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2 Sonia Fliss et al.

1 Introduction

Transparent boundary conditions for 2D periodic media have been studied exten-
sively in the last years, see for example [11,7,6,2,1]. These transparent boundary
conditions are based on Dirichlet-to-Neumann (DtN) maps, and are applied to scat-
tering problems at local defects in 2D periodic media, e. g. a 2D photonic crystal
(PhC) with a local perturbation of its holes or rods respectively. Recently, this DtN
approach was rigorously extended to the band structure calculation of 2D PhC wave-
guides [5]. The numerical realization of these DtN transparent boundary conditions
with the high-order finite element method (FEM) was shown in [13]. The numerical
solution of the resulting non-linear eigenvalue problem was also addressed in [13].

The DtN maps are defined via Dirichlet problems in infinite half-strips and their
computation requires the solution of local Dirichlet problems in a unit cell of the
periodic medium. By solving these Dirichlet problems the band gaps of the periodic
medium can be deduced. Band gaps are frequency intervals for which monochromatic
waves cannot propagate in the periodic medium. Due to the perturbation, authorized
frequencies may appear inside these forbidden intervals of frequencies. The modes
associated to these authorized frequencies are the so called guided modes which prop-
agate along the line defect of the PhC wave-guide and vanish inside the periodic
media. In order to compute guided modes, we therefore aim to define and compute
the DtN maps at all frequencies in the band gaps. However – and this is the main
disadvantage of the DtN approach — both, the Dirichlet problems in the infinite half-
strips as well as the local Dirichlet cell problems, have frequency eigenvalues, so
called global and local Dirichlet eigenvalues respectively. For these countable sets of
Dirichlet eigenvalues the Dirichlet problems in the infinite half-strips and the Dirich-
let problems in the unit cell, respectively, are not well-posed [11], and hence, the DtN
maps are not well-defined at global Dirichlet eigenvalues and their computation is not
stable at local Dirichlet eigenvalues. This disadvantage can be overcome by introduc-
ing Robin-to-Robin (RtR) maps instead of DtN maps [4,8]. The RtR maps are well
defined at all frequencies outside the essential spectrum.

The computation of these RtR maps is, however, more involved than the computa-
tion of the DtN maps. This explains the small number of publications on this method.
In this paper we aim to explain the construction of these RtR transparent boundary
conditions and elaborate on their numerical realization. We shall also introduce DtN
maps which are based on local Robin cell problems and which are thus also com-
putable at Dirichlet eigenvalues of the local cell problems. However, these DtN maps
remain ill-posed at Dirichlet eigenvalues of the infinite half-strip problems. The appli-
cation that we will deal with are band structure calculations of 2D PhC wave-guides
and the computation of surface modes at the boundary of a periodic medium with
homogeneous Dirichlet boundary conditions.

This paper is organized as follows: in Section 2 we will introduce the model
problems. The definition, characterization and discretization of the RtR operators is
presented in Section 3. In Section 4 we transform the model problems, which are
posed on unbounded domains, to non-linear problems on bounded domains using
the previously defined RtR operators. The discretization and numerical solution of
these non-linear eigenvalue problems is also shown in Section 4. Numerical results
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RtR transparent boundary conditions for PhC wave-guides 3

of our model problems, including a comparison of the results when employing RtR
and DtN maps, are presented in Section 5. Finally, we will give concluding remarks
in Section 6.

2 Model problem

2.1 The geometry of photonic crystals and photonic crystal wave-guides

2D PhCs are generally described by a periodic permittivity ePhC : R2 ! R+ \ {0},
which is bounded from below and above, and which satisfies the periodicity con-
ditions ePhC(x+ ai) = ePhC(x), i = 1,2, where — without loss of generality — we
assume that a1 = a1 (1,0)

T, a1 > 0. In most applications, ePhC takes some constant
value in the holes or rods and some other constant value in the bulk.

For the permittivity ewg :R2 !R+ \{0} of a 2D PhC wave-guide with line defect
of height a0

22 > 0 we choose the piecewise definition

ewg(x) =

8

>

<

>

:

e�PhC(x), if x 2 W�
PhC := R⇥]�•,�a0

22/2[,

edefect(x), if x 2 Wdefect := R⇥]� a0
22/2, a0

22/2[,

e+PhC(x), if x 2 W+
PhC := R⇥]a0

22/2,•[,

where a

�
1 = a

0
1 = a

+
1 = a1 (1,0)

T and a

0
2 = (a0

21,a
0
22)

T, see Figure 2.1(a).
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a1
Wdefect

W�
PhC

W+
PhC

(a) Sketch of the domain Wwg = W+
PhC [Wdefect [W�

PhC of
a PhC wave-guide with homogeneous line defect, PhC of
square lattice below the defect, and PhC of hexagonal lat-
tice on top of the defect.

C+
1

C+
2

C+
3

C+
4

C+
5

C0

C�
1

C�
2

C�
3

C�
4

S+

S� S�
L S�

R

S 0
L S 0

R

S+
L S+

R

(b) Sketch of the periodicity
strip S = S+ [C0 [ S� of the
PhC wave-guide presented on
the left, its unit cells and left
and right boundaries.

Fig. 2.1 Sketch of a PhC wave-guide and its periodicity strip S.
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4 Sonia Fliss et al.

2.2 Model problem of finding guided modes

In PhC wave-guides there exist guided modes, also called trapped modes, which are
eigensolutions of the time-harmonic Maxwell’s equations and which propagate along
the line defect (i. e. along the x1-axis) while decaying in the directions orthogonal to
the line defect (i. e. along the x2-axis).

In 2D the time-harmonic Maxwell’s equations decouple into a transverse mag-
netic (TM) and a transverse electric (TE) mode that satisfy a 2D linear Helmholtz
equation [10]. For simplicity let us consider the TM-mode, for which

�DE(x)�w2e(x)E(x) = 0, x 2 R2,

defines the electric field E in x3-direction.
All results of this article can easily be transferred to the TE-mode for which the

magnetic field H in x3-direction satisfies

�— · 1
e(x)

—H(x)�w2H(x) = 0, x 2 R2.

A guided mode is, by definition, a non trivial solution of

�Dek(x)�w2e(x)ek(x) = 0 (2.1a)

in the infinite strip S = S+ [C0 [ S� ⇢ R2, c. f. Figure 2.1, which satisfies quasi-
periodic boundary conditions

ek |SR
= eik|a1|ek |SL

, ∂
n

ek |SR
=�eik|a1|∂

n

ek |SL
, (2.1b)

at the left SL = S+
L [ S 0

L [ S�
L ⇢ ∂S and right SR = S+

R [ S 0
R [ S�

R ⇢ ∂S bound-
aries of S, and a decay condition for |x2|! •. The parameter k 2 B is the so-called
quasi-momentum in the one-dimensional Brillouin zone B = [�p/|a1|,p/|a1|], and the
operator ∂

n

denotes the normal derivative, i. e. ∂
n

= n ·— with the unit normal vector
n outward to the domain S.

2.3 Model problem of finding surface modes

The computation of surface modes is the second model problem that we want to intro-
duce. In comparison to guided modes, surface modes are modes that are guided along
the surface rather than a line defect. The computational domain of the surface mode
problem is in principle equivalent to the one of the guided mode problem sketched in
Figure 2.1, except that the top (or bottom) half plane W+ (or W�) are replaced by a
medium for which the electric field E (TM-mode) or the magnetic field H (TE-mode)
vanishes, and the permittivity edefect in the line defect is chosen to be equivalent to
the permittivity e�PhC (or e+PhC). Taking the line defect Wdefect into account, guarantees
that we can simply use all results of this paper that are developed for the guided mode
problem. In other words, the surface modes are defined as the non trivial solutions of

�Dek(x)�w2e(x)ek(x) = 0 (2.2a)
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RtR transparent boundary conditions for PhC wave-guides 5

in the half-infinite strip C0 [ S� ⇢ R2 which satisfy quasi-periodic boundary condi-
tions

ek |SR
= eik|a1|ek |SL

, ∂
n

ek |SR
=�eik|a1|∂

n

ek |SL
, (2.2b)

at the left and right boundaries SL and SR, respectively, a homogeneous Dirichlet
boundary condition

ek |G+
0
= 0, (2.2c)

at the top boundary G +
0 =C0 \C+

1 , and a decay condition for x2 !�•.

2.4 Transformation to periodic problem and spectral properties

In this section we will briefly summarize some spectral properties of problem (2.1).
For more details and proofs the reader is referred to [5] and [13].

Before we can present the spectral properties we need to introduce several func-
tion spaces. Let H1(S) be the usual space of square integrable functions in S whose
gradient is also square integrable. Then we define the periodic space

H1
per(S) :=

n

u 2 H1(S) with u |SL
= u |SR

o

.

Moreover, let H1(D , S) be the subspace of H1(S) with functions whose Laplacian
is square integrable. Then we define

H1
per(D , S) :=

n

u 2 H1(D , S)\H1
per(S) with ∂

n

u |SL
=�∂

n

u |SR

o

.

Let G ±
0 = ∂S± \ ∂C0 denote the boundaries between the top and bottom half-

strips S± and the defect cell C0. Then we define H1/2
per(G ±

0 ) as the trace of H1
per(S±) on

the boundary G ±
0 and H�1/2

per (G ±
0 ) as its dual space.

With these definitions and the substitution ek(x) = eikx1u(x), the eigenvalue prob-
lem (2.1) is equivalent to: find (w2,k) 2 R+⇥B such that there exists a non-trivial
u 2 H1

per(D , S) that satisfies

�(—+ ika1) · (—+ ika1)u(x)�w2e(x)u(x) = 0, x 2 S. (2.3)

Then we call (w2,k) an eigenvalue couple of (2.3) with associated eigenfunction
u. This eigenvalue problem is linear in w2 when fixing k 2 B, the so called w-
formulation, and quadratic in k when fixing w 2 R+, the so called k-formulation.
However, note that this problem is posed on the unbounded domain S.

