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Méthodes numériques matricielles avancées: analyse et

expérimentation (ANN 203 2023-241)

Marc Bonnet
POEMS (CNRS, INRIA, ENSTA), ENSTA Paris
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CHAPTER 1 MOTIVATION AND EXAMPLES.
COMPUTATIONAL CONSIDERATIONS

1.1 MOTIVATION AND OUTLINE. This course is intended as a first introduction to the methods of
numerical linear algebra. Students are assumed to be already familiar with the basics of linear algebra,
although some facts and properties are recalled here in an effort to make this document self-contained.
Solution methods for solving (often very large) systems of linear equations are esential components
of scientific computation in many areas, including model-based simulation of the response of physical
systems, optimization, data analysis and statistics. Even though many readers will not be directly
faced with designing or implementing such methods, understanding their underlying principles and
conditions of applications is a necessary part of the background of anyone involved in mathematical
modelling and scientific computation.

The topics presented in these lecture notes follow a natural order:

• Some general considerations relevant to matrix computation,

• Direct solution methods for linear systems and least-squares problems,

• Iterative solution methods for linear systems,

• Numerical solution of eigenvalue problems,

• Ill-posed linear systems and least-squares problems.

There is of course a huge literature on the topic of computational linear algebra, which is only
very partially reflected by the sample of classical references given in the bibliography of this document
without any claim of completeness or extensivity. In particular, the recent book [14] is recommmended
as a very readable and student-friendly introduction to many of the important topics of computational
linear algebra (including advanced topics such as direct solution methods for large sparse linear sys-
tems). That book moreover provides comprehensive examples of implementation (and implementation
exercises) based on the Julia programming language, which is open-source and freely available.

To help put this course in context, we also mention (and provide references to) courses on related
topics taught at ENSTA Paris.

1.2 EXAMPLES INVOLVING LINEAR SYSTEMS. In this section, we provide a motivation through a
series of examples. Our background and field of activity being primarily concerned with the mathe-
matical and computational modelling of systems arising in mechanics (deformable solids, fluids) and
more generally in physics (e.g. acoustics, electromagnetism), these motivating exemples are certainly
to some extent biased. Mechanics and physics usually rely on known mathematical models describing
the underlying physics, often based on ODEs or PDEs, and in this context numerical linear algebra is
heavily involved in solution methods for those models, based on discretization (finite elements, bound-
ary elements, finite differences, discontinuous Galerkin methods...). Other situations involve models
that are at least partially unknown, the missing knowledge on them being sought from experimen-
tal data: this in particular includes inverse problems and in many forms (e.g. data assimilation for
weather forecast, seismic inversion). Finally, many other applications (e.g. image processing, statisti-
cal and data analysis) do not rely on a priori chosen mathematical models, but rather attempt to find
ad hoc models, often without direct physical meaning, that correlate, explain, or allow predictions
from, available data. All those tasks, and many more, rely on computation, and numerical linear
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6 CHAPTER 1. MOTIVATION AND EXAMPLES. COMPUTATIONAL CONSIDERATIONS

Figure 1.1: Finite element mesh of automotive engine part (from the website of INRIA Gamma 3 team).

algebra is among the key methodological ingredients allowing to achieve those varied goals. Data sets
or physical unknowns often have very high dimension, and tasks such as solving large linear systems
of equations often occur repeatedly in the overall process, hence the importance of computational
efficiency.

1.2.1 Finite element analysis of mechanical structures. This example is both quite classical and very
relevant to many sectors of industry (e.g. aerospace, automotive, energy production, civil engineering,
biomechanics) where very large models may be solved. Upon finite element (FE) approximation [11, 3,
5] of the elastic equilibrium equations in weak form by means of the Galerkin method, and assuming
usual small-strain linearly-elastic constitutive behavior, the unknown kinematic degrees of freedom
gathered in a vector U solve the linear system

KU = F (1.1)

where K is the stiffness matrix K while F is the vector of generalized loads obtained by evaluating
the virtual work of the applied loads for each basis (test) function of the finite element approximation
space.

• Here, the governing matrix K is (i) symmetric, (ii) positive definite1 and (iii) banded. Therefore
K is in particular sparse: for a very large FE model, the nonzero entries of K represent only a
small fraction of its population.

• Well-known energy principles of mechanics show that (1.1) alternatively expresses that U mini-
mizes the (FE-discretized) potential energy

Epot(U) := 1
2U

TKU − UTF, (1.2)

a remark that is strongly connected to certain iterative solvers applicable to the linear sys-
tem (1.1).

1.2.2 Structural dynamics and modal analysis. Eigenvalue problems are another frequent component
of engineering mechanics (in particular). For example, the free vibrations of an undamped elastic solid
verify (using a finite element approximation)

KU − (2πf)2MU = 0

(where M is the mass matrix associated with kinetic energy), which is the generalized eigenvalue
problem of finding frequencies f and nonzero displacements U (called vibration modes) solving the
above equation. Those modes correspond to potential resonances (so need to be avoided under service
loads); moreover they provide convenient basis functions for obtaining low-dimensional models of
dynamic response (modal projections).

1Assuming the problem, or the chosen FE approximation, prevents rigid-body motions, failing which K is positive
but not invertible and additional precautions must be taken to fix the rigid-body motion contribution to the solution.
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Figure 1.2: Left: Periodicity cell Y for medium made of staggered bricks separated by compliant inter-
faces (in blue). The bricks are bonded by ligaments near the “triple points” such as M. Right:
(wavenumber - frequency) computed dispersion diagram for that cell. Each line plot made of 601
points in wavenumber-frequency space, eachj point requires solving a separate eigenvalue prob-
lem. The FE model has 5690 fourth-order triangular finite elements (46426 nodal unknowns).
Computations done in connection with research work presented in [21].

• The mass matrix is a symmetric positive definite band matrix.

The computation of eigenvalues and eigenvectors can more generally have many motivations:

(i) Physical motivations: investigate the stability of dynamical responses under small perturbations
(of systems or excitations), find the dispersion properties of complex materials under wave
propagation (i.e. determine the wavenumber / frequency pairs that allow the propagation of
free waves), predict potential structural instabilities such as buckling.

(ii) Computational and algorithmic motivations: evaluation of singular value decomposition of ar-
bitrary matrices, of their spectral norm or condition number, estimation of convergence rates of
iterative solvers.

To further illustrate (i), the question of whether a certain kind of free wave called Bloch wave, char-
acterized by a vector-valued wavenumber k ∈ R3, can propagate in a given complex (e.g. peri-
odic) medium is answered by solving a generalized eigenvalue problem of the form (1.2) with the
stiffness K replaced by a modified form K̂(k) that depends on the wavenumber. Then, solving
K̂(k)U − (2πf)2MU = 0 for all wavenumbers in a certain region of the k-space (producing eigenfre-
quencies f1(k), f2(k), . . .) yield dispersion diagrams (which plot fi(k) as functions of k) that play an
important role in the physics of wave propagation in complex media. See Fig. 1.2 for an illustration.

1.2.3 Boundary element solution of wave scattering. Wave propagation simulation problems often
assume the idealization of an unbounded propagation medium exterior to the object that radiates or
scatters (e.g. acoustic, electromagnetic or elastic) waves. Applications include noise generation or
furtivity studies in the aerospace industry. Such computations are often performed on the bssis of a
boundary element method (BEM) resulting from the discretization of a boundary integral equation
(BIE) governing the (acoustic, electromagnetic, elastic) wave propagation problem. The latter has
the typical form ∫

S

G(x,y)u(y) dS(y) = f(x) (1.3)

where u is the main unknown on the surface S (e.g. the acoustic pressure field), f is the data (e.g.
related to the normal velocity of a pulsating surface) and G(x,y) is the (known) acoustic Green’s
function. We refer to e.g. the course [2] for a detailed exposition of BIE theory and BEMs.
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• Upon discretization, the BIE (1.3) yields a linear system of the form GU = F where U ∈ Cn

(unknown), F ∈ Cn (data) and G ∈ Cn×n (BEM influence matrix). The matrix G is dense,
and is amenable to block-wise low-rank approximation (for example using the hierarchical matrix
method, as in [9])

Figure 1.3: Scattering of fluid pressure wave by a rigid motionless submarine: total pressure field on the
surface, 5.4 milliseconds after the incident wave first hits the submarine. The boundary element
mesh has about 3 106 pressure unknowns. From [25]

Figure 1.4: Hierarchical matrix blockwise approximation of a BEM matrix. From [9]

1.2.4 Solution of non-linear equations. Many models in mechanics and physics require (after a finite-
dimensional approximation process) to solve non-linear equations of the general form:

Find U ∈Rn, F(U) = 0

where (usually) F(U) is a Rn → Rn mapping2. If F is differentiable, many solution algorithms follow
the iterative Newton-Raphson approach whereby a first-order Taylor expansion of F about the current
iterate Uk allows to define the next iterate Uk+1 from setting to zero the linearized approximation of
F(Uk+1):

F(Uk+1) ≈ F(Uk) +Kk(Uk+1−Uk) =⇒ find Uk+1, KkUk+1 = KkUk −F(Uk). (1.4)

where Kk := ∇F(Uk) is often called the tangent matrix (or, in solid mechanics, the tangent stiffness).
The above process is started from some initial guess U0. Each iteration entails solving a linear system of
equations governed by the tangent matrix Kk. For instance, with reference to (1.2), nonlinearly-elastic
materials may be described by a non-quadratic potentiel energy of the form Epot(U) = Φ(U)−UTF ,

2For example, we simply have F(U) = KU − F in the linear elastic FE case.
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whose stationarity equation for a given load level E has the form F(U) := ∇UΦ(U) − F = 0 and is
no longer linear in U .

• The structure and main characteristics of the tangent matrix Kk are problem-dependent. For
many non-linear models arising from mechanical FE models, Kk can be considered as being
the stiffness of a fictitious heterogeneous linear-elastic material whose local material parameters
depend on the current solution iterate, so shares many of the properties (SPD mand matrix) of
standard stiffness matrices.

Nonlinear solution algorithms based on Newton-Raphson iterations of the general form (1.4) are
widely implemented in industry engineering mechanics FE codes (such as Abaqus or code aster)
for performing a wide variety of non-linear analyses involving material plasticity, frictional contact3,
buckling and many other phenomena.

1.2.5 Identification, inverse problems. Inverse problems are “indirect measurement” situations where
quantitative information about some hidden physical variable is sought by exploiting measurements
of other, related, physical variables. Classical examples include imaging subterranean media from
surface accelerometry data and tumor detection by elastography.

By way of illustration, we briefly consider temperature reconstruction problems that are relevant in
space industry: knowing the distribution of temperature on a vehicle after landing, infer temperatures
of outer skin during atmospheric reentry phase. This is an instance of the backwards heat conduction
problem (BHCP): knowing the temperature distribution x 7→ θ(x, T ) in a conducting body at time
T > 0, can we infer the distribution x 7→ θ(x, 0) at an earlier time (say t = 0)? The measurement
θ(·, T ) and the unknown θ(·, 0) can be shown to obey a linear relationship of the form

θ(·, T ) = A(T )θ(·, 0) =⇒ (discretization) Θ(T ) = A(T )Θ(0) (1.5)

where the linear operator A(T ) results from the chosen linear heat diffusion physical model. Upon
discretization, one obtains a linear system, where the matrix A(T ) is dense. The BHCP is known to
be ill-posed [8], making its discretized counterpart ill-conditioned: temperature reconstructions with
acceptable accuracy are very hard to obtain using “naive” linear algebra methods as soon as the data
is even slightly noisy, as illustrated in Fig. 1.5 on a simple spatially 1D configuration. Less-naive
approaches designed for ill-conditioned linear systems such as (1.5) will be presented in Chap. 6.

1.2.6 Image processing. A frequent issue in image processing is to “restore”, or otherwise improve,
images of insufficient quality. For instance, Earth-based telescopes take astronomical images of celestial
objects which may be blurred by atmospheric turbulence (through which light propagates before
reaching the telescope mirror) or local light pollution. Such problems can often be mathematically

formulated as deconvolution problems, the imperfect image f̂ being related to the perfect image f by

f̂(x) =

∫
Y

k(x− y)f(y) dy x∈ Y

(Y being the set of all pixels and the function y 7→ f(y) representing for example a gray or color level at
pixel y), where the convolution kernel k models measurement imperfections (due to e.g. the apparatus
or environmental conditions). For instance, Gaussian kernels k(z) = A exp(−z2/2b) are used to model
atmospheric blurring (b is tuned according to the blur severity, and C is a normalization constant).
It is well known that k converges (in the distributional limit sense) to the Dirac mass δ as b → 0 (the

no-blur limit), in which case the above convolution yields f̂ = f .
Upon discretization, deblurring a measured image translates into solving the system

F̂ = KF F = {f(y1), . . . , f(yn)}T, F̂ = {f̂(y1), . . . , f̂(yn)}T, Kij = ∆Sjk(xi − yj)

where ∆Sj is the (small) surface area of the j-th pixel. It turns out that such linear systems are highly

sensitive to small perturbations in the data F̂ , which makes image deblurring a difficult computational
problem (and a subject of intense current research). See Figure 1.6 for an illustrative example.

3where complications appear due to the non-smooth character of unilateral contact conditions.
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Figure 1.5: 1D reconstruction of initial temperature (at time t = 0) from noise-free or slightly noisy data.
Observe the quite noticeable degradation in identification caused on the reconstruction by a very
slight (simulated) data noise. Observation equation (1.5) solving by (unsuitably) naive methods.
Data is temperature at times t = O(5 103)s assuming material diffusivity is that of steel.

Figure 1.6: Example of image deblurring: image before degradation (left), degraded image (middle), de-
blurred image (right)

• The matrix K is fully-populated but has a low numerical rank (it can be well approximated by
a low-rank matrix). It is strictly speaking invertible, but very ill-conditioned. This topic will be
revisited in Chap. 6

1.2.7 Correlation analysis. Consider a data set D =
{
yi, xi1, . . . , xin

}m

i=1
(where each of the m

individuals, numbered i = 1 to i = m, is described by a set of explanatory variables, or predictors,
x1, . . . , xn and a dependent variable y). Assume that it is desired to find a simple (linear) mathematical
relation allowing to predict, on the basis of this data, the value of the dependent variable y for any
other individual knowing its predictors x1, . . . , xn. Hence, we want to find the “best” model of the
form

ŷ = aTx+ b,

which requires finding optimal values for the parameters a∈Rn and b∈R of the linear approximation.
A common approach is to seek a, b such that the model prediction ŷ is closest to y in an average sense
for the data set D, with the average taken as the quadratic mean. In other words:

Find a∈Rn, b∈R such that

n∑
i=1

|yi − xT

i a− b|2 → minimum
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Setting X = [xij ] (1≤ i≤m, 1≤ j ≤n), this can be recast in matrix terms as a least squares problem:

Find a∈Rn, b∈R such that ∥Xa− (y−b)∥22 → minimum

Solving this type of problem also rests on numerical linear algebra methods, as we will see.

1.2.8 Learning. Learning methods aim in particular at defining learning functions F(x) that evaluate
a classification y = F(x) associated with some “raw data” x. For example, x is a numerical vector
encoding an image, and y is a classification output (e.g. y = F(x) encodes whether the image x shows
a house, a boat, something else?). Such learning functions are for example constructed by composing
affine maps Lx := x 7→ Ax + b and nonlinear functions N , with those steps applied several times
(known as layers): F(x) = N

(
L
(
N(L(. . . Lx))

))
. Part of the available data (e.g. a set of images) is

used as training data: A, b (and possibly other parameters) are tuned using optimization methods so
that F computes on the training data the correct (known) classification output; this is the “learning”
part. Then, F can be applied to new data to do actual classification.

Numerical linear algebra is involved in both the definition of the layers of the learning function
and the computational methods (in particular optimization methods, which themselves rely heavily
on linear algebra) used for tuning weights such as A, b. See [33] (and the references therein) for an
introductory exposition together with the accompanying background on linear algebra, optimization,
statistics.

1.3 FINITE-PRECISION COMPUTATION. Despite its paramount importance, we will only briefly ad-
dress the topic of finite-precision computation, as it is treated in much more detail in the companion
course [24]. Numerical computing is based on the well-known floating-point representation of numbers,
of the form

x = sm be

where s is the sign of x, m its mantissa, b the basis (normally b = 2) and e the exponent. Double-
precision real numbers occupy 64 bits (1 for the sign of x, 52 for the mantissa, 11 for |e|). The mantissa
is such that 1≤m< 2 (it has a leading implicit bit set to 1). A few observations immediately come
to mind:

• Numbers are in general subject to roundoff error ;

• Roundoff errors are relative to orders of magnitude; in particular, the numbers described by the
floating point representation are not spaced evenly.

• For this reason, estimating relative errors on evaluations and algorithms makes more sense than
estimating absolute errors.

The widely-used IEEE 754 norm for representing floating point numbers and computing with them
ensures that

for all x∈R, there exists ε, |ε|<εmach such that fl(x) = x(1+ε)

where x 7→ fl(x) is the operator converting a number to its floating point representation and εmach,
often called the “machine epsilon”, is the maximum modulus of relative round-off error (εmach ≈ 10−16

for double-precision floating-point reals). That norm also guarantees that

for all x, y ∈F, x⊛ y = fl(x ⋆ y),

where ⋆ is one of the operations +,−,×, /,
√
, ⊛ is the floating-point implementation of that operation

and F is the set of all floating-point numbers, as well as

for all x, y ∈F, there exists ε, |ε|<εmach such that x⊛ y = (x ⋆ y)(1+ε) (1.6)

Error analysis of computational algorithms (regarding round-off errors) basically consists in expressing
each floating-point operation using (1.6) and keeping track of the effect of roundoff errors ε on the
algorithm.
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1.4 VECTORS, MATRICES, NORMS.

1.4.1 Matrices. Matrices are arrays of (real or complex) numbers that allow to express linear rela-
tionships between elements of finite-dimensional vector spaces.

Vector space. We begin by briefly recalling that vector spaces are sets of objects (called vectors)
for which certain operations are defined, namely the addition of vectors and the multiplication of a
vector by a scalar (i.e. a number). For all usual applications of numerical linear algebra, those scalars
are either real or complex numbers, and we will use generically the notation K to refer to the set of
scalars (with either K=R or K=C). A set E is a vector space (also called a linear space) provided
the following axioms are verified:

1. Addition of vectors is commutative: x+ y = y + x

2. Addition of vectors is associative: x+ (y + z) = (x+ y) + z

3. There exists a zero vector: x+ 0 = x

4. Each vector has an opposite vector: x+ (−x) = 0

5. Multiplication of scalars and with a vector are compatible: (αβ)x = α(βx)

6. Scalar multiplication has a unit element: 1x = x

7. Scalar multiplication is distributive w.r.t. scalar addition: (α+β)x = αx+ βx

8. Scalar multiplication is distributive w.r.t. vector addition: α(x+ y) = αx+ αy

To repeat, in this course we will only consider finite-dimensional vector spaces with K=R or K=C.
We will usually denote a n-dimensional vector space E on the scalars K by Kn; this means that a
basis of E is (perhaps implicitly) chosen, so that any vector x of E is given as n-uple of numbers: x =
(x1, . . . , xn) ∈ Kn. In this representation, each basis vector ek is the n-uple ek = (0, . . . , 0, 1, 0, . . . , 0)
(with the unit coordinate at the k-th position), and any vector of E is given by

x = x1e1 + . . .+ xnen, (x1, . . . , xn) ∈ Kn

Matrices. A matrix A ∈ Km×n is a rectangular array of numbers aij (1 ≤ i ≤m, 1 ≤ j ≤ n), which
in particular serves to represent the action of a linear mapping A : Kn → Km (after having chosen a
basis in both spaces). Letting x = (x1, . . . , xn) ∈ Kn, its image Ax = y = (y1, . . . , ym) ∈ Km under A
is given by

yi =

n∑
i=1

aijxj , or


y1
...
ym

 =

a11 . . . a1n
...

...
am1 . . . amn



x1

...
xn

 i.e. y = Ax in matrix notation (1.7)

Some terminology and notation. We recall and list the definition of some important types of matrices,
and the associated terminology:

• Matrices A ∈ Kn×n, having the same number n of rows and columns, are said to be square.
Non-square matrices A ∈ Km×n (m ̸=n) are said to be rectangular.

• A matrix A ∈ Km×n with most of its entries equal to zero is said to be sparse4. A non-sparse
matrix is called dense.

• The transpose AT of a matrix A ∈ Km×n is such that (AT)ij = Aji.

• The conjugate transpose AH of a complex matrix A ∈ Cm×n is such that (AH)ij = Aji, that is,
AH = AT. If A is real, AT = AH, of course.

• Square real matrices A ∈ Rn×n that are equal to their transpose, i.e. verify AT = A, aji = aij ,
are said to be symmetric.

4There is no precise definition of “most”. A frequent expectation is that the number of nonzero entries is at most
of the same order as the number of rows or columns.
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• Square complex matrices A ∈ Cn×n that are equal to their conjugate transpose, i.e. verify
AH = A, aji = aij , are said to be Hermitian. Of course, Hermitian real matrices are simply
symmetric matrices.

• Square matrices A∈Kn×n are symmetric positive definite (SPD) if (i) AH = A, (ii) xHAx> 0 for
all x∈Kn, x ̸=0 (Hermitian symmetry implies that xHAx ∈ R for any x∈Kn).

• Square matrices A ∈ Kn×n such that AHA = I are unitary (or orthogonal in A ∈ Rn×n). They
verify A−1 = AH and (AH)−1 = A.

We also list here a few notation conventions that will be used throughout without much further
warning:

• We adopt the usual convention that vectors are column vectors, their (conjugate) transpose being
row vectors; this is consistent with the usual rules of matrix algebra such as the matrix-vector
product y = Ax appearing in (1.7), and also with conventions used in e.g. Matlab. Scalar
products, for example, are hence written as

(x, y) = xTy (for real vectors), (x, y) = xHy (for complex vectors).

while, if x∈Km, y ∈Kn, xyH ∈ Km×n is a rank-1 matrix.

• Vectors are denoted with lowercase letters, e.g. x, and (in context) xi is the i-th entry of x.

• Matrices are denoted with uppercase letters, e.g. A, and (in context) aij is the (i, j)-th entry of
A.

• A Matlab-like colon “:” serves to define submatrices by their index ranges. For example, we
write

Ak:ℓ,p:q := [aij ]k≤i≤ℓ, p≤j≤q (rectangular submatrix of A),

Ak:ℓ,p := [aip]k≤i≤ℓ (part of the p-th row of A)

1.4.2 Vector norms.. In numerical linear algebra, as in many other areas, it is essential to measure the
“magnitude” (and “smallness”, “largeness”. . . ) of objects such as vectors or matrices (for instance, the
convergence of an algorithm may be defined in terms of errors on the solution becoming “increasingly
small”). Such magnitudes are measured using (vector, matrix) norms. Regarding (for now) vectors,
any vector norm ∥ · ∥ must satisfy the usual defining properties of a norm, namely:

zero norm: ∥x∥=0 if and only if x=0,

positive homogeneity: ∥λx∥ = |λ|∥x∥ for any λ ∈ K
triangle inequality: ∥x+y∥ ≤ ∥x∥+∥y∥

for all x∈Kn (1.8)

Common vector norms include

∥x∥1 :=

n∑
i=1

|xi|, ∥x∥2 :=
( n∑

i=1

|xi|2
)1/2

, ∥x∥p :=
( n∑

i=1

|xi|p
)1/p

, ∥x∥∞ := max
1≤i≤n

|xi|

in particular, ∥·∥2 is the usual Euclidean norm. All vector norms are equivalent: for any pair ∥·∥α, ∥·∥β
of norms equipping Kn, there exist constants C1 ≤C2 (depending only on the choice of norms and on
the dimension n) such that

C1∥x∥α ≤ ∥x∥β ≤ C2∥x∥α for all x∈Kn, (1.9)

and, in particular, we have

∥x∥2 ≤ ∥x∥1 ≤ √
n∥x∥2

∥x∥∞ ≤ ∥x∥2 ≤ √
n∥x∥∞

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞
for all x∈Kn.

Notice that the upper equivalence constant blows up in all three cases as n → ∞, reminding us that
equivalence no longer holds in the infinite-dimensional limit (of e.g. linear spaces of sequences [7]).
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Norms are often used to evaluate estimates (usually upper bounds), for example to show that a
vector is “small”, or remains bounded, under some computational process. Such uses often rely on
classical inequalityes, chiefly the Cauchy-Schwarz inequality

|xHy| ≤ ∥x∥2∥y∥2,

which is a special case of the more-general Hölder inequality

|xHy| ≤ ∥x∥p∥y∥q with
1

p
+

1

q
= 1, 1<p, q <∞.

1.4.3 Matrix norms. Matrix norms may be defined as norms induced by vector norms5: for any p> 0,
the p norm ∥A∥p of A∈Km×n is defined by

∥A∥p := max
x∈Kn,x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p, (1.10)

and thus provides the best upper bound on matrix-vector products: for any matrix A and vector x,
we have

∥Ax∥p ≤ ∥A∥p∥x∥p,
with at least one vector x achieving equality in the above inequality6. In fact, one may equally well
define the q-norm of a matrix induced by the vector p-norm:

∥A∥p,q := max
x∈Kn,x ̸=0

∥Ax∥q
∥x∥p

= max
∥x∥p=1

∥Ax∥q,

Another frequently used norm is the Frobenius norm ∥ · ∥F defined by

∥A∥F :=
( ∑

i,j

|aij |2
)1/2

=
√
Tr(AAH) (1.11)

(where AH is the Hermitian transpose of A). The Frobenius norm extends to matrices the Euclidean
norm of vectors7; it is not an induced norm.

The Frobenius norm (1.11) and all induced matrix p-norms (1.10) are sub-multiplicative: they all
satisfy

∥AB∥ ≤ ∥A∥ ∥B∥ (1.12)

The terminology “matrix norm” is sometimes restricted to norms of matrices that do verify the
sub-multiplicativity requirement (1.12). While not part of the basic defining properties (1.8) of a
norm, sub-multiplicativity is very useful as it permits to derive estimates (upper bounds) of quantities
involving matrix multiplications.

Matrix norms are all equivalent, i.e. obey inequalities of the form (1.9); in particular we have8

1√
m
∥A∥1 ≤ ∥A∥2 ≤ √

n∥A∥1
1√
n
∥A∥∞ ≤ ∥A∥2 ≤ √

m∥A∥∞
1√

min(m,n)
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F

for all A∈Km×n

Notation convention for norms. The generic norm symbol ∥ · ∥ will stand for any unspecified vector
norm, and indicate the induced matrix norm if evaluated on a matrix (e.g. ∥Ax∥ ≤ ∥A∥ ∥x∥); in
particular, a Frobenius norm will always be indicated explicitly (e.g. ∥A∥F).

5In infinite-dimensional linear spaces, induced norms are usually called operator norms, see e.g. [7]
6This is true because the range of A, as a finite-dimensional subspace of Km, is closed, implying the existence of

x maximizing ∥Ax∥p. If the matrix A is normal, i.e. satisfies AAH = AHA, such x is in fact any eigenvector for the
eigenvalue of A having largest modulus, see Sec. 5.

7Its infinite-dimensional counterpart in Hilbert spaces is known as the Hilbert-Schmidt norm
8noticing again the loss of equivalence in the infinite-dimensional limit
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1.5 ACCURACY AND STABILITY. Generally speaking, many scientific computing tasks may be
viewed as evaluating a function F on a given datum x ∈ X to obtain a desired result y = F(x),
y ∈ Y. The data space X and the solution space Y may be very diverse and complex (for instance,
function spaces for which some partial differential equation is well-posed, see [7, 6]). The function
F , which we may call the solution operator, may itself be complicated (with nonlinear components,
tests...) and defined only implicitly as a sequence of simpler operations (an algorithm).

In this course, we limit ourselves to the case where the data and solution spaces are finite-
dimensional, and F may symbolize diverse computational tasks such as solving the linear system
Ay = b (A, b being the data and y the sought solution) or diagonalizing a symmetric matrix A (A
being the data, and x = (λi, xi) the sought eigenvalue-eigenvector pairs). We will see for example
(Sec. 5) that the latter problem cannot be solved by applying a predefined function to the data, and
instead requires an iterative algorithm.

We assume that there is an exact problem to be solved (for example, find the solution of Ay = b
with A, b known exactly, i.e. without errors induced by e.g. finite machine precision). Exactness
here does not pertain to a possible prior approximation methodology leading to the finite-dimensional
problem being solved (for example, we treat the finite element approximation of a PDE as exact if the
stiffness matrix A and load vector b are exact by virtue of prior computation not suffering from any
numerical errors), and y=F(x) symbolizes this exact problem, where an “exact” solution y is found
by applying an “exact” method F to an exact datum x.

In practice, only an imperfect version of the solution operator F can be achieved9, whereas the
data x is approximated by floating-point numbers and incurs roundoff errors in the process. We let
x 7→ F̃(x) denote the process of rounding off the data x, then applying to it the (imperfect) numerical

solution method. To assess the reliability of the algorithm F̃ available in practice, it is natural to
consider questions such as

How close to y = F(x) is the approximation ỹ := F̃(x) ?

Accuracy. Since a good algorithm must approximate the exact problem well, one may for example
consider the relative solution accuracy

erel =
∥F̃(x)−F(x)∥

∥F(x)∥ . (1.13)

Under optimal conditions, the best possible accuracy is erel ≈ εmach. Individual floating-point arith-
metic operations do meet this goal.

Stability. To achieve erel ≈ εmach in (1.13) is however unrealistically demanding for most algorithms
due to factors like large-scale computations or ill-conditioned problems. For these reasons, it is more
appropriate to aim for stability : the algorithm F̃ for a problem F is deemed stable if

for each x∈X ,
∥F̃(x)−F(x̃)∥

∥F(x̃)∥ = O(εmach) for some x̃ such that
∥x− x̃∥
∥x∥ = O(εmach). (1.14)

This can be stated informally as: a stable algorithm must yield nearly the right answer if given a
nearly correct data (with “nearly” meant in the relative sense). It turns out that many algorithms of
numerical linear algebra satisfy a stability condition that is stronger than (1.14), known as backward
stability :

for each x∈X , F̃(x) = F(x̃) for some x̃ such that
∥x− x̃∥
∥x∥ = O(εmach). (1.15)

Definition (1.15) is stronger than (1.14) in that the first O(εmach) is replaced by zero. Stated informally,
(1.15) says that a backward stable algorithm must yield exactly the right answer for some nearly

9For instance, F̃ is a finite-precision method for solving Ay = b, yielding an approximate solution y even for exact
data A, b.
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correct data. As we will see, algorithms of numerical linear algebra are often assessed in terms of their
backward stability.

The notation O(εmach) in (1.14) and (1.15) (and similarly in the remainder of these course notes)
means that the quantity on the left-hand side is less than Cεmach, for some fixed constant C > 0,
whenever εmach is small enough. A given machine has a fixed (small) value for εmach while the O(·)
notation is mathematically defined with reference to a limiting process. The two aspects can be
reconciled by envisioning a (virtual) family of computers with smaller and smaller εmach.

1.6 CONDITIONING, CONDITION NUMBER. The forward and backward errors may be connected by
considering the relative sensitivity ϱ(F ;x, x̃), which is the ratio of forward and backward errors:

ϱ(F ;x, x̃) :=
∥F̃(x)−F(x)∥

∥F(x)∥
( ∥x̃−x∥

∥x∥
)−1

=
∥F(x̃)−F(x)∥

∥F(x)∥
∥x∥

∥x̃−x∥

(note that we have used the defining equality F̃(x) = F(x̃) of backward stability, see (1.15)). The
condition number κ = κ(F ;x) of F at x ∈ X is then defined as the limiting value of the relative
sensitivity ϱ(F ;x, x̃) in the limit of vanishing data perturbations:

κ(F ;x) := lim
δ→0

sup
∥x̃−x∥≤δ

∥F(x̃)−F(x)∥
∥F(x)∥

∥x∥
∥x̃−x∥ . (1.16)

If the solution operator F is regular enough, the condition number (1.16) is given by the more-explicit
formula

κ(F , x) =
∥F ′(x)∥ ∥x∥

∥F(x)∥ ,

where F ′(x) is the Fréchet derivative10 of F at x (which is assumed to exist). Most often no ambiguity
arises as to the solution operator F and data point x being considered, and we will for short write κ
rather than κ(F , x).

Interpretation. As said before, κ is the (limit for small data perturbations of the) ratio between
relative solution errors (a.k.a. forward errors) and relative data errors (a.k.a. backward errors).
Notice in particular that, by construction, κ is a dimensionless number (i.e. it has no physical units,
even though the data or solution, or both, may have physical units); this implies that κ is deemed
small (resp. large) if κ ≪ 1 (resp. κ ≫ 1). A solution process F is said to be well-conditioned
if κ = O(1) (relative solution error of the same order as relative data error), and ill-conditioned if
κ(F) ≫ 1 (relative solution error much larger than relative data error). To be sound and reliable,
computational methods must therefore be well-conditioned.

1.7 CONDITION NUMBER OF LINEAR SYSTEMS. We now derive and illustrate the condition number
of the computational task of fundamental interest for this course, namely solving a linear system of
equations. We focus on the sensitivity of the solution to data errors, the exposition of solution methods
being deferred to Chapter 2 and 4. Accordingly, consider the linear system

Ay = b, (1.17)

with data x = (A, b) and (unique) solution y, A being assumed to be a square invertible matrix.
Consider also a perturbed version

(A+E)(y+z) = b+f (1.18)

10A function F : X → R is differentiable at x ∈ X if there exists a continuous linear functional F ′(x) ∈ X ′, called
the Fréchet derivative of F at x, such that F(x̃) − F(x) =

〈
F ′(x), x̃−x

〉
+ o(∥x̃−x∥) for any x̃ in a neighborhood of

x in X ; X may be any normed vector space (with X ′ its topological dual). In the case of present interest where X is
finite-dimensional, the Fréchet derivative can be represented as a vector (the gradient ∇F(x) of F at x) and we have
F(x̃)−F(x) = [∇F(x)]T(x̃−x) + o(∥x̃−x∥))
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of system (1.17), where E, f are perturbations of the matrix and right-hand side (i.e. the absolute
backward errors) and z is the induced perturbation on the solution (i.e. the absolute forward error).
To examine how z is linked to (E, f), we use (1.17) and (1.18) and find that z solves the system

(A+E)z = f − Ey with y = A−1b

We assume the matrix perturbation to be small enough to have ∥A−1∥∥E∥ < 1; by a Neumann
series argument, this guarantees in particular that A+E is invertible, and we moreover have

(A+E)−1 = A−1(I + EA−1)−1, ∥(A+E)−1∥ ≤ ∥A−1∥
1− ∥EA−1∥ ≤ ∥A−1∥

1− ∥E∥∥A−1∥ ,

so that the solution error may be estimated as

∥z∥ = ∥(A+E)−1(f−Ey)∥ ≤ ∥A−1∥
1− ∥E∥∥A−1∥

(
∥f∥+ ∥E∥∥y∥

)
.

