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We consider the solution of the Helmholtz equation with absorption −�u(x)−n(x)2(ω2 +
ıε)u(x) = f (x), x = (x, y), in a 2D periodic medium Ω = R

2. We assume that f (x) is
supported in a bounded domain Ω i and that n(x) is periodic in the two directions in
Ωe = Ω \ Ω i . We show how to obtain exact boundary conditions on the boundary of Ω i ,
ΣS that will enable us to find the solution on Ω i . Then the solution can be extended in Ω

in a straightforward manner from the values on ΣS . The particular case of medium with
symmetries is exposed. The exact boundary conditions are found by solving a family of
waveguide problems.

© 2008 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Periodic media play a major role in applications, in particular in optics for micro and nano-technology [14,16,19,24]. From
the point of view of applications, one of the main interesting features is the possibility offered by such media of selecting
ranges of frequencies for which waves can or cannot propagate. Mathematically, this property is linked to the gap structure
of the spectrum of the underlying differential operator appearing in the model. For a complete, mathematically oriented
presentation, we refer the reader to [19,20]. There is a need for efficient numerical methods for computing the propagation
of waves inside such structures. In real applications, the media are not perfectly periodic but differ from periodic media
only in bounded regions (which are small with respect to the total size of the propagation domain). In this case, a natural
idea is to reduce the pure numerical computations to these regions and to try to take advantage of the periodic structure
of the problem outside: this is particularly of interest when the periodic regions contain a large number of periodicity
cells.

In the case where the unperturbed medium is homogeneous (in some sense, a periodic medium with an arbitrarily
small period), this is a very old problematic. Various methods can be used to restrict the computation around the pertur-
bation. A first class of methods consists in applying an artificial boundary condition which is transparent or approximately
transparent. Let us cite:

(i) the local radiation condition at finite distance [2,6],
(ii) coupling techniques between volumic methods and integral representation or integral equation technique [10,13,15,21],

(iii) the DtN approaches which consists in computing exactly the Dirichlet-to-Neumann operator associated to the exterior
medium, provided that the geometry of the boundary is properly chosen (typically a circle in 2D).
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Methods (ii) and (iii) are exact (up to numerical approximation). The method (i) is approximate and its accuracy improves
where the order of the condition increases or the artificial boundary goes to infinity. However, none of these methods can
be applied or extended directly to general exterior periodic media because they use the homogeneous nature of the exterior
medium (explicit formulas are used for the solution of the exterior problem in (i), (ii) and (iii), the knowledge of the Green
function is used in case (ii) and separation of variables is used in case (iii)).

The second approach consists in surrounding the computational domain by an absorbing layer in which the PML tech-
nique [3] is applied. Physically the method can be interpreted as letting an incident wave from the computational domain
enters the layer without reflexion and absorbs the wave inside the layer preventing it to come back in the computational
domain. This principle is not adapted a priori to periodic media for which a wave leaving the computational domain will
interact with heterogeneities of the medium up to infinity. That is why the standard PML technique cannot work in this
case (see however the pole condition techniques that can be seen as a generalization of the PML method in the case of
non-homogeneous media [11,12]).

It seems that there are very few works in the same spirit in the mathematical literature for the case of periodic perturbed
media. A problem similar that have some similarities with the one we consider in this paper is the numerical computation
of the localized modes (non-trivial solution of the propagation model in the absence of any source term) that may appear
for specific frequencies due to the presence of a local perturbation of the periodic media (see [7–9] for existence results).
The supercell method analyzed [25] has similarities with the radiation condition at finite distance (i): it consists in making
computations in a bounded domain of large size, the resulting solution converging to the true solution when the size
goes to infinity. Note however that in this case as the localized modes are exponentially decreasing, this convergence is
exponentially.

The notion of DtN maps already appears for instance, in the works of T. Abboud [1] for the diffraction problem by
periodic gratings or of J. Tausch [26] for periodic open waveguides. However in these two cases the DtN map is used to deal
with the unboundedness of the propagation medium in the direction(s) transverse to the periodicity direction(s).

In a first paper [17], we treated the case of locally perturbed periodic waveguide: typically the unperturbed propagation
medium is bounded in one direction and periodic in the other. We proposed a numerical method for determining DtN oper-
ators by solving local cell problems an operator valued stationary Ricatti equation. In this paper we proposed an extension
of the above work to the case where the unpertubed media is periodic in the two directions.

This article is devoted to the presentation of the conceptual aspects of our method and the exposition of the main
theoretical issues. The numerical aspects are under way and will be treated in a forthcoming paper. Let us also mention
that, in order to avoid mathematical difficulties, we consider the case where the propagation medium is slightly absorbing,
the absorption being quantified by a small positive parameter ε > 0 (see Section 2). The challenging question of studying
the limit case when ε tends to 0 (i.e. the limiting absorption principle, see Remark 2) is still an open question to our
knowledge. However the method that we present here can be formally extended to non-absorbing media by using the
heuristics proposed in [17] for the case of periodic waveguides.

2. The model problem

The model problem that we consider in this paper is the propagation of a time harmonic scalar wave in a 2D periodic
medium, Ω = R2, with a local perturbation. More precisely, we shall assume that the geometry as well as the material
properties of the plane are x and y-periodic except in a bounded region (see Fig. 1). The propagation model we consider is
a simple 2D (x = (x, y)) scalar model:

n(x)2 ∂2U

∂t2
(x, t) − η

∂Ut

∂t
(x, t) − �U (x, t) = F (x, t),

where η is a physical parameter, typically small, that represents a slight absorption in the medium. We shall assume that
η > 0. See Remark 2 for the limit case η → 0.

This model can be used for instance in electromagnetism: the 2D model is then seen as the cross section of a 3D one,
invariant in the z-direction. In the case of the transverse electric polarization, U represents the z-component of the electric
field and n(x) ∈ L∞ is the refractive index of the medium. Moreover, we suppose that:

0 < n− = inf
x∈Ω

n(x) � n+ = sup
x∈Ω

n(x) < +∞.

Fig. 1. The domain of propagation Ω .
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Fig. 2. Geometry and notation.

We assume that the source term is time harmonic with frequency ω > 0, (F (x, t) = f (x) eiωt) and we seek the time har-
monic solution U (x, t) = u(x) eiωt where u satisfies the Helmholtz equation:

−�u(x) − n(x)2(ω2 + ıε
)
u(x) = f (x) (P )

with ε = ηω. It is well known that this problem admits a unique solution in H1(�,Ω), the closed subspace of functions in
H1(Ω) whose Laplacian is in L2(Ω).

The domain of propagation Ω is infinite in the two directions x and y and periodic outside a bounded region Ω i (i for
interior domain) (see Fig. 2). The exterior domain Ωe is: Ωe = Ω \ Ω i . The basic periodicity cell is denoted C :

C =
]
− L

2
,

L

2

[2

.

In the sequel for the simplicity of the exposition, we will consider that the periodicity is the same in the x and y directions.
L is the period.

The region Ω i is a square, contains the defect, which is represented in three possible ways: a local source term f ,
a compact perturbation of the refraction index n and/or geometrical defects. In the following, Ω i is chosen in such a way
that the size of each edge is a multiple of the period of the medium:

Ω i =
]
− L

2
,
(2N − 1)L

2

[2

.

For the sake of presentation, we will suppose that N = 1 here. However the generalization is straigthforward (see
Appendix A).

The function n is supposed to coincide with a periodic function outside Ω i . More precisely, we suppose that there exists
a L-periodic function np , i.e.,

∀( j,k) ∈ Z2, ∀(x, y) ∈ Ω ⇒ np(x, y) = np(x + jL, y + kL),

such that: Supp(n − np) ⊂ Ω i .

Our goal is to characterize the restriction of the solution u to Ω i as the solution of (2) in Ω i with boundary conditions
of the form:

∂u

∂n
+ Λu = 0 on ΣS = ∂Ω i, (1)

where Λ ∈ L(H1/2(ΣS ), H−1/2(ΣS )).

Remark 1. Considering that a constant medium is a particular periodic medium, our method thus provides as a by product
a way to obtain exact DtN boundary conditions for an homogeneous exterior medium with an artificial boundary chosen
along a square (and not a circle as is done usually).