Now let us come to the spectral properties of (2.3) as shown in [5,13], which are
relevant for this work. For any k 2 B we will denote the set of frequencies w2 for
which Bloch modes [14] in the PhC W+

PhC on top or in the PhC W�
PhC below the defect

exist by sess(k) ⇢ R+. This set, called essential spectrum of the operator related to
the eigenvalue problem (2.3), satisfies

sess(k) = R+ \
N(k)
[

n=1
In(k),
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6 Sonia Fliss et al.

with N(k) open intervals In(k)⇢R+, the so called band gaps [13] (0  N(k)= •).
We suppose in the following that there exists at least one band gap (N(k)� 1). Inside
the band gaps In(k), n = 1, . . . ,N(k), k 2 B, there exist only isolated eigenvalues of
finite multiplicity which can only accumulate at the boundaries of the band gaps In(k)
[5]. Let the isolated eigenvalues w2

m(k), m= 1, . . . ,M(k), of (2.3) inside the band gaps
In(k), n = 1, . . . ,N(k), be ordered such that

0  w2
1 (k) . . . w2

M(k)(k)

with 0  M(k) •. Then we can define so called dispersive curves (of the first kind)

f (1)m (k) = w2
m(k), m = 1, . . . ,M(k),

that are 2p
|a1|

-periodic, even and continuous [5]. On the other hand, there exists an
alternative ordering m 7! em(m) of the eigenvalues w2

m(k), m = 1, . . . ,M(k), such that
the dispersive curves of the second kind

f (2)m (k) = w2
em(m)(k), m = 1, . . . ,M(k),

are analytic [12].

3 The Robin-to-Robin operators

In this section we define the RtR operators, show there characterization using local
cell problems and a quadratic operator equation. Finally, we will elaborate on the
discretization of the RtR operators and the local cell problems.

3.1 Definition of the Robin-to-Robin operators

The RtR operators are defined through Robin problems in the infinite half-strips S±.
But before we introduce these problems, let us give some introductory remarks on
the RtR operators and all other (local) operators that we will introduce later in this
section and that map a Robin trace to another Robin trace. We will classify Robin
traces in this work by forward and backward. Note that any Robin trace can be split
into a Neumann trace (with a certain direction) and a Dirichlet trace. We will denote
a Robin trace as forward, if its Neumann trace points away from the line defect, and,
on the other hand, the Robin trace is called backward, if its Neumann trace points
towards the line defect. For example, let v 2 H1

per(D , S), then ∂2v is a forward Robin
trace in the infinite half-strip S+ whereas it is a backward Robin trace in S�. While
the directions of the Neumann traces vary in this work (either forward or backward),
the Dirichlet traces are always the same. The Robin traces that we will deal with in
this work always take the form ±∂2v+ iav with some a 2 R\{0}.
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RtR transparent boundary conditions for PhC wave-guides 7

Now let us come to the Robin problems in the infinite half-strips S±. For any
forward Robin trace j 2 H�1/2

per (G ±
0 ) we seek u±(j) ⌘ u±(· ;w,k,j) 2 H1

per(D , S±)
such that

�(—+ ika1) · (—+ ika1)u
±(j)�w2 e u±(j) = 0 in S±, (3.1a)

(±∂2 + ia)u±(j) = j on G ±
0 . (3.1b)

The following result is the main advantage of the RtR method compared to the
DtN method [4].

Theorem 3.1 If w2 /2 s±
ess(k), the problem (3.1) is well-posed in H1

per(D , S±).

Theorem 3.1 guarantees well-posedness of (3.1) at all frequencies w2 /2 s±
ess(k). If

the Robin boundary condition is replaced by a Dirichlet boundary condition, as done
in [5,13] for the DtN method, the problem is well posed except for a countable set of
frequencies w2 which corresponds to the Dirichlet eigenvalues of the problem in the
infinite half-strip. We will call these frequencies global Dirichlet eigenvalues.

Then, for any forward Robin trace j 2 H�1/2
per (G ±

0 ) on G ±
0 , the RtR operators

R±(w,k) 2 L(H�1/2
per (G ±

0 )) are defined as the backward Robin trace of u±(· ;w,k,j)
on G ±

0 , i. e.
R±(w,k)j = (⌥∂2 + ia)u±(· ;w,k,j) |G±

0
. (3.2)

3.2 Characterization of the Robin-to-Robin operators

In this subsection we explain how we can compute the RtR operators using local cell
problems and a quadratic operator equation.

First, we note that the infinite strips S± on top and bottom of the guide can be
expressed as union of an infinite number of periodicity cells C±

n , n 2 N, i. e. S± =
S•

n=1 C±
n , c. f. Figure 2.1(b). The top and bottom boundaries of these cells C±

n shall
be denoted by G ±

n�1 and G ±
n , i. e. G ±

0 =C0 \C±
1 and G ±

n =C±
n \C±

n+1 for n � 1. We
also note that — due to the periodicity and the infinity of the half strips — all cells C±

n
can be identified by the first cell C±

1 and all boundaries G ±
n can be identified by the

first boundary G ±
0 . This implies that we can identify all functions of C±

n by functions
of C±

0 , and, similarly, all functions of G ±
n by functions of G ±

0 . In [13] we introduced
shift operators that allow for a rigorous notation of this identification. However, for
simplicity of notation we shall refrain from introducing these shift operators in this
work, keeping in mind, that such an identification is possible.

We start by introducing two propagation operators.

– The forward-forward propagation operator P±
ff (w,k) 2 L(H�1/2

per (G ±
0 )), defined

by
P±

ff (w,k)j = (±∂2 + ia)u±(· ;w,k,j) |G±
1
,

maps the forward Robin trace j 2 H�1/2
per (G ±

0 ) on G ±
0 to the forward Robin trace

of the infinite half-strip solution u±(j) of (3.1) on G ±
1 . This operator is com-

pact (using interior elliptic regularity of the solution), injective (using the well
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8 Sonia Fliss et al.

posedness of problem (3.1) and unique continuation arguments), and its spectral
radius is strictly less than one (this is linked to the L2-property of the solution
u±(· ;w,k,j)). The proof of these properties is the same as in [11,4].

– The forward-backward propagation operator P±
fb(w,k) 2 L(H�1/2

per (G ±
0 )), defined

by
P±

fb(w,k)j = (⌥∂2 + ia)u±(· ;w,k,j) |G±
1
,

maps the forward Robin trace j 2 H�1/2
per (G ±

0 ) on G ±
0 to the backward Robin trace

of the infinite half-strip solution u±(j) on G ±
1 .

Now we define local cell problems: for any forward Robin trace j 2 H�1/2
per (G ±

0 )

on G ±
0 and any backward Robin trace y 2 H�1/2

per (G ±
1 ) on G ±

1 find u±loc(j,y) ⌘
u±loc(· ;w,k,j,y) 2 H1

per(D ,C±
1 ) as solution of

�(—+ ika1) · (—+ ika1)u
±
loc(j,y)�w2e u±loc(j,y) = 0 in C±

1 , (3.3a)

(±∂2 + ia)u±loc(j,y) = j on G ±
0 , (3.3b)

(⌥∂2 + ia)u±loc(j,y) = y on G ±
1 . (3.3c)

These local cell problems are well-posed for all (w2,k)2R+⇥B. The corresponding
Dirichlet cell problems, however, that are used in [5,13] to characterize the DtN oper-
ators, are only well-posed if we exclude for each k 2 B a countable set of frequencies
w2 — the eigenvalues of the local cell problem (3.3a) with homogeneous Dirichlet
boundary conditions at G ±

0 and G ±
1 . We will call these frequencies local Dirichlet

eigenvalues.
With the solutions of the local cell problems (3.3) we define the local RtR opera-

tors

T±
fb(w,k)j = (⌥∂2 + ia)u±loc(j,0) |G±

0
, (3.4a)

which maps the forward Robin trace j on G ±
0 to the backward Robin trace of the

local cell solution u±loc(j,0) on G ±
0 ,

T±
ff (w,k)j = (±∂2 + ia)u±loc(j,0) |G±

1
, (3.4b)

which maps the forward Robin trace j on G ±
0 to the forward Robin trace of the local

cell solution u±loc(j,0) on G ±
1 ,

T±
bb(w,k)y = (⌥∂2 + ia)u±loc(0,y) |G±

0
, (3.4c)

which maps the backward Robin trace y on G ±
1 to the backward Robin trace of the

local cell solution u±loc(0,y) on G ±
0 , and

T±
bf(w,k)y = (±∂2 + ia)u±loc(0,y) |G±

1
, (3.4d)
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RtR transparent boundary conditions for PhC wave-guides 9

which maps the backward Robin trace y on G ±
1 to the forward Robin trace of the

local cell solution u±loc(0,y) on G ±
1 .

With the help of the local cell solutions and the propagation operators P±
ff and P±

fb
we can express the infinite half strip solution u±(j) in the cell C±

n , n 2 N, as

u±(j) |C±
n
= u±loc((P

±
ff )

n�1j,P±
fb(P

±
ff )

n�1j)

= u±loc((P
±
ff )

n�1j,0)+u±loc(0,P
±
fb(P

±
ff )

n�1j),
(3.5)

since the solutions of the local cell problems (3.3) are linear in the data (j,y). Eval-
uating the forward Robin trace of the infinite half-strip solution u±(j) on G ±

1 using
Eq. (3.5), we obtain an equation for the forward-forward propagation operator P±

ff in
terms of the local RtR operators T±

ff and T±
bf, and the forward-backward propagation

operator P±
fb

P±
ff (w,k)j = [(±∂2 + ia)u±(j)] |G±

1

= [(±∂2 + ia)u±loc(j,0)] |G±
1

+[(±∂2 + ia)u±loc(0,P
±
fbj)] |G±

1

= T±
ff j +T±

bfP
±
fbj.

(3.6)

On the other hand, identifying the backward Robin trace of the infinite half-strip
solution u±(j) on G ±

1 by the backward Robin trace of the infinite half-strip solution
u±(P±

ff j) on G ±
0 , and evaluating this trace using Eq. (3.5), we obtain an equation for

the forward-backward propagation operator P±
fb in terms of the local RtR operators

T±
fb and T±

bb, and the forward-forward propagation operator P±
ff

P±
fb(w,k)j = [(⌥∂2 + ia)u±(j)] |G±

1

= [(⌥∂2 + ia)u±(P±
ff j)] |G±

0

= [(⌥∂2 + ia)u±loc(P
±
ff j,0)] |G±

0
+[(⌥∂2 + ia)u±loc(0,P

±
fbP

±
ff j)] |G±

0

= T±
fbP

±
ff j +T±

bbP
±
fbP

±
ff j.

(3.7)

Lemma 3.1 The local RtR operator T±
bf(w,k) is invertible.

Proof For any forward Robin trace j 2 H�1/2
per (G ±

0 ) on G ±
0 and any backward Robin

trace y 2H�1/2
per (G ±

1 ) on G ±
1 , let us introduce v±(j,y)⌘ v±(· ;w,k,j,y)2H1

per(D ,C±
1 )

as the unique solution of

�(—+ ika1) · (—+ ika1)v
±(j,y)�w2e v±(j,y) = 0 in C±

1 ,

(±∂2 + ia)v±(j,y) = j on G ±
0 ,

(±∂2 + ia)v±(j,y) = y on G ±
1 ,

and let eT±
bf(w,k) be defined for all y 2 H�1/2

per (G ±
1 ) by

eT±
bf(w,k)y = (⌥∂2 + ia)v±(0,y) |G±

1
.
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10 Sonia Fliss et al.

