Plan général, organisation

- Partie 1: Généralités
- Partie 2: Méthodes directes
- Partie 3: Méthodes itératives
- Partie 4: Problèmes aux valeurs et vecteurs propres
 - Séance 5a: Généralités, Puissances itérées, puissances inverses Séance 6a: Itérations orthogonales et algorithme QR
- Partie 5: Systèmes linéaires mal conditionnés

Computation of matrix spectra

General approach: use invariance of eigenvalues under similarity transformations:

• Let $A \in \mathbb{K}^{n \times n}$, let $X \in \mathbb{K}^{n \times n}$ invertible, set $T := X^{-1}AX$. Then $P_A(\lambda) = P_T(\lambda)$ (same eigenvalues and multiplicities).

Matrix spectra computations: find similarity decomposition $A = XTX^{-1}$ where eigenvalues of T "easy" to compute.

- Factorizations for direct methods (e.g. LU, Cholesky) not appropriate
 For instance: A = LU reveals eigenvalues of L, U, but no connection to eigenvalues of A.
- In fact, we know LU etc cannot work (since direct eigenvalue algorithms inpossible)

Better starting point: the Schur decomposition of A:

- Any $A \in \mathbb{K}^{n \times n}$ has a Schur decomposition $A = QTQ^{H}$ ($Q \in \mathbb{K}^{n \times n}$ unitary, $T \in \mathbb{K}^{n \times n}$ upper triangular)
- Schur decomposition is a similarity transformation of A (so $P_A(\lambda) = P_T(\lambda)$)
- Since T triangular, diag(T) holds the eigenvalues of A.
- Even if $A \in \mathbb{R}^{n \times n}$, $Q, T \in \mathbb{C}^{n \times n}$ in general (as real matrices may have complex eigenvalues).
- If A is Hermitian, T is real and diagonal.

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: a possible outline

Ideal general approach: compute eigenvalues by finding Schur decomposition of A.

Towards finding $A = QTQ^{H}$: introduce zeros in lower triangle of A (again!), but note carefully:

- Let F unitary; assume FA puts zeros in whole 1st column under diagonal. Then, similarity needs forming FAF^H, but right multiplication undoes zeroing-out (try with Householder reflector)
- Remedy: use instead (e.g. Householder) transformations such that (for Hermitian A)

$$F_1 A = \begin{bmatrix} F_1 A F_1^H \\ F_1 A F_1^H \end{bmatrix} = \begin{bmatrix} F_1 A F_1^H \\ F_1 A F_1^H \end{bmatrix} = \begin{bmatrix} F_1 A F_1^H \\ F_1 A F_1^H \end{bmatrix}$$

A Hermitian \implies FAF^H tridiagonal

• For non-Hermitian *A*, can reach *FAF*^H upper Hessenberg:

$$F_1A =$$

$$F_1 A F_1^{\mathrm{H}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \dots F A F^{\mathrm{H}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- This is not yet the Schur decomposition (but we get closer)
- Reduction to tridiagonal/Hessenberg takes fixed computational work (direct step) Then, the rest (e.g. tridiagonal/Hessenberg to Schur) is iterative
- Finding $A = QTQ^{H}$ may need complex arithmetic even if A real (but then we prefer real arithmetic).

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: orthogonal iterations

- Assume $|\lambda_1| > |\lambda_2| > \ldots |\lambda_n|$, with corresponding eigenvectors Q_1, \ldots, q_n .
- Starting idea: apply power iterations to a set of p vectors $X_p = [x_1, \ldots, x_p] \in \mathbb{K}^{n \times p}$:

$$X_{\rho}^{(0)} = X, \ X_{\rho}^{(1)} = AX_{\rho}^{(0)}, \dots \ X_{\rho}^{(k)} = AX_{\rho}^{(k-1)}\dots$$

Then $E_p^{(k)} := \operatorname{span}(x_1^{(k)}, \dots, x_p^{(k)}) \to E_p := \operatorname{span}(q_1, \dots, q_p)$

