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Abstract—We establish generic properties for singular tra-  exists a nonzero paif\(-), \), where \° is a nonpositive
jectorie_s, first for driftless, and then for control-affine sy_stems, real number and\(.) is an abso|ute|y continuous covector
extending results of [17], [16]. We show that, generically — f,nction on|0, T'] called theadjoint vector such that\(¢) €

for the Whitney topology — nontrivial singular trajectories are . . -
of minimal order and of corank one. As a consequence, if T;(t)M and the following equations are satisfied for almost

the number of vector fields of the system is greater than or all t € [0, T7:
equal to 3, then there exists generically no singular minimizing

; H
ajectory. (1) = 20, 7(0), X0, ),

- IMTROPUETION - M) = =2 (a(0), A0 A, ut), @

Let M be a smooth (i.eC*) manifold of dimensiom, O

xg € M andT a positive real number. Consider the control aj(x(t)’ A1), A%, u(t) =0,
system(X) defined onM by Iu

. where

l‘(t) = f(x(t)vu(t))7 1)

0 — 0 £0
where the mapping, defined onM x U, is smooth, and/ is H(@, A 2% u) o= 3, fz,w)) + A0 (2, 0)
an open subset &™, m > 1. A controlu € L>=([0,T],U) s the hamiltonianof the system.
is sa_ld to beadmlssubl_elf the trajectoryz(-, zp,u) of (X) An extremalis a 4-tuple (z(-), A\(-), A%, u(-)) solution of
solution of (1), associated to the contre] and such that the system of equations (2). The extremal is said todrenal
z(0,x0,u) = xo, is well defined on[0,T]. Let I/ denote jf \0 # 0 and abnormalif \° = 0.
thg set of admissible controls; it is an open subset of |y particular a trajectory is singular if and only if it is the
L>=([0,T],U). Define onA the end-point mappindy projection of an abnormal extremal. A singular trajectory is
By (1) = (T, 2o, u). said to bestrictly abnormalif it is not the projection of a
' normal extremal.

With the assumptions made previousH,, r is a smooth Note that a singular trajectory is of corank one if and only
map. if it admits a unique abnormal extremal lift. It is strictly

Definition 1.1: A control v € U/ is said to besingular abnormal and of corank one if and only if it admits a unique
on [0,T] if w is a critical point of the end-point mapping extremal lift which is abnormal.

E,, . 1.e. its differential atu, DE,, r(u), iS not surjective. . ) . . . )
A trajectory z(t, zo, u) is said to besingular on [0, 7] if u Singular trajectories play a major role in optimal control

is singular and of corank one if the codimensiorZin}/ of theory. They appear as singularities in the set of solutions of a
the range off,, r(u) is equal to one. c.o_ntrolls.ysFem.; as a result, they are not dependentlon thg spe-
Let + € M. Consider the following optimal control cific minimization problem. In partmqlar, _the_conS|d_erat|0n
problem: among all the trajectories ¢E) steeringz to pf abnormal ex.tremals W!th nu.II hamiltonian is crucial. Thg
z, determine a trajectory minimizing theost issue of s_;uch singular trajectories was glready weII-k_nown in
the classical theory of calculus of variations (see for instance

O (u) = /T £, u)dt [10]) and proved Fo be a major focus, during.the fort.ies,

o ’ ’ when the whole issue eventually developed into optimal

control theory. Their role in the nonlinear control theory is
reviewed in [11] and [29]. For a long time, there had been a
suspicion that such minimizing singular trajectories actually

where f© : M x U — R is smooth. Then thevalue
function St at the pointz is defined as the infimum over the

costs of the trajectories df) steeringao 10« in time T. ;0. Carathodory and Hilbert were already familiar with

The P_ontryagln MaX|mun_1_Pr|nC|pIe _(see_ [26]) prow_des th?he rigidity phenomenon (see [31]), while Bismut provides
following necessary condition for optimality. If the trajectoryClear evidence of their existence in [9]. Attempts have been

z(-) associated ta: € U is optimal on{0, T}, then there made, however, to ignore singular trajectories, on the (false)
Y. Chitour is with LSS Suplec, Univ. Paris Sud, Orsay grounds that they are never optimal. In [23], Montgomery
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impetus to wide-ranging research with view to identifying thevhere|-, -] stands for the Lie bracket between vector fields.

role of abnormal extremals in sub-Riemannian geometry. Hence, along abnormal extremals, the following relations
The optimality status of singular trajectories was chiefiyhold:

investigated by [13], [30] in relation to control-affine sys- h; =0, i=1,...,m. (4)

tems, by [2], [22], [30] regarding driftless systems and b ) L .