We can show easily that for all y 2 H�1/2
per (G ±

1 )

(⌥∂2 + ia)v±(0,T±
bf(w,k)y) |G±

1
= y,

which implies by definition of eT±
bf(w,k) that for all y 2 H�1/2

per (G ±
1 )

eT±
bf(w,k)T±

bf(w,k)y = y.

We have also
(±∂2 + ia)u±loc(0,eT

±
bf(w,k)y) |G±

1
= y,

which implies by definition of T±
bf(w,k) that for all y 2 H�1/2

per (G ±
1 )

T±
bf(w,k)eT±

bf(w,k)y = y.

ut

Using Lemma 3.1 we can rewrite (3.6) in the form

P±
fbj =

�

T±
bf
��1 �

P±
ff j �T±

ff j
�

. (3.8)

Inserting this equality into Eq. (3.7) yields a quadratic operator equation, the so-called
Ricatti equation,

T±
bb
�

T±
bf
��1 �

P±
ff
�2
+
⇣

T±
fb �

�

T±
bf
��1 �T±

bb
�

T±
bf
��1

T±
ff

⌘

P±
ff +

�

T±
bf
��1

T±
ff = 0. (3.9)

Proposition 3.1 Let w2 /2 s±
ess(k). Then the forward-forward propagation operator

P±
ff (w,k) is the unique solution of the Ricatti equation (3.9) with spectral radius

r(P±
ff )< 1.

Proof We showed already that P±
ff (w,k) is solution of the Ricatti equation (3.9). To

show that it is the unique solution, we use the same ideas as in [11,4] and suppose
that eP±

ff is also a solution. Let us introduce

eP±
fb =

�

T±
bf
��1

(eP±
ff �T±

ff )

and define for all j 2 H�1/2
per (G ±

0 )

v±(j) |C±
n
= v±((eP±

ff )
n�1j,eP±

fb(
eP±

ff )
n�1j).

We can see easily that v±(j) satisfies the boundary condition (3.1b) and is solution
of (3.1a) in each cell C±

n . We can also show the continuity of the forward and the
backward traces on each G ±

n because eP±
ff is solution of (3.9) and by definition of eP±

fb.
Finally, v±(j) is L2(S±) because the spectral radius of eP±

fb is strictly less than one.
Due to well-posedness of (3.1), v±(j) is necessarily equal to u±loc(j) for each j and
in particular their traces on G ±

1 coincide. Hence, the operator eP±
ff is nothing else but

P±
ff . ut
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RtR transparent boundary conditions for PhC wave-guides 11

Now let us come to an important result on the relation of the proposed RtR ap-
proach and the DtN approach as presented in [5]. To this end, we introduce the Dirich-
let problems on the infinite half-strip: for any Dirichlet trace jDtN 2 H1/2

per(G ±
0 ) find

u±DtN(jDtN)⌘ u±DtN(· ;w,k,jDtN) 2 H1
per(D , S±) that satisfies Eq. (3.1a) together with

the Dirichlet boundary condition

u±(jDtN) |G±
0
= jDtN. (3.10)

Recall that this Dirichlet problem is only well-posed for (w2,k) 2 R+ ⇥ B with
w2 /2sess(k) except a countable set of frequencies — the global Dirichlet eigenvalues,
i. e. eigenvalues of (3.1a) with homogeneous Dirichlet boundary condition (3.10).
Furthermore, let P±

DtN(w,k) 2 L(H1/2
per(G ±

0 )) denote the Dirichlet-to-Dirichlet propa-
gation operator of the DtN approach, i. e. for jDtN 2 H1/2

per(G ±
0 ) we define P±

DtNjDtN =

u±DtN(jDtN) |G±
1

. Then we can show the following result.

Proposition 3.2 Let (w2,k) 2 R+ ⇥ B with w2 /2 sess(k) and let the infinite half-
strip problem (3.1a) with Dirichlet condition (3.10) be well-posed. Then the following
holds true: If µ±

DtN 2 C is an eigenvalue of P±
DtN(w,k) with associated eigenfunction

j±
DtN 2 H1/2

per(G ±
0 ), i. e. P±

DtN(w,k)j±
DtN = µ±

DtNj±
DtN, then µ±

DtN is also an eigenvalue
of the forward-forward RtR propagation operator P±

ff (w,k) with associated eigen-
function

j± =±∂2u±DtN(j
±
DtN)+ iaj±

DtN 2 H�1/2
per (G ±

0 ).

Proof Let µ±
DtN 2 C be an eigenvalue of P±

DtN(w,k) with associated eigenfunction
j±

DtN 2 H1/2
per(G ±

0 ). Then u±DtN(j
±
DtN) solves the Robin problem (3.1) with j = j±

RtR :=
±∂2u±DtN(j

±
DtN)+ iaj±

DtN. But this implies that u±(j±
RtR)⌘ u±DtN(j

±
DtN) and hence,

P±
ff (w,k)j±

RtR = (±∂2 + ia)u±DtN(j
±
RtR) |G±

1

= µ±
DtN(±∂2 + ia)u±RtR(j

±
RtR) |G±

0

= µ±
DtNj±

RtR,

which finishes the proof. ut

Once the forward-forward propagation operator P±
ff (w,k) is computed using the

Ricatti equation (3.9) we can determine the forward-backward propagation operator
P±

fb(w,k) from Eq. (3.8). The RtR operator R±(w,k) defined in (3.2), which maps a
forward Robin trace on G ±

0 to a backward Robin trace on G ±
0 , can then be computed

by

R±(w,k) = T±
fb(w,k)+T±

bb(w,k)P±
fb(w,k)

= T±
fb(w,k)+T±

bb(w,k)
�

T±
bf(w,k)

��1
P±

ff (w,k)

�T±
bb(w,k)

�

T±
bf(w,k)

��1
T±

ff (w,k).

(3.11)
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12 Sonia Fliss et al.

3.3 Variational formulation of the local cell problems

The derivation of the weak formulation of the local cell problem (3.3) is easy. Using
standard techniques, we can deduce that Eq. (3.3) is equivalent to: for given forward
Robin trace j on G ±

0 and backward Robin trace y on G ±
1 find u±loc(j,y) 2 H1

per(C±
1 )

such that
Z

C±
1

(—+ ika1)u
±
loc(j,y) · (—� ika1)v�w2eu±loc(j,y)v dx

� ia Â
j=0,1

Z

G±
j

u±loc(j,y) v ds(x) =�
Z

G±
0

j v ds(x)�
Z

G±
1

y v ds(x) (3.12)

for all v 2 H1
per(C±

1 ), where we rewrote the boundary conditions (3.3b) and (3.3c) in
the form

⌥∂2u±loc(j,y) = ia u±loc(j,y)�j on G ±
0 , (3.13a)

±∂2u±loc(j,y) = ia u±loc(j,y)�y on G ±
1 , (3.13b)

to replace the Neumann trace that appears when using integration by parts.
Once the local cell solutions u±loc(j,y) are known, we can compute the local RtR

operators by inserting (3.13) into the definition (3.4) of the local RtR operators which
yields

T±
fb(w,k)j = 2ia u±loc(j,0) |G±

0
�j, (3.14a)

T±
ff (w,k)j = 2ia u±loc(j,0) |G±

1
, (3.14b)

T±
bb(w,k)y = 2ia u±loc(0,y) |G±

0
, (3.14c)

T±
bf(w,k)y = 2ia u±loc(0,y) |G±

1
�y. (3.14d)

3.4 Discretization

In Section 3.3 we introduced a variational formulation for the local cell problems to
compute the local RtR operators (3.4). In this section we now want to introduce a
finite element discretization of the spaces involved, and describe the computation of
the discrete RtR maps. Most parts — including the choice of the meshes, the finite
element spaces, and the refinement strategies — can directly be recalled from the
discretization of the DtN maps in [13]. Therefore, we shall only point out the most
important issues and elaborate on some extensions specific to the RtR case while
referring to [13] for more details.

Let Mh(C
±
1 ) and Mh(G

±
0 ) be the meshes of the computational domains C±

1 and
G ±

0 , respectively, with maximum mesh width h. Based on these meshes, let Sp,1
per(C

±
1 )

and Sp,1
per(G ±

0 ) denote the finite element subspaces of H1
per(C±

1 ) and H1/2
per(G ±

0 ), re-
spectively, with polynomial degree p and dimensions N(C±

1 ) = dim Sp,1
per(C

±
1 ) and
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RtR transparent boundary conditions for PhC wave-guides 13

N(G ±
0 ) = dim (G ±

0 ). For the discretization of the local cell problems (3.12), we ad-
ditionally need a finite element subspace of the space H�1/2

per (G ±
0 ) of the Neumann

and Robin traces. We shall assume in this work, that the boundaries G ±
0 satisfy an

additional smoothness condition, i. e. there is no jump of the material coefficient e(x)
on G ±

0 , and hence, we can expect higher regularity of the Neumann and Robin traces
such that we can simply choose Sp,1

per(G ±
0 ) as finite element subspace of H�1/2

per (G ±
0 ).

If, however, this additional smoothness condition of the boundaries is not fulfilled,
we need to introduce a finite element space for the Neumann and Robin traces that
can cope for their jump at the material interface. The space of piecewise discontinu-
ous polynomials may be an appropriate choice, but it has to be noted that the duality
product of this space with Sp,1

per(G ±
0 ) is not always of full rank. Using shifted meshes

as shown in [18] may resolve this problem. An alternative choice for the discrete sub-
space of H�1/2

per (G ±
0 ) is defined by the biorthogonal basis proposed by Wohlmuth [20]

for mortar finite elements.
Again recall that all boundaries G ±

n , n 2N, can be identified with the first bound-
ary G ±

0 . This implies — using appropriate finite element meshes — that Sp,1
per(G ±

0 ) is
also a subspace of H1/2

per(G ±
1 ) and H�1/2

per (G ±
1 ).