- Conceivably: (a) run k iterations (until convergence of span(x₁^(k),...,x_p^(k))), (b) diagonalize smaller matrix A_p^(k) := (X^(k))^HAX^(k) ∈ K^{p×p}.
- However, vectors of $X_p^{(k)}$ increasingly collinear
- Remedy: orthogonalization (again!), i.e. find next iterate $X_p^{(k)}$ via

$$X_p^{(k)} R^{(k)} = A X_p^{(k-1)}$$
 use QR decomposition on $A X_p^{(k-1)}$

Algorithm 13 Orthogonal iterations

1: $A \in \mathbb{K}^{n \times n}$ Hermitian, $X_p^{(0)} = [x_1^{(0)}, \dots, x_p^{(0)}] \in \mathbb{K}^{n \times p}$ with orthonormal columns (initialization) 2: for $k = 1, 2, \dots$ do 3: $Z^{(k)} = AX_p^{(k-1)}$ (apply A) 4: $X_p^{(k)}R_p^{(k)} = Z^{(k)}$ (compute reduced QR decomposition of $Z^{(k)} \in \mathbb{K}^{n \times p}$) 5: Stop if convergence, set $\lambda_i = (x_i^{(k)})^{\mathsf{H}}Aq_i^{(k)}$, $q_i = x_i^{(k)}$ 6: end for

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

How and why orthogonal iterations work

Focus on case p = 2 (recall p = 1 is standard power iteration):

$$AX_{\rho}^{(k-1)} = X_{\rho}^{(k)}R^{(k)} \quad \text{with} \quad R^{(k)} = \begin{bmatrix} r_{11}^{(k)} & r_{12}^{(k)} \\ 0 & r_{22}^{(k)} \end{bmatrix} \quad \text{i.e.} \quad \begin{cases} (a) & r_{11}^{(k)}x_{1}^{(k)} = Ax_{1}^{(k-1)}, \\ (b) & r_{12}^{(k)}x_{1}^{(k)} + r_{22}^{(k)}x_{2}^{(k)} = Ax_{2}^{(k-1)}, \end{cases}$$

(a) $x_1^{(0)}, x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(k)}, \dots$ generated by power iterations, hence $x_1^{(k)} \to q_1$. (b) Write $x_1^{(k)} = q_1 + \varepsilon_1^{(k)}$ with $\|\varepsilon_1^{(k)}\| \to 0$, then set $\widehat{A} = (I - q_1 q_1^{\mathsf{H}})^{\mathsf{H}} A (I - q_1 q_1^{\mathsf{H}})$ $= A - \lambda_1 q_1 q_1^{\mathsf{H}} \implies \widehat{A} q_1 = 0, \ \widehat{A} q_i = A q_i \ (i \ge 2)$

Consequently:

$$\begin{aligned} \widehat{A}x_{2}^{(k-1)} &= Ax_{2}^{(k-1)} - \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)})q_{1} \\ &= r_{12}^{(k)}x_{1}^{(k)} + r_{22}^{(k)}x_{2}^{(k)} - \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)})q_{1} \\ &= \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)}) + (\varepsilon_{1}^{(k)})^{\mathsf{H}}Ax_{2}^{(k-1)} \\ &= \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)}) + (\varepsilon_{1}^{(k)})^{\mathsf{H}}Ax_{2}^{(k-1)} \end{aligned}$$

$$\widehat{A}x_{2}^{(k-1)} = r_{22}^{(k)}x_{2}^{(k)} + (q_{1}^{\mathsf{H}}x_{2}^{(k-1)})\varepsilon_{1}^{(k)} + ((\varepsilon_{1}^{(k)})^{\mathsf{H}}Ax_{2}^{(k-1)})x_{1}^{(k)}$$
$$= r_{22}^{(k)}x_{2}^{(k)} + (\varepsilon_{1}^{(k)})$$

 $x_2^{(0)}, x_2^{(1)}, x_2^{(2)} \dots x_2^{(k)} \dots$ generated by power iterations for \widehat{A} .