Remark 2. The presence of the absorption term in (P ) guarantees the well-posedness of the Helmholtz equation (existence
and uniqueness of the solution u in R2). A natural question is to understand what happens as η or ε goes to 0: do the
solutions of (P ) have a limit? This is the limiting absorption principle. This question is linked, of course, to the question of
(uniquely) defining the proper physical solution of:

−�u(x) − n(x)2ω2u(x) = f (x). (2)

This question is far from being obvious and is actually controversial for physicists (see for instance [4,23]).
In the case of periodic waveguides, this question was partially addressed in [17]. To our knowledge, in the general 2D

case, this is still an open question, and, in this article, we will concentrate on the case with (possibly arbitrarily small)
absorption.
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This article is organized as follows. We will successively consider three particular situations of increasing complexity,
each case using the solution from the previous one. Sections 3 and 4 provide intermediate results for Section 5, which is
the main section of the article. In these two sections, we treat the construction of an exact DtN operator for problems that
are simpler than the one we present in Section 2 but whose resolution is useful for the resolution of the full problem. In
Section 3, we explain how to modify the method of [17] for the resolution of the locally perturbed waveguide to handle
quasi-periodic conditions. Section 4 treats the construction of the DtN operator associated to a periodic halfspace: this
operator can be characterized by mean of a half waveguide DtN operators. Section 5 deals with the resolution of the model
problem. It contains the original aspects of the method (as compared to [17]). The key idea is to factorize the operator Λ

in (1) as the product of ΛH, the DtN operator associated to a periodic halfspace and a Dirichlet-to-Dirichlet operator. This
new operator is characterized through an equation that we derive and for which well-posedness is proven. We provide an
equation for this new operator for which we show an existence and uniqueness result. From the practical view point, it
should be emphasized that the numerical resolution of this equation only requires the solution of local cell-problems, the
same that are used for the computation of ΛH. We give some conclusions and perspectives in Section 6. In Appendix B, we
explain how to extend the method to the more general case of a medium without any symmetries.

Remark 3. The method developed in this article can be easily extended to more general elliptic operator u 	→ ∇ · (μ∇u)

where μ is a compact perturbation of a periodic function.
The domain Ω can also be more complex, containing for example a periodic set of holes. In this case we have simply to

ensure that the boundary conditions at the holes are compatible with the periodicity of the problem.

3. The periodic half waveguide problem

In this section we explain how to construct the DtN operator Λw associated to a periodic half-guide Ωw:

Ωw =
+∞⋃
n=0

{
C + (

(n + 1)L,0
)}

.

Fig. 3. Notation in the case of a half guide.

Note that by periodicity, all the “vertical” interfaces Γn = Γ0 + (nL,0) can be identified to Γ (= Γ0) ∼ [−L/2, L/2] and all
the cells Cn = C0 + (nL,0) to C(= C0). See Fig. 3.

3.1. Presentation of the problem

For a fixed k ∈ [−π/L,π/L], we define the “half-guide problem”:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�uw(k;ϕ) − n(x)2(ω2 + ıε
)
uw(k;ϕ) = 0, in Ωw,

uw(k;ϕ) = ϕ, on Γ0,

uw(k;ϕ)|Σ+ = eıkLuw(k;ϕ)|Σ− ,

∂

∂ y
uw(k;ϕ)|Σ+ = eıkL ∂

∂ y
uw(k;ϕ)|Σ− .

(P w)

Let us begin with some functional analysis. Let us introduce the space:

C∞
k

(
Ωw) = {

u ∈ C∞(
Ωw)

, u|Σ+ = eıkLu|Σ−
}
.

We note H1
k (Ωw) the closure of C∞

k (Ωw) in H1(Ωw) and H1
k (�,Ωw) the closed subspace of functions in H1

k (Ωw) with

Laplacian in L2(Ωw). We shall define the subspace H1/2
k (Γ ) of H1/2(Γ ) by:

H1/2
k (Γ ) = {

u|Γ , u ∈ H1
k

(
Ωw)}

.

Remark 4. H1/2
k (Γ ) can also be defined as:

H1/2
(Γ ) = {

ϕ ∈ H1/2(Γ ), ϕ̃ ∈ H1/2(R)
}
,
k
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where ϕ̃ is the quasi-periodic extension of ϕ in R, that means:

∀m ∈ Z , ∀y ∈ Γ, ϕ̃(y + mL) = eıkmLϕ(y).

It can also be defined by (by a straightforward adaptation of the results of [22])

H1/2
k (Γ ) =

{
ϕ ∈ H1/2(Γ ),

∫
Γ

|ϕ(y) − eıkLϕ(−y)|2
y − L/2

dy < +∞
}
.

We will define H−1/2
k (Γ ) as the dual of H1/2

k (Γ ).
Finally, the restriction to H1

k (�,Ωw) of the trace application γ1 defined by:

∀u ∈ H1(�,Ωw)
, γ1u = −∂u

∂x

∣∣∣∣
Γ

,

is a continuous application from H1
k (�,Ωw) onto H−1/2

k (Γ ).
Let us first state without proof (see [5]), the standard existence and uniqueness result for (P w):

Theorem 1. Let k ∈ [−π/L,π/L]. For any ϕ ∈ H1/2
k (Γ ), (P w) admits a unique solution uw(k;ϕ) in H1

k (�,Ωw).

According to Theorem 1, for every k ∈ [−π/L,π/L], we can define the DtN operator Λw(k) ∈ L(H1/2
k (Γ ), H−1/2

k (Γ )) by:

∀ϕ ∈ H1/2
k (Γ ), Λw(k)ϕ = − ∂

∂x
uw(k;ϕ)

∣∣∣∣
Γ0

,

where uw(k;ϕ) is the solution of (P w).
We develop next the method for (numerically) computing the operator Λw. For this, we adapt the method developed in

[17] where Dirichlet boundary conditions were considered instead of quasi-periodic conditions. We shall restrict ourselves
to presenting the main steps of the method and state without proofs the main related results. For more details, we refer
the reader to [17].

Thanks to the periodicity, the construction of uw(k; ·) in Ωw and Λw(k) for every k is reduced to the knowledge of two
linear operators,

R(k) ∈ L
(

H1/2
k (Γ )

)
and S(k) ∈ L

(
H1/2

k (Γ ), H1(C)
)
,

defined by:

S(k)ϕ := uw(k;ϕ)|C0 , (3)

R(k)ϕ := uw(k;ϕ)|Γ1 . (4)

The important properties of R(k) are summarized in the following theorem.

Theorem 2. For every k ∈ [−π/L,π/L], R(k) is compact, injective and its spectral radius is strictly less than 1.

Using the definition of S(k) and R(k) (expressions (3) and (4)) and the periodicity of the problem, we deduce the
following characterization of uw(k; ·).

Theorem 3. The solution uw(k; ·) of problem (P w) is characterized by

∀ j � 0, uw(k;ϕ)|C j := S(k) ◦ (
R(k)

) j
ϕ. (5)

As a consequence of the definition of S(k), Λw(k) is also characterized by:

Λw(k)ϕ := − ∂

∂x

(
S(k)ϕ

)∣∣∣∣
Γ0

. (6)

At this stage, the definitions of R(k) and S(k) rely on uw which is the solution of a problem posed in unbounded domain.
We shall see in the following section how to determine these operators by solely solving local problems.
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3.2. Characterization of operators via local problems

Let e�(k;ϕ), � = 0,1, be the solutions of two problems posed on a single periodicity cell C :

−�e�(k;ϕ) − n(x)2(ω2 + ıε
)
e�(k;ϕ) = 0, in C, (7)

satisfying both quasi-periodic conditions on Σ+
0 and Σ−

0 :⎧⎪⎪⎨⎪⎪⎩
e�(k;ϕ)|Σ+

0
= eıkLe�(k;ϕ)|Σ−

0
,

∂

∂ y
e�(k;ϕ)

∣∣∣∣
Σ+

0

= eıkL ∂

∂ y
e�(k;ϕ)

∣∣∣∣
Σ−

0

(8)

subject to non-homogeneous Dirichlet conditions on Γ0 and Γ1:

e0(k;ϕ) = ϕ on Γ0, e0(k;ϕ) = 0 on Γ1, (9)

e1(k;ϕ) = 0 on Γ0, e1(k;ϕ) = ϕ on Γ1. (10)

We define four DtN-like operators,

T00(k)ϕ = − ∂

∂x
e0(k;ϕ)

∣∣∣∣
Γ0

, T01(k)ϕ = ∂

∂x
e0(k;ϕ)

∣∣∣∣
Γ1

,

T10(k)ϕ = − ∂

∂x
e1(k;ϕ)

∣∣∣∣
Γ0

, T11(k)ϕ = ∂

∂x
e1(k;ϕ)

∣∣∣∣
Γ1

, (11)

which, after identification between Γ0 and Γ1, we consider as bounded operators in L(H1/2
k (Γ ), H−1/2

k (Γ )).
These four operators are sufficient to treat the waveguide problem. However to deal with the more general 2D case, we

shall need 4 additional “Dirichlet-to-Dirichlet” operators

D±
0 (k) ∈ L

(
H1/2

k (Γ ), H1/2(Σ±
0

))
and D±

1 (k) ∈ L
(

H1/2
k (Γ ), H1/2(Σ±

0

))
that we defined below

D−
0 (k)ϕ = e0(k;ϕ)|←−Σ−

0
, D+

0 (k)ϕ = e0(k;ϕ)|Σ+
0
,

D−
1 (k)ϕ = e1(k;ϕ)|←−Σ−

0
, D+

1 (k)ϕ = e1(k;ϕ)|Σ+
0
, (12)

where (see Fig. 3):

Σ±
0 =

[
L

2
,

3L

2

]
×

{
± L

2

}
and

←−
Σ−

0 =
[

3L

2
,

L

2

]
×

{
− L

2

}
,

Remark 5. Note that the trace in Σ+
0 is taken in the increasing x-direction whereas the one in Σ−

0 is taken in the decreasing
x-direction. We will understand in Section 5.4 this nuance and why we have to introduce these four DtD operators.