We reformulate the above estimate in terms of the forward relative error ∥z∥/∥y∥ and the backward
relative errors ∥E∥/∥A∥, ∥f∥/∥b∥, to obtain

∥z∥
∥y∥ ≤ ∥A−1∥∥A∥

1− ∥E∥∥A−1∥
( ∥f∥
∥b∥

∥b∥
∥A∥∥y∥ +

∥E∥
∥A∥

)
≤ ∥A−1∥∥A∥

1− ∥E∥∥A−1∥
( ∥f∥
∥b∥ +

∥E∥
∥A∥

)
,

the last inequality resulting from ∥b∥ ≤ ∥A∥∥y∥ as a consequence of Ay = b. Upper bounds on the
relative sensitivity and its limiting value for small relative data errors ∥E∥/∥A∥ and ∥f∥/∥b∥ are
therefore obtained as

∥z∥
∥y∥

( ∥f∥
∥b∥ +

∥E∥
∥A∥

)−1

≤ κ(A)

1− κ(A)∥E∥
∥A∥

= κ(A) +O
( ∥E∥
∥A∥

)
, with κ(A) := ∥A−1∥∥A∥.

Recalling the definition (1.16) of the condition number, κ(A) = ∥A−1∥∥A∥ is an upper bound of the
condition number associated with solving Ay = b; it is called the condition number of the matrix A.
Loosely speaking, κ(A) is the multiplicative coefficient which, applied to the relative matrix error or
the relative right-hand side error (or both), estimates the induced relative solution error. This concept
is, obviously, absolutely essential in numerical linear algebra.

Properties. The following properties of κ(A) and remarks must be kept in mind:

• We always have κ(A)≥ 1 (because ∥A−1∥∥A∥ ≥ ∥∥A−1A∥ = ∥I∥ = 1 for any induced norm).

• The value of κ(A) depends on the choice of (matrix) norm; if defined for the induced p-norm, we
sometimes write it κp(A).

• If the matrix A is normal (i.e. verifies AAH = AHA), it is unitarily diagonalizable (i.e. A = QΛQH

for some unitary matrix Q). In this case, and for the choice ∥ · ∥ = ∥ · ∥2 of norm, we have
∥A∥2 = |λmax| and ∥A−1∥2 =1/|λmin|, and hence

κ2(A) = |λmax|/|λmin|,

where λmax and λmin are the eigenvalues of A with largest and smallest modulus (noting that
invertibility of A requires |λmin|> 0). For instance, for the 2×2 (normal) matrix A = diag(1, ε),
we have κ(A) = 1/|ε| and A is ill-conditioned for small ε.

• For any orthogonal or unitary matrix Q, we have ∥Qx∥2 = ∥x∥2 for all x ∈ Kn, implying that
∥Q∥2 = 1. Similarly, ∥Q−1∥2 = ∥QH∥2 = 1. Consequently, κ2(Q) = 1.

• The condition number κ2(A) of an arbitrary matrix A ∈ Km×n is given in terms of either its
pseudo-inverse or its singular values, see Secs. 3.4, 3.5 and Theorem 3.6.
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A simple numerical example. Consider the following (symmetric) matrix A, whose inverse (as given
below) is exact:

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 , A−1 =


25 41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2


We consider perturbations f of b, or E of A, and evaluate the induced perturbations z on the solution
y of Ay = b:

b =


32
23
33
31

 =⇒ y =


1
1
1
1

 ,

f =


0.1
−0.1
0.1
−0.1

 =⇒ z =


8.2

−13.6
3.5
−2.1

 ,
E23 = 0.1

Eij = 0 otherwise
=⇒ z ≈


−5.86
−11.7
−2.43
−3.43


In fact, the eigenvalues of A, numerically computed (see Sec. 5) as listed below in order of decreasing
magnitude, allow (since A is symmetric) to evaluate its condition number:

(λ1, λ2, λ3, λ4) ≈ (30.29, 3.858, 0.8431, 0.01015), , κ2(A) = |λ1|/|λ4| ≈ 2.98 103

This makes A rather ill-conditioned (relative data errors being amplified about 3000-fold), especially
given that its size is only 4.



CHAPTER 2 LINEAR SYSTEMS AND DIRECT SOLVERS

As outlined in Chapter 1, solving linear systems Ax = b is a fundamental computational task with
myriads of applications. In addition to being inherently involved in the solution of linear mathematical
problems, linear systems of equations also occur im many more-complex situations involving nonlin-
earity or optimization, since solving them often relies on iterative procedures that produce sequences
of linear equations.

2.1 SOME GENERAL CONSIDERATIONS. First of all, a given linear system may have no solution,
exactly one solution, or infinitely many solutions, depending on the data A, b. We will revisit this
topic in more detail in Chapter 3. Generally speaking, a given matrix A ∈ Km×n has a null-space
N (A) (the subspace of Kn containing all vectors x such that Ax=0) and a range R(A) (the subspace
of Km containing all vectors of the form Ax, x ∈Kn). The system Ax = b is uniquely solvable if (i)
N (A) = {0} and (ii) b∈R(A), which is in particular true for any b when m=n and A is invertible.

Classical linear algebra provides general formulas for the solution(s) of Ax = b, if any, namely the
Cramer formulas. For example, if A is square invertible of size n, we have

xi = det(Ai)/det(A), with Ai := [a1, . . . , ai−1, b, ai+1, . . . , an].

The Cramer formulas are however impractical except for very small sizes, as the computation of
determinants becomes both too expensive and unreliable1 as the size increases.

2.1.1 Systems with triangular matrices. Triangular matrices are very important in numerical linear
algebra, because linear systems with triangular matrices can be solved in a simple way by successive
substitutions. First, let us solve Ax = b with A a lower triangular matrix (i.e. aij =0 if j > i). Taking
advantage of the structure of A, we proceed stepwise and find x1, then x2, then x3... until xn:

x1 = b1/a11, x2 = (b2−a21x1)/a22, . . . xi =
(
bi−

i−1∑
j=1

aijxj

)
/aii (i≤n) (2.1)

The process (2.1) is called a forward substitution. If any of the diagonal coefficients of (lower triangular)
A vanishes, A is not invertible and the system A has either no solution, or infinitely many solutions.

If, instead, A is upper triangular, the approach is similar, with the stepwise process (called back-
ward substitution) beginning with the last unknown xn and proceeding backwards:

xn = bn/ann, xn−1 = (bn−1−an−1,nxn)/an−1,n−1, . . . xi =
(
bi−

n∑
j=i+1

aijxj

)
/aii (i≥ 1) (2.2)

The substitution processes (2.1) and (2.2), while being quite simple, are essential as most direct
solution methods consist in reducing general linear systems to a format where the solution is obtainable
by solving triangular systems. See Algorithms 2.1 and 2.2 for basic pseudocode versions of (2.1)
and (2.2). Moreover, both processes obey the following stability result [15, Chap. 1]:

1For example, the general method of expressing det(A) (A ∈ Kn×n) in terms of n determinants of size n− 1 and
proceeding recursively has a O(n!) computational cost and moreover entails multiplications of n numbers that are likely
to cause overflow or underflow.

19
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Algorithm 2.1 Forward substitution

1: A ∈ Kn×n (data – only lower triangular part need be stored)
2: x1 = b1/a11 (start at upper left corner)
3: for k = 2 to n do
4: xk =

(
bk − aT

k,1:k−1x1:k−1

)
/akk (solve forward, one unknown at a time)

5: end for

Algorithm 2.2 Backward substitution

1: A ∈ Kn×n (data – only upper triangular part need be stored)
2: xn = bn/ann (start at lower right corner)
3: for k = n− 1 to 1 do
4: xk =

(
bk − aT

k,(k+1):nx(k+1):n

)
/akk (solve backwards, one unknown at a time)

5: end for

Theorem 2.1 Let A ∈ Kn×n be either lower- or upper-triangular. Then, the solution x̃ of the lin-
ear system Ax = b computed by (forward or backward) substitution under finite-precision conditions
satisfies (A + E)x̃ = b, where the matrix perturbation E is lower- or upper-triangular and satisfies
|E| ≤ nεmach|A| (where, for any X ∈ Kn×n, |X| is the real positive matrix with entries |xij | and the
inequality is meant componentwise).

Theorem 2.1 means that forward and backward substitution are backward-stable algorithms (see
Sec. 1.5), as it states that the solution x̃ computed by the finite-precision substitution method coincides
with that of a nearby linear system that is solved exactly (i.e. without roundoff errors). In other words,
the data A, b (to which the actual algorithm is applied) and A+E, b (to which the ideal algorithm is
applied) are close to each other and yield (under these conditions) the same solution x̃.

Exercise 2.1 Prove Theorem 2.1, by retracing the sequence of arithmetic operations in (2.1) and (2.2),
introducing roundoff errors wherever appropriate, and interpreting the resulting relations as defining
entries of E. For example, the very first step of (2.1) gives x̃1 = (b1/a11)(1+δ) = b1/(a11 + e11) with
e11 = a11(1−δ) (due to finite precision arithmetic, and to first-order in δ) with |δ| ≤ εmach.

2.1.2 Direct solvers: general idea. The solution(s) of a linear system, if any (see the discussion of
Sec. 3.2 on solvability), can be computed by means of direct solution methods.

• A method of solution is called direct if it allows to compute the exact solution of a problem
within a finite number of operations (assuming idealized conditions of exact arithmetic). For
example, forward and backward substitution are direct solution methods.

• By contrast, an iterative method typically computes a sequence of successive approximations
whose limit is the exact solution, implying that the limit is (usually) not exactly reached within
a finite number of iterations.

The general idea behind many direct solution algorithms for linear systems is to exploit a multiplica-
tive decomposition of A that involves triangular matrices, and possibly some other kinds of “simple”
matrices (e.g. diagonal, orthogonal, unitary). Archetypal direct solution methods use the LU decom-
position or the Cholesky decomposition, and we will now focus mostly on these two methods.

2.2 LU FACTORIZATION. Any square invertible matrix admits a factorization

A = LU (2.3)

where L is lower triangular and U is upper triangular, known as the LU factorization. Both factors
L and U are invertible. Once the factorization (2.3) is computed (see method shortly thereafter), a
linear system Ax = b is solved as follows in two steps:

step (i): find y solving Ly = b; step (ii): find x solving Ux = y (2.4)
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Both steps entail solving a triangular system, using forward substitution (2.1) for step (i) and backward
substitution (2.2) for step (ii).

2.2.1 Computing the LU factorization: basic approach. The LU decomposition uses the well-known
idea of Gaussian elimination, which consists in applying simple transformations from the left that
introduce zeros under the main diagonal of A. The first step of Gaussian elimination can be explained
as follows: set A in the form

A =

[
a11 u1

ℓ1 A2

]
, (2.5)

where the column n− 1-vector ℓ1 holds the first column of the lower triangular part of A (diagonal
excluded), the row n−1-vector u1 likewise holds the first row of the upper triangular part of A, and
A2 ∈ K(n−1)×(n−1) is the remaining part of A. Now, let

G1(z) :=

[
1 0
z In−1

]
. (2.6)

for some column (n−1)-vector z (so G1(z) is formed by placing z in the first column of the identity
matrix In under its diagonal). It is then easy to verify that

G1(−ℓ1/a11)A =

[
1 0

−ℓ1/a11 In−1

] [
a11 u1

ℓ1 A2

]
=

[
a11 u1

0 A′
2

]
, (2.7)

zeroing out the first column of A under the diagonal. Observe that the remaining part A2 is modified
in the process (in fact A′

2 = A2 − ℓ1u
H
1/a11, ℓ1u

H
1 being a rank-one matrix of size n−1). To continue

this process, we introduce the notion of “elimination matrix” that generalizes G1 as defined by (2.6):

Definition 2.1 (elimination matrix) Let k ≤ n. We call “elimination matrix” any matrix Gk(z) ∈ Kn×n

of the form

Gk(z) =



1
. . .

1
gk+1,k 1

...
. . .

gn,k 1


=



1
. . .

1
zk+1 1
...

. . .

zn 1


where z ∈ Kn−k is a given vector and all not-shown entries are zero. In the sequel, the entries of the
elimination vector z ∈Kn−k,1 placed in the k-th column under the diagonal of Gk(z) are numbered as{
zk+1, . . . , zn

}
for consistency with the numbering of the entries of Gk.

Going back to the elimination process, we set A′
2 arising from the previous elimination step in the

form

A′
2 =

[
a′22 u′

2

ℓ′2 A′
3

]
and left-multiply (2.7) by G2(−ℓ′2/a

′
22) (with of course G2 as in Definition 2.1), to obtain

G2(−ℓ′2/a
′
22)G1(−ℓ1/a11)A =

a11 u1

0 a′22 u′
2

0 0 A′′
3

 ,

and so on, until we reach

Gn−1(−ℓn−1/an−1,n−1) . . . G2(−ℓ′2/a
′
22)G1(−ℓ1/a11)A = U (2.8)

where U is upper triangular. We next observe that any matrix of the form Gk(z) verifies G−1
k (z) =

Gk(−z) (this is easily checked by inspection), so that the above equality becomes

A = G1(ℓ1/a11)G2(ℓ
′
2/a

′
22) . . . Gn−1(ℓn−1/an−1,n−1)U = LU, (2.9)
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with L as defined above found to be lower triangular2. The just-described steps therefore produce
a decomposition A = LU with L lower-triangular and U upper-triangular. Notice that the process
breaks down if a zero appears in the top left entry of any of the generated submatrices A′

2, A
′′
3 . . .

We illustrate the foregoing process on a simple 4×4 example taken from [36]. Let

A =

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


Zeros are introduced at the desired places in three steps:

G1A =

 1 0 0 0
−2 1 0 0
−4 0 1 0
−3 0 0 1


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =

2 1 1 0
0 1 1 1
0 3 5 5
0 4 6 8



G2G1A =

1 0 0 0
0 1 0 0
0 −3 1 0
0 −4 0 1


2 1 1 0
0 1 1 1
0 3 5 5
0 4 6 8

 =

2 1 1 0
0 1 1 1
0 0 2 2
0 0 2 4



G3G2G1A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1


2 1 1 0
0 1 1 1
0 0 2 2
0 0 2 4

 =

2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

 = U

Then:

(G3G2G1)
−1 =

1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1

 = L and A = (G3G2G1)
−1 (G3G2G1A) = LU

2.2.2 Implementation. Explaining the LU factorization in terms of matrix operations (such as matrix-
matrix multiplications) is convenient for the explaining the method and proving its properties. In
practice, the factorization is not implemented as explained: the elimination matrices Gk are not
explicitly formed, and matrix products such as those appearing in e.g. (2.7) or (2.9) are not computed
as such. The LU factorization algorithm in particular stores all information about the factors L,U
in place: the memory initially occupied by A is rewritten, with L and U stored in the strict lower
triangular, and upper triangular, regions of the original matrix A. Algorithm 2.3 shows a “bare-bones”
formulation of the basic LU factorization (observe how entries of L and U are directly stored into A).

2.2.3 Shortcomings of basic LU factorization method. The previously-described method, which we
will call the “basic” LU factorization, cannot however be used as is, as it presents major shortcomings:

• The method may fail on some “nice” (invertible, well-conditioned) matrices by zeroing a diagonal
entry of one of the triangular factors. For example, consider

A =

[
0 1
1 1

]
, B =

1 2 1 1
1 3 2 2
1 2 1 2
2 5 4 5


which are both invertible and well-conditioned (with κ2(A) = (3+

√
5)/2 and κ2(B) ≈ 57.6).

LU factorization fails on A due to A11 =0 (preventing Gaussian elimination), and on B because
Gaussian elimination replaces b33 with a zero at some stage. In fact (see e.g. [19, Thm. 3.2.1]):

2This results from the (easily verified) fact that, for any column vectors zk, zm of appropriate length,
Gk(zk)Gm(zm) = Gkm(zk, zm), where Gkm(zk, zm) is formed by placing zk and zm in columns k and m of the
identity matrix In under its diagonal. The rest follows by induction in a similar manner.
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Algorithm 2.3 Basic LU factorization

A ∈ Kn×n (data)
for k = 1 to n−1 do
for j = k+1 to n do

ajk = ajk/akk (compute jk-th entry of L)
aj,(k+1):n = aj,(k+1):n − ajkak,(k+1):n (update entries Uj,(k+1):n of U)

end for
end for

Theorem 2.2 A matrix A has a basic LU factorization if det
(
A1:k,1:k ̸=0

)
for 1≤ k≤n−1. This

condition on determinants of submatrices is not satisfied by all nonsingular matrices. If the LU
factorization exists and A is nonsingular, then the factorization is unique.

• The method may produce ill-conditioned factors L or U even though A itself is well-conditioned.
For example, consider

Aε =

[
ε 1
1 1

]
= LεUε with Lε =

[
1 0

−ε−1 1

]
, Uε =

[
ε 1
0 1−ε−1

]
for small values of ε. We have κ2(Aε) = (3+

√
5)/2+O(ε) and κ2(Lε) = 1+O(ε) but κ2(Uε) =

O(ε−2), making step (ii) of (2.4) an ill-conditioned linear system.

The latter example shows that one source of potential instability of the basic LU factorization is that
the process may encounter small pivots akk. We saw that “zeroing out” the k-th column of A below
the diagonal consists in a left multipication by the matrix Gk(ℓk/akk) defined in terms of the current
column ℓk = Ak:n,k of the lower-triangular part of A, where this whole column is divided by the
current pivot akk. On encountering a pivot of too-small modulus, the process creates large entries in
L and this degrades the conditioning of L. In fact, the following estimate is available [19, Thm. 3.3.1]:

Theorem 2.3 (roundoff error associated with LU factorization) Assume, as a best-case situation, that
A ∈ Kn×n contains floating-point numbers (so has no roundoff errors arising from finite machine
precision). Assume that the basic LU factorization encounters no zero pivot. The computed triangular

factors L̃, Ũ then satisfy

L̃Ũ = A+ E, |E| ≤ 3(n−1)εmach

(
|A|+ |L||U |

)
(2.10)

where |X| denotes the matrix with entries |xij | (in particular |X| is not a norm of X!).

• As an illustration, consider the simple example

A =

[
a b
c d

]
= LU with L =

[
1 0
c/a 1

]
, U =

[
a b
0 d− bc/a

]
Exercise 2.2 Prove Theorem 2.2.

Exercise 2.3 Prove Theorem 2.3 by induction on n.

Those shortcomings are remedied by a modification of the LU factorization method that incorpo-
rates pivoting, i.e. judicious permutations of lines or columns.

2.2.4 Computing the LU factorization: pivoting. Theorem 2.3 indicates that the roundoff error on
the LU factorization will remain small if the computed factors L,U are such that |L||U | is comparable
to |A|. A way to avoid large factors L,U is to avoid divisions by too-small pivots in the zeroing-out
process (i.e. to avoid forming vectors ℓk/akk that grow due to akk being of small modulus). This
is accomplished by pivoting, i.e. effecting permutations of rows, columns or both so that the pivot
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location after permutation contains a large (in modulus) entry, whereby the vector ℓk/akk used in
subsequent eliminations in column k has small entries. Pivoting is also expected to circumvent the
failures implicit to Theorem 2.2 by making all relevant submatrices invertible.

The ideal pivoting consists in one row permutation and one column permutation chosen such that
the largest entry in the part of A not yet triangularized gets placed at the pivot position. For example,
consider the starting situation (2.5) (repeated for convenience):

A =

[
a11 u1

ℓ1 A2

]
,

and suppose that a11 is small relative to the entries in ℓ1 (so that −ℓ1/a11 effecting elimination via
row combinations is undesirably large). Suppose besides that (say) a53 is the entry of A with largest
modulus. If we then permute rows 1 and 5, and columns 1 and 3 (obtaining a permuted version Â
of A), the former entry a53 gets moved to the a11 location (i.e. â11 = a53). Since â11 is largest, the

vector −ℓ̂1/â11 has all its entries of modulus less than 1. After this elimination step (on the first
column), we can seek again the best pivot in the (n−1)×(n−1) submatrix Â′

2 (see (2.7)), and so on.
Pivoting can be done in several ways:

• Full pivoting: this is the approach just outlined (find the largest entry in the remaining (n−k+
1)×(n−k+1) submatrix Â′

k. This find the best pivot at each step but at the cost of an expensive
search.

• Row pivoting: at step k, the largest (in modulus) entry is sought only in the column vector ℓ′k,
where

A′
k =

[
a′kk u′

k

ℓ′k A′
k

]
Say the largest entry found is in row m; in that case, rows k and m are permuted so that the pivot
moves at the location of akk and the elimination vector obtained after permutation has all entries
with modulus ≤ 1. This approach is obviously more economical regarding the pivot search.

• Rook3 pivoting: this is an improvement on row pivoting that achieves imperfect full pivoting.
Basically, the search alternates between row and column searches until a pivot that is largest in
both its row and its column is found.

Now, there is the question whether pivoting still decomposes A as A = LU with L lower-triangular
and U upper-triangular. We will only examine in some detail the row-permutation approach. The
permutation of two rows of a matrix X can be formally represented via a left multiplication by a
permutation matrix4 Π, so that ΠX is the row-permuted version of X. Assuming row pivoting to be
done at each step, we reach

Gn−1Πn−1 . . . G2Π2G1Π1A = U (2.11)

by analogy with (2.8) (Gk being elimination matrices and Πk being permutation matrices), where U
is upper triangular. Now, we rewrite the left-hand side by using that ΠΠT = I for any permutation
matrix and judiciously inserting such combinations. To explain the process, assume that A is square
4×4, so that

G3Π3G2Π2G1Π1A = U.

We then rewrite the above equality as

G3(Π3G2Π
T

3 )(Π3Π2G1Π
T

2Π
T

3 )Π3Π2Π1A = U. (2.12)

and observe that Ĝ2 := Π3G2Π
T
3 and Ĝ1 := (Π3Π2G1Π

T
2Π

T
3 ) are elimination matrix with the same

structure as G2 and G1 (see Exercise 2.4) while Π̂ := Π3Π2Π1 is a permutation matrix. The equal-
ity (2.12) thus takes the form

G3Ĝ2Ĝ1Π̂A = U.
3Rook: the chess move where the king and a pawn are swapped
4Permutation matrices encode permutation of row or columns of matrices via matrix multiplication. They are the

identity matrix with either its rows or its columns permuted depending on the (column or row) permutation to encode.

For example, letting Π =
[

1 0 0
0 0 1
0 1 0

]
and A ∈Km×3, ΠA (resp. AΠ) is A with its second and third rows (resp. columns)

permuted. Permutation matrices are orthogonal (so Π−1 = ΠT).
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We can generalize this process to any matrix size n, so that (2.11) takes the form

Gn−1Ĝn−2Ĝn−3 . . . Ĝ1Π̂A = U

where Ĝk are elimination matrices and Π̂n−1 is a permutation matrix (so we managed to put the net
permutation “on the right” of the whole product). As seen previously,[

Gn−1Ĝn−2 . . . Ĝ2Ĝ1

]−1
= Ĝ−1

1 Ĝ−1
2 . . . Ĝ−1

n−2Ĝ
−1
n−1 =: L

is a lower triangular matrix, and we finally find

Π̂A = LU,

that is, A = LU up to a row permutation defined by Π̂. Hence, the LU -factorized form of the original
system Ax = b is

LUx = Π̂Tb (2.13)

so that one just needs to apply the permutation Π̂T to the right-hand side b and apply forward and
backward substitution as before.

Exercise 2.4 Let Gk(u) be an elimination matrix with associated (n−k)-vector u. Let Πk a permutation
matrix acting on two rows k1, k2, with k1 > k and k2 > k. Show that ΠT

kGk(u)Πk = Gk(û), where
the column vector û (with entries numbered k+1 to n) is u with entries k1 and k2 permuted (i.e.
ûk1 = uk2 and ûk2 = uk1).

Exercise 2.5 Explain in more detail how the decomposition form (2.13) is reached.

2.2.5 Stability of LU factorization with partial pivoting. With reference with Theorem 2.3, and espe-
cially with estimate (2.10), the partial-pivoting method ensures that all entries of L verify |Lij |< 1.
The stability of LU factorization with partial pivoting is then decided by whether entries of U do
not grow relative to those of A as the factorization progresses (remembering that LU factorization
is intended to be applicable to large matrices A). Here the situation is a bit complex, if ultimately
satisfactory:

• There are worst-case matrices A∈Kn×n such that ∥U∥ = O(2n−1∥A∥) (so that in theory stability
is achieved for fixed n); for example [36]:

A =


1 1

−1 1 1
−1 −1 −1 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 =⇒ U =


1 1

1 2
1 4

1 8
16


(with pivoting required for all columns except the first).

• In practice, matrices for which LU factorization with partial pivoting creates such large U (relative
to A) are known to be extremely rare, to the point of never being encountered in practical
applications.

2.2.6 Computational complexity of LU factorization. It is relatively easy to estimate the computa-
tional work incurred by the basic LU factorization of a dense matrix:

• Step k of the elimination process (i.e. zeroing out the k-th column under the diagonal) requires
a total of (n−k)(n−k+1) multiplications and as many additions.

• Summing over k, we estimate

operation count of LU =

n−1∑
k=1

(n−k)(2n−2k+1) ∼ 2
3n

3 (2.14)

where the symbol “∼” (equivalent to) indicates the asymptotic value for large n (i.e. “op. count ∼
2
3n

3” means “op. count = 2
3n

3(1+o(1)) as n → ∞”).
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Then, row (or column) pivoting adds o(n3) supplementary computational work. For large matrices,
we are mainly interested by the leading estimate, lower-degree (in n) contributions being of marginal
relevance. Estimates such as (2.14) are often called computational complexity estimates5, and this
terminology will be used in the sequel.

Exercise 2.6 Explain in more detail the above-outlined operation count, by inventorying the arithmetic
operations entailed in step 1 (i.e. the matrix-matrix product G1(−ℓ1/a11)A in (2.7)), generalizing the
reasoning to the subsequent steps, and using well-known formulas for sums of powers of consecutive
integers.

2.2.7 Band matrices. A matrix A is said to be a band matrix (with lower bandwidth bL and upper
bandwidth bU) if aij = 0 whenever i > j+bL or j > i+bU. Revisiting the steps of the LU factorization
method, one can show that the LU factorization takes full advantage of the band structure, see [15,
Prop. 2.3]:

Theorem 2.4 (LU factorization of band matrices) Applying the basic LU factorization to a band matrix
A, we find A = LU where L has lower bandwidth bL and U has upper bandwidth bU. When bL and bU
are both small relative to n, computing the LU factorization asymptotically requires 2nbLbU arithmetic
operations, the asymptotic memory space needed for storing the factorization is n(bL+ bU+1), and
solving the triangular systems by substitution asymptotically costs 2n(bL+bU) operations.

If instead partial pivoting is used in the LU factorization, L still has lower bandwidth bL while U
has upper bandwidth bU+bL.

Exercise 2.7 Prove the results stated in Theorem 2.4

2.3 CHOLESKY AND LDLT FACTORIZATIONS. The LU factorization (with partial pivoting) is suit-
able for solving any linear system whose matrix A is square invertible. Many applications involve sys-
tems where A has the stronger property of being symmetric positive definite (abbreviated thereafter
as SPD); for example such equations arise naturally from models of physical systems at equilibrium.

Definition 2.2 (SPD matrices) A square matrix A ∈ Kn×n is symmetric positive definite (SPD) if (i)
AH = A, (ii) xHAx > 0 for all x ∈ Kn, x ̸= 0 (notice that Hermitian symmetry implies that the
quadratic form xHAx> 0 is necessarily real-valued).

2.3.1 Computing symmetric factorizations of SPD matrices.. We will now show that a symmetric
factorization of A can be derived by a direct adaptation of the Gaussian elimination approach used
for the LU factorization without pivoting. We begin by writing

A =

[
a11 ℓH1
ℓ1 A2

]
,

where the column n− 1-vector ℓ1 holds the first column of the lower triangular part of A (diagonal
excluded) and A2 ∈ K(n−1)×(n−1), the remaining part of A, is symmetric (i.e. AH

2 = A2). Recalling
definition (2.6) of Gaussian elimination matrices G1 and taking advantage of the Hermitian symmetry
of A, we find

G1(−ℓ1/a11)AGH

1 (−ℓ1/a11) =

[
a11 0
0 A′

2

]
, A′

2 := A2 − ℓ1ℓ
H

1/a11

and we observe at this point that for any SPD matrix A and any invertible matrix B ∈Kn×n, BHAB
is SPD (which is easily proved and left to the reader). Hence, the matrix in the right-hand side above
is SPD. Moreover, by the previously-mentioned invertibility property of any Gk(z), we have

A = G1(ℓ1/a11)

[
a11 0
0 A′

2

]
GH

1 (ℓ1/a11),

5Sometimes such estimates are found by counting elementary operations that combine one multiplication and one
addition, i.e. scalar evaluations of the form y = ax+b. The corresponding asymptotic complexity for the LU factorization
would be 1

3
n3 operations.
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where the (n−1)× (n−1) block A′
2 = A2 − ℓ1ℓ

H
1/a11 is SPD.

The just-described symmetric Gaussian elimination process can then be applied to A′
2, and so on

recursively. This yields

A = LDLH with D diagonal SPD,

L = G1(ℓ1/a11)G2(ℓ
′
2/a

′
22) . . . Gn−1(ℓ

′
n−1/a

′
n−1,n−1).

(2.15)

For the reasons already given in the case of LU factorization, L as defined above is lower-triangular
with unit diagonal. Since, as mentioned before, the “middle” matrices appearing in the recursive
elimination remain SPD, D is SPD, which means (since it is diagonal) that its diagonal entries are
real and strictly positive.

The factorization (2.15) is usually known as the LDLT factorization of a SPD matrix A. The
closely-linked Cholesky factorization of A is given by

A = GGH with G := LD1/2 (2.16)

(the square root D1/2 being defined simply as the diagonal matrix such that (D1/2)ii =
√
Dii, 1 ≤

i≤ n). The matrix G in the Cholesky factorization (2.16), often called the Cholesky factor of A, is
(as easily checked) lower-triangular.

• The Cholesky factorization method can be found by another method, namely writing the sought
factorization A = GGH (with G lower triangular) in component notation (aij =

∑i
k=1 gikḡjk for

i≤ j, with sum limits accounting from the assumed lower-triangular nature of G) and finding the
entries of G by solving these equations columnwise (j =1 yields g11, then j =2 yields g21, g22 and
so on).

• The Cholesky factorization can be considered as defining a square root A1/2 := GH of a SPD
matrix A, in the sense that A=AH/2A1/2 with this definition.

The Cholesky factorization is shown in concise form in Algorithm 2.4, where entries aij (i ≤ j) of
the upper triangular part of A are replaced with those of the upper triangular Cholesky factor GH.
Contrarily to the basic LU factorization (without pivoting), the Cholesky factor cannot grow large6,
for the following reasons: (i) all diagonal entries aii of A verify aii > 0 (by virtue of A being SPD), and

(ii) evaluating aii from A = GGH yields aii =
∑i

k=1 gikḡik =
∑i

k=1 |gik|2; in particular, |gik| ≤
√
aii

(1≤ k≤ i). In fact, the Ckolesky factorization is proved to be backward stable [36, Chap. 23].

Theorem 2.5 (backward stability of Cholesky factorization) Let A ∈ Km×n with m ≥ n. Let G̃ be
its Cholesky factor computed (in finite precision) using Algorithm 2.4. Then there exists a matrix
E ∈ Km×n such that

A+ E = G̃G̃H with ∥E∥/∥A∥ = O(εmach)

Algorithm 2.4 Cholesky factorization

1: A ∈ Kn×n (data – only lower triangular part need be stored)
2: for k = 1 to n do
3: akk = [akk − (ak,1:k−1)

Hak,1:k−1]
1/2 (Compute diagonal entry of Cholesky factor G)

4: for j = k+1 to n do
5: ajk = (ajk − [(aj,1:k−1)

Hak,1:k−1]/akk (compute j-th column of Cholesky factor G)
6: end for
7: end for

Notice that G is computed “in place”: after completion of Algorithm 2.4, the lower triangular part
of A is replaced with that of G (the original entries of A no longer being needed).

Exercise 2.8 Derive the Cholesky factorization from the equations aij =
∑i

k=1 gikḡjk, and show how
A being assumed to be SPD ensures completion of the algorithm.

6Alternatively, using the singular value decomposition G = UΛV H (see Sec. 3.4), one has A= (UΛV H)(UΛV H)H =
UΛ2UH, which implies ∥A∥2 = ∥G∥22.
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2.3.2 Solution of SPD linear systems. Once the factorization (2.16) is computed, solving a SPD
linear system Ax = b again follows two steps:

step (i): find y solving Gy = b; step (ii): find x solving GHx = y

Both steps entail solving a triangular system, using forward substitution (2.1) for step (i) and backward
substitution (2.2) for step (ii); they are identical to (2.4) except for the fact that here the same
triangular factor G is used for both steps.