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: orthogonal iterations

Convergence of orthogonal iterations

Let $A \in \mathbb{K}^{n \times n}$ Hermitian with $|\lambda_1| > |\lambda_2| > \dots |\lambda_p|$. Assume all leading submatrices $(Q_p^H X_p^{(0)})_{1:q,1:q}$ $(1 \le q \le p)$ of $Q_p^H X_p^{(0)} \in \mathbb{K}^{p \times p}$ are nonsingular. Let $X_p^{(k)} = [x_1^{(0)}, \dots, x_p^{(0)}]$: set of orthonormal vectors produced by k orthogonal iterations. Then: $||x_i^{(k)} \pm q_i|| = O(C^k)$, with $C := \max_{1 \le j \le p} |\lambda_{j+1}|/|\lambda_j| < 1$.

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: QR iterations

- Adapt orthogonal iterations to complete spectrum of $A \in \mathbb{K}^{n \times n}$ (Hermitian);
- Remove restriction $|\lambda_1| > |\lambda_2| > \dots |\lambda_p| > \dots$

Focus on $T^{(k)} := X^{(k)H}AX^{(k)}$ (note $T^{(k)} \rightarrow \text{diag}(\lambda_1, \ldots, \lambda_n)$:

$$T^{(k-1)} = X^{(k-1)H} A X^{(k-1)} = X^{(k-1)H} X^{(k)} R^{(k)}$$
 (QR decomposition of $A X^{(k-1)}$)

$$T^{(k)} = X^{(k)H} A X^{(k)} = X^{(k)H} A X^{(k-1)} X^{(k-1)H} X^{(k)} = X^{(k)H} X^{(k)} R^{(k)} X^{(k-1)H} X^{(k)}$$

$$= R^{(k)} X^{(k-1)H} X^{(k)},$$

Reformulate:

(a)
$$T^{(k-1)} = Q^{(k)}R^{(k)}$$
, (b) $T^{(k)} = R^{(k)}Q^{(k)}$, $Q^{(k)} := X^{(k-1)H}X^{(k)}$ unitary.

Algorithm 14 Basic QR iterations

1: $A \in \mathbb{K}^{n \times n}$ Hermitian, $T^{(0)} = A$ (initialization) 2: for k = 1, 2, ... do 3: $Q^{(k)}R^{(k)} = T^{(k-1)}$ (compute QR decomposition of $T^{(k-1)} \in \mathbb{K}^{n \times p}$) 4: $T^{(k)} = R^{(k)}Q^{(k)}$ (update $T^{(k)}$) 5: Stop if convergence, diag($T^{(k)}$) contains the eigenvalues of A 6: end for

M. Bonnet, L. Faria (POems, ENSTA) Méthodes numériques matricielles avancées

Computation of matrix spectra: shortcomings of basic QR iterations

Basic QR iterations are workable (in particular backward stable) but lack efficiency:

- Each QR factorization costs $O(n^3)$ operations (see lecture 2)
- Expect O(n) QR iterations needed, so $O(n^4)$ computing work overall.
- Rate of convergence of eigenvalues depends on their distribution
- Convergence may fail if $|\lambda_j| = |\lambda_{j+1}|$ for some j.

Two major improvements adresss these issues:

- First put A in tridiagonal form (needs $O(n^3)$ work). QR decompositions of a tridiagonal matrix then take $O(n^2)$ work $\implies O(n^3)$ overall work.
- Accelerate convergence using a shifted form of QR algorithm

Méthodes numériques matricielles avancées

Computation of matrix spectra: reduction to tridiagonal form

Method 1: symmetric application of Householder reflectors

$$F_1 A = \begin{bmatrix} F_1 A F_1^H \\ F_1 A F_1^H \end{bmatrix} = \begin{bmatrix} F_1 A F_1^H \\ F_1 A F_1^H \end{bmatrix} \dots F A F^H = \begin{bmatrix} F_1 A F_1^H \\ F_1 A F_1^H \end{bmatrix}$$

- Requires storage of A
- Proved stability

Method 2: Lanczos orthogonalization iterations

• Recall Arnoldi iterations (used for GMRES):

 $A = QHQ^{H}$ Q unitary, H upper Hessenberg

Here, A Hermitian \implies H tridiagonal.