3.4.1 Discretization of the local cell problems

In this subsection we aim to compute the discrete versions of the local RtR operators
T±

fb, T±
ff , T±

bb and T±
bf in order to access the discrete forward-forward propagation

operators and discrete RtR operators in the following subsections.
Using the finite element spaces Sp,1

per(C
±
1 ) and Sp,1

per(G ±
0 ) we derive a discrete form

of the local cell problems (3.3): for given forward Robin trace jh 2 Sp,1
per(G ±

0 ) on G ±
0

and backward Robin trace yh 2 Sp,1
per(G ±

0 ) on G ±
1 find u±loc,h(jh,yh) 2 Sp,1

per(C
±
1 ) such

that
Z

C±
1

(—+ ika1)u
±
loc,h(jh,yh) · (—� ika1)vh �w2eu±loc,h(jh,yh)vh dx

� ia Â
j=0,1

Z

G±
j

u±loc,h(jh,yh) vh ds(x) =�
Z

G±
0

jh vh ds(x)�
Z

G±
1

yh vh ds(x) (3.15)

for all vh 2 Sp,1
per(C

±
1 ), c. f. Eq. (3.12). These discrete local cell problems are well-

posed as long as the mesh width h is chosen small enough and the polynomial degree
p is large enough [16, Thm. 4.2.9],[15].

The discrete local RtR operators are then defined as

T±
fb,h(w,k)jh = 2ia u±loc,h(jh,0) |G±

0
�jh, (3.16a)

T±
ff,h(w,k)jh = 2ia u±loc,h(jh,0) |G±

1
, (3.16b)

T±
bb,h(w,k)yh = 2ia u±loc,h(0,yh) |G±

0
, (3.16c)

T±
bf,h(w,k)yh = 2ia u±loc,h(0,yh) |G±

1
�yh, (3.16d)
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14 Sonia Fliss et al.

c. f. Eq. (3.14). Since the discrete local cell problems (3.15) are well-defined, it fol-
lows that the discrete local RtR operators (3.16) inherit their properties from the con-
tinuous local RtR operators (3.4). In particular, T±

bf,h is invertible and hence,
�

T±
bf,h

��1

exists and is well-defined.

3.4.2 Linear system of equations for the local cell problems

Now we want to transform the discretized local cell problems (3.15) into linear sys-
tems of equations, and represent the discrete local RtR operators (3.16) in terms
of matrices. First, we note that it is beneficial to order the basis functions bC±

1 ,n,

n 2 I(C±
1 ) = {1, . . . ,N(C±

1 )} of the finite element spaces Sp,1
per(C

±
1 ) such that

– the basis functions of Sp,1
per(C

±
1 ) with index n 2 I(C±

1 ,G ±
0 ) = {1, . . . ,N(G ±

0 )} van-
ish on G ±

1 and build a basis of Sp,1
per(G ±

0 ),
– the basis functions of Sp,1

per(C
±
1 ) with index n2 I(C±

1 ,G ±
1 )= {N(G ±

0 )+1, . . . ,2N(G ±
0 )}

vanish on G ±
0 and — if shifted to G ±

0 — build a basis of Sp,1
per(G ±

0 ), and
– the basis functions of Sp,1

per(C
±
1 ) with index n2 I(C±

1 )\(I(C±
1 ,G ±

0 )[I(C±
1 ,G ±

1 ))=

{2N(G ±
0 )+1, . . . ,N(C±

1 )} vanish on G ±
0 and G ±

1 .

With this special ordering we can introduce permutation matrices Q

i
C±

1
2RN(G±

0 )⇥N(G±
0 ),

i 2 {0,1}, such that

bG±
0 ,n =

N(G±
0 )

Â
m=1

Q0
C±

1 ,mnbC±
1 ,m|G±

0
=

N(G±
0 )

Â
m=1

Q1
C±

1 ,mnbC±
1 ,N(G±

0 )+m|G±
1
.

For simplicity of notation we shall assume in the following that the basis functions
of Sp,1

per(C
±
1 ) and Sp,1

per(G ±
0 ) are ordered such that the permutation matrices are identity

matrices of size N(G ±
0 )⇥N(G ±

0 ).
With the help of the basis bG±

0 ,n, n2 {1, . . . ,N(G ±
0 )}, of the discrete space Sp,1

per(G ±
0 ),

we seek matrix representations of the discrete local RtR operators T±
i j,h, i, j 2 {f,b},

i. e. we search for matrices T

±
i j 2CN(G±

0 )⇥N(G±
0 ) with coefficients T±

i j,mn, m,n2 {1, . . . ,N(G ±
0 )}

such that

T±
i j,hbG±

0 ,n =
N(G±

0 )

Â
m=1

T±
i j,mnbG±

0 ,m, i, j 2 {f,b}. (3.17)

Let AC±
1
(k) 2 CN(C±

1 )⇥N(C±
1 ) denote the matrix with coefficients

AC±
1 ,mn(k) =

Z

C±
1

(—+ ika1)bC±
1 ,n · (—� ika1)bC±

1 ,m dx,

m,n 2 {1, . . . ,N(C±
1 )}, c. f. Eq. (3.15). Similarly, let M

e
C±

1
2RN(C±

1 )⇥N(C±
1 ) denote the

matrix with coefficients

Me
C±

1 ,mn =
Z

C±
1

e bC±
1 ,n bC±

1 ,m dx,
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RtR transparent boundary conditions for PhC wave-guides 15

m,n2 {1, . . . ,N(C±
1 )}, c. f. Eq. (3.15). Moreover, let us introduce the matrices M

G±
i

C±
1
2

RN(C±
1 )⇥N(C±

1 ), i = 0,1, with coefficients

MG±
i

C±
1 ,mn

=
Z

G±
i

bC±
1 ,n bC±

1 ,m ds(x), i = 0,1,

m,n 2 {1, . . . ,N(C±
1 )}, related to the boundary integrals in Eq. (3.15). With these

matrices and the definition

S

e
C±

1
(w,k) := AC±

1
(k)�w2

M

e
C±

1
� ia Â

i=0,1
M

G±
i

C±
1
,

the matrix form of the discrete local cell problem (3.12) reads

S

e
C±

1
(w,k)u

±
loc,h(bG±

0 ,m,bG±
0 ,n) =�M

G±
0

C±
1
(C±

1 ,G ±
0 )em �M

G±
1

C±
1
(C±

1 ,G ±
1 )en, (3.18)

m,n 2 {1, . . . ,N(G ±
0 )}, where u

±
loc,h(bG±

0 ,m,bG±
0 ,n) 2 CN(C±

1 ) are the coefficient vec-

tors of the discrete local cell solutions uloc,h(· ;w,k,bG±
0 ,m,bG±

0 ,n) 2 Sp,1
per(C

±
1 ) with

respect to the basis functions bC±
1

, M

G±
i

C±
1
(O1,O2) are the block matrices of M

G±
i

C±
1

with row indices I(C±
1 ,O1) and column indices I(C±

1 ,O2), and em,en 2 RN(G±
0 ) are

the m-th and n-th unit vectors. Collecting the coefficient vectors u

±
loc,h(bG±

0 ,m,0),

m 2 {1, . . . ,N(G ±
0 )}, in matrices U

±
loc,h,02 CN(C±

1 )⇥N(G±
0 ) satisfying

S

e
C±

1
(w,k)U

±
loc,h,0 =�M

G±
0

C±
1
(C±

1 ,G ±
0 ),

and the coefficient vectors u

±
loc,h(0,bG±

0 ,n), n 2 {1, . . . ,N(G ±
0 )}, in matrices U

±
loc,h,12

CN(C±
1 )⇥N(G±

0 ) satisfying

S

e
C±

1
(w,k)U

±
loc,h,1 =�M

G±
1

C±
1
(C±

1 ,G ±
1 ),

we can — using Eq. (3.16) and Eq. (3.17) — deduce

T

±
fb = 2iaU

±
loc,h,0(G

±
0 )� I,

T

±
ff = 2iaU

±
loc,h,0(G

±
1 ),

T

±
bb = 2iaU

±
loc,h,1(G

±
0 ),

T

±
bf = 2iaU

±
loc,h,1(G

±
1 )� I,

where U

±
loc,h,i(G

±
j ), i, j 2 {0,1}, denotes the block matrix of U

±
loc,h,i with row indices

I(C±
1 ,G ±

j ).
The matrices T

±
i j , i, j 2 {f,b}, map coefficient vectors of finite element functions

in Sp,1
per(G ±

0 ) onto coefficient vectors of other finite element functions in Sp,1
per(G ±

0 ),
i. e. they map in strong sense. Hence, products of local RtR operators, as they appear
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16 Sonia Fliss et al.

in the Ricatti equation (3.9) and the formula (3.11) for the computation of the RtR
operator, can be realized by simply multiplying the matrices T

±
i j , i, j 2 {f,b}. This is

in contrast to the matrices of the local DtN operators in [13], which are computed in
weak sense and hence, cannot be multiplied directly.

It remains to show that matrix representation of the inverse (T±
bf,h)

�1 of T±
bf,h is

equivalent to the inverse (T±
bf)

�1 of the matrix T

±
bf. To see this, let us first introduce

the matrix eT± with coefficients eT±
mn, m,n 2 {1, . . . ,N(G ±

0 )}, such that

⇣

T±
fb,h

⌘�1
bG±

0 ,n =
N(G±

0 )

Â
m=1

eT±
mnbG±

0 ,m. (3.19)

Since T±
bf,h is well-defined and invertible when the finite element space is rich enough,

we deduce that

T±
bf,h

⇣

T±
bf,h

⌘�1
bG±

0 ,n = bG±
0 ,n and

⇣

T±
bf,h

⌘�1
T±

bf,h bG±
0 ,n = bG±

0 ,n.

Taking Eqs. (3.17) and (3.19) into account, this implies T

±
bf
e

T

± = e

T

±
T

±
bf = I and

hence, eT± = (T±
bf)

�1.
To summarize, it is sufficient to solve the block system

0

@

S

e
C±

1
(w,k) 0 0

�2iaI(G ±
0 ,C±

1 ) I 0

�2iaI(G ±
1 ,C±

1 ) 0 I

1

A

0

@

U

±
loc,h,0 U

±
loc,h,1

T

±
fb T

±
bb

T

±
ff T

±
bf

1

A=

0

B

@

�M

G±
0

C±
1
(C±

1 ,G ±
0 ) �M

G±
1

C±
1
(C±

1 ,G ±
1 )

�I 0

0 �I

1

C

A

for the matrices T

±
fb, T

±
ff , T

±
bb and T

±
bf, where the rectangular matrices I(G ±

i ,C±
1 ) 2

RN(G±
0 )⇥N(C±

1 ), i 2 {0,1}, are the block matrices of the N(C±
1 )⇥N(C±

1 ) identity ma-
trix with row indices I(C±

1 ,G ±
i ).