2.3.3 Computational complexity and stability of Cholesky factorization. Similarly to the LU factor-
ization, arithmetic operations incurred by the Cholesky factorization of a dense matrix can be counted,
for example from Algorithm 2.4. For given j, k, instruction 5 of Algorithm 2.4 effects k multiplications
and k−1 additions, whereas instruction 3 effects k−1 multiplications and as many additions for each
k. Neglecting the work entailed by evaluating the n square roots

√
akk, we find

operation count of Cholesky =

n∑
k=1

{
2k−2 +

n∑
j=k+1

(2k−1)(n−k−1)
}
∼ 1

3n
3,

i.e. (asymptotically) half the operation count of LU factorization, see (2.14).

2.3.4 Band matrices. A SPD matrix A is said to be a band SPD matrix (with bandwidth b) if aij = 0
whenever |i− j| > b. On revisiting its steps as given in Algorithm 2.4, the Cholesky factorization is,
like the LU factorization, found to take full advantage of the band structure:

• The Cholesky factor G is a band matrix with lower bandwidth b;

• When b is small relative to n, the factorization is found with a computational work of (asymp-
totically) nb2 arithmetic operations.

Exercise 2.9 Prove the properties (preservation of band structure and width, asymptotic operation
count) of the Cholesky factorization of band matrices.

2.4 SPARSE MATRICES. Classical direct solution methods such as the LU or Cholesky factorizations
are initially designed with dense matrices in mind. More to the point, if A is sparse, factors L,U or
G normally do not obey the same sparsity pattern: nonzero entries appear in the factors at locations
(i, j) where initially aij = 0, a phenomenon usually called fill-in which can reduce (or even negate in
some cases) the computational advantage afforded by the sparsity of the original problem matrix A.

The design of direct solvers that optimally exploit matrix sparsity is a recent research area, with
resulting algorithm making frequent use of graph theory and other concepts from discrete mathematics;
for an introduction, see for example the last chapter of [14]. They are somewhat easier to formulate
for SPD matrices, in view of the following considerations:

• Some applications naturally produce banded SPD matrices, for which there is an integer p<n−1
such that |i− j| > p =⇒ aij = 0 (A then has bandwidth 2p+1). For example, diagonal (resp.
tridiagonal symmetric) matrices are banded with bandwidth 1 (resp. 3). The finite element
method produces symmetric banded stiffness and mass matrices [5, 11, 3].

The Cholesky factorization applied to a banded SPD matrix produces a Cholesky factor G that
is also banded (i.e. i−j > p =⇒ ℓij =0). However, zeros in the original band of A may be filled
in by the Cholesky factorization. In the finite element method, memory occupied by A and its
Cholesky factor L is optimized by using sparse matrix storage methods for the respective bands.
Similarly, for SPD matrices stored in skyline fashion (also a common occurence in finite element
methods), the skyline profile of A is preserved by the Cholesky factor G.

• More generally, the symmetric form of the factorization A = GGH introduce simplifications in
the graph or tree structures involved in the resulting algorithms, see e.g. [14]
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In Chapter 2 we have only considered linear systems involving a square invertible matrix. Many
areas in science and engineering (such as the quantitative interpretation of experimental data, and
data analysis more generally) give rise to linear systems that are not square, let alone invertible.
Accordingly, we consider in this section the more-general case of linear systems Ax = b where A ∈
Km×n and b ∈ Km without making any a priori assumptions on A; in particular, depending on
the situation being analysed, we may have m > n (overdetermined system), m = n, or m < n
(underdetermined system) and want to make the best use of the available information A, b. As
before, decomposition methods applied to A will be instrumental for analysing the problem at hand
and formulating solution algorithms. LU and Cholesky factorizations are not applicable to arbitrary
matrices, Instead our main tools will consist of two decomposition methods that apply to arbitrary
matrices, namely the QR factorization (Sec. 3.1) and the singular value decomposition (Sec. 3.4).

It is important to emphasize that both the QR factorization and the singular value decomposition
(SVD) have widespread uses that go well beyond solving least-squares problems. Both methods allow
to “dissect” a given linear system and gain insight into attributes like solvability, rank deficiency,
conditioning and sensitivity to data errors. Moreover, many other matrix-based computational tasks
use either method; for example, efficient algorithms for computing eigenvalues of matrices use the
QR factorization (see Sec. 5), while the SVD is extremely useful for understanding and solving ill-
conditioned systems of linear equations (see Chap. 6).

Norms in this chapter. Since least-squares problems are intrinsically linked to Euclidean norms (i.e.
2-norms) of residuals and rely a lot on orthogonality, norms ∥ · ∥ in this chapter implicitly refer to the
(Euclidean) vector 2-norm and its induced (spectral) matrix norm.

3.1 QR FACTORIZATION. Like the LU or Cholesky factorizations, the QR factorization aims at
at a multiplicative decomposition of A involving a triangular factor, and proceeds by zeroing out
entries of A below its diagonal. The QR factorization does not perform “zeroing-out” steps using
matrices of the previously-used type (2.6), for reasons that will be explained later, and instead resorts
to left-multiplications of A by Householder reflections. A Householder reflection matrix is a matrix
F (v)∈Km×m of the form

F (v) = Im − 2
v vH

∥v∥2 (3.1)

for some (arbitrary) column vector v ∈Km. As can be readily checked, any such F (v) is unitary, i.e.

F (v)F (v)H = F (v)HF (v) = Im

Geometrically speaking, F (v) represents a reflection whose invariant subspace is the hyperplane or-
thogonal to v: we have F (v)v = −v and F (v)v⊥ = v⊥; see Fig. 3.1 for a geometrical interpretation. In
the QR factorization method, v is chosen so that a left multiplication by F (v) introduces zero entries
at the appropriate locations of A.

We examine in detail the most-common case where A∈Km×n with m≥n (overdetermined systems
of equations). Set A in the form

A =

[
a11 u1

ℓ1 A2

]

29
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e1

a1

v1⊥

v1

F (v1)a1

e2, . . . , en

Figure 3.1: Householder reflector F (v1): geometrical interpretation (case sign(a11) =−1)

where ℓ1 = A1:m,1 and u1 = A1,2:n, and consider the first step, whose aim is to introduce zeros at
all entries of ℓ1 (i.e. to replace A2:m,1 by zeros). We assume that a11 ̸= 0 (after performing column
pivoting if necessary). Choosing v1 given by

v1 =

{
a11+sign(a11)∥a1∥

ℓ1

}
, with sign(x) = x/|x|

(where sign(x) is the sign of x if x∈R and a complex number with unit modulus otherwise, this factor
being introduced to avoid stability issues when a1 is such that

∣∣a11+∥a1∥
∣∣ ≪ ∥a1∥), we indeed have

F (v1)a1 = −sign(a11)a11e1

and hence

F (v1)A = F (v1)

[
a11 u1

ℓ1 A2

]
=

[
−sign(a11)a11 u′

1

0 A′
2

]
(3.2)

The next step consists in applying the same treatment to the second column of F (v1)A, leaving its first
row and first column undisturbed. This is achieved by left-multiplying F (v1)A by the Householder
reflector F (v2) with v2 set to

v2 =

 0
(A′

2)11+sign((A′
2)11)∥a2∥

ℓ′2

 .

with ℓ′2 := (A′
2)2:m−1,1. This process is then recursively carried out a total of n times1, the k-th

Householder reflector F (vk) introducing zeros at the Ak+1:m,k positions of A being such that vki = 0
for i < k. Successively applying the reflectors F (v1) to F (vn) on A, we reach

F (vn)F (vn−1) . . . F (v2)F (v1)A = R, R =


r11 . . . r1n

0
. . .

...
... rnn
0 . . . 0


Moreover, F (vn)F (vn−1) . . . F (v2)F (v1) is unitary (as a product of unitary matrices), and we hence
obtain the desired QR factorization

A = QR, Q := F (v1)H F (v2)H . . . F (vn−1)H F (vn)H, (3.3)

where Q∈Km×m is unitary and R∈Km×n upper triangular.
The QR factorization applies as well to other situations, in particular where A∈Km×n with m≥n

but does not have full column rank, or A ∈ Km×n with m< n (underdetermined systems, for which
A cannot have full column rank). We do not go into the details of how the QR factorizations are
established in those more-complicated cases (refer e.g. to [19, Chap. 5]). The general result on QR
factorization when m≥n is as follows:

1If m=n, the first n−1 reflectors suffice, as in this case we simply have F (vn) = In.
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Theorem 3.1 (QR factorization) For any matrix A∈Km×n with m≥n, there exist Q∈Km×m unitary,
R ∈ Km×n upper triangular, and Π ∈ Rn×n a permutation matrix, such that the QR factorization
identity holds:

AΠ = QR.

More precisely, letting r≤min(m,n) denote the rank of A, we have:

(a) If r=n:

A = QR, R =

[
Rn

0

]
,

where Rn ∈Kn×n is upper triangular and invertible.

(b) If r <n:

A = QRΠT, R =

[
Rr Rn−r

0 0

]
,

where Rr ∈Kr×r is upper triangular and invertible and Rn−r ∈Kr×(n−r).

The Householder QR factorization algorithm is shown in compact form in Algorithm 3.1, some of
whose steps require a bit of explanation:

• Step 5: the vector vk of the Householder reflector F (vk) to be applied to the k-th column of A is
formed for rows k to m (the other entries implicitly being zero); it is normalized so that vk =1.

• Step 6: the normalization factor 2/∥vk∥2 of F (vk) is evaluated and stored in a separate linear
array β;

• Step 8: actual application of F (vk) to A is only needed for the block [aij ]k≤i≤m, k+1≤j≤n of A.
Notice the appearance of the normalization factor.

• Step 9: vk is stored in the available (implicitly zeroed-out) part of the k-th column of A. The
value vk = 1 is implicit thereafter; likewise, vki = 0 for i < k. Thus, only entries vki for i > k need
be stored, hence the form of this step.

Algorithm 3.1 QR factorization using Householder reflections

1: A ∈ Km×n (data)
2: for k = 1 to n do
3: x = Ak:m,k (part of k-th column below diagonal of A (included))
4: γ = sign(x1)∥x∥
5: v = (x+ γe1)/(x1+γ) (Householder vector vk, normalized so that vk1 =1)
6: βk = 1/(x1+γ)γ (normalization factor 2/∥v∥2 for F (vk))
7: akk = −γ (Apply F (vk) to column k of A, only computing leading entry)

8: Ak:m,(k+1):n = Ak:m,(k+1):n − βkv(v
HAk:m,(k+1):n)

(Apply F (vk) to block of A hanging on the right of akk)
9: A(k+1):m,k = v2:(m−k+1) (store vk minus its leading entry in column k of A)

10: end for

As always in numerical linear algebra, Algorithm 3.1 stores all information defining the QR factor-
ization in place. The “hanging parts” of the Householder vectors vk are for example stored in the
zeroed-out column segments of the original matrix A.

The Householder QR factorization algorithm is proved to be backward stable [36, Chap. 16]:

Theorem 3.2 (backward stability of Householder QR factorization) Let A ∈ Km×n with m≥ n. Let Q̃
and R̃ be the factors of the Householder QR factorization of A computed (in finite precision) using
Algorithm 3.1. Then there exists a matrix E ∈ Km×n such that

A+ E = Q̃R̃ with ∥E∥/∥A∥ = O(εmach)
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We emphasize in particular that the unitary factor Q must not in practice be evaluated using
formula (3.3), which would make for a very inefficient approach in terms of both computational work
and memory requirement. As we will see shortly, least-squares problems require evaluations of QHb for
some vector b∈Km and this task can be efficiently performed using the information on the reflection
vectors as obtained and stored by Algorithm 3.1.

Main comments about the QR factorization and its usage. The QR factorization is applicable to
any real or complex matrix, regardless of its format or structure. This general applicability makes
it one of the major tools of numerical linear algebra. We will shortly see the usefulness of the QR
factorization for solving least squares problems (see Sec. 3.3). Moreover, the QR factorization is also a
key component of algorithms computing the complete set of eigenvalues of a given matrix, see Chap. 5.

The following remarks emphasize other useful facts on the QR factorization:

• Computing the QR factorization of A∈Km×n by means of Householder reflectors asymptotically
requires 2

3n
2(3m−n) floating-point operations if m≥n. For m ≈ n, that is about 4

3n
3 operations,

i.e. twice the asymptotic cost of a LU factorization.

• We emphasize again that the QR factorization is applicable to any matrix whatsoever.

• By contrast, since invertibility of A is neither assumed, nor in fact meaningful if A is not square,
using the matrices Gk introduced for the LU factorization may break down (due to the possible
appearance of zero pivots).

• Square invertible matrices can always be decomposed using the QR factorization instead of the
LU factorization. However, as said above, the former method is about twice as expensive as the
latter.

• The QR factorization is rank-revealing : the rank r of A is equal to the number of nonzero diagonal
entries of R, i.e. the size of Rr.

3.2 SOLVABILITY OF LINEAR SYSTEMS. Let us consider a linear system Ax = b with A ∈Km×n.
Applying the QR factorization to A and assuming the most general situation (case (b) in Theorem 3.1),
we have

Ax = b =⇒ Rx′ = QHb, i.e.

{
Rrx

′
1:r +Rn−rx

′
r+1:n = (QHb)1:r

0 = (QHb)r+1:m

(with x′ :=ΠTx),

from which we infer:

• Solvability of the linear system Ax = b requires (QHb)r+1:m = 0 (which ensures that b∈R(A));

• Then:

(i) If r = n (in which case the block Rn−r disappears, Rr = R and Π = In), we have Rx =
(QHb)1:n, yielding the unique solution x.

(ii) If r < n, we have Rrx
′
1:r = (QHb)1:r − Rn−rx

′
r+1:n; we can choose x′

r+1:n arbitrarily, and
then find the unique value of x′

1:r (which depends on x′
r+1:n); finally x=Πx.

In case (ii) above, the solution set is an affine space of dimension n−r.

3.3 LEAST SQUARES PROBLEMS. Since the generic linear system Ax = b is unsolvable whenever
b ̸∈ R(A), an alternative option is to seek a least squares solution:

min
x∈Kn

∥Ax− b∥2, (3.4)

i.e. to find x that achieves the best (or least bad!) fit with the data b. Of course, if some x achieves
∥Ax−b∥2 = 0, then it solves the original system. Introducing the QR factorization in the least squares
problem (3.4), we have (following Sec. 3.2)

∥Ax− b∥2 = ∥QRx′ − b∥2 = ∥Q(Rx′ −QHb)∥2 = ∥(Rx−QHb)∥2

= ∥Rrx
′
1:r +Rn−rx

′
r+1:n − (QHb)1:r∥2 + ∥(QHb)r+1:m∥2,
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where the second and third equalities take advantage of the unitary character ofQ. Since ∥(QHb)r+1:m∥2
does not depend on x′, the minimization acts only on the first residual ∥Rrx

′
1:r + Rn−rx

′
r+1:n −

(QHb)1:r∥2. In fact, revisiting the previous solvability discussion shows that this first residual can be
set to zero with a suitable choice of x, which is obviously the best possible outcome for the least-squares
problem (3.4). Hence:

(i) If r=n, we haveRx = (QHb)1:n, yielding the unique solution x to the least-squares problem (3.4).

(ii) If r < n, we solve Rrx
′
1:r = (QHb)1:r − Rn−rx

′
r+1:n by choosing x′

r+1:n arbitrarily, finding the
resulting unique value of x′

1:r, and finally setting x=Πx.

In case (ii) above, the solution set of problem (3.4) is again an affine space of dimension n−r.
The solution procedure based on the QR factorization defines the solution(s) in the same way for

the linear-system and least-squares cases, the essential difference being that the existence of a solution
is guaranteed for any data b∈Km in the latter case but not in the former case.

Evaluation of QHb. Applying the QR factorization method for solving a least-squares problem (or a
linear system) entails the evaluation of QHb, i.e. the application of QH to the right-hand side b of the
system. Recalling the defining expression (3.3) of Q, we have

QHb = F (vn)F (vn−1) . . . F (v2)F (v1)b (3.5)

The reflector F (vk), as computed by Algorithm 3.1, is given by

F (vk) = Im − βkv
k(vk)H vk = ek+ ṽk

where the vector ṽk is such that ṽki = 0 for i ≤ k and has its nontrivial part ṽk(k+1):m stored by

Algorithm 3.1 in A(k+1):m,k. The evaluation of F (vk) on a given vector y ∈Km thus takes the form

F (vk)y = y − βk

(
yk+(ṽk)Hy(k+1):m

)(
ek+ ṽk

)
As a result, the evaluation of QHb using (3.5) and the above conventions (i.e. exploiting the outcome
of Algorithm 3.1) translates into Algorithm 3.2, wherein the result QHb is stored in b.

Algorithm 3.2 Evaluation of QHb using the outcome of Algorithm 3.1

1: A ∈ Km×n, β ∈ Rn, b∈Km (A, β as produced by Algorithm 3.1)
2: for k = 1 to n do
3: v = A(k+1):m,k (Extract the part ṽk of vk, which is stored in A)
4: γ = bk + vHb(k+1):m

5: bk = bk − γβk (update bk (entries above bk of b are untouched))
6: b(k+1):m = b(k+1):m − γβkv (update b below bk)
7: end for

3.4 SINGULAR VALUE DECOMPOSITION. Another essential tool in numerical linear algebra is the
singular value decomposition (SVD). The SVD generalizes to arbitrary (even non-square) matrices
the diagonalization

A = XΛX−1

of A ∈ Kn×n (where Λ = diag(λ1, . . . , λn) holds the eigenvalues of A and X is invertible), which
applies only if A is square and even so only conditionally2.

Let then A ∈ Km×n be any matrix (where m may be larger than, equal to, or smaller than, n).
We introduce the two eigenvalue problems

AHAv = λv, AAHu = µu.

2Some non-Hermitian square matrices, called defective, are not diagonalizable.
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Both matrices AHA ∈ Kn×n and AAH ∈ Km×m are Hermitian and positive. The two eigenvalue
problems are therefore well-defined, with real positive eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0, µ1 ≥ µ2 ≥
. . . µm ≥ 0 and unitary matrices of corresponding eigenvectors V := [v1, . . . , vn] ∈ Kn×n, U :=
[u1, . . . , um] ∈ Km×m. Moreover, for any nonzero eigenvalue λ of AHA, we observe that

AHAv = λv =⇒ AAHAv = (AAH)Av = λAv,

i.e. if (λ, v) is an eigenpair of AHA, then (λ,Av) is an eigenpair of AAH. By the same argument, if
(µ, u) is an eigenpair of AAH, then (µ,AHu) is an eigenpair of AHA. Hence, both matrices share the
same nonzero eigenvalues. It is not difficult to show that the multiplicity of each nonzero eigenvalue
is the same for AHA and AAH, and that normalized eigenvectors associated with nonzero eigenvalues
verify the pairwise interrelations

σu = Av, σv = AHu with σ :=
√
λ,

the eigenvalue square roots σ being called the singular values of A. Collecting all the previous
information, we arrive at the main result, namely the singular value decomposition (SVD) of A:

Theorem 3.3 Any matrix A∈Km×n has a singular value decomposition

A = USV H, (3.6)

where U ∈ Km×m and V ∈ Kn×n are unitary square matrices and S ∈ Rm×n contains the min(m,n)
singular values σ1, . . . σmin(m,n) of A on its main diagonal and is otherwise zero (i.e. Sii = σi, Sij = 0
if i ̸= j). The singular values are positive real numbers, conventionally arranged by decreasing values
(i.e. σ1 ≥ σ2 ≥ . . . σmin(m,n) ≥ 0). The vectors u1, . . . , um and v1, . . . , vn such that U = [un, . . . , um]
and V = [v1, . . . , vn] are called the left and right singular vectors, respectively.

The SVD provides a “dissection” method, applicable to any real or complex matrix regardless of
its format or structure, and in particular to matrices that are not diagonalizable. Among other things,
the SVD provides an explicit expression for the 2-norm of any matrix:

Theorem 3.4 (2-norm of a matrix) The 2-norm ∥A∥2 of any matrix A∈Km×n is given by ∥A∥2 = σ1.

The generality of the SVD places it among the most useful tools of numerical linear algebra. We
will shortly see that the SVD provides key insight into the solvability of linear systems and least
squares problems, while being one of the main computational tools for the latter. Moreover, the
SVD also plays an essential role in methods aimed at solving ill-conditioned linear systems or setting
up low-rank approximations of numerically rank-deficient matrices that often occur in image or data
processing, see Chap. 6. The following remarks emphasize other useful facts on the SVD:

• The SVD is rank-revealing : the rank r of A is equal to the number of nonzero singular values
(counting multiplicities); in particular r≤min(m,n).

• The nonzero squared singular values σ2
1 , . . . , σ

2
r are the common nonzero eigenvalues of AAH and

AHA, with correct multiplicities (i.e. σ2
i = λi = µi for 1 ≤ i ≤ r). All remaining eigenvalues of

AAH and AHA are zero (i.e. λr+1 = . . . = λm = 0 and µr+1 = . . . = µn = 0).

• The matrix A can equivalently be represented by its reduced SVD

A = UrSrV
H

r (3.7)

where U = [u1, . . . , ur] ∈ Km×r and V = [v1, . . . , vr] ∈ Kn×r contain the r left and right singular
vectors associated with the r nonzero singular values σ1, . . . , σr, while Sr = diag(σ1, . . . , σr) is
now square r×r. The singular vectors ur+, . . . , un and vr+, . . . , vm not used in (3.7) are bases of
the null-spaces N(A) and N(AH), respectively.

• The practical computation of a SVD uses adaptations of algorithms for matrix eigenvalue prob-
lems (Chap. 5). The full SVD of A ∈ Km×n requires O(m2n) operations [19, Sec. 5.4.5].

• The Matlab operator svd returns either the full SVD (3.6) or the reduced SVD (3.7) of a matrix.

Exercise 3.1 Prove Theorem 3.4

Exercise 3.2 Let A ∈ Kn×n be a square diagonalizable matrix. Show that the SVD of A and its
diagonalization usually yield different multiplicative decompositions. In which case do SVD and diag-
onalization produce the same decomposition of A?
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Using the SVD to solve linear systems and least squares problems. The SVD allows to investigate
the solvability of an arbitrary linear system Ax = b. Using Theorem 3.3 and letting r ≤min(m,n),
we have

Ax = b =⇒ USV Hx = b =⇒ Sy = z i.e.

{
σiyi = zi (1≤ i≤ r)

0 = zi (r+1≤ i≤m)
, (3.8)

upon making the changes of variables y := V Hx and z := UHb, i.e. yi = vH
i x and zi = uH

i b (which
express the unknown and data on the bases of right and left singular vectors, respectively).

• The conditions 0 = zi (r < i ≤m) again express the requirement that b ∈ R(A) and determine
whether the original system Ax = b has a solution.

• If these conditions are met, equations yi = zi uniquely determine the first r entries of y = V Hx.

• The remaining n− r entries of y = V Hx, if any (that is, if A has a column rank deficiency), are
then arbitrary, so that all solutions of Ax = b (if any) are given by

x =

r∑
i=1

zi
σi

vi +

n∑
i=r+1

xivi (xr+1, . . . , xn) ∈ Kn−r arbitrary (3.9)

If the system is solvable, the solution set is hence an affine space of dimension n−r.

• If A has column rank deficiency, setting xr+1 = . . . = rn = 0 in (3.9) yields the solution with
minimum norm. This rule is often used for selecting a solution among all possibilities (3.9) in the
absence of definite criteria for choosing otherwise.

• Applying Matlab’s backslash “\” operator to Ax = b (via x=A\b;) yields one of the solu-
tions (3.9). In case of non-uniqueness, the user has no control over which possibility is picked
(i.e. to which choice of xr+1, . . . , xn in (3.9) it corresponds).

The above remarks on solvability are of course equivalent to those found using the QR decomposition,
albeit expressed using different ingredients.

Similarly, the SVD can be usefully applied to the least squares problem (3.4), since we have (with
y and z defined as in (3.8))

∥Ax− b∥2 = ∥USV Hx− b∥2 = ∥U(Sy − z)∥2 = ∥Sy − z∥2 =

r∑
i=1

|σiyi − zi|2 +
m∑

i=r+1

|zi|2 (3.10)

Clearly, all solutions given by (3.9), and only those, minimize ∥Ax − b∥2. Equation (3.9) thus gives
all solutions of the least-squares problem (3.4), this time with no solvability condition on the data. If
b ̸∈ R(A) (incompatible data leading to unsolvability of Ax = b), we have

min
x∈Kn

∥Ax− b∥2 =
∥∥ n∑

i=r+1

xivi
∥∥2 =

n∑
i=r+1

|zi|2

3.5 PSEUDO-INVERSE OF A MATRIX. We just introduced the SVD as a generalization of matrix
diagonalization that applies to any matrix whatsoever (including non-square matrices). In the same
spirit, one can define the notion of pseudo-inverse of a matrix, in such a way that it makes sense for
any matrix.

For any A∈Km×n, a pseudo-inverse (or generalized inverse) of A is a matrix A+ ∈Kn×m satisfying
the following four conditions, known as the Moore-Penrose conditions:

(a) AA+A = A, (b) (AA+)H = AA+,

(c) A+AA+ = A+, (d) (A+A)H = A+A.
(3.11)

The following theorem summarizes the main algebraic properties of the pseudo-inverse:

Theorem 3.5 (algebraic properties of the pseudo-inverse) Let A∈Km×n be any matrix.
(a) The pseudo-inverse of the pseudo-inverse is the original matrix: (A+)+ = A.
(b) There is a unique matrix A+ ∈ Kn×m, called the Moore-Penrose pseudo-inverse of A, which

satisfies all four requirements in (3.11).
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(c) When A is invertible, we have A+ = A−1 (as expected!)
(d) When A has full column rank (implying m≥n and AHA invertible), we have A+ = (AHA)−1AH.
(e) When A has full row rank (implying m≤n and AAH invertible), we have A+ = AH(AAH)−1.

The following remarks emphasize other useful facts on the pseudo-inverse:

• An explicit formula for A+ is available from the reduced singular value decomposition (3.7) of A:

A+ = VrS
−1
r UH

r

• The general solution (3.9) of the least-squares problem (3.4) is given in terms of A+ by

x = A+b+ (I −A+A)w, w ∈ Kn,

where w ∈ Kn is arbitrary. In particular, setting w = 0 in the above formula yields the minimum-
norm least-squares solution x = A+b. Notice also that if A is square invertible (so that A+ = A−1,
the above formula becomes x = A−1b, which emphasizes further the fact that A+ generalizes the
notion of matrix inverse.

• The pseudo-inverse A+ does not depend continuously on A. For instance, let A (with rank r)
and a perturbed version Aε (with rank r+1) be given in terms of their respective reduced SVDs
as

Aε = UrSrV
H

r , Aε = UrSrV
H

r + εur+1v
H

r+1,

where ε> 0 is small. Then, we have

A+
ε = A+ +

1

ε
vr+1u

H

r+1 and
∥A+

ε −A+∥
∥A+∥ =

σr

ε
≫ 1

• The Matlab operator pinv computes the pseudo-inverse A+ of an arbitrary matrix A.

3.6 CONDITION NUMBER OF A MATRIX. Extending the analysis of Sec. 1.7 to least-squares prob-
lems involving arbitrary matrices A and recalling Theorem 3.4, the condition number κ2(A) can be
expressed in terms of either its pseudo-inverse or its SVD:

Theorem 3.6 (2-norm condition number of general matrices) Let A ∈ Km×n be any matrix, and let r
be the rank of A. The 2-norm condition number κ2(A) is given by

κ2(A) = ∥A∥∥A+∥ = σ1/σr

3.7 THE BACKSLASH OPERATOR. Programming languages like Matlab or Julia feature a back-
slash operator for solving linear systems. Its use is deceptively simple: we just type something like

x = A\b; (in Matlab)

to obtain a solution for Ax = b. However, this is a quite complex operator, which triggers various
algorithms depending on the detected properties of A and always yields a solution (even when none,
or many, exist!). So it is important to be aware of what the backslash operator does, and what is the
meaning of the returned solution. It turns out that all of the foregoing methods (LU factorization,
Cholesky factorization, QR factorization) are involved, see Fig. 3.2.
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Is A square? Is A triangular?Use QR solver
Use triangu-
lar solver

Is A permuted triangular?
Use permuted

triangular solver

Is A Hermitian?Is A Hessenberg?
Use Hessen-
berg solver

Is diag(A) all > 0 or all < 0?Use LU solver Use LDLT solver

Does Cholesky succeed?
Use Cholesky

solver

yes yes

yes

no

no

no

noyes

yesno

no

yes

yes
no

Figure 3.2: Flowchart of the backslash operator “\” of Matlab
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CHAPTER 4 ITERATIVE SOLVERS

4.1 MOTIVATION. Classical direct solution methods such as those described in Chapters 2 and 3 are
designed with general (dense) matrices in mind. We saw that they need O(n3) arithmetic operations
unless applied to matrices with some special structure that can be taken advantage of (such as band
matrices). Direct solution methods also need prior storage of the whole matrix (or half of it in case
of symmetry). This makes them ill-suited for many applications, due to any of the following reasons:

• Applications often feature linear systems Ax = b whose matrix is very large.

• If large and dense, A cannot be held in memory and the O(n3) computational work is excessive.

• On the other hand, large and sparse matrices are frequently encountered (notably from problems
resulting from ODE or PDE discretization by e.g. finite elements or finite differences). In this
case, factorization methods fill initially-zero entries with non-zero values, while the factorization
involves many unnecessary arithmetic operations (multiplications involving zero entries).

• Other situations produce matrices that are dense but have sufficiently accurate low-rank approx-
imations. This is for instance the case in the fast-multipole or hierarchical-matrix treatments
of large boundary element models, see e.g. [2]. Other situations involve dense ill-conditioned
matrices whose numerical rank is much lower than their size, see Chap. 6.

The above (and other) considerations led to the development of alternative solution methods that are
iterative. In very general terms, iterative solution methods define approximating sequences {x0, x1, x2, . . .}
that converge to the solution x of Ax = b but (in general) reach x only in the limit:

x = lim
k→∞

xk.

The solution algorithm then consists in iterating a procedure that defines the next solution iterate
xk+1 from the current iterate xk and the problem data A, b. As a matter of semantics, the distinction
between direct and iterative characters of solution algorithms is as follows:

• Direct methods yield the exact result within finitely many operations (under ideal conditions of
exact arithmetic without roundoff errors). Factorization-based methods (LU, Cholesky, QR. . . )
fall within this category. Factorization algorithms may repeat a certain basic step (e.g. column-
wise elimination), but at most finitely many times.

• Iterative methods yield the exact result only as the limiting value of an approximating sequence,
so that solving a problem exactly entails in general an infinite amount of computational work.

In practice, and for a lot of reasons, one is not after the exact solution x (which is anyway out of
practical reach due to finite-precision arithmetic) and will be happy to stop at the K-th iteration that
yields a “close enough” approximation xK . Ideally, we would like to achieve

∥xK − x∥/∥x∥ ≤ ε

for some (relative) accuracy tolerance ε, but of course we do not know x beforehand, making such a
rule impractical. Instead, we may seek xK such that the linear system is satisfied “well enough”:

∥b−AxK∥/∥b∥ ≤ ε

Moreover, many iterative algorithms work on the assumption that A is not available (due to being
too large for storage, too expensive to set up, or both), instead exploiting the ability to evaluate

39
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matrix-vector products xk 7→ Axk for given xk without A being stored1. This dramatically expands
the applicability of iterative solvers by allowing them to function with O(n) storage (instead of O(n2)
for usual direct solvers).

Here we will present three kinds of iterative solution methods for linear systems. Classical methods
based on matrix splitting are briefly described first (Sec. 4.2). We then focus on two archetypal, and
essential, iterative solvers based on matrix-vector products, namely the conjugate gradient method for
SPD linear systems (Sec. 4.3) and the generalized minimum residuals (GMRES) method for general
square systems (Sec. 4.5). The latter methods, and many other related methods that we do not discuss
here, are rooted in the concept of Krylov spaces, introduced in Sec. 4.4, from which in particular
important insight is gained into the conjugate gradient method (revisited in this light in Sec. 4.6).

4.2 CLASSICAL SPLITTING (FIXED-POINT) METHODS. Early iterative solution methods, described
in classical monographs such as [37, 38], are based on using additive splittings of the governing matrix
A. For example, write A = A1−A2 where A1 is chosen so as to be “easily invertible” (and of course
A2 = A1−A), and define iterations by

A1xk+1 = b+A2xk, k=0, 1, 2, . . . (x0: user-chosen initial guess). (4.1)

If the above iteration do converge to a limit x (which is not guaranteed at all in general), then the
limit satisfies A1x = b+A2x, i.e. Ax = b. Since A1 must be invertible for (4.1) to make any practical
sense, we can rewrite (4.1) as

xk+1 = A−1
1

(
b+A2xk

)
= A−1

1

(
b+A2A

−1
1 (b+A2xk−1)

)
. . . = A−1

1

{ k∑
i=0

(A2A
−1
1 )ib

}
and the limit as k → ∞ of xk+1 exists provided the bracketed sums are partial sums of a convergent
series. On using the triangle inequality and the properties of matrix norms, we have∥∥∥ k∑

i=0

(A2A
−1
1 )ib

∥∥∥ ≤
{ k∑

i=0

∥A2A
−1
1 ∥i

}
∥b∥,

so that a sufficient condition for convergence of the partial sums is ∥A2A
−1
1 ∥ < 1. In fact:

Theorem 4.1 Iterations (4.1) converge for any initial guess x0 if and only if ρ(A2A
−1
1 ) < 1, where

ρ(X) is the spectral radius of a matrix X (equal to the largest modulus of eigenvalues of X).

Iterations (4.1) can, alternatively, be seen as fixed-point iterations

xk+1 = F (xk), F (x) := A−1
1

(
b+A2x

)
(4.2)

whose limit is a fixed point (if such exists) of x 7→ F (x). In this light, the condition ∥A2A
−1
1 ∥ < 1

guarantees that the Kn → Kn mapping z 7→ F (z) is a contraction, thereby ensuring (i) existence and
uniqueness of the fixed point and (ii) convergence of the iterations (4.2) to the fixed point x of F .

Several well-known iterative methods follow the above general idea. To present then concisely and
with unified notation, we begin by splitting A according to

A = D − L− U

with D, −L and −U the diagonal, strict lower triangular, and strict upper triangular parts of A
respectively2. Then, various possibilities for splittings of the form (4.1) are defined in terms of D,L,U :

• Jacobi iterations: They are produced by iterations (4.1) with A1 = D, A2 = L+U .