- Specialize Arnoldi iterations to A Hermitian (so H tridiagonal) \rightarrow Lanczos iterations
- Only requires matrix-vector products $q \mapsto Aq$, i.e. suitable for large sparse matrices

M. Bonnet, L. Faria (POems, ENSTA)

Lanczos iterations

Column-by-column enforcement of equality (starting with q_1 arbitrary unit vector)

$$A[q_{1} \dots q_{k}] = [q_{1} \dots q_{k}, q_{k+1}] \begin{bmatrix} \alpha_{1} & \beta_{1} & 0 & \dots & 0 \\ \beta_{1} & \alpha_{2} & & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & \beta_{n-1} \\ 0 & \dots & 0 & \beta_{n-1} & \alpha_{n} \end{bmatrix}$$

column 1: $Aq_{1} = \alpha_{1}q_{1} + \beta_{1}q_{2} \implies \alpha_{1}, \beta_{1}, q_{2}$
 $(q_{1}^{H}q_{2} = 0, ||q_{2}|| = 1)$
column 2: $Aq_{2} = \beta_{1}q_{1} + \alpha_{2}q_{2} + \beta_{2}q_{3} \implies \alpha_{2}, \beta_{2}, q_{3}$
 $(q_{1}^{H}q_{3} = q_{2}^{H}q_{3} = 0, ||q_{3}|| = 1)$
column k: $Aq_{k} = \beta_{k-1}q_{k-1} + \alpha_{k}q_{k} + \beta_{k}q_{k+1} \implies \alpha_{k}, \beta_{k}, q_{k+1}$
 $(q_{k-1}^{H}q_{k+1} = q_{k}^{H}q_{k+1} = 0, ||q_{k+1}|| = 1).$
column n: $Aq_{n} = \beta_{n-k1}q_{n-1} + \alpha_{n}q_{n} \implies \alpha_{n}$

By induction:
$$q_k \in \text{span}(q_1, Aq_1, \dots, A^{k-1}q_1)$$
 for $k = 1, 2, 3 \dots$
 $\text{span}(q_1, q_2, \dots, q_k) = \text{span}(q_1, Aq_1, \dots, A^{k-1}q_1) = \mathcal{K}_k(A, b)$

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Inverse-iteration interpretation of the QR algorithm

- Generic orthogonal iteration at root of basic QR algorithm: $X^{(k)}R^{(k)} = AX^{(k-1)H} \implies A = X^{(k)}R^{(k)}X^{(k-1)H}.$
- Evaluate $A^{-1} = (A^{-1})^{H}$ (since A Hermitian):

$$A^{-1} = X^{(k-1)}(R^{(k)})^{-1}X^{(k)H} = X^{(k)}(R^{(k)})^{-H}X^{(k-1)H}$$

Rewrite using "flipped identity" P (properties: $P^2 = I$, $P[x_1, \ldots, x_n] = [x_n, \ldots, x_1]$):

 $P := \begin{vmatrix} 0 & \dots & 1 \\ \vdots & \ddots & \vdots \\ \ddots & \vdots \end{vmatrix}$

$$A^{-1} = (X^{(k)}P) (P(R^{(k)})^{-H}P) (X^{(k-1)}P)^{H},$$

• Observe (i) $X^{(k-1)}P$, $X^{(k)}P$ unitary; (ii) $P(R^{(k)})^{-H}P$ upper triangular.

Orthogonal iteration for A on $X^{(k)}$ equivalent to orthogonal iteration for A^{-1} on $X^{(k)}P$ In particular, 1st column of $X^{(k)}P$, i.e. $x_n^{(k)}$, undergoes inverse iteration (without shift).

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: shifted QR algorithm

Inverse-iteration interpretation suggests using a shift $\mu^{(k)}$; main steps become

(a)
$$T^{(k-1)} - \mu^{(k)}I = Q^{(k)}R^{(k)}$$
 and (b) $T^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$.

How to (adaptively) choose shifts?