Using linearity and periodicity of the problem, one can show easily that:

uw(k,ϕ)|C0 = e0(k;ϕ) + e1
(
k; R(k)ϕ

)
(= S(k)ϕ),

uw(k,ϕ)|C1 = e0
(
k; R(k)ϕ

) + e1
(
k; R(k)2ϕ

)
. (13)

Using the continuity of the derivative of uw across Γ1, one can show the following theorem (see [17]):

Theorem 4. R(k) is the unique compact operator of L(H1/2
k (Γ )) whose spectral radius is strictly less than 1, which solves the following

Ricatti equation:

Find R ∈ L
(

H1/2
k (Γ )

)
, T10(k)R2 + (

T00(k) + T11(k)
)

R + T01(k) = 0.

Moreover, we have the following formulae for Λw(k):

Λw(k) = T00(k) + T10(k)R(k).
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(a) The periodic half-space. (b) Its decomposition.

Fig. 4. Halfspace notation.

Thus, solving first cell problems and then this Ricatti-type equation, one can obtain the operator R(k). The operator S(k)

is then determined using (13). We can reconstruct uw(k, ·) in the whole guide Ωw by (5) and in particular its trace on Σ+
and

←−
Σ− by: ∀ j � 0

uw(k;ϕ) = (
D+

0 (k) + D+
1 (k)R(k)

)
R(k) jϕ on Σ+

j ≡
[

L

2
+ jL,

3L

2
+ jL

]
,

uw(k;ϕ) = (
D−

0 (k) + D−
1 (k)R(k)

)
R(k) jϕ on

←−
Σ−

j ≡
[

3L

2
+ jL,

L

2
+ jL

]
.

(14)

4. The half-space problem

4.1. Presentation of the problem

In this section, we present a method to characterize the DtN operator ΛH of the periodic halfspace, defined by:

ΛH : H1/2(Σ̃) → H−1/2(Σ̃)

ψ 	→ ΛHψ = ∂

∂x
uH(ψ)

∣∣∣∣
Σ̃

,

where uH(ψ) ∈ H1(�,ΩH) is the unique solution of:{
−�uH(ψ) − n(x)2

(
ω2 + ıε

)
uH(ψ) = 0, in ΩH,

uH(ψ) = ψ, on Σ̃,
(P H)

where ΩH = [L/2,+∞[×R = Ω+ ∪ ΩW ∪ Ω− and Σ̃ = {L/2} × R = Σ̃+ ∪ Σ̃0 ∪ Σ̃− (see Fig. 4).

4.2. The Floquet–Bloch transformation: definition and properties

We first define the FB transform of smooth compactly supported functions.

Definition 5. The Floquet–Bloch (FB) transform of period L is defined by (see [18]):

F : C∞
0 (R) → L2

(
K =

[
− L

2
; L

2

]
×

[
−π

L
,
π

L

])
,

ψ(y) 	→ F ψ(y;k) =
√

L

2π

∑
n∈Z

ψ(y + nL)e−ınkL,

where C∞
0 (R) is the set of C∞-functions with compact support.

Remark 6. The sum in the definition of the FB transformation is finite because of the compact support of ψ .

Proposition 7 (Extension to L2(R)). The FB transformation extends to an isometry between L2(R) and L2(K):

∀(ψ,φ) ∈ L2(R), (F ψ, F φ)L2(K) = (ψ,φ)L2(R).

Proof. We give a short proof for completeness. Note that for a fixed y ∈ [−L/2; L/2], k → F ψ(y;k) is the trigonometric
series associated to the coefficients (ψ(y + nL)). The Plancherel theorem then ensures that

π/L∫ ∣∣F ψ(y;k)
∣∣2

dk =
∑
n∈Z

∣∣ψ(y + nL)
∣∣2

.

−π/L
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Integrating y between −L/2 and L/2 we obtain:

L/2∫
−L/2

π/L∫
−π/L

∣∣F ψ(y;k)
∣∣2

dk dy =
+∞∫

−∞

∣∣ψ(y)
∣∣2

dy.

This identity allows to extend uniquely the operator F by density to an isometry from L2(R) to L2(K). �
We shall use in the sequel the following properties of the FB transformation (the proofs are straightforward and left to

the reader. See also [18]). These properties make the FB transformation a privileged tool for the analysis of linear PDEs with
periodic coefficients.

Proposition 8 (Inversion formula). We have:

∀y ∈
[
− L

2
; L

2

]
, ∀n ∈ Z, ψ(y + nL) =

√
L

2π

π/L∫
−π/L

F ψ(y;k)eınkL dk.

Proposition 9 (Main properties). The FB transformation has the following properties

(1) it commutes with the differential operators, in the sense that

F
(

dψ

dy

)
= ∂

∂ y
(F ψ).

(2) It diagonalizes the translation operators

(τqψ)(y) = ψ(y + qL) ⇒ F (τqψ)(y;k) = e−iqkL F ψ(y;k), (y,k) ∈ K.

(3) It commutes with the multiplication by a periodic function, in the sense that if μ is a L-periodic function

F (μψ)(y;k) = μ(y)F ψ(y;k), (y,k) ∈ K.

(4) it extends to the space H1/2(R) and

ψ ∈ H1/2(R) ⇒ ∀k ∈
[
−π

L
,
π

L

]
, F ψ(·;k) ∈ H1/2

k

([
− L

2
,

L

2

])
. It extends to the space H−1/2(R) by duality.

Let ΩH = [L/2,+∞[×R. For a function of u(x, y) ∈ L2(ΩH), we shall denote by F y the FB transform applied in the
y-direction. Then F yu is a function of three variables (x, y;k) such that

∀x ∈ R, (F yu)(x, ·; ·) = F
[
u(x, ·)].

According to Proposition 7 and Fubini’s theorem, we see that for each k ∈ [−π/L,π/L], the function F yu(·, ·;k) is defined
in the band Ωw = [L/2,+∞[×[−L/2, L/2] and

k 	→ F yu(·, ·;k) ∈ L2
([

−π

L
,
π

L

]
, L2(Ωw))

.

4.3. Solution of the halfspace problem

Let uH(ψ) be the solution of the problem (P H) and F y(uH(ψ)) its FB transform in the y-direction. Then

F y(uH(ψ)) ∈ L2
(

Ωw ×
[
−π

L
,
π

L

])
.

The following theorem is an immediate consequence of the properties of the FB-transform (we refer to Proposition 9).

Theorem 6. For every k ∈ [−π/L,π/L], F yuH(ψ)(·,k) is in H1(Ωw) and is the solution in Ωw of the waveguide problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[−�F yuH(ψ) − n2
(
ω2 + iε

)
F yuH(ψ)

]
(·;k) = 0, in Ωw

F yuH(ψ)(·;k)|Σ0 = F yψ(y;k),

F yuH(ψ)(·;k)|Σ+ = eıkL F yuH(ψ)(·;k)|Σ− ,

∂y F yuH(ψ)(·;k)|Σ+ = eıkL∂y F yuH(ψ)(·;k)|Σ− ,

(P H
k )

where Σ+ (resp. Σ−) is the upper (resp. lower) boundary of Ωw , Σ0 is its left boundary (= Γ0 in Section 3) (see Fig. 4 for the
notations).
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Using the method developed in Section 3, we can characterize and compute, for every k ∈ [−π/L,π/L], the correspond-
ing waveguide problem. In particular, the solution of (P H

k ) is defined by:

∀n ∈ N, F yuH(ψ)(·;k)|Cn = S(k)R(k)n(
F yψ(·;k)

)
,

where S(k) and R(k) are defined in Section 3.
Using the inversion formula given in Proposition 8, we can reconstruct semi-analytically uH(ψ) in the whole domain ΩH

for any Dirichlet condition ψ ∈ H1/2(Σ̃):

∀(x, y) ∈ Ωw, ∀n ∈ Z, uH(ψ)(x, y + nL) =
√

L

2π

π/L∫
−π/L

F yuH(ψ)(x, y;k) eınkL dk. (15)

We can also define the operator Λ̂H by:

Λ̂H :
∏

k∈[−π/L,π/L]
H1/2

k

(
Σ0) →

∏
k∈[−π/L,π/L]

H−1/2
k

(
Σ0),

where ∏
k∈[−π/L,π/L]

H±1/2
k

(
Σ0) =

{
ψ ∈ H±(K), a.e. k ∈

[
−π

L
,
π

L

]
, F yψ(·;k) ∈ H±1/2

k

(
Σ0)}

and

∀k,
(
Λ̂Hψ

)
(·,k) = Λw(k)ψ(·;k).