[4], [27] more generally, as these singularities are address)éé( differentiating (4), one gets far=1,...,m,

in a generic context. This research leads to results showing m

the rigidity (see also [15]) of singular trajectories, which hij(t)u;(t) =0, foralmostallt € [0,7].  (5)
means that they are locally isolated from trajectories having J=1
the same boundary conditions; thus they are loogfiimal Definition 2.1: Along an abnormal extremal

Besides, the existence of minimizing singular trajectoriegz(-), A(-),0,u(-)), the Goh matrix at time ¢t € [0,7]
is closely related to the regularity of the value function, seg them x m skew-symmetric matrix given by
[29]. First, in terms of sub-Riemannian geometry, in [5], [6],
the authors are showing that, in the absence of a nontrivial G(t) = (hij (t))lgi,jgm' (6)
minimizing singular trajectory, the sub-Riemannian distance |; is clear that the rank(¢) of G(t) is even. If moreover
dsr(0,.) to zero is subanalytic in a pointed neighborhood ofs gyen, the determinant 6f(#) is the square of a polynomial
zero and that, consequently, the spheres with small positi\js(t) in the h;;(¢) with degreem,/2, called the Pfaffian

radius are subanalytic. In [7], the authors are showing thﬂlong the abnormal extremal, there hold¥t) = 0, and
this situation is valid for a dense set of distributions (forfer gifferentiation, one gets ' ' ’

the Whitney topology) of rank superior or equal to three.
In terms of control-affine systems, it is proved in [28] that
the absence of a minimizing singular trajectory implies the
subanalyticity of the value function. _
In this paper, we investigate generic properties for singulddefine the(m+1) x m matrix G(t) asG(t) augmented with

trajectories, both for driftless and for control-affine systemshe row ({P, h; }(t))1<j<m.

We first adapt techniques and ideas of [17] to driftless As a consequence of (5), one gets that, along an abnormal
systems, and then, extend them to control-affine systenextremal, at almost all € [0, T'], the corresponding singular

> us (P hs}(t) = 0. ()

The results we obtain generalize those of [22] and [14Lontrolu = (u1,...,u.) is in the kernel of the Goh matrix,
which are dealing respectively with driftless systems with.e.
two vector fields and single-input control-affine systems; we G(t)u(t) = 0.

also improve some results of [7] and finally we list severallf . , 7 th hold
consequences of these properties. m is even, using (7) there holds moreover

G(t)u(t) = 0.
II. SINGULAR TRAJECTORIES FOR DRIFTLESS
CONTROL SYSTEMS Thus, if m is odd andr(t) = m — 1 (resp. if m is even
o and 7(t) = m — 1), one can deduce from that relation an
A. Definitions expression foru(t), up to the sign. This fact motivates the

Let M be a smoothp-dimensional manifold, an@ be a  following definition.

positive real number. Consider the driftless control system Definition 2.2: With the notations above, ifn is odd
(resp. even), a singular trajectory is said to dfeminimal

. = order if it admits an abnormal extremal lift along which
#(t) = Zui(t)ﬂ(m(t))’ ©)  the set of timest e [0,T] wherer(t) = m — 1 (resp.
=t 7(t) = m — 1) is of full Lebesgue measure i, 7.
where(f1,..., fm) is anm-tuple of smooth vector fields on  Remark 1:This set is moreover open. Note that this
M, and the set of admissible contrals= (ui,...,u,,) is definition is stronger than the corresponding one of [14],
an open subset at>°([0,77],U). in which the set is assumed to be dense only.

Note that the set of trajectories of (3) is not in general On the opposite, for arbitrary, a singular trajectory is
a manifold: its singularities correspond exactly to singulasaid to be &oh trajectoryif it admits an abnormal extremal
trajectories. lift along which the Goh matrix is identically equal to zero.
Following the Pontryagin Maximum Principle [26], every .
singular trajectoryz(-) is the projection of an abnormal B. Main result

extremal. Let\(-) be an adjoint vector associated#¢). For singular trajectories of driftless systems, we have the
For everyt € [0,T] andi,j € {1,...,m}, we define following result, which follows readily from [17].
Theorem 2.3:Let m be a positive integer such that<
hi(t) = (A(¢), fi(z(t)), m < n and letF,, be the set ofm-tuples of independent

vector fields onV/ endowed with the®>° Whitney topology.
hij (t) == (A1), [fi, fi](z(1))), There exists an open sé&?,, dense inF,, so that, for



everym-tuple (f1,..., fm) in O,,, every nontrivial singular
trajectory of (3) is of minimal order and of corank one.
In addition, for every integek, the setO,,, can be chosen
so that its complement has codimension greater tharet
O be the intersection over alt of the latter subsets;
then O;° shares the same properties as the @gt with
the following differencesO:° may fail to be open, but its
complement has infinite codimension.
Corollary 2.4: With the notations of Theorem 2.3,4if, >
3 then there exists an open s@t, dense inF,, so that, for
every m-tuple (f1,..., fm) in O,,, the system (3) has no
nontrivial Goh singular trajectory.