3.4.3 Solution of the discrete Ricatti equation

In this subsection we face the problem of solving the Ricatti equation (3.9) in discrete
form in order to compute discrete approximations to the forward-forward propagation
operators P±

ff (w,k) and the forward-backward propagation operators P±
fb(w,k). In

other words, we search for discrete operators P±
ff,h(w,k) 2L(Sp,1

per(G ±
0 )) with spectral

radius strictly smaller than 1 that satisfy the discrete operator equation

T±
bb,h

⇣

T±
bf,h

⌘�1⇣
P±

ff,h

⌘2
+

✓

T±
fb,h �

⇣

T±
bf,h

⌘�1
�T±

bb,h

⇣

T±
bf,h

⌘�1
T±

ff,h

◆

P±
ff,h

+
⇣

T±
bf,h

⌘�1
T±

ff,h = 0, (3.20)

c. f. Eq. (3.9). Similarly, we introduce the discrete forward-backward propagation
operator P±

fb,h(w,k) 2 L(Sp,1
per(G ±

0 )) by

P±
fb,h =

⇣

T±
bf,h

⌘�1⇣
P±

ff,h �T±
ff,h

⌘

,
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RtR transparent boundary conditions for PhC wave-guides 17

c. f. Eq. (3.8). Using the basis bG±
0 ,n, n 2 {1, . . . ,N(G ±

0 )}, of Sp,1
per(G ±

0 ) we want to

express the discrete forward-forward propagation operator P±
ff,h in matrices P

±
ff 2

CN(G±
0 )⇥N(G±

0 ) with coefficients P±
ff,mn, m,n 2 {1, . . . ,N(G ±

0 )}, that satisfy

P±
ff,hj±

h (x) =
N(G±

0 ))

Â
n=1

j±
n

N(G±
0 ))

Â
m=1

P±
ff,mnbG±

0 ,m(x). (3.21)

Using this definition and the definition of the matrices T

±
i j , i, j 2 {f,b}, in (3.17) we

can write Eq. (3.20) as a quadratic matrix-valued equation

T

±
bb
�

T

±
bf
��1 �

P

±
ff
�2

+
⇣

T

±
fb �

�

T

±
bf
��1 �T

±
bb
�

T

±
bf
��1

T

±
ff

⌘

P

±
ff +

�

T

±
bf
��1

T

±
ff = 0.

(3.22)
Considering that the discretization preserves the periodicity properties of C±

1 in a2-
direction we deduce that the forward-forward propagation matrix P

±
ff is the unique

matrix satisfying Eq. (3.22) with eigenvalues whose magnitudes are strictly less than
1.

Analogously to [13] for the computation of the discrete Dirichlet propagation op-
erator, we propose a spectral decomposition to compute P

±
ff . Even though we cannot

guarantee that P

±
ff is diagonalizable the spectral decomposition has proven to be an

efficient and reliable approach to compute P

±
ff . If, however, the propagation matrix P

±
ff

is in fact of Jordan type and hence, cannot be diagonalized, we can still use this spec-
tral method in a generalized form by identifying the Jordan blocks and computing the
Jordan chains, as shown in [4] for the DtN method.

Thus, we want to find eigenvalues µ±(w,k)2C with magnitude strictly less than
1 and their corresponding eigenvectors y±(w,k) 2 CN(G±

0 ) of the quadratic eigen-
value problem
h

T

±
bb
�

T

±
bf
��1�µ±�2

+
⇣

T

±
fb �

�

T

±
bf
��1�T

±
bb
�

T

±
bf
��1

T

±
ff

⌘

µ±+
�

T

±
bf
��1

T

±
ff

i

y±= 0,
(3.23)

which can be transformed into the generalized linear eigenvalue problem
 

�
⇣

T

±
fb �

�

T

±
bf

��1 �T

±
bb

�

T

±
bf

��1
T

±
ff

⌘

�
�

T

±
bf

��1
T

±
ff

I 0

!

Y±

= µ±
✓

T

±
bb

�

T

±
bf

��1
0

0 I

◆

Y±, (3.24)

c. f. [19], with Y± =

✓

µ±y±

y±

◆

.

Now let us present an important result of the spectral decomposition. If w2 2
R+ \sess(k) is not a global or local Dirichlet eigenvalue, i. e. an eigenvalue of the
infinite half-strip problem (3.1a) or the local cell problem (3.3a) with homogeneous
Dirichlet boundary conditions, the following result is a direct consequence of Propo-
sition 3.2 and Proposition 5.2 in [13]. If, however, w2 is such a global or local Dirich-
let eigenvalue we conjecture that the result still holds true.
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18 Sonia Fliss et al.

Conjecture 3.1 If µ±(w,k) 2C\{0} is an eigenvalue of (3.23), then
⇣

µ±(w,k)
⌘�1

is also an eigenvalue.

As a by-product and analogously to the case with DtN operators [13], the spectral
decomposition of the propagation matrix P

±
ff (w,k) yields the information whether

w2 is inside the discrete approximation of the essential spectrum sess(k).

Definition 3.1 We call the approximative essential spectrum s±
ess,h(k) the set of num-

bers w2 for which the quadratic eigenvalue problem (3.23) has eigenvalues with mag-
nitude 1. Furthermore, we define sess,h(k) := s+

ess,h(k)[s�
ess,h(k).

With the help of Conjecture 3.1 and Definition 3.1 it is now clear how to compute
the spectral decomposition of the propagation matrix P

±
ff (w,k). We solve the gen-

eral eigenvalue problem (3.24) for its 2N(G ±
0 ) eigenvalues µ±(w,k). If there exist

eigenvalues with magnitude equal to 1 we stop our computation as we know from
Definition 3.1 that this means that w2 is in the approximative essential spectrum
sess,h(k). Otherwise, and in accordance to Conjecture 3.1, the 2N(G ±

0 ) eigenvalues
µ±(w,k) split into N(G ±

0 ) eigenvalues with magnitude strictly less than 1 and N(G ±
0 )

eigenvalues with magnitude strictly larger than 1. While discarding the N(G ±
0 ) eigen-

values with magnitude strictly larger than 1, the N(G ±
0 ) eigenvalues µ±(w,k) with

magnitude strictly less than 1 and their corresponding eigenvectors y±(w,k) form
the spectral decomposition of the propagation matrix P

±
ff (w,k).

3.4.4 Definition of the discrete Robin-to-Robin operators

Considering the definition (3.2) of the RtR operators R±(w,k) applied to some for-
ward Robin trace j 2 H�1/2

per (G ±
0 ), we define the discrete RtR operators R±

h (w,k) 2
L(Sp,1

per(G ±
0 )) by

R±
h (w,k)jh = (⌥∂2 + ia)uloc,h(· ;w,k,jh,Pfb,h(w,k)jh) |G±

0

for any jh 2 Sp,1
per(G ±

0 ), and hence — using the matrix representations of the discrete
local RtR operators and the discrete propagation operators — we can compute RtR
matrices R

±(w,k)2CN(G±
0 )⇥N(G±

0 ) with entries R±
mn, m,n 2 {1, . . . ,N(G ±

0 )}, that sat-
isfy

R±
h (w,k)bG±

0 ,n =
N(G±

0 )

Â
m=1

R±
mnbG±

0 ,m,

such that

R

± = T

±
fb +T

±
bb
�

T

±
bf
��1

Pff �T

±
bb
�

T

±
bf
��1

T

±
ff ,

c. f. Eq. (3.11).
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RtR transparent boundary conditions for PhC wave-guides 19

4 Non-linear eigenvalue problem on a bounded domain

In the previous section we introduced RtR operators for periodic media, explained
their computation and discretization. In this section we now want to show how to em-
ploy these operators in order to transform the linear (or quadratic) eigenvalue prob-
lem (2.3) on the unbounded domain S to a non-linear eigenvalue problem posed on
the defect cell C0. We will start with the problem in strong formulation. After in-
troducing a variational formulation, we will elaborate on the discretization of this
non-linear eigenvalue problem and finally, we present numerical solution techniques
to solve the non-linear eigenvalue problem in discretized form.

4.1 Main theorem

We start with the main result of the RtR method [4].

Theorem 4.1 The eigenvalue problem (2.3) posed on the unbounded domain S is
equivalent to: find eigenvalue couples (w2,k) 2R+⇥B, with w2 /2 sess(k), such that
there exists a non-trivial u 2 H1

per(D ,C0) that satisfies

�(—+ ika1) · (—+ ika1)u�w2e u = 0 in C0, (4.1a)

(⌥∂2 + ia)u = R±(w,k)(±∂2 + ia)u on G ±
0 . (4.1b)

Note that the problem (4.1) — in comparison to problem (2.3) — is posed on the
bounded domain C0 but it is non-linear with respect to w and k due to the dependence
of the RtR operators on w and k.

4.2 Variational formulation of the non-linear eigenvalue problem

4.2.1 Mixed variational formulation

In order to derive a variational formulation of the non-linear eigenvalue problem (4.1)
with RtR operators, we introduce Lagrangian multipliers l± 2 H�1/2

per (G ±
0 ) defined by

l± =±∂2u |G±
0

for the Neumann trace on G ±
0 . Using the linearity of the RtR operators, we deduce that

a mixed variational formulation of the non-linear eigenvalue problem (4.1) is to find
eigenvalue couples (w2,k) 2 R+⇥B with w2 /2 sess(k), and associated eigenmodes
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20 Sonia Fliss et al.

(u,l+,l�) 2 H1
per(C0)⇥H�1/2

per (G +
0 )⇥H�1/2

per (G �
0 ) such that

Z

C0

(—+ ika1)u · (—� ika1)v�w2euv dx

�
Z

G+
0

l+ v ds(x)�
Z

G�
0

l� v ds(x) = 0, (4.2a)

ia
Z

G+
0

�

I�R+(w,k)
�

u y+ ds(x)�
Z

G+
0

�

I+R+(w,k)
�

l+ y+ ds(x) = 0, (4.2b)

ia
Z

G�
0

�

I�R�(w,k)
�

u y� ds(x)�
Z

G�
0

�

I+R�(w,k)
�

l� y� ds(x) = 0, (4.2c)

for all (v,y+,y�) 2 H1
per(C0)⇥H1/2

per(G +
0 )⇥H1/2

per(G �
0 ), where I denotes the identity

operator.

4.2.2 Variational formulation with Dirichlet-to-Neumann operators

Now we aim to derive an alternative variational formulation which employs DtN
operators and which is — in contrast to the mixed variational formulation (4.2) —
symmetric with respect to the trial and test spaces. However, this formulation is not
well-posed at all frequencies in the band gap as one has to exclude the global Dirichlet
eigenvalues.

First, we recall that the RtR operators R±(w,k) are linear, and hence, we can
rewrite the Robin boundary condition (4.1b) in the form

(I+R±(w,k))
⇣

±∂2u |G±
0

⌘

= ia(I�R±(w,k))u |G±
0

. (4.3)

Then we present an important result [4] on the operator (I+R±(w,k)), which also
appears in Eqs. (4.2b)–(4.2c), where it is applied to the Lagrangian multipliers l±.