- $\rightarrow \mu^{(k)} := t_{nn}^{(k-1)}$ natural choice (Rayleigh quotient for $q_n^{(k-1)}$), but known to fail on some "nice" matrices.
- \rightarrow Wilkinson shift (eigenvalue of bottom rightmost 2 × 2 block of $T^{(k-1)}$ closest to $t_{nn}^{(k-1)}$)

Algorithm 15 Shifted QR iterations

- 1: $A \in \mathbb{K}^{n \times n}$ Hermitian (data) 2: $(Q^{(0)})^{H}T^{(0)}Q^{(0)} = A$ (Tridiagonalization of A) 3: for k = 1, 2, ... do Choose $\mu^{(k)}$ $Q^{(k)}R^{(k)} = T^{(k-1)} - \mu^{(k)}I$ $T^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$ (shift value, e.g. use the Wilkinson shift) 4: (compute QR factorization of $T^{(k-1)} - \mu^{(k)} I \in \mathbb{K}^{n \times p}$) 5: (update $T^{(k)}$) 6: If any off-diagonal entry $t_{j,j+1}^{(k)}$ is sufficiently small, 7: set $t_{j,j+1}^{(k)} = t_{j+1,j}^{(k)} = 0$ to obtain $T^{(k)} = \begin{bmatrix} T_1^{(k)} & 0 \\ 0 & T_2^{(k)} \end{bmatrix}$. From now, apply the QR algorithm separately to $T_1^{(k)}$ and $T_2^{(k)}$ ("deflation") **Stop** if convergence, diag($T^{(k)}$) contains the eigenvalues of A 8:
- 9: end for

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: example

- Deflation (here not fully implemented) dramatically reduces iteration count

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Computation of matrix spectra: extension to unsymmetric problems

 $(A-\lambda I)x=0,$

A unsymmetric

• Set A in upper Hessenberg form (e.g. using Householder reflectors):

$$A = QHQ^{H}, \quad H = \begin{bmatrix} \times & \times & \times & \dots & \times \\ \times & \times & & & \times \\ 0 & \times & \times & & \times \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \times & \times \end{bmatrix}$$

Spectra of A and H coincide.

• (shifted) QR iterations applicable to H:

 $T^{(0)} = H$, then (a) $T^{(k-1)} - \mu^{(k)}I = Q^{(k)}R^{(k)}$ and (b) $T^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$.

- If $A \in \mathbb{C}^{n \times n}$, $T^{(k)} \to T$ upper triangular;
- If A ∈ ℝ^{n×n} and QR algorithm in real arithmetic, T^(k) → T "almost upper triangular" (2×2 diagonal blocks → pairs of conjugate complex eigenvalues);

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Plan général

- Partie 1: Généralités
- Partie 2: Méthodes directes
- Partie 3: Méthodes itératives
- Partie 4: Problèmes aux valeurs et vecteurs propres

Partie 5: Systèmes linéaires mal conditionnés Séance 6b: Compression et approximation de systèmes mal conditionnés Séance 7a: Recherche de solutions parcimonieuses.

Ill-conditioned problems

- In some areas of applications, linear systems Ax = b $(A \in \mathbb{K}^{m \times n}, \text{ most often } m \ge n)$ with "unpleasant" properties, e.g.
 - \rightarrow A has, in theory, full column rank;
 - \rightarrow However, A ill-conditioned with very fast decay of singular values, i.e. numerically rank-deficient:

 $||A - A_r|| \ll ||A||$ for some rank-*r* matrix A_r , $r \ll n$

- \rightarrow imperfect data *b* (e.g. measurement errors)
- Such cases occur e.g. for
 - \rightarrow Inverse and identification problems (infer "hidden" physical properties from indirect measurements)
 - $\rightarrow~$ Image processing and image restoration
 - \rightarrow Data analysis
- In what follows: least-squares solutions of Ax = b ($A \in \mathbb{K}^{m \times n}$, m > n, Rank(A) = n).

Recall matrix SVD (see lecture 2):

$$A = USV^{\mathsf{H}} = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{\mathsf{H}} \qquad \begin{cases} U = [u_{1}, \dots, u_{n}] \in \mathbb{K}^{m \times n} \\ V = [v_{1}, \dots, v_{n}] \in \mathbb{K}^{n \times n} \\ S = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{n}) \in \mathbb{R}^{n \times n} \end{cases}$$

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Physical problem: find the temperature distribution in a system before thermal measurements are made (example: space shuttle re-entry).


```
measurement
```


M. Bonnet, L. Faria (POems, ENSTA)

Physical problem: find the temperature distribution in a system before thermal measurements are made (example: space shuttle re-entry).