We can show then the following theorem using Proposition 9, which expresses that ΛH can be described in terms of a
family of “waveguide” DtN operators and relates this section to Section 3.

Theorem 7. The halfspace DtN operator ΛH is given by:

ΛH = F −1
y

[
Λw(k)

(
F yψ(·;k)

)]
. (16)

5. The 2D plane problem

We shall restrict ourselves to a particular situation that makes the presentation of our method simpler. More precisely,
we shall consider the case where

(H1) the periodicity cell C has double symmetry,
(H2) the restriction of the function n to C is a function with double symmetry.

The notion of double symmetry will be explained in Section 5.1.1. This situation is often met in the applications. We extend
the method to more general situations in Appendix B.

Let us recall that the restriction of u, the solution of (P ), to Ω i is the solution of⎧⎪⎨⎪⎩
−�ui − n(x)2(ω2 + ıε

)
ui = 0, in Ω i,

∂ui

∂n
+ Λui = 0, on ΣS ,

(P i)

where the DtN operator Λ is defined by

Λ : H1/2(ΣS ) → H−1/2(ΣS )

φ 	→ Λφ = ∂

∂n
ue(φ)

∣∣∣∣
ΣS

,

where ue(φ) ∈ H1(�,Ωe) is the unique solution of{−�ue(φ) − n(x)2(ω2 + ıε
)
ue(φ) = 0, in Ωe,

e
(P e)
u (φ) = φ, on ΣS .
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See Fig. 5 for notations. Our goal is to derive a method for the computation of Λ by using the FB transformation as in
Section 4 and to only solve local cell problems as in Section 3.

Fig. 5. 2D-plane medium.

5.1. Double symmetry and related results

5.1.1. Main definitions
Definition 8 (Double symmetry (1)). Let Sα be the symmetry with respect to the line y = αx. A subset O of R2 has double
symmetry if it is invariant with respect to S1 and S−1.

Remark 10. If a domain O of R2 has double symmetry, its boundary O has too.

Definition 9 (Double symmetry (2)). Let O be an open set with double symmetry and let a function n be defined from O to
R or C. The function n has double symmetry if:

n = n ◦ S1 = n ◦ S−1.

5.1.2. Functional spaces and trace theorems
The following properties of function spaces on a set having double symmetry are straight forward.

Proposition 11. Let O (typically C,Ω i,Ωe or ΣS ) be an open domain with double symmetry and H p(O), p � 0, the associated
Sobolev space.

One has the following orthogonal decomposition:

H p(O) = H p
(s,s)(O) ⊕ H p

(s,a)(O) ⊕ H p
(a,s)(O) ⊕ H p

(a,a)(O), (17)

where

v ∈ H p
(s,s)(O) ⇔ v = v ◦ S1 = v ◦ S−1,

v ∈ H p
(a,a)(O) ⇔ v = −v ◦ S1 = −v ◦ S−1,

v ∈ H p
(s,a)(O) ⇔ v = v ◦ S1 = −v ◦ S−1,

v ∈ H p
(a,s)(O) ⇔ v = −v ◦ S1 = v ◦ S−1.

Moreover the spaces H p
(i, j)(O), (i, j) ∈ {s,a}2 , are closed subspaces of H p(O) and orthogonal in L2(O).

Remark 12. To explain the notation, the indices s or a mean “symmetric” or “antisymmetric”, the first indice is with respect
to S1 and the second to S−1. See Fig. 6 for an example for p = 0.

Fig. 6. Examples of functions of L2
(i, j)(O) with O = [−1,1]2.

Let Ω be an open set of R2 with double symmetry (typically Ωe). We see that for any (i, j) ∈ {s,a}2, the restriction to
H1 (Ω) of the trace application γ0 defined by
(i, j)
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∀u ∈ H1(Ω), γ0u = u|∂Ω

is a continuous application from H1
(i, j)(Ω) onto H1/2

(i, j)(∂Ω) (typically ∂Ω is ΣS ).
Finally we express in terms of function spaces the commutation of the Laplace operator with the symmetries S±1:

Theorem 10. Let Ω a subset of R2 with double symmetry. We recall that H1(�;Ω) is the space of functions in H1(Ω) with Laplacian
in L2(Ω). We set:

∀(i, j) ∈ {s,a}2, H1
(i, j)(�;Ω) = H1(�;Ω) ∩ L2

(i, j)(Ω).

Then, for every (i, j), the Laplace operator, �, maps H1
(i, j)(�;Ω) into L2

(i, j)(Ω).

Observe that the decomposition (17) can be extended to the spaces H1(�,Ω) and H1
(i, j)(�;Ω).

We now aim at extending Proposition 11 to the Sobolev space H−1/2(O), where O = ∂Ω (typically ΣS ) and Ω is an
open set of R2 with double symmetry.

Definition 11. Let Ω be an open subset of R2 with double symmetry. We define the closed subspace H−1/2
(i, j) (∂Ω) of

H−1/2(∂Ω) by

∀(i, j) ∈ {s,a}2, H−1/2
(i, j) (∂Ω) =

{
γ1u = ∂u

∂n

∣∣∣∣
∂Ω

, u ∈ H1
(i, j)(�;Ω)

}
,

.

Obviously, γ1 is a continuous application from H1
(i, j)(�;Ω) onto H−1/2

(i, j) (∂Ω).
Using Proposition 11, Theorem 10 and Definition 11, we can prove the following proposition

Proposition 13. Let Ω be an open subset of R2 with double symmetry. We have

H−1/2(∂Ω) = H−1/2
(s,s) (∂Ω) ⊕ H−1/2

(s,a) (∂Ω) ⊕ H−1/2
(a,s) (∂Ω) ⊕ H−1/2

(a,a) (∂Ω), (18)

where H−1/2
(i, j) (∂Ω) can be characterized as follows: given ν ∈ H−1/2(∂Ω),

ν ∈ H−1/2
(i, j) (∂Ω) ⇔ 〈ν,φ〉∂Ω = 0, ∀φ ∈ H1/2

(l,m)
(∂Ω), (l,m) �= (i, j). (19)

Remark 14. Despite the notation, H−1/2
(i, j) (∂Ω) is strictly contained in [H1/2

(i, j)(∂Ω)]′ .

We shall now use these general properties of the spaces with double symmetry all along this section. We introduce
restriction and extension operators for particular subsets of R2 which will be useful for the sequel, too.

Restriction and extension operators between Σ0 and ΣS (see Fig. 7). Let R be the restriction operator defined by

R : L2(ΣS ) → L2(Σ0),
φ 	→ φ|Σ0 .

For all (i, j) ∈ {s,a}2, one check that R is an isomorphism from L2
(i, j)(ΣS ) onto L2(Σ0), that we shall denote by R(i, j):

R(i, j) : L2
(i, j)(ΣS ) → L2(Σ0).

Its inverse, E(i, j) , is an extension operator, which can be given explicitly thanks to the symmetries setting εs = 1 and
εa = −1:

∀φ ∈ L2(Σ0),
E(i, j)φ|Σ0 = φ,

E(i, j)φ|S1Σ0 = εiφ ◦ S1,

E(i, j)φ|S−1Σ0 = ε jφ ◦ S−1,

E(i, j)φ|S1 S−1Σ0 = εiε jφ ◦ S1 ◦ S−1.

For each (i, j) ∈ {s,a}2, we define the following spaces

H1/2
(i, j)

(
Σ0) = {

R(i, j)φ, φ ∈ H1/2
(i, j)(ΣS )

} = {
φ ∈ H1/2(Σ0), E(i, j)φ ∈ H1/2

(i, j)(ΣS )
}
.

Then, from its definition, R(i, j) is an isomorphism from H1/2
(ΣS ) onto H1/2

(Σ0).

(i, j) (i, j)



2166 S. Fliss, P. Joly / Applied Numerical Mathematics 59 (2009) 2155–2178
The following proposition gives a more intrinsic characterization of these spaces.

Proposition 15. We have

H1/2
(s,s)

(
Σ0) = H1/2(Σ0),

H1/2
(a,a)

(
Σ0) = {

φ ∈ H1/2(Σ0), (
L2/4 − y2)−1/2

φ(y) ∈ L2(Σ0)},
H1/2

(s,a)

(
Σ0) = {

φ ∈ H1/2(Σ0), (y + L/2)−1/2φ(y) ∈ L2(Σ0)},
H1/2

(a,s)

(
Σ0) = {

φ ∈ H1/2(Σ0), (L/2 − y)−1/2φ(y) ∈ L2(Σ0)}.
We now explain how to extend the restriction operator R(i, j) to H−1/2

(i, j) (ΣS ) (see Definition 11). This can be done by

duality, noticing that we have ∀(i, j) ∈ {s,a}2

∀φ ∈ L2
(i, j)(ΣS ), ∀ψ ∈ L2(Σ0), 〈R(i, j)φ,ψ〉Σ0 = 1

4
〈φ, E(i, j)ψ〉ΣS , (20)

which suggests an extension of R(i, j) to H−1/2
(i, j) (ΣS ) by

∀φ ∈ H−1/2
(i, j) (ΣS ), ∀ψ ∈ H1/2

(i, j)

(
Σ0), 〈R(i, j)φ,ψ〉Σ0 = 1

4
〈φ, E(i, j)ψ〉ΣS . (21)

We introduce the closed subspace of [H1/2
(i, j)(Σ

0)]′:
H−1/2

(i, j)

(
Σ0) = R(i, j)

(
H−1/2

(i, j) (ΣS )
)
, (22)

and conclude that R(i, j) is a linear continuous from H−1/2
(i, j) (ΣS ) onto H−1/2

(i, j) (Σ0).