• Gauss-Seidel iterations: They are produced by iterations (4.1) with A1 = D − L, A2 = U .

1For example, in a finite element mechanical analysis where nodal displacements V ∈ Rn satisfy the SPD system
KV = F with the stiffness matrix K ∈ Rn×n a SPD band matrix, this means that the finite element assembly procedure
is used at each iteration to evaluate directly KVk (or the residual F −KVk) for a given solution candidate Vk instead
of assembling K.

2So the parts L,U are not the factors generated by the LU factorization! The somewhat conflicting notation being
standard in either context, we retain it here despite this shortcoming.
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• Successive over-relaxation (SOR) iterations: They are produced by iterations (4.1) with A1 =
D − ηL, A2 = ηU + (η−1)D for some η ∈R, η ̸=0, and so take the form[

D − ηL
]
xk+1 =

[
ηU + (1−η)D

]
xk + ηb (x0: user-chosen initial guess).

In particular, they contain the Gauss-Seidel iterations as a special case (for η = 1). The basic
idea is to define an iteration method that depends on a tunable parameter (here η, called the
relaxation parameter), whose choice may either ensure convergence or enhance convergence rates.
Still, SOR iterations do not converge for any matrix A, even with the best choice for η.

Some important properties of splitting-based iterations are summarized in the next theorem:

Theorem 4.2 (properties of Jacobi, Gauss-Seidel and SOR iterations)
(a) If A is diagonally dominant (i.e. |aii| >

∑
j ̸=i |aij | for each 1≤ i≤n), Jacobi iterations converge

for any initial guess x0.
(b) If A is real SPD, Gauss-Seidel iterations converge for any initial guess x0.
(c) A necessary condition for the convergence of SOR iterations is 0< η < 2 (if not, there exists an

initial guess x0 for which SOR iterations diverge); see Exercise E22-3 for a proof.
(d) If A is real SPD, SOR iterations converge for any η such that 0<η< 2 and any initial guess x0.

The convergence results (b) and (d) are a consequence of the Householder-John theorem: if both
A and A−B−BT are real SPD matrices, then (A−B)−1B has spectral radius less than one.

Outlook. The splitting-based fixed-point methods are very useful for certain classes of problems to
which they fit well, in which case a proof of convergence is often available. However, their convergence
is not guaranteed for general matrices A, and some of them rely on solving triangular systems, so
are not well suited to large dense systems for that reason. By contrast, we will now consider other
methods (a) whose convergence is guaranteed and (b) which do not rely on O(n2) storage requirement.

Exercise 4.1 Construct simple examples (e.g. using 2× 2 matrices) of systems for which Jacobi,
Gauss-Seidel or SOR methods converge, and other examples for which they do not converge.

4.3 CONJUGATE GRADIENT METHOD. We have seen in Chapter 3 that linear systems of equations
can be solved in the least-squares sense (unique solvability of Ax = b corresponding to unique solvabil-
ity of the least-squares problem together with a zero minimum value of the residual). More generally,
solving linear systems can in many situations be addressed in relation to optimization problems [39].

4.3.1 SPD systems and quadratic minimization problems. In this section, we consider the very im-
portant case of systems governed by real SPD matrices (which are in particular uniquely solvable by
LDLT factorization). Let A∈Rn×n be SPD and b ∈ Rn. The generic system

Ax = b

can in particular be considered as expressing the stationarity of a quadratic cost functional J : Rn → R:

J(x) := 1
2x

TAx− xTb+ c, ∇J(x) = 0 ⇔ Ax = b (4.3)

(where the value of c∈R plays no important role). Since A is SPD (by assumption), J(x) is strictly
convex and has an unique minimizer x⋆, at which ∇J vanishes:

x⋆ := arg min
x∈Rn

J(x), verifying ∇J(x⋆) = 0, i.e. Ax⋆ = b

Being SPD, A has n real positive eigenvalues λ1 ≥ λ2 . . . ≥ λn > 0, and its condition mumber is
κ2(A) = λ1/λn. Moreover, for the same reason, A allows to define the energy norm

∥x∥2A := xTAx, λn∥x∥2 ≤ ∥x∥A ≤ λ1∥x∥2 (4.4)

which is equivalent to the Euclidean vector norm (as shown by the above double inequality). The
norm ∥·∥A is called the energy norm because A is often associated with the discretization of an energy,
such as the strain energy for deformable elastic solids.
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Gradient-based (unconstrained) minimization algorithms usually proceed as follows:

• Initialization: x = x0

• Iterations k = 0, 1, 2, . . . until convergence:

(i) Choose a descent direction pk ∈ Rn (such that pT

k∇J(xk)< 0);

(ii) Perform one-dimensional minimization of the objective function along the descent direction
(line-search step), in closed form for the quadratic function J :

αk+1 = arg min
α≥0

{
j(t) := J(xk+αpk)

}
=

pT

krk
pT

kApk
rk := b−Axk: current residual (4.5)

(iii) Update the unknown:
xk+1 := xk + αk+1pk (4.6)

• Convergence test based e.g. on relative residual : have we reached ∥b − Ax∥/∥b∥ ≤ ε for some
preset small tolerance ε?

A crucial ingredient is therefore the method which defines the descent direction pk for each iteration.

4.3.2 Steepest descent method and its deficiencies. A very natural idea is to set

pk := −∇J(xk) = b−Axk (4.7)

at each iteration, since this gives the steepest, i.e. initially-fastest, descent direction starting from the
current iterate xk. Notice in passing that the steepest-descent direction coincides with the residual

rk := b−Axk, (4.8)

evaluated at the current iterate, of the linear system to be solved. In practice, and somewhat counter-
intuitively, using steepest-descent directions turns out to be often inefficient, see e.g. the detailed
analysis in [32] where in particular it is shown that

ek ≤
( κ2(A)− 1

κ2(A) + 1

)k

e0, with ek := ∥xk−x⋆∥A, (4.9)

the successive solution errors ek being measured in terms of the energy norm (4.4). This estimate
shows that the convergence becomes very slow for matrices with even moderately large condition
numbers. For example, if κ2(A) = 100, we have ek ≤ (99/101)ke0 and converging within a (rather
undemanding) relative tolerance of ε=10−3 may take hundreds of iterations even for a 2×2 matrix.

Example. Consider the SPD system (used as illustrative example in [32])

Ax = b with A =

[
3 2
2 6

]
, b =

[
−2
8

]
, (4.10)

whose matrix A has eigenvalues λ1 =7, λ2 =2 and (hence) condition number κ2(A) = 7/2 (note that
this matrix cannot be considered ill-conditioned). The solution of (4.10) is x⋆ = {2, −2}T. Starting
from the initial guess x0 = 0, the steepest-descent method takes 19 (resp. 43) iterations to converge
within a 10−4 (resp. 10−10) relative residual ∥b−Ax∥/∥b∥, see Fig. 4.1. The rate of convergence per
iteration predicted by (4.9) is 5/9, implying an expectation of about 16 (resp. 39) iterations to reduce
the solution error by a factor of 10−4 (resp. 10−10); this is consistent with the actual iteration count.

4.3.3 Conjugate gradient algorithm: heuristic idea and derivation. To remedy the above deficiencies,
the conjugate gradient (CG) algorithm is based on a different method for the generation of successive
descent directions. Recall that the matrix A, being SPD, is associated to the energy norm ∥ · ∥A,
see (4.4). The basic heuristic idea behind the conjugate gradient method is to define each new descent
direction pk so that it is conjugate to all previous directions, i.e.(

pj , pk
)
A
= 0 for all j < k, (4.11)
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Figure 4.1: Steepest-descent iterates for example (4.10), superimposed on contour lines of the associated
quadratic function J given by (4.3) with c=0.

where (·, ·)A is the scalar product associated with the energy norm (4.4), i.e.

(y, x)A := yTAx

In other words, we want pk to be A-orthogonal to the whole subspace span(p0, . . . , pk−1) explored
by all previous iterations combined. Then, as before, the new solution iterate is found by solving
(in closed form) the one-dimensional minimization along the search direction (line-search step). The
modification of the generic unconstrained minimization algorithm is arrived at by seeking a descent
direction pk of the form

pk = rk + βkpk−1 + βk−1pk−2 + . . .+ β1p0 (4.12)

with the current residual rk = −∇J(xk) as given by (4.8). Equation (4.12) defines pk as a modification
of the steepest-descent direction rk, and the coefficients βj are to be determined by enforcing the
conjugacy criterion (4.11). Implementing this idea and reasoning by induction on k (see details in
Section 4.8), it turns out that the only nonzero coefficient βj in (4.12) is βk (so β1 = . . . = βk−1 = 0):
the current descent direction is a linear combination of the gradient of J at the current iterate and
the descent direction at the previous iteration. The updating formulas for the solution, the descent
direction and the residual are found from the proof given in Section 4.8 to be

xk+1 = xk + αk+1pk, pk = rk + βkpk−1, rk+1 = rk − αkApk

with

αk+1 =
rT

k−1rk−1

(pk−1, pk−1)A
, βk =

rT

krk
rT

k−1rk−1
.

The outcome of this heuristic is the (remarkably simple) conjugate gradient algorithm (Algorithm 4.1).
The value of the optimal step αk is determined from the basic and usual requirement that α 7→
J
(
xk−1+αpk−1

)
be minimal. However, the iterates xk found by the CG algorithm achieve a much

stronger result, which is not matched by steepest-descent method:

Theorem 4.3 (optimality property of CG iterates) The current residual rk generated by the CG method
is orthogonal to all search directions p0, . . . , pk−1 generated so far by the algorithm:

pT

j rk = 0, 0≤ j < k. (4.13)

Consequently:

• xk minimizes J(x) over the k-th dimensional subspace span
(
p0, . . . , pk−1

)
generated by all search

directions p0, . . . , pk−1 so far, not just over the current search direction pk−1.

• The CG method must converge in at most n iterations (since at that point span
(
p0, . . . , pn−1

)
=Rn)

Exercise 4.2 (proof of Theorem 4.13) Prove the orthogonality property (4.13) (use conjugacy require-
ment (4.11) and relations implemented by Algorithm 4.1). Then, show (4.13) implies that ∇J(xk)
has a zero projection on span

(
p0, . . . , pk−1

)
.
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Algorithm 4.1 Conjugate gradient algorithm for SPD problems (explanatory form)

1: A ∈ Rn×n SPD and b ∈ Rn (problem data)
2: x0 = 0, r0 = b, p0 = r0 (initialization)
3: for k = 1, 2, . . . do
4: qk−1 = Apk−1 (matrix-vector product)

5: αk =
rTk−1rk−1

pT
k−1qk−1

(optimal step)

6: xk = xk−1 + αkpk−1 (solution update)
7: rk = rk−1 − αkqk−1 (residual update)

8: βk =
rTk rk

rTk−1rk−1
(conjugacy coefficient)

9: pk = rk + βkpk−1 (descent direction for next iteration)
10: Stop if convergence, set x = xk

11: end for

• That the CG method must converge after at most n iterations, while reassuring (the steepest
descent does not have this property and may in practice require much more iterations), is insuf-
ficient in practical applications involving large systems. Then, the practical goal is to converge
to an acceptable solution approximation within much fewer than n iterations. This is achievable
by a combination of factors:

(a) Theorem 4.3 states a theoretical result about reaching exactly the solution x = x⋆ of Ax = b.
In practice, we set x⋆ ≈ xK , where xK is the first iterate that is “close enough” according to
some tolerance, for example such that ∥b−AxK∥/∥b∥ ≤ ε with ε a preset small tolerance.

(b) The original system Ax = b may be replaced by a “better” (equivalent) version obtained
by preconditioning. See Section 4.7, which has a faster rate of convergence, i.e. needs fewer
iterations to reach an iterate within the desired tolerance.

Other important remarks can be made regarding the conjugate gradient method:

• Each iteration requires one matrix-vector product. For large SPD systems, this is the main com-
putational task, as all other operations act only on vectors (linear combinations, scalar products).

• Each iteration k uses the matrix-vector product Apk−1 twice (see lines 5, 7), which is why it is
computed (once per iteration) and stored in a vector qk rather than evaluated “on the fly”.

• We follow the common usage of emphasizing the residual r := b − Ax of the linear system
rather than the gradient ∇J(x) of the associated quadratic functional, keeping in mind that
r(x) = −∇J(x). In particular, r(x) gives the direction of steepest descent starting at x.

• Vectors and coefficients, such as pk, rk, αk . . ., carry a subscript k or k−1 mostly for explanatory
purposes, as there is no need to store (for example) the complete sequence of search directions
p0, p1, . . . and such vectors are in practice rewritten at each iteration. The economical (hence
practical) form of the CG algorithm 4.1 is given next in Algorithm 4.2, wherein the equal sign
“=” indicates that the right-hand side is evaluated and the result stored in the left-hand side3

(either defining it or rewriting its content if already defined).

• There is no loss of generality in setting x0 = 0 for the initial guess in Algorithm 4.1. Using a
different initial guess just requires to either (i) modify the initialization phase in Algorithm 4.1,
or (ii) make the requisite translation of the variable x in the definition (4.3) of J(x).

We will discuss the convergence and other important properties of the CG algorithm later (see Sec. 4.6).
Before that, we introduce additional notions, in particular the concept of Krylov subspaces, which
pertains to a wider class of iterative solution algorithms to which the CG method actually belongs.

4.4 KRYLOV SPACES. We just presented a heuristic derivation of the CG algorithm, an iterative
algorithm that is of major importance and widespread usefulness. At this point, it is time to introduce

3This common coding convention is used by Matlab, for instance, and is often used in explanatory pseudo-code.
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Algorithm 4.2 Conjugate gradient algorithm for SPD problems (practical form)

A ∈ Rn×n SPD and b ∈ Rn (problem data)
x = 0, r = b, p = r (initialization)
for k = 1, 2, . . . do
q = Ap (matrix-vector product)
γ = pTq (auxiliary coefficient)
α = (rTr)/γ (optimal step)
x = x+ αp (solution update)
r = r − αq (residual update)
β = (rTr)/αγ (conjugacy coefficient)
p = r + βp (descent direction for next iteration)
Stop if convergence, return solution x

end for

a concept that plays a primary role in the formulation and analysis of iterative solution methods for
linear systems, namely that of Krylov spaces. We will then (in Sec. 4.5) describe GMRES, the other
major iterative solution algorithm presented in this course, whose definition is based on Krylov spaces,
before revisiting (in Sec. 4.6) the CG method and analyse it as another Krylov-based algorithm. Before
all that, we begin by defining and motivating in simple terms the notion of Krylov spaces.

Going back to the splitting idea used in early iterative methods, we may consider the splitting
A = I + (A−I) and formulate iterations for solving Ax = b on the basis of

xk+1 + (A−I)xk = b =⇒ xk+1 = b+ xk −Axk, x1 = b. (4.14)

Actual convergence of the above scheme requires ρ(A−I)< 1. This condition on A is too restrictive
for recommending the above iterations for general use, but here we only want to make the following
observation: solution iterates generated by (4.14) are x1 = b, x2 = 2b − Ab, x3 = 3b − 3Ab + A2b . . .
and a simple induction indicates that

xk ∈ span
(
b, Ab,A2b, . . . , Ak−1b

)
, k = 1, 2, . . .

Definition 4.1 (Krylov subspaces) Let A ∈Kn×n be a square matrix, and let b ∈Kn. For any k ≤ n,
the Krylov subspace Kk = Kk(A, b) associated with A,B, whose dimension is k, is defined as

Kk(A, b) := span
(
b, Ab,A2b, . . . , Ak−1b

)
.

Importantly, Krylov subspaces are nested: we always have k < ℓ =⇒ Kk ⊂ Kℓ.

The notion of Krylov subspace emphasizes two important aspects of many iterative solution meth-
ods: (i) Krylov basis vectors are generated by computing matrix-vector products involving A (since
e.g. Akb = A(Ak−1b)), and (ii) vectors belonging to Krylov subspaces are representable by means of
polynomials evaluated on A. Indeed, introducing the set Pk of all polynomials p(X) of degree k such
that p(0) = 1 (the zeroth-degree coefficient is set to 1 while all others are free, which makes Pk an
affine space of dimension k), we have

x ∈ Kk(A, b) ⇔ x = p(A)b for some polynomial p ∈ Pk−1.

The following well-known definition is important in the present context as it emphasizes additional
links between matrices and polynomials:

Definition 4.2 (characteristic polynomial, minimal polynomial) The characteristic polynomial pA of a
square matrix A∈Kn×n is defined by pA(λ) = det(A− λI). The degree of pA is n.

• For any matrix A∈Kn×n, we have PA(A) = 0 (this is the Cayley-Hamilton theorem).

• The polynomial qA of smallest degree such that qA(A) = 0 is called the minimial polynomial of
A; it divides pA.
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As the minimal polynomial of A can be of degree < n, sequences of Krylov subspaces may stagnate:

Definition 4.3 (grade of Krylov subspaces) It may happen that Kℓ(A, b) = Kℓ+1(A, b) for some ℓ < n.
In such a case, the sequence of Krylov subspaces becomes stationary: we have Kℓ(A, b) = Kℓ+1(A, b) =
Kℓ+2(A, b) = . . . = Kn(A, b). The smallest value of ℓ such that Kℓ(A, b) = Kℓ+1(A, b) (i.e. the degree
of the minimal polynomial of b with respect to A) is called the grade of b with respect to A. The grade
ℓ is at most equal to the degree of qA (see Definition 4.2).

With definition 4.1, we see that successive iterates produced by (4.14) are such that xk ∈Kk(A, b).
As it turns out, many of the major iterative solution methods for linear systems, including the CG
method (already discussed in Sec. 4.3 and to be revisited in this light in Sec. 4.6) and GMRES (to be
presented next) are rooted in the concept of Krylov subspaces.

4.5 GMRES. The general approach of solving a linear system Ax = b via the minimization of its
residual b − Ax translates, for general square systems whose matrix A ∈ Kn×n is only required to
be invertible (i.e. no symmetry or sign requirement), into the celebrated GMRES algorithm [31, 29].
GMRES stands for Generalized Minimal RESiduals.

4.5.1 Basic idea. The basic idea is simple: the iterate xk is sought as the element of Kk(A, b) that
minimizes the norm of the residual:

xk = arg min
x∈Kk(A,b)

∥b−Ax∥22 (4.15)

A naive (and insufficiently efficient) implementation of this idea would go as follows. The formula-
tion (4.15) implies that xk is sought as

xk = α0b+ α1Ab+ . . .+ αk−1A
k−1b,

(notice the polynomial-in-A form of xk) with the unknown coefficients α0, . . . , αk−1 to be determined
by solving the least-squares problem in (4.15). This can be more compactly formulated by introducing
the Krylov matrix Kk :=

[
b, Ab, . . . Ak−1b

]
and observing that the least-squares problem (4.15) can

be reformulated directly in terms of yk := {α0, . . . , αk−1}H as

yk = arg min
y∈Kk

∥b−AKkyk∥22 (4.16)

where the matrix AKk has size n×k, while A is square n×n. Equations (4.15) and (4.16) define a
procedure that in principle is valid but presents significant practical isues:

• Any sequence of Krylov vectors b, Ab,A2b . . . converges to a non-normalized eigenvector associated
with the largest (in modulus) eigenvalue of A (see Sec. 5.2), making them increasingly parallel as
the dimension of Kk(A, b) increases. This makes GMRES iterations potentially ill-conditioned.

• Problem (4.16) is conceivably solvable by classical least-squares methods using e.g. the QR fac-
torization or the SVD, see Sec. 3.3, but this would be rather inefficient as (for example) computing
the requisite QR factorization at iteration k would require O(nk2) floating-point multiplications.

4.5.2 The GMRES algorithm. We now explain how to modify the basic approach (4.15) and (4.16) so
as to address the above remarks and obtain a stable and efficient version of GMRES. The increasingly-
collinear nature of the Krylov vectors is remedied by successive orthogonalization (i.e. computing a
sequence of orthonormal vectors q1, q2, . . . such that Kk(A, b) = span(q1, . . . , qk) for each k), while the
computational cost of solving (4.16) is reduced by a suitable decomposition of A that recasts (4.16)
to a (k+1)×k least squares problem in recursive fashion.

Arnoldi iteration. As it happens, both orthogonalization and format reduction are very neatly solved
by a recursive process, called Arnoldi iteration, that is quite simple to explain and implement. Arnoldi
iterations seek a sequence of orthonormal n-vectors q1, q2, . . . ∈ Kn such that for each k = 1, 2, . . . we
have

AQk = Qk+1Hk, that is, A[q1 . . . qk] = [q1 . . . qk, qk+1]Hk, (4.17)
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where Hk ∈ K(k+1)×k is of the form

Hk =


h11 . . . h1k

h21 h22

. . .
. . .

...
hk,k−1 hkk

0 hk+1,k


with entries hij , i−j ≥ 1 to be determined together with the qj (all entries below the first sub-diagonal
are zeros); such a matrix Hk is known as a upper Hessenberg matrix. The vectors qi and entries hij

are found recursively by successively enforcing equality (4.17) for k = 1, 2, . . ., as follows:

• Initialization: choose an arbitrary vector b ∈ Kn, set q1 = b/∥b∥.
• First iteration: seek q2 ∈Kn and h11, h21 satisfying (4.17) for k=1, i.e.:

Aq1 = h11q1 + h21q2, with (a) qH

1 q2 = 0, (b) ∥q2∥ = 1

Condition (a) gives h11 = qH
1Aq1, then condition (b) yields h21 = ∥Aq1 − h11q1∥. The resulting

vector q2 = (Aq1−h11q1))/h21 satisfies (a) and (b).

• Running (k-th) iteration: proceed similarly, seeking qk+1 and h1k, . . . , h(k+1),k such that the k-th
columns in both sides of (4.17) are equal (equality being already true for the leading k−1 columns
as a result of the previous iterations):

Aqk = h1kq1+h2kq2+ . . . hk+1,kqk+1, with (a) qH

j qk+1 = 0 (1≤ j ≤ k), (b) ∥qk+1∥ = 1

Conditions (a) yield hjk = qH
j Aqk, then (b) gives hk+1,k = ∥Aqk−h1kq1−. . . hkkqk∥. The resulting

vector qk+1 =
(
Aqk−h1kq1− . . . hkkqk

)
/hk+1,k satisfies conditions (a), (b).

This process has many applications in numerical linear algebra, and is in particular involved in algo-
rithms for eigenvalue problems. To emphasize the importance of Arnoldi iterations, they are shown
in basic pseudocode form:

Algorithm 4.3 Arnoldi iterations

1: A ∈ Kn×n and b ∈ Kn (problem data)
2: q1 = b/∥b∥ (initialization)
3: for k = 1, 2, . . . do
4: qk+1 = Aqk (new Krylov vector: initialize qk+1)
5: for j = 1 to k do
6: hjk = qH

j qk+1 (entry in k-th column of Hk)
7: qk+1 = qk+1 − hjkqj (update (not yet normalized) vector qk+1)
8: end for
9: hk+1,k = ∥qk+1∥ (last entry in k-th column of Hk)

10: qk+1 = qk+1/∥hk+1,k∥ (normalize qk+1)
11: end for

Exercise 4.3 Prove by induction that Arnoldi iterations produce vectors q1, q2, . . . satisfying span(q1, . . . , qk) =
Kk(A, b) for each k = 1, 2, . . ..

Application of Arnoldi iteration to GMRES. It is easy to show that the sequence q1, q2 . . . produced
by the above Arnoldi iterations are such that span(q1, . . . , qk) = Kk(A, b) for each k. Therefore, going
back to the defining minimization problem (4.15), we can seek xk ∈ Kk(A, b) by expanding xk on the
orthonormal vectors qj (instead of the Krylov vectors Aj−1b), setting xk = Qkyk. By virtue of (4.17),
the minimization (4.15) becomes

yk = arg min
y∈Kk

∥b−Qk+1Hky∥22 = arg min
y∈Kk

∥QH

k+1b−Hky∥22
= arg min

y∈Kk

∥βe1 −Hky∥22 (β = ∥b∥) (4.18)
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instead of (4.16). The matrix Hk in the above least-squares problem is of size (k + 1)× k. The
last equality stems from the fact that b = ∥b∥q1 = βq1, see line 2 of Algorithm 4.3. Moreover, the
transition from step k−1 to step k of GMRES only requires one new vector qk+1 and augmentation
of the existing Hessenberg matrix Hk by one new column with entries h1k, . . . hk+1,k; in other words,
each GMRES iteration requires one Arnoldi iteration. A simple version of the GMRES algorithm is
shown in pseudocode form in Algorithm 4.4.

Algorithm 4.4 GMRES algorithm with Arnoldi iterations

1: A ∈ Kn×n and b ∈ Kn (problem data)
2: x = 0, β = ∥b∥, q1 = b/β (initialization)
3: for k = 1, 2, . . . do
4: Step k of Arnoldi iteration (see Algorithm 4.3)
5: Find y ∈Kk, ∥βe1 −Hky∥22 → min (least squares problem (4.18))
6: x = Qky (current solution)
7: Stop if convergence, return x
8: end for

Restarted GMRES. In theory, we could let GMRES run for up to n iterations (we will see shortly that
GMRES must in theory converge within at most n iterations). However, the least-squares problems
become increasingly large and costly as k increases. A frequent approach thus consists in using
restarted GMRES, where GMRES runs for a preset number p ≪ n iterations (unless convergence is
reached earlier) and is stopped before the convergence criterion is reached. The solution xp achieved
at this stage is then used as initial guess for a new sequence k = 1, 2, . . . of GMRES iterations. This
approach is often denoted gmres(p) for short. The restart parameter p is often set to p = 50–100.

Complete Arnoldi iterations. Normally GMRES does not require to run Arnoldi iterations until
their completion (i.e. a total of n Arnoldi steps), since (i) satisfactory convergence may occur much
earlier, or (ii) if not, GMRES is restarted after m ≪ n iterations, making the last Arnoldi iteration
unimportant in this context. For completeness, we however observe that the last Arnoldi iteration
(k = n) cannot have the same form as the running iteration for 2 ≤ k ≤ n− 1 (as defined e.g. in
lines 4–10 of Algorithm 4.3), since it is not possible to define a new vector qn+1 that is orthogonal to
q1, . . . , qn. Instead, the last Arnoldi iteration simply consists in writing

Aqn = h1nq1+h2kq2+ . . . hnnqn, =⇒ hin = qH

i Aqn (1≤ i≤n).

The last row of Hn (as a (n+1)×n matrix) is omitted, and Hn ∈ Kn×n is a square upper Hessenberg
matrix, i.e. has the form

H =


h11 . . . h1n

h21 h22

. . .
. . .

...
0 hn,n−1 hnn


Theorem 4.4 (complete Arnoldi iteration) Let Qn and Hn be the matrices reached at the end of the n
steps entailed by running the Arnoldi iteration process to completion. The decomposition

AQ = QH, i.e. A = QHHQ (Q ∈ Kn×n unitary, H ∈ Kn×n square upper Hessenberg)

is in fact obtained, where Q :=Qn and H :=Hn.

The matrix Qk generated by k− 1 Arnoldi steps is the orthogonal factor of the reduced QR de-
composition of the Krylov matrix Kk (see (4.16)): the matrix Rk := QH

kKk ∈ Kn×k, defined so that
Kk = QkRk, is upper triangular.
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4.5.3 Polynomial approximation problem. Convergence properties of GMRES. The following obser-
vation plays a key role for analyzing the properties of the GMRES algorithm: any element xk ∈
Kk(A, b) is of the form

x = q(A)b

for some polynomial q(X) of degree k− 1 (the k coefficients of q being the coordinates of x in the
Krylov basis b, Ab, . . . , Ak−1b). Then, for the residual rk := b−Axk, we have

rk = b−Axk = b−Aq(A)b = (1−Aq(A))b.

The polynomial p(A) := 1 − Aq(A) is of degree k and verifies p(0) = 1, and thus belongs to the
affine space Pk introduced in Sec. 4.4. This implies that the defining least-squares minimization
problem (4.15) can be equivalently recast as the following minimization problem over polynomials:

Find pk ∈ Pk, ∥pk(A)b∥22 → minimum
(
i.e. pk = arg min

p∈Pk

∥p(A)b∥22
)

This characterization of the k-th iteration of GMRES implies:

Theorem 4.5 (convergence of GMRES iterates)

• Since pA(A) = 0, the GMRES iterations must converge after at most n iterations.

• If ℓ is the grade of b relative to A (see Def. 4.3), the GMRES iterations converge after ℓ iterations
to a solution with zero residual.

For the minimizing polynomial pk, we have

∥rk∥ = ∥pk(A)b∥ ≤ ∥pk(A)∥∥b∥, (4.19)

for any induced matrix norm ∥ · ∥, so that, for given b, the size of the residual rk at iteration k mainly
depends on ∥pk(A)∥. As one wants ∥rk∥ to be as small as possible, a key factor in the efficiency of
GMRES iterations is: kow small can ∥pk(A)∥2 be for a given matrix A?

If we restrict our attention to matrices A that are diagonalizable (recall that some non-symmetric
matrices A, called defective, are not diagonalizable, see Secs. 3.4 and 7.2), the latter question turns
out to be amenable to a relatively simple analysis. Assume that A = XΛX−1, where X is square
invertible and Λ = diag

(
λ1, . . . , λn

)
holds the eigenvalues of A, as usual conventionally arranged by

decreasing moduli. Then, we have P (A) = Xp(Λ)X−1 and can therefore write:

∥p(A)∥ = ∥Xp(Λ)X−1∥ ≤ ∥X∥∥X−1∥ sup
λ=λ1,...,λn

|p(λ)| = κ(X) sup
λ=λ1,...,λn

|p(λ)|.

from the above and (4.19), we deduce:

∥rk∥
∥b∥ ≤ κ(X) sup

λ=λ1,...,λn

|p(λ)|,

which shows that

• Fast convergence can be achieved if polynomials pk ∈ Pk can be found such that their size on the
eigenvalues of A decreases quickly with the degree k.

Eigenvalue clustering. The above can be achieved when the eigenvalues of A are clustered away
from the origin. For instance, assume that all eigenvalues of A are evenly distributed in the disk
D(z0, r) of radius r centered at z0 ∈ C in the complex plane, with |z0|>r. In this case, pk(λ) can be
approximately minimized over D(z0, r) by setting

pk(z) =
( z0 − z

z0

)k
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which satisfies the normalization constraint p(0) = 1. This gives

sup
z∈D(z0,r)

|pk(z)| =
(
r/|z0|

)k
,

i.e. a residual reduction by a factor r/|z0| < 1 at each iteration (the smaller r/|z0| < 1, the faster the
convergence). By contrast, we see that situations where eigenvalues are clustered around z = 0 in C
can be expected to have unfavorable convergence properties. This suggests the pssibility to transform
the original system Ax = b into another, equivalent, system whose matrix has eigenvalues clustered
away from the origin; this is one possible approach to preconditioning, see Sec. 4.7.

4.6 REVISITING THE CONJUGATE GRADIENT METHOD: KRYLOV-SPACE SETTING, CONVERGENCE.
It turns out that the Krylov-subspace framework is equally relevant fot the conjugate gradient method.
Indeed, from Algorithm 4.1, it is easy to show (by induction on k) that xk ∈ Kk(A, b), which implies
that rk = b−Axk ∈ Kk+1(A, b). Moreover, a simple rearrangemment shows that

J(x) = 1
2x

TAx− xTb+ c = 1
2 (x−A−1b)TA(x−A−1b)− 1

2b
TAb+ c = 1

2∥x−A−1b∥2A + constant,

so that the problems of minimizing J(x) or ∥x−A−1b∥2A are equivalent (their solution x is the same),
the additive constant being irrelevant. Now, since x⋆ := A−1b is the sought solution of Ax = b,
e(x) := x−x⋆ = x−A−1b is the solution error and

∥x−A−1b∥2A = ∥e(x)∥2A.
In other words, the original minimization problem for J(x) is equivalenty to minimizing the solution
error in energy norm. Moreover:

xk ∈ Kk(A, b) ⊂ Kk+1(A,A−1b)) = Kk+1(A, e(0))) =⇒ e(xk) ∈ Kk+1(A, e(0)));

(since e(x0) = e(0) = A−1b) in other words, for each iterate k, there exists a polynomial pk ∈ Pk (of
degree k) such that e(xk) = pk(A)e(0) and the error minimization problem takes the form

min
p∈Pk

∥p(A)e(0)∥2A

Here, using the diagonalization A = QΛQT of A (Q∈Rn×n being orthogonal) and expanding e(0) on
the eigenvector basis as e(0) = ε1q1 + . . . εnqn, we have

∥p(A)e(0)∥2A = e(0)T
(
Qp(Λ)QT

)
QΛQT

(
Qp(Λ)QT

)
e(0) =

n∑
i=1

ε2iλi

[
p(λi)

]2
,

implying
∥p(A)e(0)∥2A

∥e(0)∥2A
≤ λ1 max

λ1,...,λn

[
p(λi)

]2
To estimate the rate of convergence of the CGM, we are thus led to solve the polynomial minimization
problem

min
p∈Pk

{
max

λ1,...,λn

|p(λi)|
}
,

with the additional information that the eigenvalues of A lie in the positive real interval [λn, λ1].
Assuming no other information to be available on the eigenvalue distribution, it is relevant to consider
instead the polynomial minimization problem

min
p∈Pk

{
max

λ∈[λn,λ1]
|p(λ)|

}
,

which happens to have a known solution: the minimizing polynomial is given by

pk(λ) =
1

Tk(γ)
Tk

(
γ − 2λ

λ1−λn

)
, max

λ∈[λ1,λn]
|p(λ)| = 1

Tk(γ)
with γ :=

κ+1

κ−1
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(recalling that κ = κ2(A) = λ1/λn is the spectral condition number of A) where Tk is the Chebyshev
polynomial4 of degree k. In the above result, λ ∈ [λ1, λn] implies that the argument of Tk ranges in
[−1, 1], and it is known that maxt∈[−1,1] |Tk(t)| = 1. Moreover, it is also known that, for any t such

that |t|> 1, we have Tk(t) = (zk+z−k)/2, having set t = (z+z−1)/2. Here, we have γ = (z+z−1)/2
with z = (

√
κ+1)/(

√
κ−1), and hence

Tk(γ) =
1

2

[( √
κ+1√
κ−1

)k

+
( √

κ+1√
κ−1

)−k ]
≥ 1

2

( √
κ+1√
κ−1

)k

.