Proposition 4.1 Let k 2 B and w2 2 R+ \sess(k). Furthermore, we assume that w2

is not a global Dirichlet eigenvalue, i. e. an eigenvalue of the infinite half-strip prob-
lem (3.1a) with homogeneous Dirichlet boundary condition (3.10). Then the operator
(I+R±(w,k)) is invertible.

Proof By definition of the RtR operator and the Robin problems in the infinite half-
strips, the operator (I+R±(w,k)) 2 L(H�1/2

per (G +
0 )) is given by

(I+R±(w,k)) j = 2ia u±(· ;w,k,j) |G±
0
,

where u±(· ;w,k,j) is the unique solution of (3.1). Using the same ideas as in Lemma 3.1,
we can show that for any jDtN 2 H�1/2

per (G +
0 ) the inverse of (I+R±(w,k)) is defined

by

jDtN 2 H�1/2
per (G +

0 ) 7!
(±∂2 + ia)

2ia
u±DtN(jDtN) |G±

0
,

where u±DtN(jDtN) is the unique solution (because w2 is assumed to be not in the set
of global Dirichlet eigenvalues) of (3.1a) with boundary condition (3.10). ut
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RtR transparent boundary conditions for PhC wave-guides 21

Using Proposition 4.1 and Eq. (4.3), we can deduce that the Robin boundary
condition (4.1b) is equivalent to the Neumann boundary condition

±∂2u |G±
0
=D±(w,k)u |G±

0

with the DtN operator

D±(w,k) = ia (I+R±(w,k))�1 (I�R±(w,k)), (4.4)

if w2 is not a global Dirichlet eigenvalue.
Then the derivation of the corresponding weak formulation of the problem with

DtN operators is straightforward: find eigenvalue couples (w2,k) 2 R+ ⇥ B, with
w2 /2 sess(k), and associated eigenmodes u 2 H1

per(C0) such that

Z

C0

(—+ ika1)u · (—� ika1)v�w2euv dx

�
Z

G+
0

D+(w,k)u |G+
0

v ds(x)�
Z

G�
0

D�(w,k)u |G�
0

v ds(x) = 0 (4.5)

for all v 2 H1
per(C0).

Remark 4.1 Let k 2 B and w2 2 R+ \sess(k). Furthermore, let us assume that w2 is
not a global Dirichlet eigenvalue, i. e. an eigenvalue of the infinite half-strip prob-
lem (3.1a) with homogeneous Dirichlet boundary condition (3.10). Then the DtN
operator D±(w,k) is well-defined and can be computed according to Eq. (4.4). If,
additionally, w2 is not equal to a local Dirichlet eigenvalue, i. e. an eigenvalue of the
local cell problem (3.3a), then the DtN operator based on the DtN approach as de-
scribed in [5,13], that we will denote here by D±

DtN(w,k), exists and is well-defined.
This implies — according to Theorem 4.1 and its analogon for the DtN approach [5]
— that D±(w,k) =D±

DtN(w,k) for all (w2,k) 2R+⇥B with w2 /2 sess(k) except for
a countable set of frequencies — the global and local Dirichlet eigenvalues.

4.3 Discretization of the non-linear eigenvalue problem

Now let us elaborate on the discretization of the variational formulations introduced
above. We recall the finite element space Sp,1

per(G ±
0 ) introduced as discrete subspace of

H1/2
per(G ±

0 ) in Section 3.4. Furthermore, recall that we assumed in Section 3.4 that there
is no jump of the material coefficient on the boundaries G ±

0 which implies that the
Neumann and Robin traces on G ±

0 are in H1/2
per(G ±

0 ) and hence, we shall take Sp,1
per(G ±

0 )

as discrete subspace of H�1/2
per (G ±

0 ). Then, we additionally introduce Sp,1
per(C0) as the

finite element subspaces of H1
per(C0) with N(C0) = dim Sp,1

per(C0).
Similarly to the choice of the basis functions of Sp,1

per(C
±
1 ), we order the basis

functions bC0,n
, n 2 I(C0) = {1, . . . ,N(C0)} of the finite element space Sp,1

per(C0) such
that
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– the basis functions of Sp,1
per(C0) with index n2 I(C0,G +

0 ) = {1, . . . ,N(G +
0 )} vanish

on G �
0 and build a basis of Sp,1

per(G +
0 ),

– the basis functions of Sp,1
per(C0) with index n2 I(C0,G �

0 )= {N(G +
0 )+1, . . . ,N(G +

0 )+

N(G �
0 )} vanish on G +

0 and build a basis of Sp,1
per(G �

0 ), and
– the basis functions of Sp,1

per(C0) with index n 2 I(C0)\ (I(C0,G +
0 )[ I(C0,G �

0 )) =

{N(G +
0 )+N(G �

0 )+1, . . . ,N(C0)} vanish on G +
0 and G �

0 .

With this special ordering of the basis functions we introduce permutation matrices
Q

�
C0

2 RN(G�
0 )⇥N(G�

0 ) and Q

+
C0

2 RN(G+
0 )⇥N(G+

0 ) such that

bG�
0 ,n =

N(G�
0 )

Â
m=1

Q�
C0,mnbC0,m

|G�
0
, (4.6a)

bG+
0 ,n =

N(G+
0 )

Â
m=1

Q+
C0,mnbC0,N(G�

0 )+m|G+
0
. (4.6b)

For simplicity of notation we shall again assume that the basis functions of Sp,1
per(C0)

and Sp,1
per(G ±

0 ) are ordered such that the permutation matrices are identity matrices of
size N(G ±

0 )⇥N(G ±
0 ).

Analogously to the discretization of the local cell problems, let AC0
(k)2CN(C0)⇥N(C0)

denote the matrix with coefficients

AC0,mn(k) =
Z

C0

(—+ ika1)bC0,n
· (—� ika1)bC0,m

dx,

m,n 2 {1, . . . ,N(C0)}, c. f. Eq. (4.2a). Similarly, let M

e
C0

2 RN(C0)⇥N(C0) denote the
matrix with coefficients

Me
C0,mn =

Z

C0

e bC0,n
bC0,m

dx,

m,n 2 {1, . . . ,N(C0)}, c. f. Eq. (4.2a). Moreover, we introduce the matrices M

G±
0

C0
2

RN(C0)⇥N(C0) with coefficients

MG±
0

C0,mn
(k) =

Z

G±
0

bC0,n
bC0,m

ds(x),

m,n 2 {1, . . . ,N(C0)}, related to the boundary integrals in Eq. (4.2). Then we define
M

G±
0

C0
(O1,O2) as the block matrix of M

G±
0

C0
with row indices I(C0,O1) and column

indices I(C0,O2).
With these definitions and the special ordering of the basis functions bC0,n

of the
space Sp,1

per(C0) described above, the discretization of the mixed variational formula-
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tion (4.2) reads

0

B

B

B

@

AC0
(k)�w2

M

e
C0

M

G+
0

C0
(C0,G

+
0 ) M

G�
0

C0
(C0,G

�
0 )

iaM

G+
0

C0
(G+

0 ,C0)(I�R

+) �M

G+
0

C0
(G+

0 ,G+
0 )(I+R

+) 0

iaM

G�
0

C0
(G�

0 ,C0)(I�R

�) 0 �M

G�
0

C0
(G�

0 ,G�
0 )(I+R

�)

1

C

C

C

A

0

@

uh
l+

h
l�

h

1

A= 0,

(4.7)
where uh 2 CN(C0) is the coefficient vector of the discrete eigenmode uh(· ;w,k) 2
Sp,1

per(C0) with respect to the basis functions bC0,n
of Sp,1

per(C0), and l±
h 2CN(G±

0 ) are the
coefficient vectors of the discrete Lagrangian multipliers l±

h =±∂2uh |G±
0
2 Sp,1

per(G ±
0 )

with respect to the basis functions bG±
0 ,n of Sp,1

per(G ±
0 ).

If we choose the variational formulation (4.5) with DtN operators instead of the
mixed variational formulation (4.2) we obtain the discrete equation

⇣

AC0
(k)�w2

M

e
C0

�DC0
(w,k)

⌘

uh = 0, (4.8)

where the matrix DC0
(w,k) 2 CN(C0)⇥N(C0) is given by

DC0
=

0

B

@

D

+
C0

0 0

0 D

�
C0

0

0 0 0

1

C

A

with
D

±
C0

= iaM

G±
0

C0
(G ±

0 ,G ±
0 )
�

I+R

±��1 �
I�R

±� . (4.9)

4.4 Numerical solution of the non-linear eigenvalue problem

The numerical techniques to solve the discretized non-linear eigenvalue problem (4.7)
or (4.8) can be split into direct methods and iterative methods. A direct method that is
based on a Chebyshev interpolation of the non-linear operator was introduced in [13]
for the non-linear eigenvalue problem with DtN operators. Applying this approach to
the discretized forms (4.7) and (4.8) of the non-linear eigenvalue problem (4.1) with
RtR operators is straightforward.

Also in [13] a Newton’s method was introduced as representative of the class of
iterative methods. Now we will apply this method to the solution of the non-linear
eigenvalue problem (4.1). For simplicity, let us only consider the w-formulation,
where we fix the quasi-momentum k and search for eigenvalues w of the non-linear
eigenvalue problem (4.1). The iterative method for the k-formulation can be deduced
analogously.

First, we introduce a “simplified” eigenvalue problem, which can be obtained
from the non-linear eigenvalue problem (4.1) by fixing the (w,k)-dependent RtR
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operators. To this end, let w2
R 2R+ \sess(k) be arbitrary but fixed. Then the problem

�(—+ ika1) · (—+ ika1)u�w2e u = 0 in C0, (4.10a)

(⌥∂2 + ia)u = R±(wR,k)(±∂2 + ia)u on G ±
0 . (4.10b)

is a linear eigenvalue problem in w2. If w2 is an eigenvalue of (4.10) with w = wR,
then (w2,k) is an eigenvalue couple of the non-linear eigenvalue problem (4.1).

Now let us repeat some properties of this simplified eigenvalue problem. These
results were shown in [5] for the case with DtN operators, but their analogon for the
case with RtR operators can be deduced directly, due to the equivalence of the DtN
and RtR approach in the sense of Eq. (4.4) and Remark 4.1. However, note that this
equivalence holds true at all frequencies inside the band gaps except for a countable
set of frequencies — the global and local Dirichlet eigenvalues, i. e. the eigenvalues
of the infinite half-strip problem (3.1a) with homogeneous Dirichlet boundary condi-
tions, and the eigenvalues of the local cell problem (3.3a) with homogeneous Dirich-
let boundary conditions, respectively. Our conjecture is that the following statements
also hold true at these global and local Dirichlet eigenvalues.