Analogously, E(i, j) can be extended to a linear continuous mapping from H−1/2
(i, j) (Σ0) onto H−1/2

(i, j) (ΣS ), using:

∀ψ ∈ H−1/2
(i, j)

(
Σ0), ∀φ ∈ H1/2

(i, j)(ΣS ), 〈E(i, j)ψ,φ〉ΣS = 4〈ψ, R(i, j)φ〉Σ0 . (23)

5.2. Decomposition of the operator Λ

Using the definitions and properties of media and functions with double symmetries and considering Hypotheses (H1)
and (H2), one can show the following theorem.

Theorem 12. For any (i, j), Λ maps H1/2
(i, j)(ΣS ) onto H−1/2

(i, j) (ΣS ) continuously.

Proof. We make the proof for the case (i, j) = (s, s). Generalization to the other cases are left to the reader.
Let φ be in H1/2

(s,s)(ΣS ). The open set Ωe has double symmetry and the function n in Ωe has too. Thus, because of
Theorem 10, if ue is solution of (P e), ue ◦ S1 and ue ◦ S−1 are solutions too. From the uniqueness of the solution, ue(φ) is
then in H1

(s,s)(�,Ωe).

Finally Definition 11 of the space H−1/2
(s,s) (ΣS ) yields the result. �

Let us introduce

∀(i, j) ∈ {s,a}, Λ(i, j) = Λ|
H1/2

(i, j)(ΣS )
∈ L

(
H1/2

(i, j)(ΣS ), H−1/2
(i, j) (ΣS )

)
.

The decomposition of the spaces H±1/2(ΣS ), given Proposition 11, leads to the following decomposition of Λ.

Proposition 16. We have the diagonal decomposition

Λ =
⊕

i, j

Λ(i, j), in the sense that ∀φ ∈ H1/2(ΣS ), Λφ =
∑
i, j

Λ(i, j)φ(i, j),

where φ =
∑
i, j

φ(i, j), with ∀(i, j) ∈ {s,a}2, φ(i, j) ∈ H1/2
(i, j)(ΣS ).

5.3. Factorization of each DtN map Λ(i, j)

We recall the following notation presented in Fig. 7:

ΩH = Ω− ∪ Ωw ∪ Ω+ and Σ̃ = Σ̃− ∪ Σ̃0 ∪ Σ̃+.
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Fig. 7. 2D-plane notations.

Fig. 8. Schematic decomposition of Λ(i, j) = E(i, j) ◦ R̃ ◦ ΛH ◦ D̃(i, j) .

Dirichlet-to-Dirichlet operators. Let D̃ be the Dirichlet-to-Dirichlet (DtD) operator defined by:

D̃ : H1/2(ΣS ) → H1/2(Σ̃),

φ 	→ ue(φ)|Σ̃ ,

where ue(φ) is the solution of the problem (P e).
Let H1/2

(i, j)(Σ̃) be the closed subspace of H1/2(Σ̃) defined by

H1/2
(i, j)

(
Σ̃

) = {
ψ ∈ H1/2(Σ̃)

, ψ |Σ0 ∈ H1/2
(i, j)(Σ0)

}
.

We introduce for all (i, j) ∈ {s,a}2 the DtD operators:

D̃(i, j) = D̃|
H1/2

(i, j)(ΣS )
∈ L

(
H1/2

(i, j)(ΣS ), H1/2
(i, j)

(
Σ̃

))
.

The restriction operator. Let us denote

R̃ : H−1/2(Σ̃) → [
H1/2

(a,a)

(
Σ0)]′

the continuous extension of the restriction operator to Σ0 from L2(Σ̃) to L2(Σ0). R̃ is defined by duality as the adjoint of
the zero extension of functions in H1/2

(a,a)(Σ
0) into H1/2(Σ̃).

According to the schematic decomposition process of Fig. 8, we have the following theorem:

Theorem 13. The operator R̃ ◦ ΛH ◦ D̃(i, j) maps H1/2
(ΣS ) into H−1/2

(Σ0) and

(i, j) (i, j)
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Λ(i, j) = E(i, j) ◦ R̃ ◦ ΛH ◦ D̃(i, j),

where

• D̃(i, j) is a Dirichlet-to-Dirichlet operator defined above,
• ΛH is the halfspace DtN operator defined in Section 4,
• R̃ is the restriction operator defined above,
• E(i, j) is the extension operator defined in Section 5.1.

Proof. Let (i, j) ∈ {s,a}2 and φ be in H1/2
(i, j)(ΣS ). From the definition of D̃(i, j) , ue(φ)|ΩH and uH(D̃(i, j)φ) satisfy the halfspace

Helmholtz problem (P H) with the same Dirichlet condition on Σ̃ , namely ψ = D̃(i, j)φ.
By uniqueness of the solution of (P H), we have

ue(φ)|ΩH = uH(
D̃(i, j)φ

)
and in particular, the traces of their normal derivatives on Σ0 coincide, which can be written as (we omit the details of the
rigorous proof which can be done using duality and symmetry arguments)

R(i, j)

(
∂

∂n
ue(φ)|ΣS

)
= R̃ ◦ ΛH ◦ D̃(i, j)φ,

where R(i, j) is defined in Section 5.1.2. This relation proves the first part of the theorem. For the second part, we just use
that E(i, j) is the inverse of R(i, j) . �

By Section 4 we know how to compute ΛH with the help of the FB transformation. Thus, the determination of each DtN
map Λ(i, j) is reduced to that of the DtD operator D̃(i, j) . The computation of D̃(i, j)φ, for any given φ, a priori requires to
compute the solutions ue of the exterior problem (P e) defined in an unbounded domain. In the following section, we find
another characterization of these operators which “avoids” the solution of the exterior problem.

5.4. Halfspace DtD operators

We introduce operators whose definitions rely on the solution of the halfspace problems (P H). These operators will be
used in Section 5.5 to provide the new characterization of the operators D̃(i, j) .

We decompose the boundary Σ of Ωw according to Fig. 4:

Σ = ←−
Σ− ∪ Σ0 ∪ Σ,+

←−
Σ− =

]
+∞,

L

2

]
×

{
− L

2

}
, Σ0 =

{
L

2

}
×

[
− L

2
; L

2

]
, Σ+ =

[
L

2
,+∞

]
×

{
L

2

}
.

In the following we shall identify Σ and Σ̃ with R,
←−
Σ− with Σ̃− , Σ0 with Σ̃0 and, Σ+ with Σ̃+ . We understand thanks

to Fig. 9 why the point along the line Σ− runs in the direction of decreasing values of x.

Fig. 9. Identification of Σ̃ and Σ .
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Definition 14. We recall that uH is the solution of (P H). Let us introduce four half-space DtD operators:

DH
(s,s) : H1/2

(s,s)

(
Σ̃

) −→ H1/2
(s,s)

(
Σ̃

)
,

ψ 	−→
DH

(s,s)ψ |Σ̃− ≡ +uH(ψ)|←−Σ− ,

DH
(s,s)ψ |Σ̃0 = ψ |Σ̃0 ,

DH
(s,s)ψ |Σ̃+ ≡ +uH(ψ)|Σ+ ,

DH
(s,a) : H1/2

(s,a)

(
Σ̃

) −→ H1/2
(s,a)

(
Σ̃

)
,

ψ 	−→
DH

(s,a)ψ |Σ̃− ≡ −uH(ψ)|←−Σ− ,

DH
(s,a)ψ |Σ̃0 = ψ |Σ̃0 ,

DH
(s,a)ψ |Σ̃+ ≡ +uH(ψ)|Σ+ ,

DH
(a,s) : H1/2

(a,s)

(
Σ̃

) −→ H1/2
(a,s)

(
Σ̃

)
,

ψ 	−→
DH

(a,s)ψ |Σ̃− ≡ +uH(ψ)|←−Σ− ,

DH
(a,s)ψ |Σ̃0 = ψ |Σ̃0 ,

DH
(a,s)ψ |Σ̃+ ≡ −uH(ψ)|Σ+ ,

DH
(a,a) : H1/2

(a,a)

(
Σ̃

) −→ H1/2
(a,a)

(
Σ̃

)
,

ψ 	−→
DH

(a,a)ψ |Σ̃− ≡ −uH(ψ)|←−Σ− ,

DH
(a,a)ψ |Σ̃0 = ψ |Σ̃0 ,

DH
(a,a)ψ |Σ̃+ ≡ −uH(ψ)|Σ+ .