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Physical problem: find the temperature distribution in a system before thermal measurements are made (example: space shuttle re-entry).

Sensitivity of least squares solutions to data errors

Goal: solve $\min_{x \in \mathbb{K}^n} ||Ax - b||^2$ with A "bad" (ill-conditioned, numerically rank-deficient).

Recall (again!) SVD of A: A = USV

$$V^{\mathsf{H}} = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{\mathsf{H}} \qquad \begin{cases} U = [u_{1}, \dots, u_{n}] \in \mathbb{K}^{m \times n} \\ V = [v_{1}, \dots, v_{n}] \in \mathbb{K}^{n \times n} \\ S = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{n}) \in \mathbb{R}^{n \times n} \end{cases}$$

• Unique solution (rank(A) = n assumed), given by $x = \sum_{i=1}^{n} \frac{u_i^{\mathsf{H}} b}{\sigma_i} v_i.$

• Noisy data $b_{\delta} = b + w$ with $||b - b_{\delta}||_2 = ||w||_2 = \delta$ (δ : size of data error). Solution error:

$$x_{\delta} = \sum_{i=1}^{n} \frac{b_{\delta}^{\mathsf{H}} u_{i}}{\sigma_{i}} \mathbf{v}_{i}, \qquad x_{\delta} - \mathbf{x} = \sum_{i=1}^{n} \frac{w^{\mathsf{H}} u_{i}}{\sigma_{i}} \mathbf{v}_{i}, \qquad \frac{\|\mathbf{x}_{\delta} - \mathbf{x}\|_{2}}{\delta} = \frac{1}{\delta} \Big(\sum_{i=1}^{n} \frac{|w^{\mathsf{H}} u_{i}|^{2}}{\sigma_{i}^{2}}\Big)^{1/2}.$$

• If A numerically rank deficient, may have $\frac{w^{H}u_{1}}{\sigma_{1}}$ small, but $\frac{w^{H}u_{i}}{\sigma_{i}}$ large for some *i*. In some cases, exponential decay of σ_{i} : $|w^{H}u_{i}|/\sigma_{i}$ very large even if δ small.

M. Bonnet, L. Faria (POems, ENSTA)

Low-rank approximations

- Often useful to replace A with low-rank approximation A_r with $||A A_r||$ "small enough"
- Natural choice of A_r: truncated SVD (TSVD) of A

$$\widehat{A}_{r} := U_{r}S_{r}V_{r} = \sum_{i=1}^{r} \sigma_{i}u_{i}v_{i}^{\mathsf{H}} \qquad \begin{cases} U_{r} = [u_{1}, \dots, u_{r}] \in \mathbb{K}^{m \times r} \\ V_{r} = [v_{1}, \dots, v_{r}] \in \mathbb{K}^{n \times r} \\ S_{r} = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{r}) \in \mathbb{R}^{r \times r} \end{cases}$$

Eckart-Young-Mirsky theorem

Let
$$A \in \mathbb{K}^{m \times n}$$
, $r \leq n$. \widehat{A}_r is best rank- r approximation of A (spectral and Frobenius norms):
 $\widehat{A}_r = \underset{\substack{B \in \mathbb{K}^{m \times n} \\ rank(B) = r}}{\arg \min} \left\{ \|A - B\|_2 \text{ or } \|A - B\|_F \right\}; \qquad \|A - \widehat{A}_r\|_2 \leq \sigma_{r+1}, \quad \|A - \widehat{A}_r\|_F^2 \leq \sum_{i=r+1} \sigma_i^2.$

• Corresponding estimates for relative truncation errors:

$$\frac{\|A - \widehat{A}_r\|_2}{\|A\|_2} \leq \frac{\sigma_{r+1}}{\sigma_1}, \qquad \frac{\|A - \widehat{A}_r\|_{\mathsf{F}}}{\|A\|_{\mathsf{F}}} \leq \frac{\sqrt{\sum_{i=r+1}^n \sigma_i^2}}{\sqrt{\sum_{i=1}^n \sigma_i^2}}.$$

Smallest rank *r* such that $||A - \widehat{A}_r|| \le \varepsilon$ can be found knowing $\sigma_1, \ldots, \sigma_n$.