Define the(m+2) x (m+1) matrix G(t) asG(t) augmented
with the rOW({?, hj}(t))()gjgm-

If m is even and the Goh matriX(t) at timet is invertible
(resp. if m is odd andG(t) is of rankm), then, as done in
the driftless case, we can deduce from Equations (10) and
(12) the singular controk(t). Let us then set the following
definition.

Definition 3.2: If m is even (resp. odd), a singular trajec-
tory is said to beof minimal orderif it admits an abnormal
extremal lift along which the set of timese [0, 7] where
rank G(t) = m (resp. rankG(t) = m) is of full Lebesgue
measure in0, 7.

Remark 2:1f m is Odd, there eX'iStS an Qpen dense subset On the Opposite, for arbitrami a singu|ar trajectory is
of M such that through every point of this subset passessajd to be aoh trajectoryif it admits an abnormal extremal

nontrivial singular trajectory (see also [24]).

I1l. SINGULAR TRAJECTORIES FOR
CONTROL-AFFINE SYSTEMS

A. Definitions
Let M be a smoothp-dimensional manifold and |&f be

a positive real number. Consider the control-affine syste
given by

B(t) = folw(t) + Y uit) fi(x(t), ®)
i=1

where (fo,..., fm) is an (m + 1)-tuple of smooth vec-
tor fields on M and the set of admissible controls =
(uq,...,um) is an open subset di>° ([0, 7], U).

Recall that a singular trajectory(-) is the projection of
an abnormal extremdk:(-), A(-)). Similarly to the previous
section, we define, for € [0,T] and¢, j € {0,...,m},

hi(t) == (), fi(x(t)),
hij(8) == (A@), Lfi, £5]1(2(8)))-

Along an abnormal extremal, we have for ak [0, 71,

ho(t) = constant h;(t) =0, i=1,....,m. (9)
Differentiating (9), one gets for € {0,...,m},
hio(t) + Y hij(t)u;(t) = 0. (10)
j=1
Similarly to Definition 2.1, we set the following.
Definition 3.1: Along an abnormal extremal

(z(:),A(-),u(-)) of the system (8), theGoh matrix
G(t) (resp. the augmented Goh matrixG(t)) at time
t € 10,7 is them x m skew-symmetric matrix given by

G(t) = (hij(t))lgi,jgm (11)

(resp.G(t) := (hij (1) g<; jpm)-

If moreoverm is odd, the determinant af(t) is the square
of a polynomial P(t) in the h;;(t) with degree(m + 1)/2,
called thePfaffian Along the extremalP(t) = 0, and, after
differentiation, one gets

{P, ho}(t) + _Z u; (){P, h;}(t) = 0. (12)

lift along which the Goh matrix is identically equal

B. Main result

Theorem 3.3:Letm be a positive integer with < m < n
and.F,, .1 be the set ofm+1)-tuples of linearly independent
r%mooth vector fields o/, endowed with the”>° Whitney
topology. There exists an open s8%,,; dense inF,, i
so that, for all(m + 1)-tuple (fo,..., fm) Of Opy1, every

singular trajectory of the associated control-affine system

m

&(t) = fo(x(t)) + Z ui(t) fi(z(t)),

is of minimal order and of corank one. In addition, the
complementary 00,, ;1 in F,,11 is of infinite codimension.

Corollary 3.4: With the notations of Theorem 3.3 and if
m > 2, there exists an open s8%,, 1, dense inF,,; so that
every control-affine system defined with &n + 1)-tuple of
Om+1 does not admit Goh singular trajectories.

We next deduce another corollary but before doing so, we
need the following definition.

Definition 3.5: Let (fo,..., fm) be an(m + 1)-tuple of
smooth vector fields od/ and its associated control-affine
system be defined b§g). A trajectoryz(-) of (8) associated
to a controlu(-) is said to berigid on [0,T] if there exists
e > 0 such that, for every € [T'— ¢, T + ¢] and for every
admissible controb € L>°([0,¢],U), we have

By 1(0) # By 1(u).