Theorem 4.6 (convergence rate of the conjugate gradient method) Let the CG iterations (Algorithm 4.1)
be applied to a SPD linear system Ax = b, the SPD matrix A having a spectral condition number κ.
Then, the energy norms of the successive solution errors satisfy

∥e(xk)∥A
∥e(x0)∥A

≤ 2
( √

κ−1√
κ+1

)k

Exercise 4.4 Prove that the k-th iterate xk of the conjugate gradient method verifies rk ∈ Kk+1(A, b).

4.7 PRECONDITIONING. As we have seen, the rate of convergence of iterative solution methods
such as the conjugate gradient or GMRES strongly depends on characteristics of the matrix A such
as the distribution of its eigenvalues. Speeding up the convergence (i.e. reducing the number of
iterations needed to reach a preset tolerance) is essential for efficiently solving large systems. To this
aim, a frequently employed approach consists in preconditioning the linear system. This means that
the original system Ax = b is equivalently reformulated as either

(M1A)x = M1b (left preconditioning),

(AM2)z = b, M2z = x (right preconditioning),

(M1AM2)z = M1b, M2z = x (symmetric preconditioning).

(4.20)

The heuristic idea is to find matrices M1 and/or M2, called preconditioners, that are invertible and
produce equivalent systems with better convergence properties. For the left or right preconditioning,
the theoretically ideal choice is of course M1 = A−1 or M2 = A−1, but this has no practical value
as computing A−1 beforehand would (a) yield directly the solution without any need for iterating,
and (b) at a cost greater than just solving one system5 The practical idea then usually consists in
finding preconditioners that “approximate” the inverse of A while being “easy” (i.e. comparatively
inexpensive) to apply.

The various options for preconditioning are sometimes expressed by introducing preconditioners
in inverse form, e.g.

(M−1
1 A)x = M−1

1 b (left preconditioning),

(AM−1
2 )z = b, M2x = z (right preconditioning).

(4.21)

instead of (4.20). This is of course a matter of convention and meaning in context. In (4.21),
preconditioners M1, M2 are intended as “rough approximations” of A rather than A−1.

Freequently-used ideas for preconditioning linear systems include the following:

• The simplest idea is the diagonal preconditioner (called Jacobi preconditioner), e.g. M1 =
diag(a−1

11 , . . . , a
−1
nn) for the left preconditioner.

• Sometimes the problem naturally suggests block preconditioners, where M1 or M2 is block diag-
onal.

• An important algebraic approach to preconditioning uses incomplete factorizations (e.g. incom-
plete LU or Cholesky factorizations) where the triangular factors are sparse or easy to invert for
some other reason.

4The Chebyshev polynomials Tk are degree-k polynomials whose defining property is that Tk(cos θ) = cos(kθ) for
any θ ∈ [0, 2π], implying that Tk([−1, 1]) = [−1, 1].

5Computing A−1 is equivalent to solving all systems Azk = ek (1≤ k≤n) and then setting A−1 = [z1 z2 . . . zn].
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• Yet another algebraic approach to preconditioning consists in seeking a sparse matrix M such
that (e.g. for left preconditioning) ∥I − MA∥ → min; such M is called a sparse approximate
inverse of A.

• Preconditioners may in some cases be defined by adopting less-precise discretizations for the
same problem (by means of e.g. multigrid methods, truncated Fourier or wavelet expansions) or
otherwise ignoring small-scale components in multiscale models.

• Physical systems being modelled sometimes feature several components, or even many objects
(such as inclusions in complex media or particles carried by fluids), which suggests preconditioners
based on the idea of solving the same problem for one isolated component (this is related to the
idea of block-diagonal preconditioners).

Preconditioning an iterative solution method is to some extent an “art”, as finding an efficient precon-
ditioning method strongly depends on the characteristics of the problem at hand. Sometimes purely
algebraic approaches such as incomplete factorizations or sparse approximate inverses work well. Some
other times the underlying physics strongly suggest a more-approximate way to solve the problem at
a lesser cost, a viewpoint that can also be translated into employing coarser discretizations. For
this reason, it is not possible to state a general preconditioning methodology applicable to all linear
systems (or to wide classes, e.g. all SPD systems), and each application must be considered via its
specific characteristics.

4.7.1 Example: left-preconditioned GMRES algorithm. Let us consider a left-preconditioned system
of the form

M−1Ax = M−1b

where (as discussed before) M “approximates” A and is such that systems My = f are significantly
cheaper to solve than the original system Ax = b. The left-preconditioned GMRES algorithm is a sim-
ple modification of Algorithm 4.4 where each new Krylov vector in the Arnoldi iteration is computed
by solving Mqk+1 = Aqk instead of evaluating qk+1 = Aqk (see Algorithm 4.3). A pseudocode version
of the left-preconditioned GMRES algorithm is shown in Algorithm 4.5, with the Arnoldi iteration
incorporated into it; the one substantial modification with respect to the non-preconditioned version
is the modified evaluation of new Krylov vectors (line 4 of Algorithm 4.5).

Algorithm 4.5 Left-preconditioned GMRES algorithm

1: A ∈ Kn×n and b ∈ Kn (problem data)
2: x = 0, β = ∥b∥, q1 = b/β (initialization)
3: for k = 1, 2, . . . do
4: solve Mqk+1 = Aqk for qk+1 (new Krylov vector: initialize qk+1)
5: for j = 1 to k do
6: hjk = qH

j qk+1 (entry in k-th column of Hk)
7: qk+1 = qk+1 − hjkqj (update (not yet normalized) vector qk+1)
8: end for
9: hk+1,k = ∥qk+1∥ (last entry in k-th column of Hk)

10: qk+1 = qk+1/∥hk+1,k∥ (normalize qk+1)
11: Find y ∈Kk, ∥be1 −Hky∥22 → min (least squares problem (4.18))
12: x = Qky (current solution)
13: Stop if convergence, return x
14: end for

4.7.2 Illustration: preconditioned boundary element method for scattering problems. We illustrate
the effect and usefulness of preconditioning on the large-scale boundary element method (BEM) ap-
plied to wave scattering problems, with an example borrowed from [13], and refer to the brief de-
scription of the BEM given in Sec. 1.2 and the references therein. The geometrical configuration
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Figure 4.2: BEM analysis of sphere with cavity: geometrical configuration. From [13].

Figure 4.3: BEM analysis of sphere with cavity: eigenvalue distribution for the non-preconditioned (left) and
preconditioned (right) formulations. From [13].

Figure 4.4: BEM analysis of sphere with cavity: GMRES iteration count with or without OSRC precondition-
ing, plotted against frequency (left) or discretization density per wavelength (right). From [13].

consists in a spherical shell with an open cavity (a resonator), whose surface is meshed with bound-
ary elements, located in an infinite 3D acoustic medium (see Fig. 4.2). The computational problem
consists in determining the acoustic fields arising when a known incident acoustic wave is perturbed
by the resonator. The open cavity, in particular, makes the acoustic domain trapping (part of the
wave energy being trapped inside the cavity) and this results in slower convergence of iterative solvers
such as GMRES used for solving the linear system Gu = f arising from the BEM discretization of
a boundary integral equation similar to (1.3). A preconditioning method that is specific to BEM
acoustic problems, based on the concept of on-surface radiation condition (OSRC), is proposed and
validated in the cited work [13], to which we refer for any details on the methodology. Figure 4.3
shows how the distribution of the eigenvalues of G in the complex plane is modified by preconditioning;
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notice in particular the clustering effect away from the origin brought by the preconditioning method.
Figure 4.4 demonstrates the dramatic reduction of GMRES iterations brought by preconditioning.

4.8 DERIVATION OF THE CONGUGATE GRADIENT ALGORITHM. Several approaches are available
for deriving the congugate gradient algorithm. Hereafter, we give the derivation corresponding to
the heuristic introduced in Section 4.3.3. We recall, for each iterate, that the step length αk+1 and
updated solution xk+1 are given for any choice of descent direction pk by (4.5) and (4.6) for any
iteration k≥ 0, and observe that consecutive residuals therefore verify

rk+1 = rk − αk+1Apk k = 0, 1, 2, . . . (4.22)

Initial step (k=0). Initializing the algorithm with x0 = 0 and p0 = r0 = b, we find

α1 =
rT
0 p0

pT
0Ap0

=
rT
0 r0

pT
0Ap0

, r1 = r0 − α1Ap0

In particular, using the above value of α1, we find

rT

1 p0 = rT

1 r0 = 0.

Generic step (k > 0). We now reason by induction. Assume that

(a) pj = rj + βjpj−1 (0≤ j ≤ k−1), (b)
(
pi, pj

)
A
= 0 (0≤ j < i≤ k−1)

(c) rT

kpj = rT

krj = 0 (0≤ j ≤ k−1),
(4.23)

(all three sets of conditions being verified for k = 1, allowing to start the induction). The next descent
direction pk is sought of the form (4.12), i.e.

pk = rk + βkpk−1 + βk−1pk−2 + . . .+ β1p0.

To determine the coefficients βj , we enforce the conjugacy assumption (4.11) on the above ansatz,
obtaining (with the help of (4.23b))(

pk, pj
)
A
= 0 =

(
rk, pj

)
A
+ βj

(
pj−1, pj−1

)
A
. (4.24)

Using (4.22) in the form αjApj = rj−1 − rj in (4.24), we obtain

0 = rT

k (rj−1−rj) + αjβj

(
pj−1, pj−1

)
A
. (4.25)

For j < k, we thus find that βj = 0 by virtue of (4.23c). For j = k, we note that

αk =
pT

k−1rk−1

(pk−1, pk−1)A
=

rT

k−1rk−1

(pk−1, pk−1)A
, (4.26)

and (4.25) thus gives

βk =
rT

krk
rT

k−1rk−1

To complete the induction, we need to show that equalities (4.23) remain true with k replaced by
k+1. Using (4.22), we have

rT

k+1pj = rT

kpj − αk+1(pk, pj)A = 0 0≤ j ≤ k−1

by (4.23). Moreover:

rT

k+1pk = rT

kpk − αk+1(pk, pk)A = 0 = rT

kpk − pT

krk = 0.

Similarly, using (4.22) and (4.23), we have

rT

k+1rj = rT

k (pj −βjpj−1)− αk+1

(
pk, pj −βjpj−1

)
A
= 0 0≤ j ≤ k−1

while, recalling (4.26), the case j = k becomes

rT

k+1rk = rT

k (pk−βjpk−1)− αk+1

(
pk, pk−βjpk−1

)
A
= rT

kpk − αk+1(pk, pk)A = 0.

All conditions in (4.23) are hence verified with k replaced by k+1. The proof by induction is complete.



CHAPTER 5 MATRIX EIGENVALUE PROBLEMS

5.1 OVERVIEW. Eigenvalues and eigenvectors are useful for a very diverse array of reasons.

• The stability in time of many mechanical and physical systems is determined by whether certain
eigenvalues satisfy (or not) certain bounds.

• Likewise, eigenvalues reveal conditions at which a physical system may undergo resonance.

• Eigenvectors are often used (e.g. in structural dynamics) as a convenient and physically meaning-
ful way to approximate the system response as combinations of a moderate number of eigenvectors.

Moreover, such physical arguments often directly translate into algorithmic concepts or improvements.
Other uses are more closely related to algorithms. For example:

• Computing the SVD of a matrix requires eigenvalues and eigenvectors of symmetric positive
matrices. Then, the singular values and vectors often provide crucial information about e.g. the
information content of a linear system and its amenability to compression.

• Understanding the behavior of matrix eigenvalues is essential in the design and assessment of
preconditioning methods that enhance iterative solution algorithms (Chapter 4).

This chapter presents methods for the computation of matrix eigenvalue and eigenvectors, which all
evolve from the basic idea of power iterations. We focus on the symmetric (Hermitian) eigenvalue
problem, which involve matrices that are always diagonalizable and whose eigenvalues are always
real. The more-complex unsymmetric eigenvalue problems are only briefly discussed at the end of the
chapter. We begin with methods designed for finding isolated eigenvalues and eigenvectors, and then
use them as a basis to formulate methods allowing to compute complete matrix spectra.

5.1.1 Summary of basic facts on matrix eigenvalues. For any square matrix A ∈ Kn×n, there exist
n numbers λ1, . . . , λn (called eigenvalues) and associated vectors x1, . . . , xn (called eigenvectors) such
that

Axi = λixi 1≤ i≤n.

The n eigenvalues are not necessarily distinct: they are the n roots of the characteristic polynomial

pA(λ) := det(A− λI),

and as such can have multiplicities. The eigenvalues and eigenvectors of real matrices may be complex.

• If all eigenvectors xi are linearly independent (i.e. if Kn = span(x1, . . . , xn)), A is diagonalizable:
setting Λ := diag(λ1, . . . , λn) and X := [x1, . . . , xn], we have A = XΛX−1.

• If in fact A = QΛQ−1 = QΛQH with Q unitary, A is said to be unitarily diagonalizable. Unitary
diagonalization of A is possible if and only if A is normal, i.e. satisfies AAH = AHA.

• Symmetric (Hermitian if K = C) matrices, which verify A = AH, are in particular normal, and
hence unitarily diagonalizable. Moreover, all their eigenvalues are real. If A is real symmetric, Q
is orthogonal and A = QΛQT.

• If A is not diagonalizable, it is called defective. For example, A =
[
a b
0 a

]
is defective, having a

double eigenvalue λ= a whose eigenspace Eλ = span(x) with x= {1, 0}T has dimension 11.

1Generally speaking, each eigenvalue λ has an algebraic multiplicity as a root of pA(λ), and a geometric multiplicity
given by the dimension dim(Eλ) of its eigenspace. The former is always at least as great as the latter. A matrix is
defective when at least one eigenvalue is of algebraic multiplicity strictly greater than its geometric multiplicity.

55
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• Gershgorin theorem: All the eigenvalues of A ∈ Kn×n lie in one of the n Gershgorin disks
Di(A) of A, where Di(A) :=

{
z ∈C : |z−aii| ≤

∑
j ̸=i|aij |

}
.

5.1.2 Iterative methods. We start with a very important fact about the numerical solution of eigen-
value problems: no direct general solution method can exist for the computation of matrix eigenvalues.

Indeed, the eigenvalues of A ∈ Kn×n are the roots of the characteristic polynomial pA(λ) =
det(A−λI). Any direct eigenvalue solver would therefore also be a direct algorithm for finding the
zeros of pA(λ). However, the groundbreaking analysis of Galois (made at age 18!) established that no
general method for the closed-form solution of polynomial equations of degree greater than 4 exists.
We moreover observe that the tasks of finding eigenvalues of a matrix or zeros of a polynomial are
in fact equivalent: given an arbitrary polynomial P (X) = a0+a1X+ . . .+an−1X

n−1+Xn (assumed
to be monic without loss of generality), there exists a matrix A = AP ∈ Kn×n whose characteristic
polynomial is P , called the companion matrix of P :

AP =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
...

...
...

0 0 . . . 1 −an−1

 .

Consequently: direct eigenvalue computation methods for arbitrary matrices cannot exist, and any
general method for computing matrix eigenvalues must be iterative.

5.1.3 Setting for this chapter. With the exception of the closing Section 5.5, the matrix A ∈ Kn×n

whose eigenvalues and (possibly) eigenvectors are sought is assumed throughout this chapter to be
Hermitian (and hence unitarily diagonalizable with real eigenvalues). We will denote by A = QΛQH

the diagonalized form of A, where Λ = diag
(
λ1, . . . , λn

)
holds the eigenvalues conventionally ordered

according to |λ1| ≥ |λ2| ≥ . . . ≥ |λn| and the unitary matrix Q = [q1, . . . , qn] ∈ Kn×n collects corre-
sponding orthonormal eigenvectors. All norms appearing in this chapter are vector 2-norms and the
corresponding induced matrix norm, so that ∥ · ∥ = ∥ · ∥2 throughout.

5.2 COMPUTATION OF ISOLATED EIGENVALUES. We begin by examining conceptually simple
methods that provide partial information (typically one or a few eigenvalues and associated eigen-
vectors). In addition to being useful on their own, they constitute a first step towards defining and
understanding more-advanced algorithms such as the QR iteration algorithm described in Sec. 5.3.3.

5.2.1 Rayleigh quotient. Let A∈Kn×n Hermitian, and pick a vector x ∈ Kn. The Rayleigh quotient
r(x) is the real scalar

r(x) :=
xHAx

xHx
We first observe, via a straightforward derivation, that

∂r(x)

∂xi
=

2

xHx

(
Ax− r(x)x

)
i
, i.e. ∇r(x) =

2

xHx

(
Ax− r(x)x

)
which indicates that

• The Rayleigh quotient is stationary (has a vanishing gradient) if x is an eigenvector, and the
value of r(x) at such point is an eigenvalue of A.

• In particular, the smallest and largest eigenvalue of A minimize and maximize, respectively, the
Rayleigh quotient over x ∈ Kn \{0}.

The above remarks have a generalization to the abstract setting of self-adjoint operators on Hilbert
spaces, known as the Courant-Fischer min-max principle [6, Chap. 3].
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5.2.2 Power iterations. These facts on the Rayleigh quotient suggest the following simple idea: iterate
applications of A to some starting vector x0 ∈ Kn and evaluate Rayleigh quotients along the way, in
the expectation that the sequence of vectors thus generated will converge to an eigenvector associated
with the eigenvalue of A with largest modulus:

Algorithm 5.1 Power iteration

A ∈ Kn×n Hermitian (input), x(0) ∈ Kn with ∥x(0)∥ = 1 (initialization)
for k = 0, 1, 2, . . . do
v = Ax(k) (apply A to current normalized iterate)
λ(k) = vHx(k) (Rayleigh quotient)
x(k+1) = v/∥v∥ (next normalized iterate)
Stop if convergence, set λ1 = λ(k), q1 = x(k)

end for

The effect of repeated applications of A is to “promote” the eigenvalue λ1 of A whose modulus is
largest: expanding x(0) as a linear combination of the orthonormal eigenvectors, we have

x(0) = y1q1 + y2q2 + · · ·+ ynqn

x(k) = ckA
kx(0) = ckλ

k
1

[
y1q1 + y2(λ2/λ1)

kq2 + · · ·+ yn(λn/λ1)
kqn

] (5.1)

for some normalization constant ck and assuming |λ2/λ1|< 1. This allows one to deduce

Theorem 5.1 (convergence of power iterations) Assume that qH
1x

(0) ̸= 0 and |λ1| > |λ2| ≥ . . . ≥ |λn|
(i.e. that the largest eigenvalue has unit multiplicity). Then:

|λ(k) − λ1| = O(|λ2/λ1|2k), ∥ ± x(k) − q1∥ = O(|λ2/λ1|k)
as k → ∞. The sign ± indicates that for each step k a sign choice must be made for the above bound
on the eigenvector to hold.

We observe in particular that

• The convergence of λk to λ1 is linear (the error being reduced by a constant factor at each
iteration), and the same is true for that of x(k) to q1.

• The error reduction factor depends on the closeness of |λ1| and |λ2| (slow convergence if the
eigenvalues are close in magnitude).

• The just-described “raw” power iteration only allows to evaluate λ1 and an associated eigenvector.

• The main computational cost is incurred by that of one matrix-vector product per power iteration.

5.2.3 Inverse iterations. Let A be invertible, in which case we can consider applying power iterations

using A−1. This generates a sequence of vectors satisfying x(k) = A−1x(k−1), i.e. Ax(k) = x(k−1) (so
that each new iterate requires solving a linear system), which is expected to produce an eigenvector
of A for the eigenvalue λn with smallest modulus.

Importantly, this observation implies that the eigenvalue of A closest to some reference value µ
can be found by applying power iterations to (A−µI)−1, the inverse of the shifted matrix A−µI.
Assume that µ is close to an eigenvalue λj of A with eigenvector qj (but not equal to that eigenvalue,
so that A−µI is invertible). Then, σj := (λj −µ)−1 is an eigenvalue of (A−µI)−1 with the same
eigenvector qj ; moreover:

|µ− λj | < |µ− λi| (i ̸= j) =⇒ |σj | > |σi| (i ̸= j)

so that power iterations applied to (A−µI)−1 will reveal σj and the eigenvector qj , from which we
deduce λj = σ−1

j +µ. This version of the power iteration, called inverse iteration, work as shown in
Algorithm 5.2. Transposing Theorem 5.1, we have (with λℓ the second-closest eigenvalue to λj) that

|λ(k)
j − λj | = O

( |λj −µ|
|λℓ−µ|

)2k

, ∥ ± xk − qj∥ = O
( |λj −µ|
|λℓ−µ|

)k
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Algorithm 5.2 Inverse iteration

A ∈ Kn×n Hermitian (input), x(0) ∈ Kn with ∥x(0)∥ = 1 (initialization), µ∈R close to λj

for k = 1, 2, . . . do
solve (A−µI)x(k) = x(k−1) (apply (A−µI)−1 to x(k−1))
x(k) = x(k)/∥x(k)∥ (next normalized iterate)

λ
(k)
j = (x(k))HAx(k) (Rayleigh quotient)

Stop if convergence, set λj = λ
(k)
j , q = x(k)

end for

5.2.4 Rayleigh quotient iterations. The idea of power iterations can be refined further by noticing
that direct power iterations naturally produce an eigenvector whereas inverse iterations help in ob-
taining eigenvalues. The idea is to combine both algorithms, basically by setting µ in the inverse
iteration to the current eigenvalue estimate yielded by one direct power iteration. This idea translates
into the following (Rayleigh quotient) iteration algorithm:

Algorithm 5.3 Rayleigh quotient iteration

A ∈ Kn×n Hermitian (input), x(0) ∈ Kn with ∥x0∥ = 1 (initialization)
λ(0) = (x(0))HAx(0) (Initialize Rayleigh quotient)
for k = 1, 2, . . . do
solve (A−λ(k−1)I)x(k) = x(k−1) (apply (A−λ(k−1)I)−1 to x(k−1))
x(k) = x(k)/∥x(k)∥ (next normalized iterate)
λ(k) = (x(k))HAx(k) (Rayleigh quotient)
Stop if convergence, set λ = λ(k), q = x(k)

end for

The main properties of this algorithm can be summarized as follows:

Theorem 5.2 (convergence of Rayleigh quotient iterations) Rayleigh iterations converge for almost all
starting vectors x(0). Assume that x(0) (normalized to ∥x(0)∥ = 1) is close to the eigenvector qj. Then:

|λ(k+1) − λj | = O(|λ(k) − λj |3), ∥ ± x(k+1) − qj∥ = O(∥ ± x(k) − qj∥3)
as k → ∞. The signs ± (not necessarily the same on the two sides) indicate that for each step k a
sign choice must be made for the above bounds to hold.

5.3 COMPUTATION OF MATRIX SPECTRA: ORTHOGONAL AND QR ITERATIONS. Power iterations
methods and their improvements allow to compute samples of eigenvalues or eigenfunctions, but not
the complete set of eigenvalues and eigenvectors (spectrum) of a given (Hermitian) matrix A. We now
describe methods aimed at finding the complete spectrum. They rely on invariance of eigenvalues
under similarity transformations:

• Let A ∈ Kn×n, and let X ∈ Kn×n be invertible. Then, A and B := XAX−1 have the same char-
acteristic polynomial (PA(λ) = PB(λ)), and hence the same eigenvalues with same multiplicities.

Eigenvalue computation algorithms therefore revolve around finding a similarity decomposition A =
XTX−1 such that the eigenvalues of T are “easy” to compute. For example, if T is triangular (or,
of course, diagonal), its diagonal holds the eigenvalues. As we will see, power iteration methods will
play an important role in the design and justification of algorithms computing full matrix spectra.

Factorizations introduced for direct solution methods, such as the LU, QR or Cholesky factoriza-
tions, do not work in this respect. For instance, the factorization A = LU reveals the eigenvalues of L
and U (both matrices being diagonal) but then there is no simple way to connect the eigenvalues of A
to those. In fact, this must be the case since otherwise we would have a direct method for computing
eigenvalues, which we have seen cannot be true in general. On the other hand:
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• Any square matrix A ∈ Kn×n admits a Schur decomposition: there exists Q ∈ Kn×n unitary and
T ∈ Kn×n upper triangular such that

A = QTQH (5.2)

The Schur decomposition (5.2) always exists, and may be non-unique. It is a similarity trans-
formation of A, implying that PA(λ) = PT (λ). Since T is triangular, its diagonal holds the
eigenvalues of A.

• Even when A is real, Q and T may be complex. This is to be expected, since a real matrix may
have complex eigenvalues.

• If A is Hermitian, its Schur factor T is in fact real and diagonal.

We can then consider the idea of computing matrix eigenvalues by finding a Schur decomposition of A,
and this approach indeed leads to a general algorithm. As with earlier factorizations underlying direct
solution methods for linear systems, finding a decomposition (5.2) basically consists in introducing
zeros in the off-diagonal lower-triangular region of A (which was already the guiding idea behind the
LU , QR and Cholesky factorizations). The following considerations must be taken into consideration
in order to define a workable approach:

(a) Assume a transformation (such as a Householder reflector, see Sec. 3.1) is applied on the left
for zeroing out (say) the whole first column under the diagonal; this can be encoded by a left
multiplication by a suitable unitary matrix F (u), see (3.1). However, achieving a similarity form
then requires to also apply F (u)H from the right. It is easy to verify that the latter operation
will reintroduce nonzero entries in the initially zeroed-out column. For example, let F (u1) be
designed like in (3.2), so that F (u1)A now has the A2:n,1 entries replaced with zeros. However,
if we now compute (F (u1)A)F (u1)

H, we find that in general the entries located at A2:n,1 become
non-zero again.

In other words, applying (conjugate-transposed) Householder reflectors from the left and the
right does not produce the upper-triangular factor sought for the Schur decomposition.

(b) By contrast, if we design Householder reflectors H(u) that do not zero out the entry immediately
below the diagonal, the symmetric right-multiplication by H(u)H preserves the introduced zeros.

(c) Obtaining a pure Schur decomposition (5.2) may entail using complex arithmetic even for a
real original matrix A (since T is in general expected to be complex), whereas we would prefer
working with real arithmetic for A ∈ Rn×n.

5.3.1 Orthogonal iterations. A natural idea consists in applying power iterations for finding the full
spectrum of a matrix, or a significant portion of it. For instance, assume that the eigenvalues of A
verify |λ1| > |λ2| > . . . |λn|. Letting X ∈ Kn×p = [x1, . . . , xp] denote a set of p linearly independent
vectors, we apply power iterations on X:

X(0) = X, X(k) = AX(k−1)

A straightforward extension of (5.1) and its implications shows that the sequence of subspaces E
(k)
p :=

span
(
x
(k)
1 , . . . , x

(k)
p

)
converges to the subspace Ep := span

(
q1, . . . , qp

)
spanned by the p eigenvectors

associated with the p largest eigenvalues λ1, . . . , λp. The first p eigenvalues and eigenvectors of A can
then conceivably be found from computing a finite number k of power iterations and diagonalizing

the smaller matrix A
(k)
p := (X(k))HAX(k) obtained by projecting A on X(k). However, each iterated

vector Ax
(k)
i converges (upon normalization) to q1 (as it undergoes a power iteration in the sense of

Algorithm 5.1), which makes the set of vectors X(k) increasingly collinear, and the projected matrix

A
(k)
p increasingly ill-conditioned.
Like with the sequences of Krylov vectors underlying GMRES, where a similar issue arises, (see

Section 4.5), the remedy consists in frequent orthogonalization. This suggests the following version
of power iterations, called orthogonal iterations, which orthogonalize the set of p vectors at each

iteration: successive iterates X
(k)
p are sets of p orthonormal vectors satisfying

X(k)
p R(k) = AX(k−1)

p (5.3)
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with R(k) upper triangular. Each iteration evaluates AX
(k−1)
p , then computes its reduced QR decom-

position (see Section 3.1), ensuring that the p columns of each iterate X
(k)
p are orthonormal vectors.

The resulting orthogonal iteration algorithm is quite simple:

Algorithm 5.4 Orthogonal iterations

1: A ∈ Kn×n Hermitian, X
(0)
p = [x

(0)
1 , . . . , x

(0)
p ] ∈ Kn×p with orthonormal columns (initialization)

2: for k = 1, 2, . . . do

3: Z(k) = AX
(k−1)
p (apply A)

4: X
(k)
p R

(k)
p = Z(k) (compute reduced QR decomposition of Z(k) ∈ Kn×p)

5: Stop if convergence, set λi = (x
(k)
i )HAq

(k)
i , qi = x

(k)
i

6: end for

5.3.2 How and why orthogonal iterations work. To explain how and why orthogonal iterations find
eigenvalues and eigenvectors of A, we focus on their action on a set of p = 2 vectors. In this case,

X
(k)
p ∈ Kn×2 and R

(k)
p is a 2×2 matrix of the form R

(k)
p =

[
r
(k)
11 r

(k)
12

0 r
(k)
22

]
, so that steps 3,4 of Algorithm 5.4

become

(a) r
(k)
11 x

(k)
1 = Ax

(k−1)
1 , (b) r

(k)
12 x

(k)
1 + r

(k)
22 x

(k)
2 = Ax

(k−1)
2 . (5.4)

The equality (a) above shows that the sequence x
(k)
1 is generated by power iterations (Algorithm 5.1)

applied to x
(0)
1 , so that x

(k)
1 is expected to converge to the eigenvector q1 associated with the eigenvalue

λ1 with largest modulus (possibly up to a sign change, in which case we redefine q1 so that x
(k)
1 → q1).

We now exploit this observation to work out the behavior of the sequence x
(k)
2 . Since x

(k)
1 → q1,

we write x
(k)
1 = q1 + ε

(k)
1 , with the eigenvector error verifying ∥ε(k)1 ∥ → 0. Now we introduce the

Hermitian matrix Â ∈ Kn×n defined by

Â = (I − q1q
H

1 )
HA(I − q1q

H

1 ) = A− λ1q1q
H

1 ,

with the second equality obtained by expanding the formula and using Aq1 = λ1q1 and (A being

Hermitian) qH
1A = λ1q

H
1 . By the orthonormality of the eigenvectors qi, Â verifies Âq1 = 0 and

Âqi = Aqi (i ≥ 2); in other words, Â has the same eigenvectors as A, associated with the same

eigenvalues except q1 whose eigenvalue is now 0 instead of λ1. Applying Â to x
(k−1)
2 , we then find

Âx
(k−1)
2 = Ax

(k−1)
2 − λ1(q

H

1 x
(k−1)
2 )q1 = r

(k)
12 x

(k)
1 + r

(k)
22 x

(k)
2 − λ1(q

H

1 x
(k−1)
2 )q1. (5.5)

Moreover, taking the scalar product of (5.4b) by x
(k)
1 and using the orthonormality of

(
x
(k)
1 , x

(k)
2

)
allows to evaluate r

(k)
12 as

r
(k)
12 = (x

(k)
1 )HAx

(k−1)
2 =

(
q1+ε

(k)
1

)H
Ax

(k−1)
2 = λ1

(
qH

1 x
(k−1)
2

)
+

(
ε
(k)
1

)H
Ax

(k−1)
2

and then use this expression in (5.5), to obtain

Âx
(k−1)
2 = r

(k)
22 x

(k)
2 +

(
qH

1 x
(k−1)
2

)
ε
(k)
1 +

((
ε
(k)
1

)H
Ax

(k−1)
2

)
x
(k)
1 = r

(k)
22 x

(k)
2 +O

(
ε
(k)
1

)
(since x

(k)
1 − q1 = ε

(k)
1 ). The above equality shows that, as x

(k)
1 converges to q1 (i.e. ε

(k)
1 → 0), the

iterates x
(k)
2 are updated in a manner increasingly close to a power iteration for the matrix Â, whose

eigenvalue of largest modulus is λ2 with eigenvector q2. Concluding, orthogonal iterations applied
to a set of p = 2 vectors produce as k → ∞ the eigenvalues λ1, λ2 and eigenvectors q1, q2 provided
|λ1| ≠ |λ2|. This analysis can be recursively extended to any p, so that orthogonal iterations verify:
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Theorem 5.3 Let A ∈ Kn×n be Hermitian, and assume that its p largest eigenvalues verify |λ1|> |λ2|>
. . . |λp|. Assume in addition that all leading submatrices (QH

pX
(0)
p )1:q,1:q (1≤ q≤ p) of QH

pX
(0)
p ∈ Kp×p

are nonsingular. Let X
(k)
p = [x

(0)
1 , . . . , x

(0)
p ] be the set of orthonormal vectors produced after k iterations

of Algorithm 5.4. Then:

∥x(k)
i ± qi∥ = O(Ck)

where C = max1≤j≤p |λj+1|/|λj | < 1 and the ± signs indicate that a sign choice must be made for the
estimate to hold.

5.3.3 QR iterations. We have just seen that, for given p<n, orthogonal iterations yield approxima-

tions of the p largest (in modulus) eigenvalues ofA; in fact, (X
(k)
p )HAX

(k)
p converges to diag(λ1, . . . , λp).