Practical computation of \widehat{A}_r given A potentially expensive (needs SVD of A, $O(m^2n)$ cost).

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Regularized least squares

 Alternative to low-rank truncation by SVD: modified minimization problem (Tikhonov(-Phillips) regularization)

$$\min_{x \in \mathbb{K}^n} J_{\alpha}(x; b), \quad J_{\alpha}(x; b) := \|Ax - b\|_2^2 + \alpha \|x\|_2^2 \qquad (\alpha \ge 0 \text{ "small"})$$

- Heuristic idea: α ||x||²/₂ "penalizes" solutions x with ||x|| large. Supplementary prior information: prefer solutions with smaller ||x||.
- Analysis: use SVD of A (note that $||x||_2^2 = ||V^H x||_2^2$):

$$J_{\alpha}(x;b) = \sum_{i=1}^{n} \left\{ |\sigma_{i}y_{i} - z_{i}|^{2} + \alpha |y_{i}|^{2} \right\} + \sum_{i=n+1}^{m} |z_{i}|^{2} \qquad (y_{i} := v_{i}^{\mathsf{H}}x, \ z_{i} := u_{i}^{\mathsf{H}}b)$$

Minimization uncouples into n univariate quadratic minimizations, hence

$$y_i = \frac{\sigma_i z_i}{\sigma_i^2 + \alpha}, \qquad x_\alpha = \sum_{i=1}^n \frac{\sigma_i z_i}{\sigma_i^2 + \alpha} v_i$$

- Properties of regularized least squares solution x_{α} :
 - $\rightarrow x_{\alpha}$ is unique for any $\alpha > 0$ (even if Rank(A) < n);
 - \rightarrow For $\alpha > 0$, x_{α} does not minimize $||Ax b||_2^2$;
 - \rightarrow Limit of x_{α} as $\alpha \rightarrow 0$ is minimum-norm least-squares solution of Ax = b.

M. Bonnet, L. Faria (POems, ENSTA)

Regularized least squares, noisy data

- Solve $Ax = b_{\delta}$ with noisy data $b_{\delta} = b + w$ (with $||w||_2 = \delta$).
- Regularized solution for data b_{δ} :

$$x_{\alpha,\delta} := \arg\min_{x} J_{\alpha}(x; b_{\delta}) = \sum_{i=1}^{n} \frac{\sigma_{i} z_{i}^{\delta}}{\sigma_{i}^{2} + \alpha} v_{i} = x_{\alpha} + \sum_{i=1}^{n} \frac{\sigma_{i}(w^{\mathsf{H}} u_{i})}{\sigma_{i}^{2} + \alpha} v_{i}$$

• Regularized solution error $e_{\alpha,\delta} := x_{\alpha,\delta} - x$:

$$e_{\alpha,\delta} = e_{\alpha,\delta}^{\text{reg}} + e_{\alpha,\delta}^{\text{noise}}, \qquad e_{\alpha,\delta}^{\text{reg}} = -\alpha \sum_{i=1}^{n} \frac{z_i}{\sigma_i(\sigma_i^2 + \alpha)} v_i, \quad e_{\alpha,\delta}^{\text{noise}} = \sum_{i=1}^{n} \frac{\sigma_i(w^{\mathsf{H}}u_i)}{\sigma_i^2 + \alpha} v_i.$$

M. Bonnet, L. Faria (POems, ENSTA)

Regularized least squares: choice of α using *L*-curve

Optimal choice method for α ?