Conjecture 4.1 Let (w2
R,k) 2 R+⇥B and w2

R /2 sess(k). Then the linear eigenvalue
problem (4.10) in w-formulation only has a countable set of eigenvalues w2

m(wR,k),
m 2 N. Moreover, these eigenvalues are real.

Conjecture 4.2 Let w2
m(wR,k)2R, m2N, denote the eigenvalues of the linear eigen-

value problem (4.10) in w-formulation with w2
m  w2

m+1 for all m 2 N. Then the
functions g(1)m (wR,k) = w2

m(wR,k) are continuous.

Conjecture 4.3 There exists an alternative ordering m 7! em(m) of the eigenvalues
w2

m(wR,k) 2 R, m 2 N, of the linear eigenvalue problem (4.10) in w-formulation
such that the functions g(2)m (wR,k) = w2

em(m)(wR,k) are continuously differentiable.

With these results we define the distance function of the first kind

d(1)
w,m(wR,k) = w2

R�g(1)m (wR,k) = w2
R�w2

m(wR,k),

which is continuous for all m 2 N. Furthermore, we introduce the distance function
of the second kind

d(2)
w,m(wR,k) = w2

R�g(2)m (wR,k) = w2
R�w2

em(m)(wR,k),

which is continuously differentiable for all m 2N. Roots of these functions are eigen-
values of the non-linear eigenvalue problem (4.2).

Analogously to [13] we apply the Newton’s method to the global distance func-
tion

dw(wR,k) = d(2)
w,m⇤(wR,k) (4.11)

where
m⇤ = argmin

m2N
|d(2)

w,m(wR,k)|,
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for which differentiability cannot be guaranteed but which delivers reasonable nu-
merical results and saves computational effort since we only have to apply the New-
ton’s method to dw(·,k) instead of to the first M 2 N distance functions d(2)

w,m(·,k),
m = 1, . . . ,M.

In [13] we showed the differentiability of the DtN operators and the computa-
tion of the derivatives of the DtN operators. We employed these derivatives to com-
pute the derivative of d(2)

w,m⇤(·,k) that we need in order to apply the Newton’s method
to the global distance function dw(·,k). In this work, we shall for simplicity use a
quasi Newton method and approximate the derivative of the global distance function
dw(·,k) by a first order difference quotient.

5 Numerical examples

In the numerical examples we want to study the performance of the RtR method in
comparison to the DtN method [13] when applied to the computation of eigenvalues
that are close to local or global Dirichlet eigenvalues. The DtN operators are not
well-defined at global Dirichlet eigenvalues and their computation using Dirichlet
cell problems is not stable at local Dirichlet eigenvalues. Therefore, we expect that
the DtN method will produce numerical errors when computing eigenvalues close to
Dirichlet eigenvalues.

5.1 Computation of eigenvalues close to local Dirichlet eigenvalues

In our first numerical example we analyse the behaviour of the quasi Newton method
close to a local Dirichlet eigenvalue, i. e. an eigenvalue of the local cell problem (3.3a)
with homogeneous Dirichlet boundary conditions. We want to study the convergence
of the quasi Newton method applied to the proposed non-linear eigenvalue problem
with RtR maps and applied to the non-linear eigenvalue problem with DtN transpar-
ent boundary conditions as introduced in [13]. For the reasons explained above, we
expect a poor convergence of the DtN method and a good convergence of the RtR
method.

We shall consider the TE mode in a PhC wave-guide with hexagonal lattice, i. e.
a

0
1 = a

+
1 = a

�
1 = (1,0)T and a

0
2 = a

+
2 = a

�
2 = (0.5,

p
0.75)T, and with air holes (e = 1)

of radius 0.31 in a homogeneous and isotropic dielectric material of relative permit-
tivity e = 11.4.

For the computation we choose finite elements on curved cells with polynomial
degree p = 5 using the C++ library Concepts [9,17,3].

For orientation we show in Figure 5.1 the magnitude of the global distance func-
tion dw for the chosen configuration. The dark lines indicate small values of |dw | and
therefore represent the eigenvalues of the non-linear eigenvalue problem (4.1). The
green lines, on the other hand, show the local Dirichlet eigenvalues, i. e. the eigenval-
ues of the local cell problem (3.3a) with homogeneous Dirichlet boundary conditions.
In Figure 5.2 we present the convergence of the quasi Newton method to the com-
mon eigenvalue w ⇡ 0.248 ·2p at k ⇡ 0.405 ·2p of the Dirichlet cell problem and the
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Fig. 5.1 Magnitude of global distance function dw
in logarithmic scale evaluated on a grid of 350⇥
500 (w,k)-points. The green lines represent the lo-
cal Dirichlet eigenvalues, i. e. eigenvalues of the lo-
cal cell problem (3.3a) with homogeneous Dirich-
let boundary conditions. The blue cross indicates
the location of the eigenvalue for which conver-
gence results are shown in Figures 5.2 and 5.3.
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Fig. 5.2 Convergence of the distance function |dw |
when applying the quasi Newton method with DtN
operators (blue) and RtR operators (red) to the
computation of the common eigenvalue (w,k) ⇡
(0.248 · 2p,0.405 · 2p) of the Dirichlet cell prob-
lem and the non-linear eigenvalue problem (blue
cross in Figure 5.1). The start value of the iterative
schemes is chosen to be w(0) = 0.263 ·2p .

non-linear eigenvalue problem of the PhC wave-guide (blue cross in Figure 5.1). In
this example and in all following examples we choose an increment of 10�12 in the
quasi Newton method for the computation of the first order difference quotient of the
global distance function. We compare the convergence of the iterative scheme when
applied to the non-linear eigenvalue problem with DtN operators (blue) and with RtR
operators (red). While the quasi Newton method with RtR maps converges nicely, we
observe that the quasi Newton method with DtN maps converges only until it reaches
some error level of order 10�4 after two iteration steps. After that the magnitude of
the distance function starts to oscillate. This is due to the fact that the local cell prob-
lems of the DtN method are ill-posed at the Dirichlet eigenvalues. The closer one
comes to such a Dirichlet eigenvalue the larger the error of the local DtN operators
becomes.

As alternative to the iterative scheme to solve the non-linear eigenvalue problem,
a direct scheme based on a Chebyshev interpolation was introduced in [13]. Now we
want to compare the DtN method and the RtR method when such a Chebyshev inter-
polation is applied to the non-linear eigenvalue problem. Again we aim to compute
the common eigenvalue of the local Dirichlet problem and the non-linear eigenvalue
problem that is marked as a blue cross in Figure 5.1. We choose the k-formulation,
fix the frequency to w ⇡ 0.248 ·2p and set the k-interval to [0,p]. In Figure 5.3(a) a
comparison of the convergence of the Chebyshev interpolation is shown for the case
with DtN operators (blue) and RtR operators (red). We can see that the rate of con-
vergence is for both methods the same, where we have to note that the convergence
is not monotone since the Chebyshev nodes are not hierarchical. In Figure 5.3(b) the
convergence of the Chebyshev interpolation in w-formulation is shown when choos-
ing the interval [0.235 ·2p,0.265 ·2p] (solid lines) and [0.215 ·2p,0.265 ·2p] (dashed
lines). While for the smaller interval both methods converge nicely, we observe that
convergence is lost for the larger interval when using the DtN method. The difference
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(a) k-formulation
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(b) w-formulation

Fig. 5.3 Convergence of the error for the Chebyshev interpolation to the common eigenvalue at (w,k) ⇡
(0.248 · 2p,0.405 · 2p) of the Dirichlet cell problem and the non-linear eigenvalue problem (blue cross
in Figure 5.1) when using DtN operators (blue) and RtR operators (red) in dependence on the number of
Chebyshev nodes. In (a) the k-interval of the interpolation is chosen to be the whole reduced Brillouin
zone [0,p]. In (b) the w-interval of the interpolation is chosen to be [0.235 ·2p,0.265 ·2p] (solid lines) and
[0.215 ·2p,0.265 ·2p] (dashed lines).

is that the larger interval contains a global Dirichlet eigenvalue. To understand its in-
fluence we first need to study the convergence to global Dirichlet eigenvalues, which
will be addressed in the following subsection.

5.2 Computation of surface modes

In our second example we want to study the computation of surface modes of a semi-
infinite periodic medium with homogeneous Dirichlet boundary conditions as de-
scribed in Section 2.3. We solve the non-linear eigenvalue problem (4.1) in C0 where
we replace the RtR transparent boundary condition (4.1b) on the top boundary G +

0 by
a homogeneous Dirichlet boundary condition. For comparison, we shall either keep
the RtR transparent boundary condition (4.1b) on the bottom boundary G �

0 or replace
it by a DtN transparent boundary condition as introduced in [13]. Choosing the cell
C0 to be identical to the unit cell C�

1 of the periodic medium, we end up with a set-
ting for which the frequencies of the surface modes are global Dirichlet eigenvalues,
i. e. eigenvalues of the infinite half-strip problem (3.1a) with homogeneous Dirichlet
boundary condition on G ±

0 . Moreover, we note that for this setting a formulation of
the problem on G +

0 would be possible. However, in this work we shall use the formu-
lation in the cell C0 in order to employ the method as introduced for the computation
of guided modes in PhC wave-guides, and in order to allow for more general settings
(i. e. C0 and C�

1 are different).
In Figure 5.4 we show the magnitude of the global distance function dw of the

RtR method. Recall that the dark lines correspond to small values of |dw |, and hence
represent surface modes. In Figure 5.5 the real part of the surface mode at k = 0.40 ·
2p is plotted. It demonstrates well that surface modes are modes that are guided at
the surface and decay exponentially in the periodic medium.
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Fig. 5.4 Magnitude of global distance function dw
in logarithmic scale of surface mode problem eval-
uated on a grid of 350⇥500 (w,k)-points.

Fig. 5.5 Real part of the surface mode at k = 0.40 ·
2p computed with the RtR method with homoge-
neous Dirichlet boundary conditions at G +

0 .

The convergence curves of the quasi Newton method when applied to the non-
linear problem with DtN maps (blue) and with RtR maps (red) is shown in Figure 5.6.
Again we observe that the quasi Newton method applied to the problem with RtR
maps converges exponentially, while the quasi Newton method applied to the problem
with DtN maps only converges until it reaches an error level in w of order 10�5.
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Fig. 5.6 Convergence of the distance function |dw |
when applying the quasi Newton method with DtN
operators (blue) and RtR operators (red) to the
computation of the surface mode at w ⇡ 0.2173 ·2p
and k = 0.45 · 2p . The start value of the iterative
scheme is chosen to be w(0) = 0.21 ·2p .
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Fig. 5.7 Convergence of the error in the frequency
w for Chebyshev interpolation in w-formulation
to the surface mode at w ⇡ 0.2173 · 2p and k =
0.45 ·2p when using DtN operators (blue) and RtR
operators (red) in dependence on the number of
Chebyshev nodes. The w-interval of the interpo-
lation is chosen to be [0.21 ·2p,0.28 ·2p].