Moreover, the condition |λ1| > |λ2| > . . . > |λp| is potentially restrictive. To adapt orthogonal itera-
tions to the problem of computing all n eigenvalues of A from an arbitrary starting set X(0) ∈ Kn×n of
n orthonormal vectors, we focus on the sequence of matrices T (k) := (X(k))HAX(k), which converges
to the diagonal matrix holding the eigenvalues of A. Specifically, we seek to deduce from (5.3) (with
p=n) an iteration rule that determines T (k) in terms of T (k−1). We have

T (k−1) = (X(k−1))HAX(k−1) = (X(k−1))HZ(k)

= (X(k−1))HX(k)R(k)

T (k) = (X(k))HAX(k) = (X(k))HAX(k−1)(X(k−1))HX(k) = (X(k))HX(k)R(k)(X(k−1))HX(k)

= R(k)(X(k−1))HX(k),

which can be reformulated as

(a) T (k−1) = Q(k)R(k) and (b) T (k) = R(k)Q(k), (5.6)

where the matrix Q(k) := (X(k−1))HX(k) is unitary. We notice that (a) in fact yields the QR decom-
position of T (k−1). The relations (5.6) can then be interpreted as: (a) compute the QR decomposition
of T (k−1), then (b) compute T (k) by using the QR factors in reverse order. This is the essence of the
so-called QR algorithm for eigenvalue problems, which Algorithm 5.5 shows in its basic form:

Algorithm 5.5 Basic QR iterations

1: A ∈ Kn×n Hermitian, T (0) = A (initialization)
2: for k = 1, 2, . . . do
3: Q(k)R(k) = T (k−1) (compute QR decomposition of T (k−1) ∈ Kn×p)
4: T (k) = R(k)Q(k) (update T (k))
5: Stop if convergence, diag(T (k)) contains the eigenvalues of A
6: end for

Remark 5.1 (QR decomposition vs. QR iteration) We emphasize in passing that the QR acronym now
pertains to two different (albeit related) methods: (i) the QR decomposition of a matrix (introduced in
Sec. 3.1), which is a direct factorization method, and (ii) the QR iteration method for solving matrix
eigenvalue problems (introduced here), which is an iterative method.

5.4 IMPROVED QR ALGORITHM. The QR iteration as formulated in Algorithm 5.5, while workable
(and in particular backward stable by virtue of the recourse to orthogonalization and stable QR
decompositions), lacks efficiency for a combination of reasons:

• Each QR factorization in (5.6a) requires O(n3) operations, and computing the eigenvalues with
sufficient accuracy is expected to need O(n) iterations; the overall computational effort could
then be of order O(n4).

• Similarly to the orthogonal iteration of Algorithm 5.4 which the basic QR iteration extends,
the rate of convergence of the eigenvalues computed by the latter depends on their distribution.
Moreover, if two or more eigenvalue have the same magnitude, convergence may fail.



62 CHAPTER 5. MATRIX EIGENVALUE PROBLEMS

Two major improvements to the QR iteration algorithm allow to adresss the above issues:

• The O(n4) computing time bottleneck is addressed by first putting A in tridiagonal form; as we
will see, this step has in general a O(n3) computational cost. Then, each QR decomposition of
a tridiagonal matrix requires O(n2) operations. This results in a O(n3) overall computational
effort, assuming that at most O(n) QR iterations are needed.

• As with the improved versions of power iterations for a single eigenvalue, convergence is acceler-
ated by using a shifted version of the QR algorithm, even in cases where eigenvalue moduli are
not well-separated.

5.4.1 Reduction to tridiagonal form by Lanczos iterations. We have seen in Sec. 4.5 that any matrix
A ∈ Kn×n can be reduced to upper Hessenberg form A = QHQH (with Q ∈ Kn×n unitary) by means
of the Arnoldi iteration. When A is in addition Hermitian, H = QHAQ is also Hermitian, so must be
tridiagonal (being both Hermitian and upper Hessenberg). For notational convenience, we set H in
the form

H =



α1 β1 0 . . . 0

β1 α2

...

0
. . .

. . .
. . . 0

...
. . . βn−1

0 . . . 0 βn−1 αn


accounting for its expected structure, α1, . . . , αn and β1, . . . , βn−1 being the independent coefficients.

The reduction to tridiagonal form of any Hermitian matrix A can therefore be obtained by applying
all n Arnoldi steps to A. In this context, the Arnoldi iteration takes a simpler form, as the expected
tridiagonal character of H reduces the running Arnoldi step to a relation between three consecutive
orthogonal vectors. The Arnoldi iteration specialized to Hermitian matrices is a very important
algorithm in its own right, having many applications in numerical linear algebra; it is known as
a Lanczos iteration. The vectors qi and coefficients αi, βi are found recursively by the following
appropriately-modified Arnoldi iterations (where iteration k aims at verifying the equality A = QHQH

applied to the k-th column vector qk of Q):

• Initialization: choose an arbitrary vector b ∈ Kn, set q1 = b/∥b∥.
• First iteration: seek q2 ∈Kn and α1, β1 satisfying Aq1 = QHQHq1, i.e.:

Aq1 = α1q1 + β1q2, with (a) qH

1 q2 = 0, (b) ∥q2∥ = 1

Condition (a) gives α1 = qH
1Aq1, then condition (b) yields β1 = ∥Aq1 − α1q1∥. The resulting

vector q2 = (Aq1−α1q1))/β1 satisfies (a) and (b).

• Running (k-th) iteration: seek qk+1 and αk, βk such that Aqk = QHQHqk, i.e.:

Aqk = βk−1qk−1 + αkqk + βkqk+1,

with (a) qH
j qk+1 =0 (1≤ j ≤ k) and (b) ∥qk+1∥=1 (βk−1 being known from iteration k−1).

• Last (n-th) iteration: find αn such that Aqn = QHQHqn, which yields

Aqn = βn−1qn−1 + αnqn.

Each Lanczos iteration entails one matrix-vector product (costing O(n2) operations), so that reducing
A to tridiagonal form needs O(n3) operations overall. Algorithm 5.6 shows the Lanczos iteration in
pseudocode form.

The following remarks show the usefulness of a preliminary reduction of A to tridiagonal form (by
means of the Lanczos iteration) before applying QR iterations:

• Applying the Lanczos iteration has a fixed computational cost for given matrix size n (Exer-
cise 5.1), i.e. is a direct part of the overall-iterative eigenvalue / eigenvector computation method.
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Algorithm 5.6 Lanczos iterations

1: A ∈ Kn×n and b ∈ Kn (problem data)
2: q1 = b/∥b∥, h01 = 0 (initialization)
3: for k = 1 to n−1 do
4: v = Aqk (new Krylov vector: initialize qk+1)
5: αk = qH

k v (diagonal entry αk of H)
6: v = v − βk−1qk−1 − αkqk (update (not yet normalized) vector qk+1)
7: βk = ∥v∥ (off-diagonal entry βk of H)
8: qk+1 = v/βk (normalize qk+1)
9: end for

10: αn = qH
nAqn (last diagonal entry αn of H)

• Subsequent QR iterations preserve the symmetric tridiagonal nature of the iterates (i.e. if T (k−1)

is symmetric tridiagonal, then so is T (k)), see Exercise 5.2.

• The QR decomposition of a real tridiagonal matrix T ∈ Rn×n requires only O(n) operations, by
allowing to apply 2×2 Givens rotations (see Exercise E21-2) instead of Householder reflectors for
zeroing-out the subdiagonal of T (k).

Exercise 5.1 Show that the asymptotic computational cost of reducing an arbitrary Hermitian matrix
A ∈ Kn×n to tridiagonal form using the Lanczos iteration is 4

3n
3.

Exercise 5.2 Let T ∈ Rn×n be tridiagonal symmetric, and let T = QR be the QR decomposition of
T . Prove that RQ ∈ Rn×n is tridiagonal symmetric. This property implies that the QR algorithm
preserves the tridiagonal character of the iterates T (k).

5.4.2 Shifted QR algorithm. We saw in Section 5.2 that the introduction of shifts considerably im-
proves the convergence rate of iterations based on inverse or Rayleigh quotient iterations. In fact,
while based as we saw on (forward) power iterations, the QR algorithm can also be interpreted as
performing inverse iterations, and this alternative interpretation explains the (dramatic) performance
improvement brought by shifts.

Inverse-iteration interpretation of the QR algorithm. The generic orthogonal iteration at the root of
the basic QR algorithm, summarized by (5.3) with p=n, implies

A = X(k)R(k)X(k−1)H.

If A is nonsingular, the above equality can be inverted, yielding

A−1 = X(k−1)(R(k))−1X(k)H = X(k)(R(k))−HX(k−1)H, (5.7)

with the second equality resulting from the (Hermitian) symmetry of A. Now, let P ∈ Rn×n denote
the “flipped identity” matrix, i.e. the permutation matrix that reverses the order of the rows or
columns of a given matrix:

P =


0 . . . 1
... . .

.

. .
. ...

1 . . . 0


(so that, for example, PX = [xn, . . . , x1] for X = [x1, . . . , xn]). Since P 2 = I, we can rewrite (5.7) as

A−1 =
(
X(k)P

) (
P (R(k))−HP

) (
X(k−1)P

)H
,
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and observe that (i) X(k−1)P and X(k)P are unitary matrices, while (ii) P (R(k))−HP is upper trian-
gular2. Comparing the above equality to (5.3), the orthogonal iteration is seen as being equivalent to

an orthogonal iteration for A−1 applied to the column-flipped matrix X(k−1)P = [x
(k−i)
n , . . . , x

(k−i)
1 ].

In particular, the first column of X(k−1)P , i.e. x
(k−1)
n , undergoes pure power iterations under A−1,

i.e. inverse iterations (see Sec. 5.2.3) without shift.

Shifted QR algorithm. The inverse-iteration interpretation of the orthogonal iteration (and hence
also of the basic QR algorithm) makes it natural to modify the generic QR iteration by introducing
a shift µ(k), so that its main steps follow

(a) T (k−1)−µ(k)I = Q(k)R(k) and (b) T (k) = R(k)Q(k)+µ(k)I,

instead of (5.6). As with Rayleigh iterations, µ(k) could be set at each iteration to the value of a

Rayleigh quotient. The easiest choice is to set µ(k) := t
(k−1)
nn since this is the Rayleigh quotient for

q
(k−1)
n , but this is known to fail on some “nice” matrices (for reasons quite similar as those making the
non-pivoted LU factorization fail on certain well-behaved matrices, see Sec. 2.2). A better alternative
(for Hermitian matrices) is to use the Wilkinson shift, whereby the eigenvalues of the 2× 2 bottom

rightmost block of T (k−1) are computed and µ(k) is set to the one closest to t
(k−1)
nn .

The practical (improved) QR algorithm, featuring both the preliminary reduction of A to tridiag-
onal form and shifts, is shown in pseudocode form in Algorithm 5.7.

Algorithm 5.7 Shifted QR iterations

1: A ∈ Kn×n Hermitian (data)
2: (Q(0))HT (0)Q(0) = A (Tridiagonalization of A, see Algorithm 5.6)
3: for k = 1, 2, . . . do
4: Choose µ(k) (shift value, e.g. use the Wilkinson shift)
5: Q(k)R(k) = T (k−1)−µ(k)I (compute QR factorization of T (k−1)−µ(k)I ∈ Kn×p)
6: T (k) = R(k)Q(k)+µ(k)I (update T (k))

7: If any off-diagonal entry t
(k)
j,j+1 is sufficiently small,

set t
(k)
j,j+1 = t

(k)
j+1,j = 0 to obtain T (k) =

[
T

(k)
1 0

0 T
(k)
2

]
.

From now, apply the QR algorithm separately to T
(k)
1 and T

(k)
2

8: Stop if convergence, diag(T (k)) contains the eigenvalues of A
9: end for

Step 7 in Algorithm 5.7 is called a deflation: when the tridiagonal matrix T (k) has a small enough
off-diagonal entry, setting that entry to zero splits T (k) into two disconnected tridiagonal parts, to
which subsequent QR iterations can be applied separately.

5.5 EXTENSIONS.

5.5.1 Generalized symmetric eigenvalue problems. Many engineering applications involve general-
ized eigenvalue problems of the form

Find λ, x such that Kx = λMx. (5.8)

In particular, the study of vibrations and forced dynamical motions of mechanical structures and
systems involves the eigenvalues and eigenvectors of problems of the form (5.8), where K,M ∈ Rn×n

ere the (real, symmetric, positive) stiffness and mass matrices of the structure (see Sec. 1.2.2), M being
in fact SPD. More-general versions of problem (5.8) with unsymmetric complex matrices K appear

2Like R(k), (R(k))−1 is upper triangular, and hence (R(k))−H is lower triangular. Applying P on the left then on
the right flips the triangle horizontally then vertically, resulting in P (R(k))−HP being upper triangular.
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when damping is taken into account. The book [17] provides a readable yet very comprehensive
exposition on the modeling and computation of mechanical vibrations and structural dynamics.

Here we briefly examine the common (and simplest) case of conservative (undamped) vibrations of
structures with linearly elastic structures, where the stiffness matrix A is real symmetric positive (but
has zero eigenvalues unless the boundary conditions prevent rigid body motions) and the mass matrix
is real symmetric positive definite. The latter property allows to set the Cholesky decomposition
M = GGT of M , where the Cholesky factor G is real, lower-triangular and invertible, so that we have

Kx− λMx = G
(
A− λI

)
GTx, A = G−1KG−T

and the generalized eigenvalue problem (5.8) can be recast as the equivalent symmetric eigenvalue
problem

Find λ, x such that Ay = λy, GTx = y. (5.9)

The methods presented in this chapter can then in principle be applied to problem (5.9). In practice,
the matrix A = G−1KG−T is not evaluated, and the algorithms for standard eigenvalue problems
are instead adapted to the specific form of problem (5.8), while the eigenvectors are often normalized
according to xTMx = 1. For example, the inverse iteration algorithm with a given shift µ takes the
form shown in Algorithm 5.8.

Algorithm 5.8 Inverse iteration for structural vibrations

K,M ∈ Rn×n (stiffness and mass matrices), x(0) ∈ Kn with ∥x(0)∥ = 1 (initialization), µ∈R close
to λj

for k = 1, 2, . . . do
solve (K−µM)x(k) = Mx(k−1) (solve forced vibration problem with Mx(k−1) as load)

x(k) = x(k)/
√
x(k)TMx(k) (next mass-normalized iterate)

λ
(k)
j = (x(k))HKx(k) (Rayleigh quotient)

Stop if convergence, set λj = λ
(k)
j , q = x(k)

end for

Due to the fact that FEM models of mechanical structures may be very large in analyses performed
by e.g. aerospace, automotive, energy or civil engineering industries, a common computational task
is to require the fraction of eigenvalues and eigenfunctions corresponding to the lower part of the fre-
quency sprctrum of the system (which on a given FEM mesh are the ones most accurately evaluated).
Eigenfunctions are afterwards often used to defined reduced bases for other dynamical analyses.

5.5.2 Unsymmetric eigenvalue problems. We finally consider (briefly) the case where A is not Her-
mitian. In this case, a finite sequence of suitable unitary transformations (e.g. based on Householder
reflectors) applied symmetrically (from the left and the right) allow to obtain a decomposition of the
form

A = QHQH

where Q is unitary and H is a upper Hessenberg matrix, i.e. a matrix of the form

H =


× × × . . . ×
× × ×
0 × × ×
...

. . .
. . .

. . .
...

0 . . . 0 × ×


whose entries below the first subdiagonal are zeros. Importantly, H ∈ Rn×n and Q ∈ Rn×n if
A ∈ Rn×n.

At this point, the eigenvalues of A and H coincide, and the QR algorithm can be applied to H. In
practice, shifted QR iterations may be applied as described by Algorithm 5.7, with step 2 performing
a reduction of A to Hessenberg form instead of a tridiagonalization.
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• If A is complex, the matrix sequence T (k) in Algorithm 5.7 converges to an upper triangular
matrix, whose diagonal holds the eigenvalues of A.

• If A is real and the QR algorithm is performed in real arithmetic, the matrix sequence T (k) in
Algorithm 5.7 converges to an “almost upper triangular” matrix with 2×2 real-valued diagonal
blocks yielding pairs of (conjugated) complex eigenvalues.



CHAPTER 6 ILL-CONDITIONED PROBLEMS, LOW-RANK
APPROXIMATIONS

6.1 INTRODUCTION. Some areas of applications give rise to linear systems of equations with “un-
pleasant” properties, involving matrices which have, strictly speaking, full column rank while in prac-
tice the very fast decay of their singular values makes them rank-deficient in a numerical sense. As
already indicated in Chapter 1, such situations occur for example in connection with

• Inverse and identification problems (where “hidden” physical properties are to be inferred from
indirect measurements)

• Image processing and image restoration

• Data analysis

For example, backward heat conduction problems (see Section 1.2.5) lead, after discretization, to
matrix equations whose singular values decay extremely fast, in fact faster-than-exponentially. To
illustrate this remark, the singular values of the matrix A(T ) ∈ R202×101 associated with the initial
temperature identification example shown in Fig. 1.5 are plotted in Fig. 6.1. In fact, we have σ10 ≈
5.8 10−16σ1 and the singular values σi for i larger than about 10 cease to be significant due to round-off
errors (hence the plateau in the line plot).

In such cases, we typically have to extract information from a (possibly large and often non-square)
set Ax = b of linear equations whose matrix A ∈ Km×n is ill-conditioned while the right-hand side
b ∈ Km may be outside the range of A. Approximate solutions to Ax = b are then often sought by
treating the linear system in a least squares sense. Moreover, two dual considerations typically arise:

• The data b is imperfect, for example due to measurement errors, and x (approximately) satisfying
Ax = b is highly sensitive to data perturbations: if x1 and x2 are respective “best” solutions for
data b1 and b2, we have

∥x1 − x2∥ ≫ ∥b1 − b2∥, (6.1)
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Figure 6.1: Singular values of the matrix A(T ) ∈ R202×101 associated with the initial temperature identifica-
tion example shown in Fig. 1.5. Values σi for i larger than about 10 cease to be significant due
to round-off errors.
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i.e. the solution x does not, in practical terms, depend continuously on the data b. This is
typically what happens when A results from the discretization of a compact operator [6, Chap. 2].
Regularization approaches allow to restore continuity to some extent.

• The matrix A is close to a rank-deficient matrix: there exists a matrix Ar ∈ Km×n such that
r := rank(Ar) ≪ n while ∥A−Ar∥ ≪ ∥A∥. The matrix Ar therefore contains “almost the same”
information as A but requires a storage O(r/n) times that of A, i.e. is amenable to substantial
compression (relative to A) by means of low-rank approximations.

The concept of singular value decomposition (SVD), introduced in Section 3.4, plays a major role in
quantifying and analyzing the above types of deficiencies and their computational remedies.

6.2 SVD AND TRUNCATED SVD. We will assume throughout this chapter that A ∈ Km×n with
m ≥ n (i.e. systems of equations that are either square or potentially overdetermined), which is by
far the most frequent practical case. We recall (see Theorem 3.3) that A always admits the singular
value decomposition (SVD)

A = USV H,

{
U = [un, . . . , um] ∈ Km×m, V = [v1, . . . , vn] ∈ Kn×n,

UHU = UUH = Im, V HV = V V H = In
(6.2)

where S ∈ Rm×n contains the n singular values σ1 ≥ σ2 . . .≥ σn ≥ 0 of A on its main diagonal1 and
is otherwise zero. To focus the forthcoming discussion on the numerical (as opposed to algebraic, i.e.
exact) rank deficiency, A is assumed to have full column rank (with the expectation that many of its
singular values σi are such that 0< |σi| ≪ |σ1|). Of course, there are matrices that are algebraically
rank deficient while also suffering from numerical rank deficiency.

6.2.1 Sensitivity of least squares solutions to errors in the data. First, let us assume that Ax = b is
to be solved as the standard least squares problem

min
x∈Kn

∥Ax− b∥2, (6.3)

whose general solution is given by (3.9). Since A is assumed to have full column rank, problem (6.3)
has a unique solution, given by

x =

n∑
i=1

uH
i b

σi
vi. (6.4)

Now, let us consider the case where the available data is noisy (e.g. due to measurement errors):
instead of the exact data b∈Km, we have a perturbed version bδ = b+w with ∥b−bδ∥2 = ∥w∥2 = δ (i.e.
δ is the size of the data error w ∈Km). Using (6.4) and x being linear in b, the perturbed solution xδ,
the solution error eδ := xδ−x and the solution sensitivity to data noise are readily found to be given
by

xδ =

n∑
i=1

bHδ ui

σi
vi, eδ =

n∑
i=1

wHui

σi
vi,

∥eδ∥2
δ

=
1

δ

( n∑
i=1

|wHui|2
σ2
i

)1/2

.

If A is numerically rank deficient (or simply if some of the singular values of A are nonzero but very
small relative to σ1), we may have situations such that

wHu1

σ1
is small, while

wHui

σi
is large for some i,

i.e. the projection of the data error on singular vectors ui associated with very small singular values
σi induces an error magnification on the solution; recall for example the extremely fast singular value
decay for the inverse heat conduction problem (Fig. 6.1). This situation makes the solution sensitivity
∥eδ∥2/δ potentially large even for small data errors δ, i.e we are in the unpleasant situation (6.1). It
constitutes a typical difficulty when solving e.g. inverse problems or deconvolution problems for image
processing. Very ill-conditioned matrices may have singular values that are exponentially decaying
w.r.t. their index, so that |wHui|/σi may be very large even for small data errors δ.

1The assumption m ≥ n implies that A has min(m,n) = n singular values, counting multiplicities.
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6.2.2 Low-rank approximations. Let A ∈ Km×n be a given matrix, for which no special property
or requirements are assumed (i.e. A may be picked arbitrarily). It is often useful to replace A by
a low-rank approximation Ar with given column rank r < n, where “approximation” means that
∥A − Ar∥ is deemed small enough in the sense of some matrix norm. To this end, it is natural to
introduce the notion of truncated singular value decomposition, upon which low-rank approximations
can conveivably be defined:

Definition 6.1 (truncated singular value decomposition) Let A ∈ Km×n be an arbitrary matrix. Let
U, S, V be the elements of the SVD of A as introduced in (6.2). For any given r≤n, the leading rank-r

truncated singular value decomposition (TSVD) Âr of A is then defined by

Âr := UrSrVr =

r∑
i=1

σiuiv
H

i , (6.5)

where Ur = [u1, . . . , ur] ∈ Km×r, Vr = [v1, . . . , vr] ∈ Kn×r and Sr = diag(σ1, . . . , σr) ∈ Rr×r are
defined in terms of the SVD elements U, S, V . In other words, the rank-r TSVD of A is found from
the SVD of A given by (6.2) by setting σr+1 = . . .= σn =0.

Indeed, the following classical result (proved in Exercise E21-4) states that the best rank-r approx-
imation of A in the sense of either the (spectral) 2-norm or the Frobenius norm (respectively defined
by (1.10) with p=2 and (1.11)) is given by the truncated singular value decomposition (TSVD) of A:

Theorem 6.1 (Eckart-Young-Mirsky [16]) Let A ∈ Km×n be an arbitrary matrix. Let r≤n. The rank-r
TSVD Âr of A provides the best rank-r approximation of A for the spectral and Frobenius norms:

Âr = arg min
B∈Km×n, rank(B)=r

∥A−B∥2 = arg min
B∈Km×n, rank(B)=r

∥A−B∥F.

Moreover, the respective truncation errors verify

∥A− Âr∥2 ≤ σr+1, ∥A− Âr∥2F ≤
n∑

i=r+1

σ2
i . (6.6)

The above result immediately elicits a few simple remarks:

• The estimates (6.6) translate into corresponding estimates for the relative truncation errors:

∥A− Âr∥2
∥A∥2

≤ σr+1

σ1
,

∥A− Âr∥F

∥A∥F

≤

√∑n
i=r+1 σ

2
i√∑n

i=1 σ
2
i

.

• They show that knowing the singular values of A allows to determine the smallest rank r such
that Âr approximates A within a chosen tolerance.

• On the other hand, the actual computation of Âr for given A is potentially expensive, as it entails
evaluating the SVD of A, at a O(m2n) cost.

6.3 REGULARIZED LEAST SQUARES. A classical approach for regularizing ill-conditioned linear
systems of equations (which often result from the discretization of ill-posed linear equations involving
unknown functions [35, 8]) consists in introducing a modified least squares problem with an additional
term that expresses some additional prior information on the unknown. In the simplest form of this
approach, the modified minimization problem takes the form

min
x∈Kn

Jα(x), Jα(x) := ∥Ax− b∥22 + α∥x∥22, (6.7)

where α > 0 is the regularization parameter. The heuristic idea behind introducing the above Jα is
to “augment” the least-squares minimization of the residual b−Ax with an additional term α∥x∥22,
with a small weight α, that “penalizes” potential solutions x whose norm is large. In other words,
supplementary prior information is brought to the problem by deciding that solutions with smaller
norms are to be preferred. This idea, which goes back to the seminal works [27, 34], is often known
as (the simplest form of) a Tikhonov(-Phillips) regularization.
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The simplest way to investigate the properties and solvability of problem (6.7) relies, once more,
on the SVD of A. We adapt (3.10) to the objective function Jα by the simple expedient of noticing
that ∥x∥22 = ∥V Hx∥22, to find

Jα(x) =

n∑
i=1

{
|σiyi − zi|2 + α|yi|2

}
+

m∑
i=n+1

|zi|2

(with y := V Hx and z := UHb, as in (3.8)). The minimization problem (6.7) thus uncouples into n
univariate quadratic minimization problems (one for each projection yi of the initial unknown x), and
its solution xα is easily found to be given by

yi =
σizi

σ2
i +α

and hence xα =

n∑
i=1

σizi
σ2
i +α

vi (6.8)

The regularized least squares solution xα has important characteristics:

• Irrespective of the column rank of A, xα is unique for any α> 0 (whereas the pure least squares
solution x = x0 is not unique when A is algebraically rank deficient, see (3.9));

• For α> 0, xα does not minimize ∥Ax− b∥22 (as explained in more detail in Sec. 6.3.1);

• The basic least-squares solution x given by (6.4) is the limit of xα as α → 0.

An alternative approach based on adapting the normal equation formulation yields

xα =
(
AHA+αI

)−1
AHb, (6.9)

where the matrix AHA+αI is easily seen to be SPD (and hence in particular invertible), and the
above comments can also be shown to be true on the basis of (6.9).

6.3.1 Application to noisy data. Solving Ax = b by means of formulation (6.7) instead of (6.3) is
useful when the available data bδ is noisy (if only due to finite-precision arithmetic in the case of a
very ill-conditioned matrix A). The solution xα,δ of problem (6.7) with data bδ is given by (6.8) with
b replaced with bδ = b+w, i.e.:

xα,δ =

n∑
i=1

σi(b
H

δ ui)

σ2
i +α

vi = xα +

n∑
i=1

σi(w
Hui)

σ2
i +α

vi

so that the solution error eα,δ (relative to the pure least squares solution for the noise-free data b) is

eα,δ := xα,δ − x = eregα,δ − enoiseα,δ (6.10)

where eregα,δ and enoiseα,δ , given by

eregα,δ =

n∑
i=1

( σi

σ2
i +α

− 1

σi

)
zivi = −α

n∑
i=1

zi
σi(σ2

i +α)
vi, enoiseα,δ =

n∑
i=1

σi(w
Hui)

σ2
i +α

vi

are the contributions of regularization and data noise to the solution error (in the sense that eregα,δ =0

if α=0 and enoiseα,δ =0 if w=0).
A natural question is how to optimally choose the regularization parameter α. Formulas (6.10)

hint at a complex interplay between α and the data noise w. Much insight is gained into this question
by examining how each term of the optimal value Jα(xα) of Jα for some fixed data b depends on α.
We then write

Jα(xα) = D(α) + αR(α), D(α) := ∥Axα − b∥22, R(α) := ∥xα∥22,
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where D(α) and R(α) are respectively the linear system residual evaluated at the minimizer xα and
the minimizer squared norm. Using (6.8), we easily obtain the following formulas for D(α) and R(α):

D(α) =

n∑
i=1

α2

(σ2
i +α)2

|zi|2 +
m∑

i=n+1

|zi|2, R(α) =

n∑
i=1

σ2
i

(σ2
i +α)2

|zi|2 (6.11)

(notice that the second sum in D(α) is a constant). In turn, the functions α 7→ D(α) and α 7→ R(α)
given by the above formulas are easily differentiated, to obtain

D′(α) = 2α

n∑
i=1

σ2
i

(σ2
i +α)2

|zi|2 > 0, R′(α) = −2

n∑
i=1

σ2
i

(σ2
i +α)3

|zi|2 < 0; (6.12)

in other words, α 7→ D(α) is increasing while α 7→ R(α) is decreasing (and, in particular, the linear
system residual achieved by xα is larger than its minimum ∥Ax0 − b∥ for any α > 0). Next, we can
consider the parametric curve C defined in the (D,R) plane by α∈ [0,∞[ 7→

(
D(α), R(α)

)
∈R2. The

curve C, often called for reasons to be clarified soon the L-curve associated with the regularized least
squares problem, has the following properties:

Lemma 6.1 (properties of the L-curve)
(a) The curve C is monotonically decreasing, i.e. R is a decreasing function of D;
(b) The curve C is convex;
(c) The extremities A =

(
D(0), R(0)

)
and A =

(
D(∞), R(∞)

)
of C are given by

D(0) = ∥Ax− b∥22, R(0) = ∥x∥22, D(∞) = ∥b∥22, R(∞) = 0

where x = x0 is the basic least-squares solution.

Proof. (a) follows directly from D′(α) > 0 and R′(α) < 0, while formulas (c) are easily found
from (6.11). Property (b) is equivalent (since D,R are smooth enough functions of α) to the
curvature κ(α) being positive for any α. Classical differential geometry provides κ(α) = (D′R′′ −
D′′R′)/(D′2+R′2)3/2. We find from (6.12) that D′(α) = −αR′(α) for any α, from which we deduce
that (D′R′′−D′′R′)(α) > 0. Hence κ(α) > 0 for any α, i.e. C is a convex curve. The proof of the
lemma is complete.

Now, assume that we are using noisy data bδ and that we know the data noise level δ (the latter
assumption is realistic in some cases, such as mechanical testing experiments where displacement
fields in the sample are monitored using digital image correlation). The regularized problem (6.7) is
predicated on the assumption that solutions x whose norm is large are discouraged. In keeping with
this viewpoint, Lemma 6.1 allows to consider the regularized problem (6.7) in the form

min
x∈Kn

∥x∥22, subject to ∥Ax− b∥22 ≤ δ2 (6.13)

Indeed, let the value α(δ) of α be selected so that the system (squared) residual D(α) be equal to the
(squared) measurement noise δ2, i.e. as the solution of

D(α) = δ2, i.e. ∥Axα − bδ∥22 = δ2 (6.14)

In view of the monotonicity and convexity properties summarized in Lemma 6.1, the above equation
has a unique solution α(δ) provided δ < ∥bδ∥2 (i.e. the noisy data must have a norm larger than that
of the data noise, a most reasonable assumption indeed!). Moreover, we have

D(α) < D(α(δ)), R(α) > R(α(δ)) for any α<α(δ),

so that xα with α = α(δ) chosen according to (6.14) solves (6.13). The following remarks can be made
on the regularized least squares solution method including the parameter choice rule (6.14):

• The selection rule (6.14) for α is known as Morozov’s discrepancy principle; it basically consists in
finding the parameter α that achieves a satisfactory compromise between minimizing the system
residual and preventing the solution norm from becoming too large. A very important feature of
this regularization method, and in fact of many other regularization methods for ill-conditioned
linear systems, is that the optimal value of α depends on the data noise. In fact, Fig. 6.2 makes
it clear (again as a consequence of the convexity of the curve C) that δ 7→ α(δ) is increasing: the
larger the data noise, the larger α has to be chosen.
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δ2

(D(0), R(0) )

C

(D(α(δ)), R(α(δ)) )

(D(∞), R(∞) )

D = ‖Axα − bδ‖22

R = ‖xα‖22

Figure 6.2: L-curve for the regularized least squares problem (6.7), and graphical illustration of the properties
given in Lemma 6.1 and of the determination of the optimal regularization parameter α(δ). The
shaded band covers the part of C satisfying the inequality constraint ∥Ax− b∥22 ≤ δ2 of (6.13).

• The regularized least squares approach can be adapted, with straightforward modifications, to
other types of prior information where the term α∥x∥22 in problem (6.7) is replaced with α∥x−xref∥22
(to emphasize solutions xα that are as close as possible to a specified reference value xref suggested
by e.g. physical or enginering considerations) or α∥Gx∥22 (where G is a discrete differentiation
operator, so as to avoid solutions with large gradient norm due to e.g. small-scale oscillations).

• The curve C is convex for regularized least-squares problems, and is still often (roughly) L-shaped
in more-complex (in particular non-quadratic) generalizations of problem (6.7); for this reason,
it is known as the L-curve associated with the regularized problem.

• The regularization of ill-conditioned discrete problems and ill-posed continuous problems is cov-
ered by an abundant literature, see e.g. the monographs [18, 23, 26].

• The regularization parameter α may be chosen on the basis of a variety of other heuristics, e.g.
by seeking the corner of the L-curve (if such can be defined) or its point closest to the origin of
the (D,R) plane, or alternatively by using the generalized cross-validation method.

• Many regularization methods for linear ill-conditioned problems, in particular those based on the
L-curve concept, are implemented in the freely-available Matlab toolbox regularization tools2.

• In particular, another natural approach for regularizing ill-conditioned linear systems consists in
reducing the dimension of the linear space in which x is sought. This can be done for example
by truncating the SVD of A, and we briefly describe this treatment in the next section.

6.4 REGULARIZATION USING TRUNCATED SVD. Matrices with fast decaying singular values can
be well approximated by a truncated SVD, as previously stated in Theorem 6.1. A natural alternative
to regularized least squares then consists in seeking the minimum-norm solution of the original least
squares problem with the matrix A replaced with its rank-r TSVD approximation Âr (which is by
construction rank-deficient except if r= n). In particular, one hopes to be able to choose an optimal
value r(δ of the truncation parameter r depending on the data noise level δ.

Upon replacing A by Âr in problem (6.3) (i.e. replacing the singular values σr+1, . . . , σn by zero),
the minimum-norm solution xr of

min
x∈Kn

∥Ârx− b∥2,

is given by (3.9) with xr+1 = . . .= xn =0, i.e.

xr =

r∑
i=1

uH
i b

σi
vi.

2See http://www.imm.dtu.dk/~pcha/Regutools/+.
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δ2

Sr

(Dn, Rn)

C

r
(Dr(δ), Rr(δ) )

r+1

(D1, R1)
D = ‖Axr − bδ‖22

R = ‖xr‖22

Figure 6.3: L-curve for the TSVD-based regularization, and graphical illustration of the determination of
the optimal truncation parameter r(δ). The shaded band covers the part of C satisfying the
inequality constraint ∥Ax− b∥22 ≤ δ2 of (6.13).