Remark 17. A priori DH
(i, j) maps H1/2

(i, j)(Σ̃) into L2(Σ̃). However, because of Proposition 15, DH
(i, j) maps H1/2

(i, j)(Σ̃) onto

H1/2
(i, j)(Σ̃).

Thanks to Section 4, we can give a semi-analytic expression for the operators DH
(i, j) .

Proposition 18. ∀(i, j) ∈ {s,a}2, ∀ψ ∈ H1/2
(i, j)(Σ̃), ∀k ∈ [−π/L,π/L],

F y(DH
(i, j)ψ)(·,k) = +ε j

L

2π
eıLk

π/L∫
−π/L

(
D−

0 (ξ) + D−
1 (ξ)R(ξ)

)(
I − R(ξ)eıLk)−1 F yψ(·; ξ)dξ +

√
L

2π
ψ

∣∣∣∣
Σ̃0

+ εi
L

2π
e−ıLk

π/L∫
−π/L

(
D+

0 (ξ) + D+
1 (ξ)R(ξ)

)(
I − R(ξ)e−ıLk)−1 F yψ(·; ξ)dξ

where εs = 1 and εa = −1.

Proof. Let ψ be in H1/2(Σ̃). We write the proof for (i, j) = (s, s), the other cases follow similarly. In the case n = 0,
expression (15) gives:

uH(ψ)|Σ± =
√

L

2π

π/L∫
−π/L

F yuH(ψ)(·; ξ)|Σ± dξ.

We denote by
←−
Σ−

n and Σ+
n the following sequence of intervals of length L:

∀n ∈ N,

←−
Σ−

n =
]

3L

2
+ nL,

L

2
+ nL

[
×

{−L

2

}
,

Σ+
n =

]
L

2
+ nL,

L

2
+ nL

[
×

{
L

2

}
.

Using relation (14) in Section 3, we obtain

• On Σ−: ∀n ∈ N,

DH
(s,s)ψ |←−Σ−

n
=

√
L

2π

π/L∫
−π/L

(
D−

0 (ξ)R(ξ)n + D−
1 (ξ)R(ξ)n+1)

F yψ(·; ξ)dξ.

• On Σ0:

DH
(s,s)ψ |Σ0 = ψ |Σ0 .

• On Σ+: ∀n ∈ N,

DH
(s,s)ψ |Σ+

n
=

√
L

2π

π/L∫
−π/L

(
D+

0 (ξ)R(ξ)n + D+
1 (ξ)R(ξ)n+1)

F yψ(·; ξ)dξ.
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We apply then the FB-transform to DH
(s,s)ψ using the identification Σ ∼ R,

F y
(

DH
(s,s)ψ

)
(·,k) =

√
L

2π

(
0∑

n=∞
DH

(s,s)ψ |←−Σ−
n

eı(n+1)kL + DH
(s,s)ψ

∣∣
Σ0 +

+∞∑
n=0

DH
(s,s)ψ |Σ+

n
e−ı(n+1)kL

)
.

By inverting the integrals over [−π/L,π/L] and the sum over n, we are led to using the following formula (see Lemma 15
below for the justification)∑

n∈N

R(ξ)ne±ı(n+1)Lk = e±ıLk(I − R(ξ)e±ıLk)−1
. (24)

In fact for every ξ , R(ξ) is compact and its spectral radius is strictly less than 1, and then, for every k, the operators
R(ξ)e±ıLk remains compact with a spectral radius strictly less than one. Therefore, for each ξ and k, I − R(ξ)e±ıLk is
invertible and the sum (24) converges uniformly in the norm of L(H1/2(Σ0)). The inversion of the integral and the sum is
then possible. �

The justification of (24) relies on the following lemma which is a classical result for which we give a short proof.

Lemma 15. Let E be a Hilbert space and A ∈ L(E) with a spectral radius ρ(A) < 1. Then the series
∑

An converges for the norm:

‖A‖ = sup
u �=0
u∈E

‖Au‖E

‖u‖E

and ∑
n∈N

An = (I − A)−1.

Proof. The property:

lim
n→+∞

∥∥An
∥∥1/n = ρ(A)

for the norm of L(H1/2(Σ0)) ([27]), implies that for some ρ∗ ∈ ]ρ(A),1[ and j large enough we have∥∥A j
∥∥ � ρ

j∗

which yields the absolute convergence of the series. �
5.5. Characterization of D̃(i, j)

D̃(i, j) : H1/2
(i, j)(ΣS ) → H1/2

(i, j)

(
Σ̃

)
,

φ 	→ ue(φ)|Σ̃ .

We first remark that D̃(i, j) belongs to the affine subspace:

LΣ0 = {
L ∈ L

(
H1/2(ΣS ), H1/2(Σ̃))

, ∀φ, Lφ|Σ0 = φ|Σ0

}
.

Theorem 16. For each (i, j) ∈ {s,a}2 , the operator D̃(i, j) is the unique solution of the problem

Find D̃ ∈ LΣ0 , D̃ = DH
(i, j) ◦ D̃. (E(i, j))

Remark 19. Since LΣ0 is an affine subspace, problems (E(i, j)) are of affine nature, even though the equation is linear.

Proof. We give a proof for D̃(s,s) . The extension to other D̃(i, j) is straightforward.
Existence. We prove that the operator D̃(s,s) is a solution of Problem (E(s,s)). We have already seen in the proof of

Theorem 13 that

ue(φ)|ΩH = uH(
D̃(s,s)φ

)
.

Moreover, φ in H1/2
(ΣS ) implies that ue(φ) is in H1 (Ωe) (see the proof Theorem 12). In particular:
(s,s) (s,s)
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Fig. 10. Definition of v1 and v2.

Σ̃+ = S1Σ
+ ⇒ ue(φ)|Σ̃+ ≡ ue(φ)|Σ+ = uH(

D̃(s,s)φ
)∣∣

Σ+ ,

Σ̃0 = Σ0 ⇒ ue(φ)|Σ̃0 = ue(φ)|Σ0 = φ|Σ0 ,

Σ̃− = S−1Σ
− ⇒ ue(φ)|Σ̃− ≡ ue(φ)|←−Σ− = uH(

D̃(s,s)φ
)∣∣←−

Σ− .

Using the definition of DH
(s,s) , we obtain that D̃(s,s) satisfies (E(s,s)).

Uniqueness. Let D̃ be an operator from H1/2
(s,s)(ΣS ) into H1/2

(s,s)(Σ̃) such that:

∀φ ∈ H1/2
(s,s)(ΣS ), D̃φ|Σ0 = 0 (25)

and which satisfies:

DH
(s,s) ◦ D̃ − D̃ = 0.

We prove that D̃ = 0. Let φ ∈ H1/2
(s,s)(ΣS ) and v1 = uH(D̃φ) defined in ΩH ≡ Ω1. We have in particular, thanks to (25):

v1|Σ0 = D̃φ|Σ0 = 0. (26)

Now we build a function in the half-space Ω2 = S1Ω1 by:

v2 = v1(S1x).

By a classical symmetry argument, since v1 is solution of (P H) in Ω1, it is clear that v2 is solution of:

−�v2 − n2(ω2 + iε
)

v2 = 0, in Ω2

while (26) yields:

v2|S1Σ0 = 0. (27)

We are going to show that v1 and v2 coincide in the quadrant Ω1 ∩ Ω2: the reader will easily be convinced by looking at
Fig. 10 that the difference d12 = v1 − v2 satisfies:{−�d12 − n2(ω2 + iε)d12 = 0, in Ω1 ∩ Ω2,

d12 = 0, on ∂[Ω1 ∩ Ω2].
Thanks to a uniqueness argument for this Dirichlet problem, one concludes that v1 = v2 in Ω1 ∩ Ω2.

With the same argument, we can construct for j ∈ {1,2,3,4}, four functions v j in the domains Ω j (Ω3 = S−1Ω2 and
Ω4 = S−1Ω1) which are solution of the Helmholtz equation in their respective domain and which coincide in their inter-
sections:

∀ j ∈ Z/4Z, v j+1 = v j on Ω j ∩ Ω j+1. (28)

Thus we can build a function ue ∈ H1(Ωe) defined in the exterior domain Ωe by:

ue|Ω j = v j, j ∈ {1,2,3,4}.
Thanks to (28) and to the fact that v j is the H1-solution of the Helmholtz equation in Ω j , uE is then a H1 function which
satisfies:

−�ue − n2(ω2 + iε
)
ue = 0 in Ωe
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with the homogeneous Dirichlet condition

ue = 0, on ΣS ,

thanks to (26) and (27) and by symmetry.
By uniqueness of the solution in the exterior domain, we deduce ue = 0 in Ωe and in consequence:

D̃φ|Σ̃± = ue
∣∣
Σ̃

that means D̃ = 0. �
Actually the definition of DH

(i, j) (see Definition 14 and Proposition 18) is simpler in terms of FB-variables. The formulation

in terms of FB-variables in this problem is thus more natural. More precisely, for every (i, j) ∈ {s,a}2, for every function
φ ∈ H1/2

(i, j)(Σ
0), we compute

D̃(i, j)φ = F −1
y

(
D̂i jφ

)
,

where ψ̂i j = D̂i jφ is the unique solution of the “integral” problem:
Find ψ̂ ∈ L2(K), such that

(i) ψ̂(·,k) −
π/L∫

−π/L

K(i, j)(ξ,k) · ψ̂(·, ξ)dξ =
√

L

2π
φ, ∀k ∈

[
−π

L
; π

L

]
,

(ii)

√
L

2π

π/L∫
−π/L

ψ̂(·,k)dk = φ.