As in our first example we want to study the Chebyshev interpolation as an alter-
native to the quasi Newton method and check if it converges even if applied to the
problem with DtN maps. The results are shown in Figure 5.7, where we show the error
of the Chebyshev interpolation in w-formulation at the quasi-momentum k= 0.45 ·2p
and the frequency interval [0.21 ·2p,0.28 ·2p]. We observe that the Chebyshev inter-
polation applied to the problem with DtN maps does not converge. The Chebyshev
interpolation applied to the problem with RtR maps, however, converges, where —
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as already described above — the error does not decrease monotonically since the
Chebyshev nodes are not hierarchical. The results do not change qualitatively when
choosing a smaller w-interval, which helped to restore convergence towards a local
Dirichlet eigenvalue, as described in the previous subsection. Moreover, the same re-
sults can be obtained when using the k-formulation of the Chebyshev interpolation.
This leaves the question why the Chebyshev interpolation of the problem with DtN
maps converges well towards local Dirichlet eigenvalues as long as the interval is
chosen small enough, while it does not converge towards global Dirichlet eigenval-
ues in any case. We address this question in the following subsection where we study
the condition number of the system matrix of the non-linear eigenvalue problem and
the condition numbers of the DtN matrices.

5.3 Condition of system and Dirichlet-to-Neumann matrices

Let NDtN denote the system matrix of the left hand side in Eq. (4.8) where the DtN
matrices D

±
C0

, c. f. Eq. (4.9), are replaced by the DtN matrices D

±
C0,DtN that are ob-

tained using local Dirichlet problems as described in [13] instead of local Robin
problems. On the other hand, we shall denote the system matrix in Eq. (4.7) with
RtR operators by NRtR.

We recall the example in Section 5.1 of finding guided modes in a PhC wave-
guide. Since the top and bottom PhCs are equivalent for this configuration we shall
only consider the bottom DtN matrix D

�
C0,DtN and denote it by DDtN for simplicity.

We study the condition of the system matrices NDtN and NRtR as well as of the DtN
matrix DDtN in the second band gap at k = 0.4 ·2p , c. f. Figure 5.1. In this band gap
the non-linear eigenvalue problem has three eigenvalues (i. e. guided modes), and in
addition it contains one local Dirichlet eigenvalue (see the green line in Figure 5.1)
and one global Dirichlet eigenvalue (see the dark line in Figure 5.4).
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(a) Condition numbers of system matrices.
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(b) Maximum eigenvalues of system matrices.

Fig. 5.8 Condition number (a) and maximum eigenvalue (b) of the system matrix NDtN with DtN maps
(blue) and the system matrix NRtR with RtR maps (red) in the second band gap at k = 0.4 ·2p . The vertical
dashed line show the frequency of the global Dirichlet eigenvalue (GD), the local Dirichlet eigenvalue
(LD) and the frequencies of the guided modes (GM).
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In Figure 5.8(a) the condition numbers of the system matrices NDtN and NRtR are
shown. The condition numbers increase at the guided modes (dashed lines labeled
“GM”) which is due to decreasing minimum eigenvalues of NDtN and NRtR at these
eigenvalues of the non-linear operator. Apart from these three peaks, the condition
number of the system matrix NDtN with DtN maps also increases in the vicinity of the
global Dirichlet eigenvalue (dashed line labeled “GD”), which is due to an increasing
maximum eigenvalue of NDtN, see Figure 5.8(b), as it is not an eigenvalue of the non-
linear eigenvalue problem. On the other hand, the condition number of the system
matrix NRtR with RtR maps as well as its maximum eigenvalue do not increase in the
vicinity of the global Dirichlet eigenvalue. In fact, the maximum eigenvalue of NRtR
remains almost constant in the complete band gap, see Figure 5.8(b). Note that from
Figure 5.8(a) it seems that the local Dirichlet eigenvalue (dashed line labeled “LD”)
has no influence on the condition number of NDtN. But we shall study its influence
on the condition number in more detail in Figure 5.10(a).
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(a) Maximum eigenvalue of DtN matrix.
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(b) Minimum eigenvalue of DtN matrix.

Fig. 5.9 Maximum eigenvalue (a) and minimum eigenvalue (b) of the DtN matrix DDtN based on local
Dirichlet problems in the second band gap at k = 0.4 ·2p . The vertical dashed line show the frequency of
the global Dirichlet eigenvalue (GD), the local Dirichlet eigenvalue (LD) and the frequencies of the guided
modes (GM).

The increase of the maximum eigenvalue of the system matrix NDtN near the
global Dirichlet eigenvalue is due to an increase of the maximum eigenvalue of the
DtN matrix DDtN as shown in Figure 5.9(a). While the condition number of the DtN
matrix also does not seem to be influenced by the existence of a local Dirichlet eigen-
value, its minimum eigenvalue decreases at some point between the second and third
guided mode, see Figure 5.9(b). At this point the PhC half-strip problem with ho-
mogeneous Neumann boundary condition has an eigenvalue — a global Neumann
eigenvalue. However, this decreasing minimum eigenvalue of the DtN matrix does
not influence the condition number of the system matrix due to the existence of the
Laplace operator, i. e. the matrices AC0

(k) and M

e
C0

in Eq. (4.8).
Now let us study the condition number of the system and DtN matrices in a very

small vicinity of the local Dirichlet eigenvalue in more detail. Figures 5.10(a) and
5.10(b) show the condition numbers of the two matrices in dependence on the dis-
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(b) Condition numbers of DtN matrices.

Fig. 5.10 Condition number of the system matrix NDtN (a) and the DtN matrix DDtN (b) based on local
Dirichlet problems (solid blue) and local Robin problems (dashed red) in the vicinity of the local Dirichlet
eigenvalue in the second band gap at k = 0.4 ·2p .

tance to the local Dirichlet eigenvalue. The solid lines show the condition numbers
of the matrices that are based on local Dirichlet problems and the dashed lines show
the condition numbers of the matrices that are based on local Robin problems. While
the condition numbers of the matrices related to local Robin problems remain con-
stant in the vicinity of the local Dirichlet eigenvalue, the condition numbers of the
matrices that are based on local Dirichlet problems increase dramatically in a small
vicinity of the local Dirichlet eigenvalue. Most important is the fact that the increase
of the condition number, which explains the convergence problems of the Newton
method we observed in Section 5.1, is limited to a very narrow vicinity. Even though
the minimum eigenvalues of the local DtN matrices, denoted by T

±
i j , i, j = 0,1, in

[13], increase in a larger vicinity of the local Dirichlet eigenvalues, the generalized
eigenvalue problem related to Eq. (3.24), that is solved for the Dirichlet propagation
matrix, can be solved using Matlab’s eig function without any numerical artifacts up
to a very narrow vicinity of the local Dirichlet eigenvalue.

Now we are able to explain why we got convergence towards the local Dirichlet
eigenvalue when applying the Chebyshev interpolation in k-formulation to the prob-
lem with DtN maps, and when applying the Chebyshev interpolation in w-formulation
for a sufficiently small interval, while we get divergence when the interval is too large.
If a Chebyshev node is too close to a global Dirichlet eigenvalue the maximum eigen-
value of the system matrix NDtN, which needs to be evaluated at this node, becomes
very large and spoils the solution of the linearized eigenvalue problem. From Fig-
ure 5.4 we can see that there does not exist any surface mode, i. e. global Dirichlet
eigenvalue, in the reduced Brillouin zone [0,p] at the frequency w ⇡ 0.248 ·2p . This
means that no matter how large we choose the number d of Chebyshev nodes, there
is never a node too close to a global Dirichlet eigenvalue such that the computation
is effected. The same is true if we choose the w-formulation and an w-interval that
is sufficiently far away from global Dirichlet eigenvalues. This is the case for the
w-interval [0.235 · 2p,0.265 · 2p], we chose in Figure 5.3(b) (solid lines), while the
w-interval [0.215 · 2p,0.265 · 2p] (dashed lines) comprises a global Dirichlet eigen-
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value. When searching for surface modes the Chebyshev interpolation applied to the
problem with DtN maps has to fail in any case since the interval always contains
a global Dirichlet eigenvalue (since surface modes are global Dirichlet eigenvalues)
and hence, for any sufficiently large number d of Chebyshev nodes there will be a
node that is too close to the global Dirichlet eigenvalue.

Note that this problem also transfers to the computation of (general) guided modes
that are not equal to local or global Dirichlet eigenvalues when using the Chebyshev
interpolation of the non-linear problem with DtN maps in an interval that is not suffi-
ciently far away from global Dirichlet eigenvalues. This makes the application of the
Chebyshev interpolation to the non-linear problem with DtN maps very problematic
as long as we do not have a-priori knowledge about the existence and location of
global Dirichlet eigenvalues.

Applying the (quasi) Newton’s method to the problem with DtN maps, on the
other hand, only seems to be problematic if the sought guided mode is equivalent to
a local or global Dirichlet eigenvalue.

6 Conclusion

In this paper we showed the numerical discretization of RtR operators based on lo-
cal cell problems with given Robin data. These operators are then employed for the
exact computation of guided modes in 2D PhC wave-guides and surface modes in
semi-infinite 2D PhCs. The RtR operators and the local Robin problems are well-
defined at all frequencies in band gaps and therefore, they are preferable compared to
DtN operators based on local Dirichlet problems as used in [5,13]. In numerical ex-
amples we showed that our proposed quasi Newton method converges even if we are
very close to a Dirichlet eigenvalue of the PhC unit cell (local Dirichlet eigenvalue)
or to a Dirichlet eigenvalue of the PhC half-strip (global Dirichlet eigenvalue) where
the method with DtN operators based on local Dirichlet problems does not converge.
Apart from these special cases we could also show that the Chebyshev interpola-
tion of the non-linear problem with DtN operators only converges if the interpolation
interval does not contain and is sufficiently far away from any global Dirichlet eigen-
value. However, those global Dirichlet eigenvalues are normally unknown in advance,
in particular since their computation is only possible with RtR operators, as shown
in this paper. The method with RtR operators, on the other hand, proved to be reli-
able for the computation of guided modes and surface modes no matter if an indirect
method, such as the quasi Newton method, or a direct method, such as the Chebyshev
interpolation, is used to solve the resulting non-linear eigenvalue problem.
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