ν1z = 0,

ν2 ≥ 0, ν2 (1− z) = 0,
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The sum of the Helmholtz energy density (1) and the potential Wl (5) gives
the Lagrangian L, which is then used to derive the state equations. With
some algebra, the following stress-strain relation is obtained:

σ = S
−1 : (ǫ− zǫori) , (7)

where S is the equivalent compliance tensor of the material, given by

S = (1− z)SA + zSM. (8)

The thermodynamic forces associated with z and ǫori are taken as subgradi-
ents of a pseudo-potential of dissipation D defined as

D = [a (1− z) + bz] |ż|+ z2Y

√

2

3
ǫ̇ori : ǫ̇ori, (9)

where a, b are positive material parameters, and Y is a parameter linked
to the orientation yield stress. This allows the definition of yield functions
for phase change (F1

z and F2
z ) and for martensite orientation (Fori). The

evolutions of the state variables z and ǫori are governed by the consistency



conditions associated with yield functions. If the orientation-finish stress is
lower than the critical stress for forward phase change (i.e. if σrf < σms),
the model is such that the stress-induced martensite is completely oriented
as soon as forward phase change begins.
In the next section, the ZM model will be reduced to 1D dimension in order
to derive the dynamic response of a SMA device.

3 SMAs device-1D version

A single degree of freedom device can be considered by using a SMA beam
with length l and cross-section area S. The SMA beam can be assimilated
to a spring with nonlinear stiffness by studying relative displacement of its
extremities. Figure 1 represents a sketch of the device, where a viscous struc-
tural damping (C) is added to model internal losses that are not contained
into the hysteresis loop. The mass M is subjected to external harmonic exci-
tation of amplitude Emax and frequency ω as: Ee(t) = Emax cos(ωt). Assum-
ing that in the direction (−→x ), σxx =

(

F
S

)

, εxx =
(

X
l

)

and εori,xx =
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)

,
dimensioned model equations are summarized in table 1, where K(z) repre-

sents the nonlinear stiffnes. It is defined by: K(z) =
(

1−z
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+ z
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)−1

, where
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(
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)

(respectively Km =
(

EmS
l

)

) is the the stiffness in austenitic
phase (resp. martensitic phase), related to their respective Young’s modulus
Ea and Em. In the remainder, forward transformation means phase change
from austenitic phase to martensitic one and reverse transformation in the
inverse direction. Finally, Xori is an internal displacement of the device due
to detwinning process and is defined by Xori = Xmaxsgn (F ), where sgn(F )
stands for the sign of F ; a, b, G, α, β, ε0, ξ, κ, θ0 and Y are material param-
eters [1].

Motion equation :

MẌ + CẊ + F (X,z,Xori) = Ee(t)
Behaviour equation :

F (X,z,Xori) = K(z) (X − z.Xori)
Thermodynamic force :
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,

Forward transformation criterion :
F

cri
1 = Az − a (1− z)− bz

Reverse transformation criterion :
F

cri
2 = −Az − a (1− z)− bz

Table 1. Dimensionalized equations



−10 −5 0 5 10
−2

−1

0

1

2

SMA BEAM

Dashpot ( C )

MASS ( M )

x [adim]

f 
[a

d
im

]

Dissipated
Energy

Dissipated
Energy

(a)

(b)

Fig. 1. (a) The pseudo-elastic device (b) Pseudo-elastic behaviour of the SMA beam

For calculations convenience, the following dimensionless equations are introduced
: Ω = ω

ωn
,τ = ωnt, x = X

Xms
,γ = Emax

Fms
,ζ = C

2ωnM
and f = F

Fms
where ωn is

the natural frequency of the device in its austenitic phase and is given by ωn =
√

Ka

M
, Xms and Fms are respectively displacement and force tresholds of forward

transformation. Assuming Ka = Km, the dynamics of the systems is finally given
by:

{

ẍ+ 2ζẋ+ (x− z.xori) = γ cosΩτ (10)

f(x, z, xori) = (x− z.xori) (11)

A Newmark scheme for time integration of motion equation with parameters γ1 = 1

2

and β1 = 1

4
is used, where the internal Newton-Raphson iterations allows incre-

mental fulfillement of the conditions provided by the criteria functions.