• Define

$$J_{\alpha}(x_{\alpha}; b) = D(\alpha) + \alpha R(\alpha), \qquad D(\alpha) := \|Ax_{\alpha} - b\|_{2}^{2}, \quad R(\alpha) := \|x_{\alpha}\|_{2}^{2}$$

and study behavior of $\alpha \mapsto \left\{ D(\alpha), R(\alpha) \right\}$

• We find

$$D(\alpha) = \sum_{i=1}^{n} \frac{\alpha^{2}}{(\sigma_{i}^{2} + \alpha)^{2}} |z_{i}|^{2} + \sum_{i=n+1}^{m} |z_{i}|^{2}, \qquad R(\alpha) = \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{(\sigma_{i}^{2} + \alpha)^{2}} |z_{i}|^{2}$$
$$D'(\alpha) = 2\alpha \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{(\sigma_{i}^{2} + \alpha)^{2}} |z_{i}|^{2} > 0, \qquad R'(\alpha) = -2 \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{(\sigma_{i}^{2} + \alpha)^{3}} |z_{i}|^{2} < 0$$

• Outcome: $\alpha \mapsto D(\alpha)$ increasing and $\alpha \mapsto R(\alpha)$ decreasing, i.e.:

The L-curve $\alpha \in [0, \infty[\mapsto (D(\alpha), R(\alpha))]$ is convex

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Regularized least squares: choice of α using *L*-curve

• Extremities A = (D(0), R(0)) and $A = (D(\infty), R(\infty))$ of *C* given by $D(0) = ||Ax - b||_2^2$, $R(0) = ||x||_2^2$, $D(\infty) = ||b||_2^2$, $R(\infty) = 0$ ($x = x_0$: basic least-squares solution).

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Regularized least squares: choice of α using L-curve

- Assume data noise level δ is known (realistic in some cases, e.g. mechanical testing using digital image correlation).
- Use that L-curve is convex, reformulate regularized least-squares: $\min_{x \in \mathbb{K}^n} \|x\|_2^2, \quad \text{subject to} \quad \|Ax - b\|_2^2 \le \delta^2$
- Select α such that $D(\alpha) = \delta^2$ (i.e. set LS residual equal to data noise)
- Unique solution provided $\delta < \| \dot{b}_{\delta} \|_2$

Regularized solution using truncated SVD

• Matrices with fast decay of σ_i : truncated SVD as alternative to Tikhonov regularization:

$$x_r := \arg\min_{x \in \mathbb{K}^n} \|\widehat{A}_r x - b\|^2 = \sum_{i=1}^r \frac{u_i^n b}{\sigma_i} v_i$$

By analogy to regularized least squares, define

$$D_r := \|\widehat{A}_r x_r - b\|_2^2 = \sum_{i=r+1}^m |u_i^{\mathsf{H}} b|^2, \qquad R_r := \|x_r\|_2^2 = \sum_{i=1}^r \frac{|u_i^{\mathsf{H}} b|^2}{\sigma_i^2}$$

- Clearly $r \mapsto D_r$ decreasing and $r \mapsto R_r$ increasing.
- L-curve C_n : interpolates points (D_r, R_r) $(1 \le r \le n)$. C_n is convex: $S_r := \frac{R_r - R_{r+1}}{D_r - D_{r+1}} = -\frac{|z_{r+1}|^2}{\sigma_{r+1}^2} \frac{1}{|z_{r+1}|^2} = -\frac{1}{\sigma_{r+1}^2}, \qquad r \mapsto S_r \text{ increasing}$
 - Discrete parameter 1/r plays role of regularization parameter α . Optimal value: $r(\delta) = \min_{1 \le r \le n} R_r$ subject to $D_r \le \delta^2$

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Discrete L-curve

$$R = \|x_r\|_2^2 \qquad (D_n, R_n)$$

$$C$$

$$r+1$$

$$S_r \qquad (D_{1, R_1})$$

$$D = \|Ax_r - b_{\delta}\|_2^2$$

M. Bonnet, L. Faria (POems, ENSTA)

Méthodes numériques matricielles avancées

Discrete L-curve, simulated data with $\delta = 10^{-5}$,

- Optimal choice of r (L-curve for noise level $\delta = 10^{-5}$);
- Lowest actual temperature reconstruction error: $\approx 10^{-2}$ (in relative L^2 norm) for r = 19.

M. Bonnet, L. Faria (POems, ENSTA)