Reasoning as in the case of regularized least squares, we again introduce the linear system residual
evaluated at the minimizer xr and the minimizer squared norm:

Dr := ∥Ârxr − b∥22 =

m∑
i=r+1

|uH

i b|2, Rr := ∥xr∥22 =

r∑
i=1

|uH
i b|2
σ2
i

(6.15)

(with Dr again evaluated with the help of (3.10)). Clearly, the (finite) sequence Dr is decreasing
while the sequence Rr is increasing. Moreover, we can define the counterpart Cn of the L-curve by
introducing the discrete set n of points (Dr, Rr) (1≤ r≤ n) in the (D,R) plane and join points with
consecutive indices by straight lines. From expressions (6.15), we moreover observe that

Sr :=
Rr −Rr+1

Dr −Dr+1
= −|zr+1|2

σ2
r+1

1

|zr+1|2
= − 1

σ2
r+1

(Sr being the slope of the segment starting at (Dr+1, Rr+1) and ending at (Dr, Rr), i.e. following Cn

along the direction of increasing abscissa). Given that the singular values are listed along decreasing
values, the (negative) slopes decrease as r increases. This remark implies, as graphically illustrated by
Fig. 6.3, that the piecewise-linear curve Cn is convex. We thus are in a situation similar to the case
of regularized least squares, with the discrete parameter 1/r playing the same role as the continuous
regularization parameter α. For data bδ with a known level of noise δ, the optimal value r(δ) if r is
determined by

r(δ) = min
1≤r≤n

Rr subject to Dr ≤ δ2 (6.16)

As a result, the regularization method using truncated SVD and the selection rule (6.16) behaves
similarly to the regularized least squares method with the selection rule (6.14).

6.5 REGULARIZATION BY PROMOTION OF SPARSITY. In some areas of applications, it is important
to find approximate solutions of linear systems that are sparse, i.e. for which x has many zero entries.
This is for instance the case when dealing with image deblurring, where the sought restored image
(coded in a vector x ∈ Rn) is related to the available (blurred) image (coded in a vector b ∈ Rm)
through a relationship of the form

Ax = b+ w, A = BW (6.17)

where B ∈ Rm×m models the blurring (e.g. by atmospheric turbulences for astronomical images)
undergone by the image, W ∈ Rm×n contains in its columns a wavelet basis and w ∈ Rm is an
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unknown noise. In this description, the “correct” image is coded in a vector Wx representing an
expansion on a basis of wavelets with coefficients given in the vector x. As most images have a sparse
wavelet representation, it is desirable to find approximate solutions to (6.17) that are sparse. Using
a 2-norm regularizer for the system (6.17), as discussed in Section 6.3, is inefficient for the purpose
of promoting sparse solutions x, and it is better to use instead a 1-norm regularizer. In this case,
approximate regularized solutions to (6.17) are sought via solving the minimization problem

min
x∈Rn

Jα(x), Jα(x) := ∥Ax− b∥22 + α∥x∥1 (6.18)

where α is the regularization parameter. An abundant literature is available on sparsity-promoting so-
lution methods. In what follows we describe one specific algorithm, namely the fast iterative shrinkage-
thresholding algorithm (FISTA) proposed in [4], which is relatively simple to explain and implement.

6.5.1 Minimization of functionals with a nonsmooth part. In Chapter 4, we presented solution meth-
ods for linear systems based on their interpretation as the stationarity equations for the minimization
of a quadratic functional J(x). For instance, recalling (4.6) and (4.7), one step of the steepest gradient
descent method consists in updating x through

x(k+1) = x(k) − t∇J(x(k)), (6.19)

where the value t(k) of the step length t is determined by a line-search; this update step is explicit
inasmuch it is based on the value of ∇J at the initial point x(k). The minimization problem (6.18) is
more complicated in that the objective functional is not quadratic, and in fact is even not differentiable
at any vector x having at least one zero entry. Updating steps of the form (6.19) therefore cannot
be applied because (i) ∇Jα(x

(k)) may not be defined and (ii) the line-search method determining t(k)

may trigger values of x(k)−t(k)∇Jα(x
(k)) at which Jα is not differentiable. We now describe a method

for generalizing updating steps of the form (6.19) fo the minimization of objective functionals of the
general form

J(x) = f(x) + g(x) (6.20)

where f and g are both convex functions of the vector-valued variable x, f is differentiable but g may
be non-smooth; obviously the format (6.20) of J generalizes that of problem (6.18). The idea consists
in first considering a version of the update step (6.19) that is explicit for f but implicit for g, by
setting

(a) x̂(k) = x(k) − t∇f(x(k)), (b) x(k+1) = x̂(k) − t∇g(x(k+1)). (6.21)

For given step length t, the implicit equation (6.21b) has to be solved for x(k+1). This would be trivial
for a quadratic function g and otherwise feasible using a Newton method if g were twice-differentiable
(in fact, the explicit and explicit-implicit update rules (6.19) and (6.21) are equivalent when both f
and g are quadratic in x, see Exercise 6.1). In the present framework, equation (6.21b) needs to be
reformulated since g may not be differentiable. When g is differentiable, (6.21b) is equivalent recast
as

1

t

(
x(k+1)− x̂(k)

)
+∇g(x(k+1)) = 0,

which (since g is assumed to be convex) is equivalent to

x(k+1) = arg min
x∈Rn

( 1

2t
∥x− x̂(k)∥22 + g(x)

)
When g is convex but not differentiable, the above minimization problem still makes sense, the min-
imizer being unique. In fact, for any lower semicontinuous3 convex function h : Rn → R, let the
proximal operator proxh : Rn → R be defined as

proxh(y) = arg min
x∈Rn

(
1
2∥x−y∥22 + h(x)

)
. (6.22)

3This means that the epigraph (x, t) ∈ Rn×R, h(x)≤ t is closed in Rn×R (among several equivalent definitions).



6.5. REGULARIZATION BY PROMOTION OF SPARSITY 75

Using this definition in (6.21b), the update rule (6.21) applicable to objective functions (6.20) with a
possibly-nonsmooth (convex) term g becomes

x(k+1) = proxtg
(
x(k) − t∇f(x(k))

)
(6.23)

6.5.2 Minimization of L2-L1 functionals. We now specialize the update rule (6.23) to the L2-L1

functional Jα introduced in (6.18). In this case, major simplifications occur due to the fact that the
non-smooth part g(x) = α∥x∥1 = α

(
|x1|+. . .+|xn|

)
is a sum of univariate functions. The minimization

problem (6.22) hence uncouples into n univariate minimization problems, and the proximal operator
proxtg is obtained componentwise from the proximal operator of the univariate function y 7→ αt|y|,
which can be expressed in closed form by means of elementary arguments:

proxu 7→αt|u|(y) = arg min
x∈R

(
1
2 (x−y)2 + αt|x|

)
=

{
0 |yi| ≤ αt

yi(1−αt/|yi|) |yi| ≥ αt

As a result, the update rule (6.23) for the L2-L1 functional J and a given step length t reads

(a) x̂(k) = x(k) − tAT(Ax(k)−b), (b) x
(k+1)
i =


0 |x̂(k)

i | ≤ αt

x̂
(k)
i − αt x̂

(k)
i ≥ αt

x̂
(k)
i + αt x̂

(k)
i ≤ −αt

. (6.24)

Remark 6.1 Notice that the value of proxu7→αt|u|(y) is zero whenever |y| is below the threshold αt.

This is the essence of the sparsity-promoting mechanism of the L2-L1 minimization. Reducing the
regularization parameter α will lower that threshold, i.e. weaken the sparsity-promotion effect.

Remark 6.2 (condition for convergence of proximal iterations [4]) The step length t must verify t ≤
1/L, where L := ∥ATA∥2 is the spectral radius of ATA, for the iterations (6.24) to converge (the proof
of this important fact is left to the reader as Exercise 6.2).

The update rule (6.24) features a constant step length, which makes for a slow convergence. In
differentiable optimization, this is usually remedied my adjusting the step length at each iteration (usu-
ally by means of a line-search, i.e. an univariate minimization w.r.t. t such as (4.5)). The performance
of the L2-L1 minimization is improved by applying convergence acceleration methods. For instance,
the FISTA (fast iterative shrinkage-thresholding algorithm) proposed by Beck and Teboulle [4] applied
to problem (6.18) produces the following algorithm:

Algorithm 6.1 FISTA iterations for the L2-L1 minimization problem [4]

1: A ∈ Rm×n, b ∈ Rm, α> 0, x(0) ∈ Rn (data and initial guess)
2: L = ∥ATA∥2 (spectral radius of ATA: compute largest eigenvalue of ATA)
3: t = α/L (step length, maximum permissible value)
4: y(1) = x(0), s(1) = 1 (first iteration)
5: for k = 1, 2, . . . do
6: x̂(k) = x(k−1) − tAT(Ax(k−1)−b) (explicit step)
7: x(k) = proxu 7→t∥u∥(x̂

(k)) (apply proximal operator)

8: s(k+1) = 1
2

(
1 +

√
1+4s(k)2

)
(update algorithmic parameter s(k))

9: y(k+1) = x(k) + s(k)−1
s(k+1)

(
x(k)−x(k−1)

)
10: If convergence test satisfied: return x = x(k)

11: end for

Exercise 6.1 Consider the implicit update step (6.21) applied to the quadratic regularized least squares
problem (6.7), for which g(x) = α∥x∥22. Show that the explicit update rule (6.19) and its explicit-
implicit variant (6.21) yield the same updated solution x(k+1) upon suitably redefining the value of the
step length t.
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Exercise 6.2 (step length limitation for the L2-L1 functional) (a) Set the update rule (6.24) in the
form x(k+1)) = x(k) − ty and give the explicit expression of each entry yi of y.

(b) Using the above update rule for the L2-L1 functional Jα introduced in (6.18), prove that

Jα(x
(k+1))− Jα(x

(k)) ≤ 1
2 t

2yTATAy − tyTy

(c) Prove that if t∥ATA∥2 ≤ 1, we have Jα(x
(k+1)) − Jα(x

(k)) ≤ 0, i.e. the implied step length
limitation ensures that each iteration reduces the value of the L2-L1 functional.

(d) Conversely, prove that if t∥ATA∥2 > 1, the update rule may result in Jα(x
(k+1))− Jα(x

(k))> 0,
i.e. in an (unwanted) increase of the L2-L1 functional.



CHAPTER 7 APPENDICES

7.1 SUMMARY OF BASIC DEFINITIONS AND FACTS.

Trace of a matrix. The usual definition of the trace Tr(A) of a square matrix A ∈ Kn×n is

Tr(A) :=

n∑
i=1

aii (7.1)

A more-satisfactory definition is as follows: let v1, . . . , vn be any basis of Kn, and define the dual basis
vectors v1, . . . , vn by (vk)Tvℓ = δkℓ (δkℓ being the Kronecker symbol). Then, we set

Tr(A) =

n∑
i=1

(vi)T(Avi). (7.2)

Definition (7.2) agrees with (7.1) if v1, . . . , vn is the standard basis (which coincides with its dual
basis). Moreover, Tr(A) as defined by (7.2) does not depend on the choice of basis.

Matrix transpose and adjoint. Let A∈Rm×n. There exists a unique matrix AT, called the transpose
of A, such that

yTAx = xT(ATy) for all x∈Rn, y ∈Rm.

Likewise, for any A ∈ Cm×n, there exists a unique matrix AH, called the Hermitian transpose of A,
such that

yHAx = xH(AHy) for all x∈Cn, y ∈Cm.

The (Hermitian) transpose of a matrix is in fact the matrix of the linear map that is the adjoint to
that represented by A. Its generic entry is given by

(AT)ij = aji (A∈Rm×n), (AH)ij = aji (A∈Cm×n).

Rank. The (algebraic) rank r of A ∈ Km×n can be defined in many (equivalent) ways. The column
rank of A is the dimension of span(a1, . . . , an) (where a1, . . . , an ∈ Km are the columns of A), i.e.
the largest number of linearly independent columns, i.e the dimension of the range of A. Likewise,
the row rank of A is the largest number of linearly independent rows. The column and row rank are
always equal, and we always have r ≤ min(m,n). The rank r is also the number of nonzero singular
values of A, as well as the number of nonzero eigenvalues of A (if A is diagonalizable). The null space
of A has dimension n−r. A ∈ Kn×n is invertible if and only if r = n.

The algebraic rank is a purely algebraic attribute of a matrix. It is in addition useful in some cases
to consider the numerical rank of A: A has numerical rank r if there exists a rank-r matrix Ar such
that ∥A− Ar∥ is “small enough” (so the numerical rank is not a fixed matrix attribute but depends
on the approximation tolerance).

Determinant.

77
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Orthogonal matrices. A matrix Q = [q1, . . . , qn] ∈ Km×n is orthogonal if its columns Qi are mutually
orthogonal:

(qi)
Hqj = δij (1≤ i, j ≤n), i.e. QHQ = In.

Orthogonal matrices conserve the 2-norm and scalar product:

∥Qx∥22 = ∥x∥22, (Qy)H(Qx) = yHx for all x, y ∈ Km

Orthogonal square matrices are unitary matrices (and in particular are invertible):

Q−1 = QH, QHQ = QQH = In, det(Q) = ±1

Spectral radius. The spectral radius ϱ(A) of a square matrix A ∈ Kn×n is defined by

|λ1| = ϱ(A) = max
(
|λ1|, . . . , |λn|

)
= |λ1|

where λ1, . . . , λn are the n eigenvalues of A, counted with multiplicities and ordered (as usual in this
document) so that |λ1| ≥ |λ2| ≥ . . . |λn|. For any induced matrix norm ∥ · ∥, we have

ϱ(A) ≤ ∥A∥

Projectors.

Sherman-Morrison-Woodbury formula. Let A ∈ Kn×n be an invertible square matrix. Let the mod-
ified matrix A+ UCV also be invertible, where C ∈ Kr×r, U ∈ Kn×r and V ∈ Kr×n and r≤ n. The
Sherman-Morrison-Woodbury formula relates (A+UCV )−1 and A−1:

(A+UCV )−1 = A−1 −A−1U
(
C−1+V A−1U

)−1
V A−1 (7.3)

(proof: multiply both sides of (7.3) by A+UCV , check that equality I = I is obtained). Obtaining
(A+UCV )−1 knowing A−1 using (7.3) therefore requires the inverse of two r×r matrices, namely C
and C−1+V A−1U . This makes (7.3) useful when r ≪ n, where the computational cost of two r× r
inversions (plus the 2r matrix-vector products involved in (7.3)) is much lower than that of computing
(A+UCV )−1 anew. The case where r = 1 (inversion of the rank-one modification of an invertible
matrix), where V and U are row and column vectors, respectively, is particularly useful in practice as
the “small” auxiliary r×r matrices reduce to scalars.

7.2 OVERVIEW OF MATRIX DECOMPOSITIONS. Matrix decompositions are essential tools in nu-
merical linear algebra, as many algorithms work by first converting a given matrix into a (usually
multiplicative) form involving “simpler” matrices. In this section, we list the definitions of the main
matrix decompositions (some already met, others not yet). They are often built upon three funda-
mental types of matrices:

• Diagonal matrices (and also block-diagonal or multidiagonal matrices);

• Triangular matrices (which can be either lower-triangular or upper-triangular and allow to solve
linear systems of equations by forward or backward substitution);

• Orthogonal matrices (whose inverse is immediately known, and which preserve condition numbers,
i.e. accuracy).

LU decomposition: any square matrix A∈Kn×n admits the decomposition A = LU , where L and
U are lower- and upper-triangular, respectively.

Cholesky decomposition: any SPD square matrix A∈Kn×n admits the decomposition A = GGH

(where G ∈ Kn×n is lower-triangular and has a real positive main diagonal), and also the
decomposition A = LDLH (where L ∈ Kn×n is lower-triangular with unit diagonal entries and
D ∈Rn×n is diagonal with strictly positive entries).
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QR decomposition: any matrix A ∈ Km×n admits the decomposition A = QR, where Q ∈ Km×m

is unitary and R ∈ Km×n is upper triangular. Moreover, if r is the rank of A, all rows of R
below the r-th are zero and the reduced QR decomposition A = QrR holds, with Qr ∈ Km×r

containing the first r column vectors of Q . Extensions of the QR decomposition are available
for A ∈ Km×n with m<n.

Schur decomposition: any square matrix A ∈Kn×n admits the decomposition A = QTQH, where
Q is unitary and T is upper triangular. The diagonal of T is made of the eigenvalues of A. If A
is real, Q may still be complex.

Reduction to upper Hessenberg form: any matrix A ∈ Kn×n admits the decomposition A =
QHQH, where Q ∈ Kn×n is unitary and H ∈ Kn×n is upper Hessenberg (i.e. hij = 0 if i−j > 1:
all the entries of H below its first sub-diagonal are zero).

Reduction to tridiagonal form: any Hermitian matrix A ∈ Kn×n admits the decomposition A =
QHQH, where Q ∈ Kn×n is unitary and H ∈ Kn×n is tridiagonal (i.e. hij = 0 if |i−j| > 1). This
is the reduction to upper Hessenberg form when applied to Hermitian matrices, since Hermitian
upper Hessenberg matrices are in fact tridiagonal.

Other decompositions are based on eigenvalues of A or of a matrix associated to A. These include:

Diagonalization any non-defective square matrix A∈Kn×n admits the decomposition A = XΛX−1,
where Λ = diag(λ1, . . . , λn) contains the eigenvalues ofA (with multiplicity) andX = [x1, . . . , xn]
with Axi = λixi. Diagonalizability requires invertibility of X; if X is not invertible, A is not
diagonalizable and is called defective.

Jordan form any square matrix A ∈ Kn×n can be given in Jordan form A = XJX−1, where J is
block-diagonal: J = diag(J1, . . . , Jℓ), ℓ≤ n, where Jk is a Jordan block. Each Jordan block has
one eigenvalue of A on its diagonal, and any Jk whose size is greater than 1 is defective.

Singular value decomposition (SVD): any matrix A ∈ Km×n admits the decomposition A =
USV H, where U and V are unitary square matrices (of size m and n, respectively) and S ∈Rm×n

contains the min(m,n) singular values σ1, . . . σmin(m,n) of A on its main diagonal and is otherwise
zero (i.e. Sii = σi, Sij = 0 if i ̸= j). The singular values are nonnegative real numbers, usually
arranged by decreasing order of magnitude (i.e. σ1 ≥ σ2 ≥ . . . σmin(m,n) ≥ 0).

7.3 OVERVIEW OF BASIC PROCESSES.

7.4 MAIN MATLAB OPERATORS FOR NUMERICAL LINEAR ALGEBRA.

• chol: computes the Cholesky decomposition of a SPD matrix.

• eig: computes eigenvalues and eigenvectors, for both standard and generalized eigenvalue prob-
lems.

• gmres: solves a square linear system Ax = b iteratively by the GMRES method.

• hess: computes the Hessenberg form of an arbitrary matrix A.

• inv: computes the inverse of an arbitrary square matrix A (warning if A found singular).

• ldl: computes the (block) LDLT decomposition of a Hermitian indefinite matrix.

• lu: computes the LU decomposition of a SPD matrix.

• mldivide, abbreviated as “\”: black-box linear equation solver.

• norm: computes a specified norm of a vector x or a matrix A (by default, ∥x∥2 or the induced
norm ∥A∥2).

• pinv: computes the pseudo-inverse A+ of an arbitrary matrix A.

• pcg: solves a SPD linear system Ax = b iteratively by the (preconditioned) conjugate gradient
method.
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• qr: computes the QR factorization of an arbitrary matrix A.

• schur: computes the Schur decomposition of a square matrix A, in either real or complex form.

• sparse: declares that a matrix A is sparse, triggering storage and matrix arithmetic methods
appropriate to sparse matrices.

• svd: computes the singular value decomposition of an arbitrary matrix A.
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Cours ANN 203 – Examen écrit, mardi 9 mai 2023

NOTE: Les matrices et les vecteurs considérés dans tous les exercices sont supposés à valeurs réelles.
La notation ∥x∥ désigne la norme 2 (euclidienne) du vecteur x.

Exercice E23-1 Montrer que la matrice

A =

[
9 6
6 5

]
∈ R2×2

est définie positive, et calculer ses factorisations de Cholesky et LDLT.

Solution: on a Tr(A) = λ1 + λ2 = 14 > 0 et det(A) = λ1λ2 = 9 > 0, donc λ1, λ2 > 0 et A
est définie positive. De nombreuses méthodes permettent d’obtenir une factorisation symétrique de
A. Par exemple, avec les notations du chapitre 2, la matrice d’élimination associée au pivot a11 est
G1(a11/ℓ1) =

[
1 0

−2/3 1

]
, et on obtient alors

G1(a11/ℓ1)AG1(a11/ℓ1)
T =

[
9 0
0 1

]
Puisque G−1

1 (z) = G1(−z) pour tout vecteur z, on obtient donc

A = LDLT avec D =

[
9 0
0 1

]
, L =

[
1 0

2/3 1

]
,

et la décomposition de Choleski de A est

A = GGT avec G = LD1/2 =

[
1 0
2/3 1

] [
3 0
0 1

]
=

[
3 0
2 1

]
.

Exercice E23-2 (éléments propres de la modification de rang 1 d’une matrice diagonale) Soit A∈Rn×n

de la forme A = D+ρzzT, où D = diag(d1 . . . dn) ∈ Rn×n est telle que d1 > d2 > . . . > dn, le vecteur
z ∈ Rn a toutes ses composantes non nulles, et ρ ̸= 0. Certains algorithmes de calcul de spectres de
matrices utilisent la capacité de calculer le spectre d’une matrice A de la forme ci-dessus (modification
de rang 1 d’une matrice diagonale), objet de cet exercice.

(a) Soit λ une valeur propre de A et q ∈Rn un vecteur propre associé. Montrer que zTq ̸= 0 et que
D − λI est inversible.

(b) En déduire que λ est solution de l’équation

R(λ) := ρzT(D−λI)−1z + 1 = 0

(c) On suppose ρ > 0. En étudiant le sens de variation de λ 7→ R(λ), montrer que les racines
λ1, . . . , λn sont distinctes et que l’on a

λ1 > d1 > λ2 > d2 > . . . λn > dn.

(d) Que devient le résultat ci-dessus pour le cas ρ< 0?

(e) Proposer le principe d’une méthode de calcul numérique de λ1, . . . , λn utilisant les résultats ci-
dessus.

Eléments de solution:

(a) Par hypothèse, q et λ vérifient Aq − λq = 0, soit

(D − λI)q + ρ(zTq)z = 0. (⋆)

L’hypothèse zTq = 0 conduit à une contradiction: en effet, cela implique (D − λ)q = 0 et donc
q = q0eℓ, λ = dℓ pour un indice ℓ et q0 ∈ R. Le vecteur z ayant par hypothèse toutes ses
composantes non nulles, cela entrâıne zTq = q0zℓ ̸= 0, en contradiction avec l’hypothèse initiale.
On doit donc avoir zTq ̸= 0. Les composantes de z étant par hypothèse non nulles, l’équation (⋆)
entrâıne que (D − λ)q ne peut pas avoir de composante nulle. D étant diagonale, il en résulte
que λ ̸= di (1≤ i≤n), et donc que D − λI est inversible.



(b) D−λI étant inversible, on peut multiplier à gauche l’équation (⋆) par zT(D−λI)−1; cela donne

(zTq)
(
ρzT(D − λI)−1z + 14

)
= (zTq)R(λ) = 0,

et donc R(λ) = 0 puisque zTq ̸= 0.

(c) l’équation R(λ) = 0 prend la forme plus explicite

ρ

n∑
i=1

z2i
di−λ

+ 1 = 0,

qui montre que la fonction λ 7→ R(λ) est strictement croissante sur chacun des n+ 1 intervalles
(−∞, dn), (dn, dn−1),. . . (d2, d1), (d1,+∞) et vérifie

R
(
(−∞, dn)

)
= (1,+∞);

R
(
(di+1, di)

)
= (−∞,+∞), 1≤ i≤n−1;

R
(
(d1,+∞)

)
= (−∞, 1).

On déduit facilement de ce qui précède que R(λ) a exactement n racines simples vérifiant les
encadrements annoncés.

(d) Pour ρ < 0, le raisonnement précédent se transpose facilement, tous les sens de variation étant
inversés, et on trouve encore n racines simples vérifiant

λ1 > d1 > λ2 > . . . λn−1 > dn > λn.

(e) Les résultats précédents suggèrent d’utiliser une méthode itérative de recherche de zéro, telle
que la méthode de Newton, dans chaque intervalle contenant exactement un zéro simple. La
suite des approximations λk d’un zéro est définie par la récurrence

(λk+1 − λk)R
′(λk) +R(λk) = 0,

son initialisation λ0 étant choisie dans un des intervalles pertinents; la dérivée R′(λ) est donnée
par

R′(λ) = ρ

n∑
i=1

( zi
di−λ

)2

.

Exercice E23-3 (actualisation de la SVD suite à modification de rang 1) Soit A ∈ Rm×n une matrice
dont le rang r est strictement inférieur à m et n. Il est rappelé que A admet une décomposition en
valeurs singulières (SVD) réduite de la forme

A = UrSrV
T

r

où les colonnes de Ur et Vr sont les r vecteurs singuliers à gauche et à droite, respectivement, associés
aux r valeurs singulières non nulles σ1 ≥ . . .≥ σr > 0, et Sr = diag(σ1, . . . , σr) ∈ Rr×r.

On considère une perturbation A1 de A de la forme

A1 = A+ abT, a∈Rm, b∈Rn,

où les vecteurs a, b n’appartiennent pas aux sous-espaces span(Ur), span(Vr) respectivement engendrés
par les colonnes de Ur et Vr. Il est important, pour diverses applications reposant sur des calculs en
temps réel impliquant des matrices modifiées par acquisition répétée de données supplémentaires, de
disposer d’algorithmes les plus économiques en temps de calcul permettant de déterminer la SVD de
A1 connaissant celle de A (actualisation de SVD). Cet exercice a pour objet d’établir la base de tels
algorithmes.



(a) On décompose a sous la forme

a = ar + αa′, avec ar ∈ span(Ur), a′ ⊥ span(Ur), ∥a′∥ = 1.

Exprimer a′, ar, α en fonction de a et Ur. On décompose de la même manière b = br + βb′ avec
br ⊥ span(Vr).

(b) Décomposer A1 sous la forme

A1 =
[
Ur a′

]
S1

[
Vr b′

]T
Donner S1, préciser ses dimensions, et montrer que S1 est somme d’une matrice diagonale et
d’une matrice de rang 1.

(c) Proposer le principe d’une méthode permettant de déterminer la SVD de A1, connaissant celle
de A, en s’aidant de la décomposition ci-dessus.

Eléments de solution:

(a) On a ar = UUTa (projection orthogonale de a sur les colonnes de Ur, qui définissent une
famille orthonormée), et â := a − ar est bien orthogonal à a (UT(a − ar) = 0). Ensuite,
|â∥2 = aT(I − UUT)a > 0, et on peut poser α :=

√
aT(I − UUT)a. Ainsi,

ar = UUTa, α =
√

aT(I − UUT)a, a′ = (a− ar)/α (⋆)

conviennent, et on procède de même pour obtenir

br = V V Tb, β =
√
bT(I − V V T)b, b′ = (b− br)/β. (⋆⋆)

(b) Supposons que la décomposition A1 =
[
Ur a′

]
S1

[
Vr b′

]T
ait lieu. Puisque

[
Ur a′

]T[
Ur a′

]
=

Ir+1 et
[
Vr b′

]T[
Vr b′

]
= Ir+1, S1 est alors donnée par

S1 =
[
Ur a′

]T
A1

[
Vr b′

]
=

[
UT
r AVr + (UT

r a)(b
TVr) UT

r Ab′ + (UT
r a)(b

Tb′)
a′TAVr + (a′Ta)(bTVr) a′TAb′ + (a′Ta)(bTb′)

]
.

De plus, on a A = UrSV
T
r par hypothèse sur A et les relations (⋆) et (⋆⋆) impliquent

a′Ta = α, bTb′ = β, a′TAVr = 0, UT

r Ab′ = 0, a′TAb′ = 0

et on obtient donc

S1 =

[
S + (UTa)(bTV ) β(UTa)

α(bTV ) αβ

]
=

[
S 0
0 0

]
+

{
UT
r a
α

}{
V T
r b
β

}T

qui établit la décomposition annoncée comme somme d’une matrice diagonale et d’une matrice
de rang 1.

(c) Supposons connue la SVD de S1 ∈ R(r+1)×(r+1), qui est de la forme S1 = XΣY T, où X,Y ∈
R(r+1)×(r+1) sont orthogonales et Σ ∈ R(r+1)×(r+1) est diagonale. On obtient

A1 =
([

Ur a′
]
X

)
Σ
(
Y T

[
Vr b′

]T )
,

et on vérifie facilement que
([

Ur a′
]
X

)T([
Ur a′

]
X

)
= Ir+1 et

([
Vr b′

]
Y
)T([

Vr b′
]
Y
)
= Ir+1.

La formule ci-dessus donne donc la SVD réduite de A1, les valeurs singulières de A1 étant portées
par la diagonale principale de Σ.

La décomposition S1 = XΣY T peut être obtenue de façon économique par une adaptation de la
méthode présentée dans l’exercice E23-2.



Exercice E23-4 (itérations d’Arnoldi pour une matrice tridiagonale non symétrique) On considère une
matrice A ∈ Rn×n de la forme

A = I +B, A inversible et B antisymétrique (BT = −B). (⋆)

Les itérations d’Arnoldi (à la base des formes efficaces de GMRES par exemple) consistent, sous
leur forme complète, à trouver la matrice orthogonale Q ∈ Rn×n et la matrice (a priori Hessenberg
supérieure) H ∈ Rn×n telles que

AQ = QH (⋆⋆)

L’objet de cet exercice est d’appliquer les itérations d’Arnoldi à A ayant la forme particulière (⋆):

(a) Montrer que, pour tout x ∈ Rn, on a (Ax, x) = ∥x∥2.

(b) Montrer que H réalisant (⋆⋆) est tridiagonale de la forme

H =



1 −η2 0 . . . 0

η2 1 −η3
. . .

...
0 . . . 0
...

. . . −ηn−1 1 −ηn
0 . . . 0 ηn 1


et donner la méthode permettant de déterminer Q = [q1, . . . , qn] et les scalaires η2, . . . , ηn con-
naissant B.

Eléments de solution:

(a) On multiplie (⋆) par xT à gauche et par x à droite, ce qui donne (Ax, x) = (Ax)Tx = xTAx =
∥x∥2 + xTBx. De plus, xTBx = (xTBx)T = xTBTx = −xTBx par antisymétrie de B, et donc
xTBx = 0. CEla prouve l’égalité (Ax, x) = ∥x∥2.

(b) On sait montrer l’existence de Q et H vérifiant (⋆⋆) pour A donnée, les itérations d’Arnoldi
permettant le calcul pratique de ces matrices. Si A vérifie les conditions (⋆), la multiplication à
gauche de (⋆⋆) par QT donne

H = QTAQ = QT(I +B)Q = QTQ+QTBQ = I +QTBQ

De plus, B étant par hypothèse antisymétrique, on a

HT = I + (QTBQ)T = I −QTBQ.

Par conséquent, H − I est antisymétrique. Etant également Hessenberg supérieure, H est donc
nécessairement tridiagonale. L’ensemble de ces propriétés implique qu’il existe des scalaires
η2, . . . , ηn tels que H soit de la forme annoncée.

On peut retrouver ce résultat directement en particularisant les itérations d’Arnoldi (algo-
rithme 4.3) à une matrice A vérifiant (⋆).



Cours ANN 203 – Examen écrit, vendredi 6 mai 2022

NOTE: Les matrices et les vecteurs considérés dans tous les exercices sont supposés à valeurs réelles.
La notation det(X) désigne le déterminant de la matrice carrée X.

Exercice E22-1 Calculer la décomposition QR de la matrice

A =

[
3
4

]
Solution: le réflecteur de Householder pour la première (et unique) colonne de A est

H = I − 2
vvH

∥v∥2 =
1

5

[
−3 −4
−4 3

]
(v =

{
8
4

}
)

On trouve alors

A = QR, avec Q = H, R = HA =

[
−5
0

]
.

Exercice E22-2 (itérations de Jacobi pour le problème aux valeurs propres symétrique) Cet exercice
utilise la norme de Frobenius ∥A∥F d’une matrice A. On rappelle (pour une matrice réelle A) que

∥A∥2F :=
∑
i,j

a2ij = Tr(AAT) = Tr(ATA).

Soit A ∈ Rn×n une matrice réelle symétrique. On considère dans cet exercice une approche alternative
à celles enseignées dans le cours, appelée itérations de Jacobi, pour la détermination des valeurs
propres de A. Cette méthode utilise la décomposition additive A = AD + AN de A, où AD est la
partie diagonale de A (et donc AN est obtenue en remplaçant la diagonale de A par zéro). L’idée
générale de l’algorithme est de réduire ∥AN∥F à chaque itération (dans le but de converger vers une
matrice diagonale). Chaque itération est de la forme A(k+1) = Q(k)A(k)Q(k)T où Q(k) est une matrice
orthogonale choisie de façon à annuler certains termes de A(k).

(a) Pour toute matrice carrée A et toute matrice orthogonale Q ∈ Rn×n, montrer que (i) on a
∥QAQT∥F = ∥A∥F, et (ii) les matrices A et QAQT ont les mêmes valeurs propres.

(b) Cas n = 2: soit A =
[
a b
b d

]
une matrice symétrique avec b ̸= 0 (on a donc AD = [ a 0

0 d ]). Montrer
qu’il existe une matrice orthogonale Q = [ c −s

s c ], définie par deux réels c, s vérifiant c2+s2 = 1,
telle que B := QAQT est diagonale. On déterminera les réels c, s (deux solutions possibles)
en fonction de a, b, d, et pourra pour cela introduire le paramètre τ = (d−a)/2b et l’inconnue
auxiliaire t = s/c. Ce procédé permet donc (sans surprise) de diagonaliser A ∈ R2×2 symétrique
en une seule itération.