(29)

where for each ξ and k, the kernel K(i, j)(ξ,k) is in L(H1/2(Σ0), H1/2(Σ0)):

K(i, j)(ξ,k) = εi
L

2π
e−ıLk(D+

0 (ξ) + D+
1 (ξ)R(ξ)

)(
I − R(ξ)e−ıLk)−1

+ ε j
L

2π
eıLk(D−

0 (ξ) + D−
1 (ξ)R(ξ)

)(
I − R(ξ)eıLk)−1

,

The relation (29(ii)) expresses in terms of the FB-variables the condition:

D̃(i, j)φ
∣∣
Σ0 = φ|Σ0 .

6. Conclusions

In this article, we have described and analyzed a method for constructing the Dirichlet-to-Neumann operator Λ asso-
ciated to the resolution of the exterior Helmholtz problem outside a square whose size is a multiple of the period L of
the medium. From the numerical point of view, the main interest of the method lies in the fact that one only has to solve
local cell problems. The numerical aspects of the problem will be treated elsewhere. The implementation of this method
according to the decomposition Theorem 13 is based on the following algorithm:

(1) Computation of ΛH

(i) For each k ∈ [−π/L,π/L], compute ΛW (k),
(ii) Computation ΛH by recomposition using (16);

(2) Computation of Λ(i, j) for each (i, j) ∈ {s,a}2

(i) Compute D̃(i, j) by solving (E(i, j)),
(ii) apply the formula :Λ(i, j) = E(i, j) ◦ R̃ ◦ ΛH ◦ D̃(i, j) .

In practice, this algorithm requires a discretization procedure with respect to the space variable y ∈ ]−L/2, L/2[ (for the
discretization of Σ0) and with respect to the wave number k ∈ ]−π/L;π/L[ (the dual variable). Moreover,

• Step 1(i) can be achieved along the same lines than the finite element method described in [17], two different values
of k are decoupled,

• Step 1(ii) requires the construction of a discrete inverse FB-transform,
• Step 2(i) relies on the discretization of the integral equation (29(i)) which is non-local in y and k (this time, the

problems for different k are coupled).

Other delicate question about the discretization in k (can one use a regular mesh in k or not?) or the way to properly
take the constraint (29(ii)) into account have to be addressed.
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Fig. A.1. General notation.
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Appendix A. The extension of the method to N > 1

For the general case of larger defect, the reasoning is the same but the expression of the halfspace DtD operators DH
(i, j)

change.
First let us give some new notation in Fig. A.1.
Here the size of the interior medium Ω i is N times the size of a periodicity cell:

Ω i =
]
− L

2
,
(2N − 1)L

2

[2

.

Then

Σ0 = ΣS ∩ Σ̃ =
]
− L

2
,
(2N − 1)L

2

[
=

N−1⋃
l=0

Σ̃ l, where Σ̃ l =
]

(2l − 1)L

2
,
(2l + 1)L

2

[
.

We recall the following notation:

Σ = ←−
Σ− ∪ Σ0 ∪ Σ+, Σ̃ = Σ̃− ∪

N−1⋃
l=0

Σ̃ l ∪ Σ̃+,

where in particular

←−
Σ− =

]
+∞,

(2N − 1)L

2

[
×

{
− L

2

}
, Σ+ =

]
(2N − 1)L

2
,+∞

[
×

{
(2N − 1)L

2

}
.

We still identify Σ and Σ̃ with R,
←−
Σ− with Σ̃− and Σ+ with Σ̃+ .

For this case, the decomposition of the operator Λ (Proposition 11) and the factorization of each Λ(i, j) (Theorem 13) still
hold. The computation of ΛH can obviously be done as in Section 4 working on the basic periodicity cell C .

For the characterization of each D(i, j) , we need to introduce the halfspace DtD operators DH
(i, j) whose expression depends

on N . Let us recall the definition of theses operators setting εs = +1 and εa = −1:

DH
(i, j) : H1/2

(i, j)

(
Σ̃

) −→ H1/2
(i, j)

(
Σ̃

)
,

ψ 	−→
DH

(i, j)ψ |Σ̃− ≡ ε juH(ψ)|←−Σ− ,

DH
(i, j)ψ |Σ0 = ψ |Σ0 ,

DH
(i, j)ψ |Σ̃+ ≡ εiuH(ψ)|Σ+ .

We give in the following proposition a more explicit definition for DH
(i, j) for the general case.

Proposition 20. ∀(i, j) ∈ {s,a}2 , ∀ψ ∈ H1/2
(Σ̃), ∀k ∈ [−π , π ],
(i, j) L L
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F y
(

DH
(i, j)ψ

)
(·,k) = ε j L

2π
eıLk

π/L∫
−π/L

(
D−

0 (ξ) + D−
1 (ξ)R(ξ)

)(
I − R(ξ)eıLk)−1 F yψ(·; ξ)dξ +

√
L

2π

N−1∑
l=0

ψ |Σ̃ l e−ılLk

+ εi L

2π
e−ıN Lk

π/L∫
−π/L

(
D+

0 (ξ) + D+
1 (ξ)R(ξ)

)(
I − R(ξ)e−ıLk)−1 F yψ(·; ξ)eı(N−1)ξ L dξ,

where εs = 1 and εa = −1.

Proof. Let ψ be in H1/2(Σ̃). We write the proof for (i, j) = (s, s), the other cases follow similarly. In the case n = 0,
expression (15) gives:

uH(ψ)|Σ− =
√

L

2π

π/L∫
−π/L

F yuH(ψ)(·; ξ)|y=−L/2 dξ.

In the case n = N − 1, it gives:

uH(ψ)|Σ+ =
√

L

2π

π/L∫
−π/L

F yuH(ψ)(·; ξ)|y=L/2eı(N−1)ξ L dξ.

We denote
←−
Σ−

n and Σ+
n the following sequence of intervals of length L:

∀n ∈ N,

←−
Σ−

n =
]

(2N − 1)L + (n + 1)L

2
,
(2N − 1)L + nL

2

[
×

{−L

2

}
,

Σ+
n =

]
(2N − 1)L + nL

2
,
(2N − 1)L + (n + 1)L

2

[
×

{
(2N − 1)L

2

}
,

and using relation (14) in Section 3, we obtain:

• On
←−
Σ−: ∀n ∈ N,

DH
(s,s)ψ |←−Σ−

n
=

√
L

2π

π/L∫
−π/L

(
D−

0 (ξ)R(ξ)n + D−
1 (ξ)R(ξ)n+1)

F yψ(·; ξ)dξ.

• On each Σ̃ l:

DH
(s,s)ψ |Σ̃ l = ψ |Σ̃ l .

• On Σ+: ∀n ∈ N,

DH
(s,s)ψ |Σ+

n
=

√
L

2π

π/L∫
−π/L

(
D+

0 (ξ)R(ξ)n + D+
1 (ξ)R(ξ)n+1)

F yψ(·; ξ)eı(N−1)ξ L dξ.

We apply then the FB-transform to DH
(s,s)ψ using the identification Σ ∼ R,

F y
(

DH
(s,s)ψ

)
(·,k) =

√
L

2π

( +∞∑
n=0

DH
(s,s)ψ |←−Σ−

n
eı(n+1)kL +

N−1∑
l=0

DH
(s,s)ψ |Σ̃ l e−ılLk +

+∞∑
n=0

DH
(s,s)ψ |Σ+

n
e−ı(n+N)kL

)
.

By inverting the integrals over [−π/L,π/L] and the sum over n, we can use the same arguments as in Proposition 18 to
conclude. �

With this general expression of DH
(i, j) , each D̃(i, j) is then the unique solution of E(i, j) . The formulation of these equations

in terms of FB-variables is still again natural. More precisely for every (i, j) ∈ {s,a}2, for every function φ ∈ H1/2
(i, j)(Σ

0), we
compute

D̃(i, j)φ = F −1
y

(
D̂i jφ

)
,

where ψ̂i j = D̂i jφ is the unique solution of the “integral” equation:
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Fig. B.1. The four halfspaces (ΩH
i )i .