In other words, the point(7’) is reachable for times close
to T only with the controlu. (For results regarding rigid
curves, see for instance [3], [15].)

We have the following result.

Corollary 3.6: With the notations of Theorem 3.3 and if
m > 2, there exists an open s84,,,; dense inF,,,; so that
every control-affine system, defined with &m + 1)-tuple
of O,,+1, does not admit rigid trajectories.

IV. CONSEQUENCES IN OPTIMAL CONTROL

We keep here the notations of the previous sections. Let
(X) be a control system, which is either driftless, of the
type (3), or control-affine, of the type (8). Consider the



optimal control problem associated (&), corresponding to
the minimization of the quadratic cost given by

Cr(u)

= /T (u(t)TUu(t) + g(w(t)))dt (13)

0
whereU is a (m x m) real positive definite matrix,

Ul (t)
ut) =1+ |,
U (1)

m IS a positive integer, and is a smooth function o/ .
Let zo € M andT > 0 be fixed. Recall that thealue

control-affine system defined by(az+1)-tuple (fo, . . .
of Oy, Is strictly abnormal.

Corollary 3.4 together with Proposition 4.4 yield the next
corollary.

Corollary 4.5: Let m > 2 be an integer. There exists an
open set0,,,.1 dense inF,,; so that every control-affine
system defined with &n+1)-tuple of O,,,.1 does not admit
minimizing singular trajectories.

Corollary 4.6: In the context of Corollary 4.5, if in addi-
tion the functiong and the vector fields of then + 1)-tuple
in O,,+1 are analytic, then the associated value functign
is continuous and subanalytic on its domain of definition.

Remark 5:If there exists a nontrivial minimizing trajec-

s fm)

functionassociated to this optimal control problem is definegory, the value function may fail to be subanalytic, even

by

Sgo,r(x) = nf{Cr(u) | Eyyr(u) =x} (14)

continuous. For example, consider the control-affine system
in R?

The regularity of the associated value function was studied
in [5], [7] for driftless systems, and in [28] for control-
affine systems. Its subanalyticity is intimately related to the
existence of nontrivial minimizing trajectories starting from
Zo-

A. Driftless control systems

the strictly abnormal property.

Proposition 4.1: There exists an open dense suliggt of
F. such that every nontrivial singular trajectory of a driftless
system defined by au-tuple (f1,..., fm) of Oy, is strictly
abnormal.

() = 1+y(t)?%

i16) = (), )

and the cost

@@:Au@%. (16)

The trajectory(z(t) = t,y(t) = 0), associated to the control
The next result, adapted from [12], states the genericity of =
value functionS g o)1 is not continuous at0, 0) (see [28]
for details).

0, is a nontrivial minimizing singular trajectory, and the

V. CONCLUSION

In this paper, we have shown that a large class of sys-

As a byproduct of the above proposition and Corollary 2.4ems (generic in a strong sense) enjoys important properties

we get the next result.

regarding their singular trajectories. Namely, the latter are

Corollary 4.2: Let m > 3 be an integer. There exists anof minimal order and of corank one and excluded from
open dense séd,, of F,, such that every driftless systemoptimality of many quadratic optimal control problems.
defined with am-tuple of O,, does not admit nontrivial These properties should have further consequences for mo-

minimizing singular trajectories.

tion planning, stabilization, and in Hamilton-Jacobi-Bellman

This result implies the subanalyticity of the value functiortheory.

in the analytic case (for a general definition of subanalyticity,
see e.g. [20]).

Corollary 4.3: In the context of Corollary 4.2, if in addi- [1]
tion the functiong and the vector fields of the:-tuple in
Oy, are analytic, then the associated value functfanis [

continuous and subanalytic on its domain of definition.
Remark 3: The previous results may be interpreted in the
context of sub-Riemannian geometry, f6r= Id andg = 0
(see [17]). In particular, the above value function is related td4]
thesub-Riemannian distan¢and thus is always continuous). 5
Remark 4:If there exists a nontrivial minimizing singular
trajectory, then the value function may fail to be subanalyticlel
(see for instance the Martinet case in [1]). 7]

(8]

(3]

B. Control-affine systems

The next three results correspond respectively to Prop
sition 4.1, Corollary 4.2, and Corollary 4.3, in the control-
affine case.

Proposition 4.4: There exists an open dense suli@gt, ;
of F,,+1 such that every nontrivial singular trajectory of a

(20]

[11]
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