(c) On extrapole maintenant le procédé précédent à n ≥ 2 quelconque. On choisit deux lignes k, ℓ
de A (pour lesquelles akℓ ̸= 0). Définir une matrice orthogonale Q(k, ℓ) ∈ Rn×n telle que
B := Q(k, ℓ)AQT(k, ℓ) laisse les lignes et colonnes de A autres que k, ℓ inchangées et introduise
un zéro aux positions akℓ et aℓk de A.

Montrer alors, posant B = BD +BN, que

∥BN∥2F = ∥AN∥2F − 2a2kℓ,

et interpréter ce résultat (utilité de la méthode de calcul de B ci-dessus, meilleur choix de k, ℓ).

Estimer (à l’ordre principal en n) le nombre d’opérations arithmétiques nécessaires à l’évaluation
de Q(k, ℓ)AQT(k, ℓ).

(d) Proposer sur la base des questions précédentes un algorithme itératif susceptible de fournir une
approximation des valeurs et vecteurs propres de A, et expliquer comment et à quelle condition
ces approximations sont obtenues. Proposer un critère d’arrêt des itérations de Jacobi.



Eléments de solution:

(a) Pour montrer (i), on écrit (en exploitant l’orthogonalité de Q via QTQ = I)

∥QAQT∥2F = Tr
{
QAQT(QAQT)T

}
= Tr(QAQTQATQT) = Tr(QAATQT)

= Tr(AATQTQ) = Tr(AAT) = ∥A∥2F.

La propriété (ii) découle (à nouveau par orthogonalité de Q) de

QAQT − λI = QAQT − λQQT = Q(A− λI)QT,

qui permet de déduire

det(QAQT − λI) = det
{
Q(A− λI)QT

}
= det

{
QTQ(A− λI)

}
= det(A− λI).

Les matrices QAQT − λI et A − λI ont donc le même polynome caractéristique, et ainsi les
mêmes valeurs propres.

(b) Un calcul élémentaire donne, en utilisant les quantités suggérées

(QAQT)12 = (QAQT)21 = (a−d)cs+ (c2−s2)b , (QAQT)12 = 0 ⇔ t2 + 2τt− 1 = 0.

La condition d’annulation donne deux valeurs t = −τ ±
√
τ2+1, conduisant à quatre couples

(c, s) possibles:

c = ± 1

1+ t2
, s = ct, t = −τ ±

√
τ2+1

(c) On définit Q(k, ℓ) ∈ Rn×n comme la matrice identité en-dehors des lignes et colonnes k, ℓ, dont
les intersections forment une matrice 2×2 de rotation:

R(k, ℓ, p) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . −s . . . 0
...

...
. . .

...
...

0 . . . s . . . c . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1


De plus, les coefficients c, s sont calculés comme en (b) pour

[
a b
b d

]
= [ akk akℓ

aℓk aℓℓ
]. Le calcul de

B := Q(k, ℓ)AQT(k, ℓ) ne modifie que les lignes et colonnes k, ℓ de A.

D’après (a), on a ∥B∥F = ∥A∥F. D’autre part, pour toute matrice X ∈ Rn×n, on a ∥X∥2 =
∥XD∥2F + ∥XN∥2F. Par conséquent:

∥BN∥2F = ∥AN∥2F + ∥AD∥2F − ∥BD∥2F = ∥AN∥2F + ∥Akℓ
D ∥2F − ∥Bkℓ

D ∥2F,

où Akℓ, Bkℓ ∈ R2×2 sont les sous-matrices obtenues en prenant les lignes et colonnes k, ℓ de A,B.
Les résultats de (a), (b) appliqués à Akℓ, Bkℓ montrant que ∥Akℓ∥2F = ∥Bkℓ∥2F et ∥Bkℓ∥2F = ∥Bkℓ

D ∥2F
(puisque Bkℓ

N = 0 par construction de Bkℓ), on déduit

∥Akℓ
D ∥2F − ∥Bkℓ

D ∥2F = ∥Akℓ
D ∥2F − ∥Bkℓ∥2F = ∥Akℓ

D ∥2F − ∥Akℓ∥2F = −∥Akℓ
N ∥2F = −2a2kℓ

et on obtient donc ∥BN∥2F = ∥AN∥2F − 2a2kℓ: chaque itération de Jacobi réduit ∥AN∥F.



Exercice E22-3 (choix du paramètre de relaxation dans la méthode itérative SOR) Soit A ∈ Rn×n

inversible, que l’on décompose additivement comme A = D−L−U (où D,−L,−U sont la diagonale et
les parties triangulaires inférieure et supérieure strictes de A, respectivement). La méthode itérative
SOR ( successive over-relaxation) pour le système linéaire Ax = b repose sur les itérations définies par[

D − ηL
]
xk+1 =

[
ηU + (1−η)D

]
xk + ηb, k=0, 1, 2, . . . (x0 ∈ Rn: initialisation arbitraire),

ou η ∈ R est le paramètre de relaxation de la méthode. On observe que chaque itération demande
la résolution d’un système triangulaire. Le choix de η est important, et l’objet de cet exercice est de
montrer que certaines valeurs de η ne peuvent pas convenir, quels que soient A, b.

(a) Expliquer pourquoi les itérations SOR sont susceptibles de fournir la solution de Ax = b.

(b) Mettre l’itération SOR générique sous la forme xk+1 = R(η)xk + f(η), avec R ∈ Rn×n et
f ∈ Rn. Quelle est la condition nécessaire et suffisante sur la matrice d’itération R(η) pour que
les itérations SOR convergent quelle que soit l’initialisation x0?

(c) Montrer que det(R(η)) = (1 − η)n. En déduire un ensemble de valeurs de η pour lesquelles la
satisfaction de la condition nécessaire et suffisante du (b) est impossible.

L’algorithme SOR n’est ainsi susceptible de converger que pour les valeurs de η non exclues par le
résultat de (b). On rappelle que det(AB) = det(A)det(B) quelles que soient A,B ∈ Rn×n.

Eléments de solution:

(a) Supposons que la suite xk converge vers une limite x. En passant à la limite dans l’équation
définissant les itérations SOR, x vérifie alors[

D−ηL
]
x =

[
ηU + (1−η)D

]
x+ηb =⇒

[
ηD−ηL−ηU

]
x = ηb,

et est donc solution du système linéaire Ax = b à résoudre. La convergence de la suite xk n’est
cependant pas a priori garantie.

(b) L’itération SOR générique s’écrit (multiplication à gauche par [D−ηL]−1)

xk+1 = R(η)xk + f(η), R(η) :=
[
D−ηL

]−1[
ηU + (1−η)D

]
, f(η) := η

[
D−ηL

]−1
b.

La condition nécessaire et suffisante de convergence est ρ(R(η)) < 1, où ρ(X) est le rayon
spectral de X, égal au maximum du module de ses valeurs propres (théorème 4.1).

(c) Par les propriétés classiques du déterminant, on a

det(R(η)) =
det([ηU + (1−η)D])

det([D−ηL])

De plus, les matrices [ηU+(1−η)D] et [D−ηL] étant toutes deux triangulaires, leur déterminant
est égal au produit de leurs termes diagonaux, et ainsi

det(R(η)) =
(1−η)ndet(D)

det(D)
= (1−η)n.

La condition de convergence ρ(R(η)) < 1 ne peut pas être vérifiée si |det(R(η))| ≥ 1, puisque
cette dernière inégalité implique qu’une au moins des valeurs propres de R(η) est de module égal
ou supérieur à 1. La convergence des itérations SOR est donc impossible pour η ̸∈]0, 2[. Pour
0<η < 2, la convergence des itérations SOR est possible mais nullement garantie a priori. Cette
convergence est établie pour certaines familles de matrices A, par exemple les matrices A SPD.



Exercice E22-4 (modification de rang 1 de systèmes linéaires) Soit M ∈ Rn×n une matrice dense
réelle inversible, et soit f ∈ Rn. Le système Mx = f a une solution unique x ∈ Rn, que l’on suppose
déjà calculée (par exemple par une méthode directe adaptée aux caractéristiques de M).

Etant donnés deux vecteurs u, v ∈ Rn (considérés comme vecteurs colonne, selon l’usage habituel),
on considère la matrice modifiée M1 := M + uvT et le système modifié M1x1 = f . La modification
M1−M = uvT de M est de rang 1 (expliquer pourquoi), et est donc “petite” en ce sens. On cherche
à calculer la solution modifiée x1 économiquement, connaissant M,x et u, v.

(a) Montrer que 1+ vTM−1u ̸= 0 est une condition nécessaire et suffisante d’inversibilité de M1, et
que l’inverse de M1 est alors donné par la formule de Sherman-Morrison

M−1
1 = (M + uvT)−1 = M−1 − 1

1 + vTM−1u
M−1uvTM−1

(on pourra utiliser la propriété suivante: det(I + pqT) = 1 + pTq pour tous vecteurs p, q ∈ Rn).
Que peut-on dire de la modification M−1

1 −M−1 de l’inverse de M?

(b) A l’aide de la formule ci-dessus, définir une méthode aussi économique que possible en opérations
arithmétiques pour calculer la solution x1 de M1x1 = f connaissant M,x et u, v. Estimer (à
l’ordre principal en n) le surcoût d’opérations arithmétiques requis pour obtenir x1, et comparer
au coût de la résolution préalable du système initial Mx = f par une méthode directe.

(c) On considère maintenant le problème de moindres carrés

min
x∈Rn

∥Ax− b∥22, A ∈ Rm×n, b ∈ Rm (m≥n),

pour lequel on suppose l’unicité de la solution x. Quelle condition doit vérifier A pour que cela
soit le cas? Montrer que la solution x du problème ci-dessus vérifie le système linéaire

ATAx = ATb

(“équations normales” du problème aux moindres carrés). Quelles sont les principales propriétés
de ce système?

(d) On envisage alors une version modifiée du problème aux moindres carrés ci-dessus, par ajout
d’une ligne à A et b:

min
x1∈Rn

∥A1x1 − b1∥22, A1 =

[
A
αT

]
∈ R(m+1)×n, b1 =

{
b
β

}
∈ Rm+1

avec α∈Rn, β ∈R (m≥n),

Former les équations normales de ce problème aux moindres carrés modifié. Montrer que la
matrice de ce nouveau système est une perturbation de rang 1 de la matrice initiale M = ATA,
et qu’elle est inversible. En déduire une méthode économique de calcul de x1 par actualisation
de x, que l’on détaillera.

Eléments de solution:

(a) On a M1 := M(I+M−1uvT, ce qui entrâıne

det(M1) = det(M)det(I+M−1uvT) = (1+vTM−1u)det(M).

La condition nécessaire et suffisante d’inversibilité deM1 est det(M1) ̸= 0, et donc 1+vTM−1u ̸=
0 (det(M) ̸= 0 puisque M est par hypothèse inversible). Pour montrer que M−1 est donné par
la formule de Sherman-Morrison, il sufit de vérifier que la multiplication (à gauche ou à droite)
par M1 donne l’identité. Par exemple:(

M + uvT
) (

M−1 − 1

1 + vTM−1u
M−1uvTM−1

)
= I +

(
1− 1

1 + vTM−1u
− vTM−1u

1 + vTM−1u

)
uvTM−1 = I



Dans la formule de Sherman-Morrison, on a M−1uvTM−1 = (M−1u)(M−Tv)T, qui est une
matrice de rang 1 (produit d’un verceur colonne par un vecteur ligne, interprétable comme le
produit tensoriel de deux vecteurs).

(b) La solution de M1x1 = f est algébriquement donnée (en utilisant la formule de Sherman-
Morrison) par

x1 = M−1f = M−1f − 1

1 + vTM−1u
M−1uvTM−1f

Cette expression est généralement inefficace en pratique car elle nécessiterait le calcul (de coût
excessif, et parfois risqué sur le plan de la stabilité ou de la précision) de M−1. Cet obstacle
est contourné en remarquant que (i) M−1f = x et (ii) z := M−1u s’obtient en résolvant le
système Mz = u (une tâche raisonnable en réutilisant la factorisation LU, Cholesky... de M
déjà employée pour obtenir x). On obtient ainsi

x1 = x− 1

1 + vTz
(vTx)z

Supposons pour fixer les idées M inversible mais non symétrique. Le coût initial principal de
la résolution de Mx = f réside dans la factorisation LU de M (∼ 2n3/3 opérations), les deux
systèmes triangulaires demandant ensuite ∼ n2 opérations chacun. Le surcoût lié à l’évaluation
subséquente de x1 par la formule ci-dessus consiste en (i) ∼ 2n2 opérations pour les deux
systèmes triangulaires fournissant la solution z de Mz = u (réutilisation de la factorisation LU),
(ii) calcul des produits scalaires vTx et vTz (∼ 2n opérations chacun), (iii) calcul final de x1

(∼ 2n opérations). Les coûts de calcul de x puis x1 sont donc, à l’ordre principal, ∼ 2n3/3 et
∼ 2n2 respectivement, et le surcoût du calcul de x1 est donc faible relativement au coût du calcul
de x. Un argument similaire s’applique au cas où M est SPD, avec utilisation d’une factorisation
initiale de Cholesky.

(c) La solution du problème de moindres carrés (qui existe toujours) est unique si A est de rang
n (rang colonne maximal). Cette solution x doit par exemple vérifier la condition nécessaire
d’optimalité ∇x

(
∥Ax− b∥22

)
= 0. On a:

∥Ax− b∥22 = xT(ATA)x− 2xTATb+ bTb =⇒ ∇x

(
∥Ax− b∥22) = 2(ATA)x− 2ATb.

La condition nécessaire d’optimalité est donc le système des équations normales proposé.

La matrice ATA est clairement carrée, symétrique et positive (xT(ATA)x = ∥Ax∥2 pour tout
x ∈ Rn). La matrice A étant de rang colonne maximal, son noyau est trivial (N (ATA) = {0}),
ce qui implique xT(ATA)x > 0 pour tout x ̸= 0. La matrice ATA est donc SPD. La résolution
du problème initial de moindres carrés se ramène à celle du système (carré SPD) des equations
normales.

(d) Le problème de moindres carrés modifié conduit aux équations normales AT
1A1x1 = AT

1 b1, pour
lesquelles on trouve

AT

1A1 = ATA+ ααT, ATb1 = ATb+ βα

La matrice AT
1A1 est donc une modification de rang 1 de la matrice ATA, à laquelle on peut

appliquer la formule de Sherman-Morrison (M = ATA, u = v = α), et on obtient

(AT

1A1)
−1 = (ATA)−1 − 1

1+αT(ATA)−1α
(ATA)−1ααT(ATA)−1.

Procédant ensuite comme en (b), la solution du problème de moindres carrés modifié est a priori
donnée par

x1 = (ATA)−1(ATb)− 1

1+αT(ATA)−1α
(ATA)−1ααT(ATA)−1ATb

+ β
[
(ATA)−1α− 1

1+αT(ATA)−1α
(ATA)−1ααT(ATA)−1α

]
.



En utilisant (ATA)−1(ATb) = x et définissant z := (ATA)−1α par résolution du système
(ATA)z = α, on obtient alors

x1 = x− 1

1+αTz
(αTx)z + β

(
z − αTz

1+αTz
z
)
= x+

β − αTx

1+αTz
z.

L’évaluation de la formule ci-dessus, une fois x connu, demande donc (i) le calcul de z par
résolution de (ATA)z = α (on réutilise pour cela la factorisation LDLT ou de Cholesky de ATA),
(ii) l’évaluation des produits scalaires αTx et αTz, (iii) l’évaluation finale de x1 à l’aide de ces
éléments. Des remarques similaires à celles du (c) s’appliquent quant à l’évaluation du surcoût
(faible en termes relatifs) entrâıné par l’évaluation de x1.



Cours SIM 203 – Examen écrit, mardi 11 mai 2021

NOTE: Les matrices et les vecteurs considérés dans tous les exercices sont supposés à valeurs réelles.

Exercice E21-1 Calculer la décomposition en valeurs singulières (SVD) de la matrice

A =

0 2
0 0
0 0


Solution: on trouve sans difficulté

ATA =

[
0 0
0 4

]
, AAT =

4 0 0
0 0 0
0 0 0


En classant les valeurs propres de ATA et AAT par ordre décroissant de module et avec les notations
de la section 3.4 du cours, les éléments propres de ces deux matrices sont

λ1 =4, λ2 =0, v1 = e2, v2 = e1 (pour ATA),

λ1 =4, λ2 = λ3 =0, u1 = e1, u2 = e2, u3 = e3 (pour AAT),

On trouve alors immédiatement la SVD de A:

A = USV T, U = [u1, u2, u3] = I, S =

2 0
0 0
0 0

 , V = [e2, e1] =

[
0 1
1 0

]

Exercice E21-2 (rotations de Givens) Les factorisations de la forme A = QR interviennent (notam-
ment) dans divers algorithmes de résolution de problèmes de moindres carrés ou de valeurs propres;
le cours présente leur calcul par la méthode des réflecteurs de Householder, bien adaptée à la mise à
zéro de toute une (portion de) colonne d’une matrice A.

Cet exercice aborde une autre technique également employée pour calculer une factorisation QR,
appelée méthode des rotations de Givens; celle-ci est notamment utile quand il s’agit de mettre à zéro
des termes “ciblés” de A. L’idée de base est la suivante: une fois choisis deux coefficients a, b situés
dans une même colonne de A ∈ Rm×n, on applique une rotation plane au 2-vecteur de composantes
a, b de sorte que la deuxième composante du 2-vecteur résultant soit nulle. On étend alors cette
transformation de sorte qu’elle agisse sur deux lignes choisies de A et annule le terme de la deuxième
ligne dans une colonne de A spécifiée.

(a) On donne deux réels a, b. Montrer qu’il existe deux réels c, s vérifiant c2+s2 = 1 tels que[
c −s
s c

]{
a
b

}
=

{
r
0

}
(la valeur de r dans le vecteur résultat n’étant pas imposée a priori). Montrer que c, s peuvent être
calculés, pour a, b donnés, au moyen de cinq opérations arithmétiques (+,−,×, /) et un calcul
de racine carrée. Proposer en particulier une méthode de calcul évitant le risque d’overflow
qu’entrâınerait une évaluation de a2 ou b2 quand l’un (au moins) de ces nombres est très grand.

(b) Soit A ∈ Rm×n. On choisit deux lignes k, ℓ et une colonne p de A. Définir une matrice
orthogonale R(k, ℓ, p) telle que R(k, ℓ, p)A laisse les lignes de A autres que k, ℓ inchangées et
introduise un zéro à la position aℓp de A. Quel est le nombre d’opérations arithmétiques total
requis pour le calcul de R(k, ℓ, p)A. La matrice R(k, ℓ, p) est connue sous le nom de matrice de
rotation de Givens; interpréter R(k, ℓ, p) et expliquer cette appellation.



(c) Soit H ∈ Rn×n une matrice carrée de Hessenberg supérieure, c’est-à-dire de la forme

H =


× × × . . . ×
× × ×
0 × × ×
...

. . .
. . .

. . .
...

0 . . . 0 × ×


(H vérifie donc hij = 0 pour i−j > 1). Décrire un algorithme fondé sur les rotations de Givens
et réalisant une factorisation H = QR de H, où Q ∈ Rn×n est orthogonale et R ∈ Rn×n est
triangulaire supérieure.

L’algorithme évoqué en (c) est très utile pour le calcul de valeurs propres d’une matrice A par
l’algorithme QR, après une factorisation préalable A = PHP T de A (P orthogonale, H Hessenberg
supérieure).

Eléments de solution:

(a) Les conditions c2+s2 =1 et sa+cb = 0 sont par exemple vérifiées par

c =
a√

a2+b2
, s = − b√

a2+b2
,

et ces formules sont évaluables en cinq opérations artthmétiques et une extraction de racine: a2,
b2, z := a2+b2, z=

√
z, c = a/z, s = −b/z.

Si a ou b est grand, l’évaluation intermédiaire de a2+b2 présente un risque d’overflow, qui peut
être évité par une normalisation judicieuse. Si a≤ b, on procède ainsi:

z = −a/b, c = 1/
√

1+z2, s = z/
√
1+z2,

le cas b ≤ a étant traité de façon similaire. On vérifie aisément que la méthode (préférable)
ci-dessus demande le même nombre d’opérations.

(b) On définit R = R(k, ℓ, p) ∈ Rm×m comme la matrice identité en-dehors des lignes et colonnes
k, ℓ, dont les intersections forment une matrice 2×2 de rotation:

R(k, ℓ, p) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . −s . . . 0
...

...
. . .

...
...

0 . . . s . . . c . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1


De plus, les coefficients c, s sont calculés comme en (a) pour a = akp et b = aℓp. Le calcul de
R(k, ℓ, p)A ne modifie que les lignes k, ℓ de A, et se résume aux évaluations de[

c −s
s c

]{
akj
aℓj

}
1≤ j ≤n

Chacun de ces produits matrice-vecteur demande 6 opérations arithmétiques (et la deuxième
ligne s’annule par construction de R(k, ℓ, p) si j = p), donc le côut total est 6n−3 opérations.

(c) La factorisation QR de la matrice H demande uniquement l’annulation des n−1 termes de la
première sous-diagonale:



• Multiplier H à gauche par R(1, 2, 1)H (avec c, s définis judicieusement) introduit un zéro
en h21, et demande 6n−3 opérations. La matrice R(1, 2, 1)H obtenue est stockée en place
(les coefficients initiaux de H étant remplacés par leurs valeurs modifiées par le calcul de
R(1, 2, 1)H).

• Multiplier le résultat à gauche par R(2, 3, 2)H (avec c, s définis judicieusement) introduit
un zéro en h32, et demande 6n−9 opérations (les zéros de la première colonne pouvant être
ignorés). On vérifie sans difficulté que les zéros situés dans la première colonne de H sont
préservés.

• [...] Multiplier le résultat à gauche par R(k, k+1, k)H défini judicieusement introduit un
zéro en h(k+1),k, et demande 6n−6k+3 opérations (les zéros des k−1 premières colonnes
pouvant être ignorés).

• [...] Finalement, multiplier le résultat à gauche par R(n−1, n, n−1)H introduit un zéro en
hn,(n−1), et ne demande que 9 opérations

La suite d’opérations ci-dessus produit une matrice dont tous les termes de la première sous-
diagonale sont maintenant nuls, préserve les zéros sous-diagonaux déjà présents dans la matrice
initiale H, et conduit à [

R(n−1, n, n−1) . . . R(2, 3, 2)R(1, 2, 1)
]
H = R

où R est triangulaire supérieure. La matrice R(n−1, n, n−1) . . . R(2, 3, 2)R(1, 2, 1) est orthog-
onale, et son inverse est R(1, 2, 1)T R(2, 3, 2)T . . . R(n−1, n, n−1)T =: Q. Avec cette définition
de Q, on a H = QR, et la factorisation souhaitée est obtenue. Le nombre total d’opérations
arithmeriques nécessaire est

n−1∑
k=1

(
6n−6k+3

)
= 3(n2−1)

Exercice E21-3 (itération d’Arnoldi interrompue) Soit A ∈ Rn×n une matrice inversible. Les itérations
d’Arnoldi permettent de calculer une matrice orthogonale Q ∈ Rn×n et une matrice de Hessenberg
H ∈ Rn×n telles que AQ = QH (section 4.5). On rappelle que la k-eme itération (1≤ k≤n) consiste
à imposer que la k-eme colonne de l’égalité matricielle AQ = QH soit vérifiée (l’égalité complète
est donc vérifiée après la n-eme et dernière itération). On s’intéresse à la résolution d’un système
linéaire Ax = b pour un second membre b ∈ Rn donné, et démarre les itérations d’Arnoldi en posant
q1 = b/∥b∥2. Pour tout entier k, on note Kk(A, b) le sous-espace de Krylov de dimension k associé à
(A, b). Cet exercice porte sur l’examen du cas particulier (non traité dans le cours) suivant:

• l’itération ℓ produit un coefficient sous-diagonal nul dans la ℓ-eme colonne de H: hℓ+1,ℓ = 0.

On suppose que ce numéro d’itération ℓ est le premier pour lequel cette situation apparâıt. Dans tout
cet exercice, ℓ désigne ce numéro particulier d’itération.

(a) Montrer que pour tout k≤ ℓ on a Kk(A, b) = span(q1, . . . , qk).

(b) Expliquer pourquoi l’itération ℓ ne permet pas de définir le vecteur qℓ+1. Comment peut-on alors
procéder pour effectuer l’itération ℓ+1 et les itérations ultérieures?

(c) Montrer que le sous-espace de Krylov Kℓ(A, b) est stable par A: AKℓ(A, b) ⊆ Kℓ(A, b).

(d) Montrer que les sous-espaces de Krylov vérifient Kℓ(A, b) = Kℓ+1(A, b) = Kℓ+2(A, b) = . . .
(stagnation à partir de l’itération ℓ).

(e) Montrer que la solution x de Ax = b vérifie x ∈ Kℓ(A, b).

(f) Compte tenu des questions précédentes, quelles sont les conséquences du cas particulier considéré
sur l’algorithme GMRES appliqué au système Ax = b?

Eléments de solution:



(a) Le fait qu’on ait Kk(A, b) = span(q1, . . . , qk) pour tout k≤ ℓ se montre par récurrence sur k.

Les itérations d’Arnoldi étant initialisées par le choix q1 = b/∥b∥2, on a bienK1(A, b) = span(b) =
span(q1). Supposons que Kk(A, b) = span(q1, . . . , qk) pour un certain entier k. L’itération k
repose sur la vérification de la k-eme colonne de l’égalité matricielle AQ = QH, H étant une
matrice de Hessenberg, ce qui se traduit (équation (4.17) du cours) par

Aqk = h1kq1 + h2kq2 . . .+ h(k+1),kqk+1. (A)

Pour k < ℓ, h(k+1),k ̸=0 par hypothèse, et on a donc

qk+1 =
1

h(k+1),k
Aqk − 1

h(k+1),k

(
h1kq1 + h2kq2 . . .+ hkkqk

)
Le vecteur entre parenthèses appartient à Kk(A, b) (hypothèse de récurrence), tandis que Aqk ∈
Kk+1(A, b) (par définition de Kk+1(A, b) et puisque qk ∈ Kk(A, b) par hypothèse de récurrence).
Puisque les Kk(A, b) sont des espaces vectoriels embôıtés, l’égalité ci-dessus implique que qk+1 ∈
Kk+1(A, b), puis finalement que Kk+1(A, b) = span(q1, . . . , qk+1).

(b) Le raisonnement ci-dessus ne fonctionne pas pour k= ℓ car h(ℓ+1),ℓ =0 par hypothèse: l’égalité
(A) devient

Aqℓ = h1ℓq1 + h2ℓq2 . . .+ hℓℓqℓ. (Aℓ)

et ne permet plus de définir le prochain vecteur qℓ+1. On peut poursuivre en choisissant qℓ+1

comme un vecteur arbitraire orthogonal à (q1, . . . , qℓ) et normé, et poursuivre en appliquant (A)
pour k = ℓ+1, ℓ+2, . . . tant qu’on ne rencontre pas à nouveau une valeur nulle de h(ℓ′+1),ℓ′ pour
une itération k= ℓ′ ultérieure.

(c) Pour k = ℓ, (Aℓ) entrâıne que Aqℓ ∈ Kℓ(A, b); d’autre part les vecteurs Aq1, . . . Aqℓ−1 appar-
tiennent à AKℓ−1(A, b) ⊂ Kℓ(A, b) par définition de Kℓ(A, b). Par conséquent, tout vecteur
x ∈ Kℓ(A, b) = span(q1, . . . , qℓ) vérifie Ax ∈ Kℓ(A, b).

(d) Par définition de Kℓ+1(A, b), on a

Kℓ+1(A, b) = span(b, Ab,A2b, . . . , Aℓb)

= span
(
b, A(b), A(Ab), . . . , A(Aℓ−1b)

)
= span(b) +AKℓ(A, b).

Comme span(b) ⊂ Kℓ(A, b) et (par la question (c)) AKℓ(A, b) ⊂ Kℓ(A, b), on en déduit que
Kℓ+1(A, b) ⊂ Kℓ(A, b). Puisque par ailleurs les sous-espaces de Krylov sont embôıtés (Kk(A, b) ⊂
Kk+1(A, b) pour tout entier k), on a l’égalité Kℓ(A, b) = Kℓ+1(A, b). On peut alors poursuivre
ce raisonnement par récurrence pour montrer que Kℓ(A, b) = Kℓ+1(A, b) = Kℓ+2(A, b) = . . .

(e) On pose x = Qy, ce qui revient à développer x sur la base q1, . . . , qn: x = y1q1+ . . .+ynqn. On
peut alors appliquer à A la réduction de Hessenberg AQ = QH, et le système Ax = b prend la
forme

Ax = b =⇒ AQy = b =⇒ QHy = b =⇒ Hy = QTb = ∥b∥2q1, (H)

la dernière égalité résultant du choix d’initialisation des itérations d’Arnoldi. Par ailleurs, le fait
que h(ℓ+1),ℓ = 0 entrâıne que H est triangulaire par blocs:

H =

[
H1:ℓ,1:ℓ H1:ℓ,(ℓ+1):n

0 H(ℓ+1):n,(ℓ+1):n

]
.

Puisque de plus b = ∥b∥2q1, le système final (H) se résout par une méthode de remontée par
blocs: [

H1:ℓ,1:ℓ H1:ℓ,(ℓ+1):n

0 H(ℓ+1):n,(ℓ+1):n

]{
y1:ℓ

y(ℓ+1):n

}
=

{
∥b∥2q1

0

}
,

qui donne y(ℓ+1):n = 0 puis H1:ℓ,1:ℓy1:ℓ = ∥b∥2q1. La solution x est donc dans span(q1, . . . , qℓ) =
Kℓ(A, b).



(f) L’itération ℓ de l’algorithme GMRES résout le problème de moindres carrés ∥Ax − b∥22 → min
pour x ∈ Kℓ(A, b), et cette itération doit donc trouver la solution du système linéaire dans la
situation considérée compte tenu des résultats précédents. GMRES a donc convergé et s’arrête à
l’itération ℓ (poursuivre les itérations d’Arnoldi etc. au-delà est donc sans objet dans ce cadre).

Exercice E21-4 (preuve du théorème d’Eckart-Young-Mirsky) Soit A ∈ Rm×n une matrice arbitraire,
avec m≥n. Soit A = USV T la SVD de A, avec U = [un, . . . , um] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n,
les valeurs singulières de A étant ordonnées de sorte que σ1 ≥ σ2 . . .≥ σn ≥ 0 (convention suivie dans
le cours).

Pour un entier r tel que 1 ≤ r < n, on définit l’ensemble Mr ⊂ Rm×n des matrices B ∈ Rm×n

de rang r (donc, entre autres caractérisations, l’image de B ∈ Mr est un espace de dimension r).
L’objet de cet exercice est de prouver le théorème d’Eckart-Young-Mirsky de meilleure approximation
de A par une matrice de rang r pour la norme matricielle spectrale, qu’on peut énoncer ainsi:

(a) min
B∈Mr

∥A−B∥2 = σr+1, (b) Âr ∈ arg min
B∈Mr

∥A−B∥2, (EYM)

la clause (b) signifiant donc que la SVD tronquée au rang r de A, notée Âr (cf. Définition 6.5),
minimise l’erreur en norme spectrale commise en approchant A par une matrice de rang r < n et
réalise donc la meilleure approximation de A par une matrice de rang r.

(a) Pourquoi le caractère réel de A implique-t’il que les matrices U, V contenant les vecteurs sin-
guliers sont également réelles?

(b) Montrer que ∥A− Âr∥2 = σr+1.

(c) Montrer que toute matrice B ∈ Mr peut se mettre sous la forme B = XY T avec X ∈ Rm×r et
Y ∈ Rn×r.

(d) Soit B ∈ Mr arbitrairement choisie. Montrer qu’il existe un vecteur non nul w ∈ span(v1, . . . , vr+1)
tel que Y Tw = 0. Pour un tel w, montrer que ∥(A−B)w∥2 ≥ σr+1∥w∥2.

(e) Déduire des étapes précédentes la preuve de (EYM).

Eléments de solution:

(a) Les colonnes de U et V sont les vecteurs propres de AAT et ATA, respectivement. Les matrices
AAT et ATA étant SPD réelles, leurs vecteurs propres sont également réels.

(b) On a

A− Âr =

n∑
i=r+1

σiuiv
T

i ,

et cette formule constitue la SVD réduite de A − Âr (les vecteurs manquants de U et V étant

associés à la valeur singulière nulle de A− Âr). Par conséquent, la plus grande valeur singulière

de A− Âr est σr+1, et donc ∥A− Âr∥2 = σr+1 par le théorème 3.4.

(c) Puisque Dim(Im(B)) = r pour tout B ∈ Mr, il existe r vecteurs x1, . . . xr linéairement
indépendants et nr coefficients yjk (1≤ j ≤n, 1≤ k≤ r) tels que

bj =

r∑
k=1

yjkxk, 1 ≤ j ≤ n

c’est-à-dire B = XY T avec X = [x1, . . . , xr] et Y = [yjk].



(d) Posons w = w1v1+ . . .+wr+1vr+1. L’équation Y Tw = 0 prend la forme du système matriciel
homogène y

T
1 v1 . . . yT

1 vr+1

...
...

yT
r v1 . . . yT

r vr+1




w1

...
wr+1

 =


0
...
0


de format r× (r+1), qui est sous-déterminé et a donc nécessairement une solution w non nulle.

Pour un tel w, on a (A−B)w = Aw−XY Tw = Aw =
∑r+1

i=1 σiwiui, et donc (les vecteurs vi
étant orthonormaux)

∥(A−B)w∥22 =

r+1∑
i=1

σ2
iw

2
i ≥ σ2

r+1

r+1∑
i=1

w2
i = σ2

r+1∥w∥22

(e) L’inégalité ci-dessus s’écrit ∥(A−B)w∥2/∥w∥ ≥ σr+1, et entrâıne ∥A−B∥2 ≥ σr+1 pour tout

B ∈ Mr. Par ailleurs ∥A−B∥2 = σr+1 pour B = Âr ∈ Mr (question (b)). Ces deux éléments
combinés prouvent (EYM).