Find ψ̂ ∈ L2(K), such that

(i) ψ̂(·,k) −
π/L∫

−π/L

K(i, j)(ξ,k) · ψ̂(·, ξ)dξ =
√

L

2π

N−1∑
l=0

φ|Σ̃ l e−ılLk, ∀k ∈
[
−π

L
; π

L

]
,

(ii) ∀l ∈ {0, N − 1},
√

L

2π

π/L∫
−π/L

ψ̂(·,k)eılkL dk = φ|Σ̃ l ,

where for each ξ and k, the kernel K(i, j)(ξ,k) is in L(H1/2(Σ0), H1/2(Σ0)):

K(i, j)(ξ,k) = εi
L

2π
e−ıN Lk(D+

0 (ξ) + D+
1 (ξ)R(ξ)

)(
I − R(ξ)e−ıLk)−1

eı(N−1)ξ L

+ ε j
L

2π
eıLk(D−

0 (ξ) + D−
1 (ξ)R(ξ)

)(
I − R(ξ)eıLk)−1

.

The relations (ii) express in terms of the FB-variables the N conditions:

∀l ∈ {0, N − 1}, D̃(i, j)φ|Σ̃ l = φ|Σ̃ l ⇔ D̃(i, j)φ|Σ0 = φ|Σ0 .

Appendix B. On the generalization of the method to the media without any symmetry

We consider here media that do not exhibit any symmetry. For the simplicity of the presentation, we suppose however
that the periodicity cell C and the interior domain Ω i are both squares.

All the operators introduced in Sections 3 and 4 can be used for they do not depend on the symmetry assumptions
introduced in Section 5.

We provide a method to compute the operator Λ which extends the method developed in the main sections.
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B.1. Four auxiliary halfspace problem

In Fig. B.1 we introduce four halfspaces (ΩH
i )i and their corresponding boundaries (Σ̃i)i and (Σi)i defined by:

Σ̃1 = Σ̃−
1 ∪ Σ0

1 ∪ Σ̃+
1 ,

Σ̃2 = ←−̃
Σ−

2 ∪ ←−
Σ0

2 ∪ ←−̃
Σ+

2 ,

Σ̃3 = ←−̃
Σ−

3 ∪ ←−
Σ0

3 ∪ ←−̃
Σ+

3 ,

Σ̃4 = Σ̃−
4 ∪ Σ0

4 ∪ Σ̃+
4 .

and

Σ1 = ←−
Σ−

1 ∪ Σ0
1 ∪ Σ+

1 ,

Σ2 = ←−
Σ−

2 ∪ ←−
Σ0

2 ∪ Σ+
2 ,

Σ3 = Σ−
3 ∪ ←−

Σ0
3 ∪ ←−

Σ+
3 ,

Σ3 = Σ−
4 ∪ Σ0

4 ∪ ←−
Σ+

4 ,

where the notation
←−
Σ is used in case of taking the decreasing x or y- direction.

We have the following relations,

Σ̃+
i = Σ−

i+1 and Σ̃−
i = Σ+

i−1, i ∈ Z/4Z.

For every i = 1, . . . ,4, for every ψ ∈ H1/2(Σ̃), let uH
i (ψ) be the unique H1 solution of the problem{−�uH

i (ψ) − n(x)2
(
ω2 + ıε

)
uH

i (ψ) = 0, in ΩH
i ,

uH
i (ψ) = ψ, on Σ̃i .

(P H
i )

We define the following DtN operator ΛH
i

ΛH
i : H1/2(Σ̃i

) → H−1/2(Σ̃i
)

ψ 	→ ΛH
i ψ = − ∂

∂x
uH

i (ψ)

∣∣∣∣
Σ̃i

.

Now we have four independent halfspace problems to solve, using the method developed in Section 4.
Thanks to these resolutions we can determine four DtD operators (DH

i )i defined by:

DH
1 : H1/2

(
Σ̃1

) −→ H1/2
(
Σ̃1

)
,

ψ 	−→
DH

1 ψ |Σ̃+
1

= uH
1 (ψ)|Σ+

1
,

DH
1 ψ |Σ̃0

1
= ψ |Σ̃0

1
,

DH
1 ψ |Σ̃−

1
= uH

1 (ψ)|←−Σ−
1
,

DH
2 : H1/2

(
Σ̃2

) −→ H1/2
(
Σ̃2

)
,

ψ 	−→
DH

2 ψ |←−̃Σ+
2

= uH
2 (ψ)|Σ+

2
,

DH
2 ψ |Σ̃0

2
= ψ |Σ̃0

2
,

DH
2 ψ |←−̃Σ−

2
= uH

2 (ψ)|←−Σ−
2
.

DH
3 : H1/2

(
Σ̃3

) −→ H1/2
(
Σ̃3

)
,

ψ 	−→
DH

1 ψ |←−̃Σ+
3

= uH
3 (ψ)|←−Σ+

3
,

DH
3 ψ |Σ̃0

3
= ψ |Σ̃0

3
,

DH
3 ψ |←−̃Σ−

3
= uH

3 (ψ)|Σ−
3
,

DH
4 : H1/2

(
Σ̃4

) −→ H1/2
(
Σ̃4

)
,

ψ 	−→
DH

4 ψ |Σ̃+
4

= uH
4 (ψ)|←−Σ+

4
,

DH
4 ψ |Σ̃0

4
= ψ |Σ̃0

4
,

DH
4 ψ |Σ̃−

4
= uH

4 (ψ)|Σ−
4
.

As in Proposition 18, we find a simple expression for the FB-transform of each DH
i .

B.2. Determination of Λ

We note that ΣS = ⋃4
i=1 Σ0

i . We can show the following theorem according to the schematic decomposition process of
Fig. 8:

Theorem 17. For every φ ∈ H1/2(ΣS ), for every i ∈ {1, . . . ,4}, we have

Λφ|Σ0
i

= R̃ i ◦ ΛH
i ◦ D̃i,

where
• D̃i is a Dirichlet-to-Dirichlet operator defined by:

D̃i : H1/2(ΣS ) → H1/2(Σ̃i
)
,

φ 	→ ue(φ)|Σ̃i
,

where ue(φ) is the solution of the problem (P e);

• ΛH is the halfspace DtN operator defined in Section B.1;
i
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• R̃ i is the restriction operator defined from H−1/2(Σ̃i) into [H1/2
00 (Σ0

i )]′ which is the continuous extension to Σ0
i of the restriction

operator from L2(Σ̃i) into L2(Σ0
i ).

Proof. The idea of the decomposition is the same idea as in the proof of Theorem 13. Here however, we have to guarantee
that for every φ ∈ H1/2(ΣS ), we can reconstruct a function Λφ ∈ H−1/2(ΣS ) thanks to R̃ i ◦ ΛH

i ◦ D̃iφ which belong to
H−1/2(Σi) (i.e. R̃ i ◦ ΛH

i ◦ D̃iφ have to satisfy some conditions at the corners).
Let φ be in H1/2(ΣS ). For each i ∈ {1, . . . ,4}, by definition of D̃i , ue(φ)|ΩH

i
and uH

i (D̃iφ) satisfy the Helmholtz equation

(P H
i ) with the same Dirichlet condition in Σ̃i , namely D̃iφ.
By uniqueness of the solution of (P H

i ), we have

ue(φ)|ΩH
i

= uH
i

(
D̃iφ

)
and in particular:

Ri

(
∂

∂n
ue(φ)

∣∣∣∣
ΣS

)
= R̃ i ◦ ΛH ◦ D̃iφ,

where Ri is the restriction operator defined from H−1/2(ΣS ) into [H1/2
00 (Σ0

i )]′ which the continuous extension to Σ0
i of the

restriction from L2(ΣS ) into L2(Σ0
i ). If we recompose to a function of ΣS , we obtain the Neumann trace of a H1(�,Ωe)

function. �
Each ΛH

i can be computed from the previous results. The determination of Λ is now reduced to that of the four DtD

operators D̃i . Each D̃i is in the affine subspace:

LΣ0
i

= {
L ∈ L

(
H1/2(ΣS ), H1/2(Σ̃i

))
, ∀φ ∈ H1/2(ΣS ), Lφ|Σ0

i
= φ|Σ0

i

}
.

With the same arguments as in the case with double symmetries, we can prove the following theorem.

Theorem 18. The set of operators (D̃1, D̃2, D̃3, D̃4) is the unique solution of the problem: Find (D̃1, D̃2, D̃3, D̃4) ∈ LΣ0
1

× LΣ0
2

×
LΣ0

3
× LΣ0

4
, ∀i ∈ Z/4Z,⎧⎨⎩ D̃i
∣∣
Σ̃+

i
= DH

i+1 ◦ D̃i+1
∣∣
Σ−

i+1
,

D̃i
∣∣
Σ̃−

i
= DH

i−1 ◦ D̃i−1
∣∣
Σ+

i−1
.

(E )

Remark 21. The problem (E ) is of affine nature and is more involved than previously, especially because the equations
satisfied by the four DtD operators are coupled.
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