4 Results and discussion

In the remainder of the paper, the material parameters and the damping
coefficient have been set to: a=17.920Mpa , b=17.920Mpa , ε0 = 0.112 ,
α = 1.4732Gpa , β = 1.4732Gpa , G = 26.88Mpa ,κ = 8.68Mpa , ξ =
0.53114Mpa/oC , T0 = 233.3498K , Af = 238.5945K , Y = 164Mpa , Ea =
50Gpa ,Em = 50Gpa and ζ = 0.05. These values have been identified from
the simulations shown in [2] in order to compare results. Frequency-response
curves are obtained, for a given excitation frequency Ω, by numerical integra-
tion. The transient is removed and the maximal value of the displacement
is recorded. Ω is then increased and decreased so as to obtain all stables
branches of solutions. Figure 2 (a) shows the results obtained for increasing
values of γ. For γ = 0.1, the response is linear, as no phase change is involved
for that amplitude of response. For γ = 0.2 and γ = 0.5, the amplitude of
the response exceeds 1: phase transformation occurs and the non-linear be-
haviour is characterized by a softening-type nonlinearity, as the resonance



frequency is seen to shift to lower values. Indeed, the equivalent stiffness
of the pseudoelastic oscillator decreases. Saddle-node bifurcation points are
then noted at points A, B,C and D, where jump phenomena are observed:
when continuously varying the excitation frequency, the solution jumps to a
stable solution to another one. For highest amplitude γ = 0.8, an additional
branch of solutions is found between points F and G, it corresponds to cases
where the phase transformation is completed ; the material becomes fully
martensitic. The solution branch is bent to high frequencies as the stiffness
increases from the transition plateaus to the purely martensitic case, with a
volumic fraction z equal to 1. These results agree well with those in [2]. To
go beyond, the amplitude γ = 1.2 is computed, results are shown in Fig. 2
(b). Before the resonance, for Ω ∈ [0, 0.5], a succession of erratic points are
found, corresponding to the occurrence of superharmonic resonances of differ-
ent orders. In order to get insight into the observed regimes for Ω ∈ [0, 0.5],
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Fig. 2. (a)xmax vs. Ω at different γ, (b) xmax vs. Ω at γ = 1.2

Poincaré maps are computed by making a stroboscopy of the response at the
excitation frequencies. Results are presented in Fig.3, they clearly show the
presence of chaos for a narrow frequency band [0.22, 0.28]. By decreasing
the excitation frequency, a period-doubling route to chaos is observed from
point D. On the other hand, for Ω ∈ [0, 0.22], periodic solutions persist.
The chaotic solutions at the beginning of their existence window, namely for
Ω = 0.23, are shown in Fig.4(a). The temporal solution shows that chaos
is driven by the erratic behaviour of the enveloppe. Phase portrait reveals
a fractal attractor. Interestingly, Fig.4(b) shows the emergence of even har-
monics in the FFT of the displacement signal although the behaviour is sym-
metric. This shows that the bifurcation scenario when entering the chaotic
window from low-frequencies is that of a symmetry-breaking bifurcation, as
already observed in the Duffing oscillator [10].
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Fig. 3. Poincaré map at γ = 1.2

200 400 600 800
−10

−5

0

5

10

0 0.5 1 1.5 2 2.5 3

10
−10

10
−5

10
0

−10 −5 0 5 10
−4

−2

0

2

4

−10 −5 0 5 10
−4

−2

0

2

4

x 
[a

d
im

]

τ [adim] Ω [adim]

FFT(x)

(a) (b)

(c) (d)

x [adim]

v 
[a

d
im

]

x [adim]

f 
[a

d
im

]

Ω

2Ω
3Ω

4Ω 5Ω
6Ω 7Ω

8Ω
9Ω 10Ω 11Ω

Fig. 4. (a) x vs. τ , (b) FFT(x) vs. Ω, (c) v vs. x and (d) f vs. x at γ = 1.2 and
Ω = 0.23 :



5 Conclusion

The non-linear dynamic responses of pseudoelastic SMAs have been studied
through reduction of a complete 3D model to a single degree-of-freedom os-
cillator. Results shows the emergence of chaotic solutions in the computed
responses, for high values of the forcing amplitude. The chaotic region is de-
limited by a symmetry-breaking bifurcation and a period-doubling scenario.
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